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Abstract

Dissemination protocols are used to deliver messages (e.g. time-stamps, code, 

data) from any node (source node) to the rest of the network within a short time period. 

A new dissemination protocol for wireless sensor networks – Secondis – has recently 

been proposed. The protocol is designed to quickly and reliably disseminate very short 

time-stamped  messages  required  by  synchronization  protocols.  In  this  thesis,  we 

implement Secondis using the Contiki OS features and evaluate it based on simulation 

experiments,  using  Tmote  Sky  as  the  target  wireless  sensor  platform.  We  identify 

limitations imposed by the hardware and determine optimal parameters of the protocol.
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Chapter 1. Introduction

1.1 Problem Statement

Wireless sensor networks (WSNs) are emerging systems for applications such as 

industrial automation, health-care, surveillance and safety monitoring [2]. WSNs may 

present real-time requirements, such as bounded end-to-end delay for the data collection. 

Many  sources  of  non-determinism  may  however  affect  the  timing  behavior,  most 

importantly the inherent unreliability of the wireless channel and possible collisions that 

occur when two or more sensor nodes simultaneously transmit to a common neighbor. In 

real-time WSN scenarios it is of fundamental importance to achieve highly predictable 

communication schemes to minimize interference.

Global  time synchronization  is  an  important  requirement  in  real-time WSNs, 

where  nodes  have  to  take  time-coordinated  actions  in  order  to  provide  the  desired 

reliability.  Interference-free  communication  schemes  assume  that  nodes  are 

synchronized;  their  predictability  strongly  depends  on  that  of  the  underlying  time 

synchronization  protocol.  Time  synchronization  is  also  required  for  consistent 

distributed  sensing  and  control.  Furthermore,  common  services  in  WSN,  such  as 

coordination, communication, security, power management or distributed logging also 

depend on the existence of global time.

Dissemination  protocols  are  used  to  deliver  time-stamped  messages  from  a 

source  node  to  the  rest  of  the  network  within  a  short  time  period,  avoiding  simple 

broadcast retransmissions, that lead to the broadcast storm problem [5], and considering 

limited  energy,  computational  power,  and  communication  resources  available  to  the 

sensors in the network.

This  thesis  aims  to  implement  the  Secondis  dissemination  protocol  [1].  We 

develop software that implements protocol behavior using the Contiki OS [7]. We use 

COOJA [8] to simulate the protocol. The environment emulates Tmote Sky [11] wireless 

sensor module and allows us to debug and evaluate the code before implementing it on a 

real sensor.
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1.2 Outline

We briefly describe time-synchronization and dissemination protocols in Chapter 

2. Practical implementation and tools description is given in Chapter 3. In Chapter 4, we 

describe simulation experiments and analyze the results.
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Chapter 2. Time - Synchronization and Dissemination 

Protocols in WSNs

Several  time-synchronization  and  dissemination  protocols  for  WSNs  exist. 

Below we introduce most prominent of them and talk about new dissemination protocol 

– Secondis. 

2.1 Time – synchronization protocols

Time synchronization algorithms provide mechanisms to synchronize the local 

clocks of the nodes in the network. The problem has been extensively studied in the past. 

The most widely adapted protocol used in the Internet domain is the Network Time 

Protocol (NTP). The NTP clients synchronize their clocks to the NTP time servers with 

accuracy in the order of milliseconds by statistical analysis of the round-trip time. The 

time servers are synchronized by external time sources, typically using GPS. The NTP 

has been widely deployed and proved to be effective, secure and robust in the Internet. 

In WSN, however, non-determinism in transmission time caused by the Media Access 

Channel  (MAC)  layer  of  the  radio  stack  can  introduce  significant  delay  at  each 

communication  hop.  Therefore,  without  further  adaptation,  NTP is  suitable  only  for 

WSN applications with low precision demands and loose energy constraints, since the 

GPS module and the protocol's communication scheme require additional power.

2.1.1 Reference broadcast synchronization (RBS) algorithm and timing-sync 

protocol for sensor networks (TPSN)

Two of the most prominent examples of existing time synchronization protocols 

developed for the wireless sensor network domain are the RBS algorithm and the TPSN 

[2]. 

In the RBS, a reference message is broadcasted. The receivers record their local 

time when receiving the reference broadcast and exchange the recorded times with each 

other. The main advantage of RBS is that it eliminates transmitter-side non-determinism. 

The disadvantage of the approach is that additional message exchange is necessary to 

communicate the local time-stamps between the nodes.
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The  TPSN  algorithm  first  creates  a  spanning  tree  of  the  network  and  then 

performs pairwise synchronization along the edges.  Each node gets  synchronized by 

exchanging two synchronization messages with its reference node one level higher in the 

hierarchy. The TPSN achieves two times better performance than RBS by time-stamping 

the radio messages in the Medium Access Control (MAC) layer of the radio stack and by 

relying on a two-way message exchange. The shortcoming of TPSN is that it does not 

estimate the clock drift of nodes, which limits its accuracy, and does not handle dynamic 

topology changes.

2.1.2 Uncertainties in radio message delivery

Non-deterministic  delays  in  the  radio  message  delivery  in  WSN  can  be 

magnitudes larger than the required precision of time synchronization. Therefore, these 

delays need to be carefully analyzed and compensated for. We shall use the following 

decomposition of the sources of the message delivery:

• Send time — time used to assemble the message and issue the send request to the 

MAC layer on the transmitter side. Depending on the system call overhead of the 

operating  system  and  on  the  current  processor  load,  the  send  time  is 

nondeterministic  and  can  be  as  high  as  hundreds  of  milliseconds.  In  our 

implementation this delay is deterministic, since we don't use MAC layer and 

have direct control over CPU and radio.

• Access time — delay incurred waiting for access to the transmit channel up to 

the point when transmission begins. The access time is the least deterministic 

part of the message delivery in WSN varying from milliseconds up to seconds 

depending on the current network traffic. 

• Transmission time — the time it takes for the sender to transmit the message. 

This time is in the order of tens of milliseconds depending on the length of the 

message and the speed of the radio. 

• Propagation time — the time it takes for the message to transmit from sender to 

receiver once it has left the sender. The propagation time is highly deterministic 

in WSN and it depends only on the distance between the two nodes. This time is 
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less than one microsecond (for ranges under 300 meters). 

• Reception time — the time it takes for the receiver to receive the message. It is 

the same as the transmission time. The transmission and reception times overlap 

in WSN as pictured in Figure 2.1.

• Receive time — time to process the incoming message and to notify the receiver 

application. Its characteristics are similar to that of send time.

The RBS approach completely eliminates the send and access times, and with 

minimal OS modifications it is also possible to remove the receive time uncertainty. This 

leaves the mostly deterministic propagation and reception time in wireless networks as 

the sole source of error.

Figure 2.1. Decomposition of the message delivery delay over a wireless link.

With  a  two-way  handshake  of  synchronization  messages  the  TPSN  protocol 

eliminates the unknown propagation time as well. Both the RBS and TPSN protocols 

suffer from the uncertainties of the overlapping transmission and reception times.

2.1.3 Flooding time synchronization protocol (FTSP)

The goal of the FTSP [3] is to achieve a network wide synchronization of the 

local clocks of the participating nodes. It is assumed that each node has a local clock 

exhibiting the typical timing errors of crystals and can communicate over an unreliable 

but error corrected wireless link to its neighbors. The FTSP synchronizes the time of a 

sender to possibly multiple receivers utilizing a single radio message time-stamped at 

both the sender and the receiver sides. MAC layer time-stamping can eliminate many of 

the errors. However, accurate time-synchronization at discrete points in time is a partial 

solution only. Compensation for the clock drift of the nodes is inevitable to achieve high 

precision in-between synchronization points and to keep the communication overhead 

low.  Linear  regression is  used in  FTSP to compensate  for clock drift.  Typical  WSN 

operate in areas larger than the broadcast range of a single node; therefore, the FTSP 
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provides multi-hop synchronization. The root of the network — a single, dynamically 

(re)elected  node — maintains  the  global  time and all  other  nodes  synchronize  their 

clocks to that of the root. The nodes form an ad-hoc structure to transfer the global time 

from the root to all the nodes, as opposed to a fixed spanning-tree based approach. This 

saves the initial phase of establishing the tree and is more robust against node and link 

failures and dynamic topology changes.

The  FTSP  utilizes  a  radio  broadcast  to  synchronize  the  possibly  multiple 

receivers  to  the time provided by the sender  of the radio message.  The broadcasted 

message contains  the sender’s  time stamp which is  the estimated global  time at  the 

transmission of a given byte. The receivers obtain the corresponding local time from 

their respective local clocks at message reception. Consequently, one broadcast message 

provides a synchronization point (a global-local time pair) to each of the receivers. The 

difference between the global and local time of a synchronization point estimates the 

clock offset of the receiver.

2.2 Dissemination protocols

Several  dissemination protocols for WSNs exist.  Their  goal  is  to deliver data 

from a source node to the rest of the network within a short time period. They try to 

avoid simple broadcast retransmissions that lead to the broadcast storm problem. They 

also have to overcome obstacles that arise from the limited energy, computational power, 

and communication resources available to the sensors in the network.

2.2.1 Sensor protocols for information via negotiation (SPIN)

SPIN  [5]  is  a  family  of  adaptive  protocols,  that  efficiently  disseminates 

information among sensors in  an energy-constrained wireless sensor  network.  Nodes 

running  a  SPIN  communication  protocol  name  their  data  using  high-level  data 

descriptors,  called  metadata.  They  use  meta-data  negotiations  to  eliminate  the 

transmission of redundant data throughout the network.  In addition,  SPIN nodes can 

base their  communication decisions  both upon application-specific  knowledge of  the 

data and upon knowledge of the resources that are available to them. This allows the 

sensors to efficiently distribute data given a limited energy supply.
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2.2.2 Trickle

Trickle  [6]  is  an  algorithm for  propagating  and maintaining  code  updates  in 

wireless sensor networks. Trickle uses a “polite gossip” policy, where motes periodically 

broadcast a code summary to local neighbors but stay quiet if they have recently heard a 

summary identical  to  theirs.  When a  mote hears  an older  summary than its  own,  it 

broadcasts an update. Instead of flooding a network with packets, the algorithm controls 

the send rate so each mote hears a small trickle of packets, just enough to stay up to date. 

It is the most common dissemination algorithm for WSNs.

Such  gossiping  and  meta-data  negotiation  approaches  are  however  not  well 

suited for the dissemination of small data, since they introduce overhead of similar size 

as the data. These dissemination protocols cannot be easily optimized for a fast periodic 

dissemination of only a few bytes within a short time window (e.g. due to metadata 

exchange).

2.2.3 Secondis

Secondis [1] differs from SPIN and Trickle dissemination protocols in several 

points. It is specifically designed to propagate short messages with a constant length, 

like synchronization messages. Secondis provides a probabilistic dissemination scheme 

that requires neither gossiping nor negotiation policies. It exploits the fact that the nodes 

get synchronized during the dissemination by using a modified slotted Aloha scheme to 

access the wireless medium, with the important addition that transmission probabilities 

adapt to changing network conditions.

Secondis  separates  synchronization  activities  from  normal  operation.  All 

synchronization  activities  take  place  periodically  in  synchronization  rounds.  Normal 

operation  takes  place  in  frames  between  synchronization  rounds.  Frames  are  much 

longer, than synchronization rounds.

Figure  2.2  shows  the  state  graph  of  a  simplified  discrete-time  model  that  is 

executed by every node. Transitions between the states and variable updates are fully 

synchronized with the slots: they occur with zero delay during the time instant in which 

a slot ends and the next one begins. The time interval between the beginning of the 

13



transmission and the end of the reception of a message lies entirely within a single slot. 

A node starts its execution in the “wait” state, and remains in that state as long as no 

messages  are  received  (signaled  by  r ≠ 1)  without  transmitting  any  packet.  Once  a 

message is received, it keeps making transitions either to state “send” (with probability 

p) where it sends a packet, or to state “don’t send” (with probability  1  −  p) where no 

transmissions are performed. The transmission probability of a node is given by  p  = 

Pinit∙(Pdf )c, where  Pinit is the transmission probability for the first message and  Pdf the 

decreasing factor for subsequent transmissions. 

Figure 2.2. Discrete-time model of a node, for a single synchronization round.

Secondis follows the state graph depicted in Figure 2.2, except that  Bernoulli 

trials  are  only  performed  every  k -  th  time  slot.  This  helps  to  reduce  chances  for 

collisions due to interferences from nodes out of the communication range (in general, 

the  interference  range  is  larger  than  the  communication  range).  Simulation  results 

highlight that sending every k = 3 slots yields the best results [1]. The synchronization 

round ends for all nodes after Ts time units. Additionally, a node is also allowed to finish 

its round earlier, i.e. as soon as the message has been forwarded Cmax times, so that it can 

switch off the radio and save energy. Due to the decreasing transmission probability, 

chances for transmissions would get in any case very small after several transmissions. 

The root node has a special role. It sends its first message when its timer indicating the 

start of the synchronization round expires; it then keeps sending every  k - th slot with 

probability one, until Ts time units have elapsed.
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Chapter 3. Implementation

Below  we  present  our  software  implementation  of  the  Secondis  protocol, 

featuring operating system for sensor modules – Contiki OS. 

3.1 Contiki OS

The sensor devices are often severely resource constrained. An on-board battery 

or solar panel can only supply limited amounts of power. Moreover, the small physical 

size and low per-device cost limit the complexity of the system. Typical sensor devices 

are equipped with 8-bit microcontrollers, code memory on the order of 100 kilobytes, 

and less than 20 kilobytes of RAM. Contiki has been developed for such constrained 

environments.  The  operating  system  provides  dynamic  loading  and  unloading  of 

individual programs and services. The kernel is event-driven, but the system supports 

cooperative multi-threading.  Contiki  is  implemented in the C language and has been 

ported to  a number of microcontroller  architectures,  including the Texas Instruments 

MSP430 [10]. This microcontroller is used on Tmote Sky sensor nodes.

Contiki makes use of protothreads [12], extremely lightweight, stackless type of 

threads that provide a blocking context on top of an event-driven system, without the 

overhead of per-thread stacks. The advantage of protothreads over a purely event-driven 

approach is that protothreads provide a sequential code structure that allows for blocking 

functions, leading to cleaner code structure. The advantage of protothreads over ordinary 

threads is that a protothread does not require a separate stack. In memory-constrained 

systems, the overhead of allocating multiple stacks can consume large amounts of the 

available memory. Each protothread only requires between two and twelve bytes of state 

[12], depending on the architecture. A protothread runs within a single C function and 

cannot span over multiple functions.

3.1.1 Event scheduling

There are two types of timers in Contiki: event timers (from the etimer module) 

and real-time timers (from the  rtimer module). The difference between the  etimer and 

the  rtimer is that an  etimer posts an event to the process that set the timer on timer 
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expiration. Therefore, the execution of timed actions is scheduled on timer expiration 

and it may take place several hundreds of  milliseconds after the expiration, depending 

on the processor load. The exact execution time is not deterministic (as the load may 

vary).  In  contrast,  a  rtimer allows  to  execute  timed  actions  in  the  order  of  a  few 

microseconds. When a timer expires, the interrupt service routine calls immediately the 

callback associated to the timer,  independently on what the processor was executing 

before the interrupt.

We  use  rtimers in  our  implementation,  because  our  communication  scheme 

requires high precision and delays in the order of milliseconds are not admissible.

3.2 Implementation of the Secondis state machine

As discussed in  Section 2.2.3,  in  Secondis there  are  periodic  synchronization 

phases. During each synchronization phase, time is subdivided into short time slots of 

constant  length.  Therefore,  we decide  to  implement  these two aspects  by using two 

protothreads:  Sync protothread  and  Slot protothread.  This  allows  us  to  conveniently 

separate  synchronization  activities  from  synchronized  activities  into  different 

protothreads. This decomposition is shown in the lower part of Figure 3.1.

Figure 3.1. Protothreads and timers mapping.

TMS430F1611 microcontroller,  which  is  used  on  Tmote  Sky wireless  sensor 

modules,  has  two  16-bit  timers  Timer_A  and  Timer_B.  The  former  has  three 

capture/compare registers (CCRs) and the latter – seven CCRs. We use Timer_B in order 

to have 4 available CCRs for future use. In our implementation we make use of 2 CCRs: 

each protothread uses a specific CCR to schedule operations, as shown in the upper part 
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of Figure 3.1. Modifications to Contiki code are made in order to support all available 

CCRs –  we added functions  that  allow to  init,  set  and  disable  a  particular  CCR in 

Timer_B. This allows us to simplify the code by making protothreads data independent, 

that is no global variables are required, since we don't need to share information between 

protothreads.

Parameter Explanation Value

T_F Frame length (between two sync phases) 1 s

T_S Sync phase length 200 ms

T_SLOT Short time slot length 5 ms

Ptx Transmission probability 0.56

Table 3.1. Secondis parameters.

Secondis  is  used  to  disseminate  short  time-stamped  messages  for  time 

synchronization. The synchronization itself is done according to FTSP policy.

3.3 FTSP policy

Each  synchronization  message  contains  the  timeStamp and  the  seqNum.  The 

timeStamp contains the global time estimate of the transmitter when the message was 

broadcasted. The seqNum is a sequence number that is set and incremented by the root 

when a new synchronization phase is initiated.

Since all synchronized nodes periodically transmit synchronization messages, in 

a dense network a receiver may receive several messages from different nodes in a short 

time interval. Due to limited resources, an appropriate subset of the messages must be 

selected to create reference points. In our implementation an eight-element regression 

table stores the selected reference points used to calculate the drift of the local clock. A 

received synchronization message is used to create a reference point if the seqNum field 

is greater than the seqNum of previously received message. Thus, only the first message 

that arrived during a synchronization phase is used in the reference table. Old values in 

the table are replaced by new ones in circular order.

In our implementation, we have a fixed root node. The local time of the root node 
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serves as the global time for the whole sensor network. The root is always synchronized 

and  keeps  transmitting  time-stamped  messages  in  each  synchronization  phase  every 

third  slot  with  probability  Ptx.  An ordinary network node gets  synchronized  when it 

receives  at  least  four  time-stamped messages.  This  minimum is  required  to  perform 

linear regression for clock drift estimation. As soon as a node is synchronized, it starts 

acting according to the Secondis state machine (as shown in Figure 2.2).

On receiving an admissible time-stamped message, a node adds a reference point 

to  its  regression table  and updates  time conversion variables –  averageOffset (offset 

between local and global time) and skew (clock drift estimation). The reference point is a 

triple  (messageSeqNum, messageLocalTime, messageTimeOffset). The last parameter is 

messageGlobalTime – messageLocalTime. Conversion from global to local time and vice 

versa is done according to (3.1).

globalTime=localTimeaverageOffset
skew∗localTime – localTimeAverage
localTime=globalTime – averageOffset

−skew∗globalTime – averageOffset−localTimeAverage 

 (3.1)

3.4 Protothreads implementation

The Sync protothread (uses CCR 1, higher priority) is activated at the beginning 

and at the end of each synchronization phase. At the beginning of each synchronization 

phase, the Sync protothread enables CCR 2, that is used by the Slot protothread and 

schedules  next  execution  of  the  Slot  protothread.  It  also  schedules  its  own  next 

execution either in T_S or T_F milliseconds. The beginning of the next synchronization 

phase is scheduled using the global time, only if a node gets synchronized during current 

synchronization phase (according to FTSP policy, Section 3.3). We use global time in 

this case, because we schedule a long interval and a clock drift should be considered. 

Figure 3.2 shows flow-chart of the Sync protothread. The protothread turns radio module 

on and off in order to save power, when transmission is not required.
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Figure 3.2. Sync protothread flow-chart.

The  Slot  protothread  is  executed  at  the  beginning  of  each  time  slot  during 

synchronization phase. This protothread uses CCR 2, that has lower priority, than CCR 

1, used by the Sync protothread. Therefore, in case of simultaneous interrupts from both 

CCRs, the Sync protothread will be the first to execute. The state machine shown in 

Figure  2.2  is  implemented  within  this  protothread.  Flow-chart  of  the  protothread  is 

shown in Figure 3.3. At the beginning of the execution a next slot is scheduled. Then we 

check if a node is synchronized (according to FTSP policy). A synchronized node can 

broadcast synchronization messages each third  slot (see Section 2.2.3) with probability 

Ptx.

Floating point operations are very expensive in terms of time and therefore we 

can't use them in each slot. Instead, we implement all probability computations using 

integers.  Contiki  provides  a  function  random_rand() that  returns  a  16-bit  unsigned 

integer  uniformly  distributed  from  0  to  65535.  In  order  to  transmit  with  certain 

probability, we generate random number with random_rand() and transmit time-stamped 

message only if generated integer is less than 65535 * Ptx. 
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Figure 3.3. Slot protothread flow-chart.

During a synchronization round a node receives first  valid sync message and 

ignores all  other message with the same sequence ID. According to FTSP policy,  in 

order to be able to send synchronization messages further, a node needs to receive at 

least  4  different  synchronization  messages.  Thus,  at  least  first  four  synchronization 

phases only the root node broadcasts synchronization messages.

3.5 Receive procedure

Receive procedure is implemented within a callback function that is called from 

interrupt routine, serving radio interrupts. It is required to complete all computations as 

fast as possible in order to enable other interrupts. Since interrupt service routines can 

preempt  protothreads,  the  receive  procedure  can  be  executed  at  any  time  during 

synchronization round (provided that there is incoming message). Flow-chart of receive 

procedure is shown in Figure 3.4. 
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Figure 3.4. Receive procedure flow-chart.

A message is  accepted for further  processing if  this  is  the first  time-stamped 

message in current synchronization phase. Received time information is added to FTSP 

regression table and conversion parameters are updated, if there are enough reference 

points  in the table.  If a node is  synchronized,  then starting from next slot  it  tries to 

broadcast time-stamped messages, according to state machine in Figure 2.2.

Figure 3.5 summarizes activities, that take place during different rounds.

Figure 3.5. Sequence of protothreads´ execution.

The  Sync  protothread  is  executed  at  the  beginning  and  at  the  end  of  each 

synchronization  phase.  The  Slot  protothread  is  executed  in  each  time  slot  within 

synchronization phase. The Slot protothread may be interrupted by receive procedure. A 

synced node performs Bernoulli trials and decides weather to broadcast time-stamped 

messages each third time-slot after reception of a time-stamped message.  
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Chapter 4. Evaluation

4.1 Setup

We evaluate our software on the PC using COOJA simulator [8] that comes with 

Contiki OS. We run simulations for two different network topologies – a line with six 

nodes and a two-hop star (four nodes in each hop). We run experiments for different 

transmission probabilities and count the number of missed synchronization rounds.   

4.1.1 COOJA simulator

COOJA is  a  flexible  Java-based  simulator  initially  designed  for  simulating 

networks of sensors running the Contiki operating system. COOJA simulates networks 

of sensor nodes where each node can be of a different type; differing not only in on-

board software, but also in the simulated hardware. COOJA is flexible in that many parts 

of  the  simulator  can  be easily  replaced  or  extended with additional  functionality.  A 

simulated node in COOJA has three basic properties: its data memory, the node type, 

and its hardware peripherals. The node type may be shared between several nodes and 

determines properties common to all these nodes. For example, nodes of the same type 

run the same program code on the same simulated hardware peripherals. Nodes of the 

same type are initialized with the same data memory, except for the node ID.

COOJA allows to vary such communication parameters, as transmission range, 

interference range, transmit and receive success probability. In our simulations we use 

double interference range, compared to transmit range, and 100% transmit and receive 

probability.

4.1.2 Tmote Sky platform

Tmote Sky is an ultra low power wireless module for use in sensor networks, 

monitoring applications, and rapid application prototyping. By using industry standards, 

integrating  humidity,  temperature,  and  light  sensors,  and  providing  flexible 

interconnection  with peripherals,  Tmote Sky enables  a  wide range  of  mesh network 

applications. Tmote Sky features high performance, functionality, and expansion. With 

Contiki OS support out-of-the-box, Tmote leverages emerging wireless protocols. Figure 
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4.1 shows the module.

The low power operation of the Tmote Sky module is due to the ultra low power 

Texas Instruments MSP430F1611 microcontroller featuring 10 kB of RAM, 48 kB of 

flash, and 128 B of information storage. This 16-bit RISC processor features extremely 

low active and sleep current consumption that permits Tmote to run for years on a single 

pair of AA batteries. The MSP430 has 8 external ADC ports and 8 internal ADC ports. 

The  ADC internal  ports  may be used to  read  the  internal  thermistor  or  monitor  the 

battery voltage. A variety of peripherals are available including SPI, UART, digital I/O 

ports, watchdog timer, and timers with capture and compare functionality (Timer_A with 

3 CCRs and Timer_B with 7 CCRs).

Figure 4.1. Tmote Sky module.

4.2 Results

4.2.1 Line topology

We first run a series of experiments for a line topology of six nodes. Figure 4.2 

shows  COOJA simulation  window  for  this  topology.  Transmission  and  interference 

ranges are shown for one of the nodes. The inner circle corresponds to transmission 

range, and the outer – to the interference range.

We use three different constant transmission probabilities P1 = 0.3, P2 = 0.56, P3 

= 0.9 in our experiments. We are interested in number of missed synchronization rounds 

under  each  transmission  probability.  Table  4.1  shows  measured  amount  of  missed 

synchronization rounds (in %) during simulation time of 1000000 ms, corresponding to 

around 640 synchronization rounds. Figure 4.3 shows amount of missed synchronization 

rounds (in %) for all nodes under transmission probability P2.
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Figure 4.2. Simulation for line topology, transmission and interference ranges.

Lower part of the Figure 4.2 shows that synchronization rounds are periodically 

and synchronously executed on all nodes.

Table 4.1. Missed rounds under different transmission probabilities (line).

Obviously,  number  of  missed  rounds  increases  with  number  of  hops.  Since 

interference range is twice as large, as transmission range, we get worse results for P3, 

than for P2,  because of increased number of interferences.  We see that  transmission 

probability P2 is near optimal (P2 < P1 and P2 < P3). That confirms results derived in 

[1], according to which, transmission probability equal to 0.56 is optimal, in case of 

constant transmission probability.
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Missed rounds, %
Node P1 = 0.3 P2 = 0.56 P3 = 0.9

2 1.88 1.88 1.88
3 5.94 5.16 5.78
4 9.22 7.81 9.53
5 13.44 11.25 12.81
6 20.94 15 16.09



Figure 4.3. Missed rounds (%) under P2 (line).

4.2.2 Star topology

We use the same communication settings and the same set of probabilities to run 

experiments on the star topology. We use a two-hop star, that has four nodes in each hop, 

nine nodes total (with the root). Figure 4.4 shows COOJA simulation window for the 

star topology, transmission and interference ranges are shown for the root node.

Figure 4.4. Simulation for star topology, transmission and interference ranges of the 
root node.

Table  4.2  shows  number  of  missed  synchronization  rounds  (in  %)  for  three 
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different transmission probabilities. Nodes 2, 3, 4 and 5 are in one hop distance from the 

root and the rest of the  nodes are in two hop distance from the root. In this case number 

of missed rounds depends on the distance from the root. All nodes that are equidistant 

from the root have approximately the same amount of missed rounds. The number of 

missed rounds increases dramatically with the number of hops (due to interferences from 

other nodes). Figure 4.5 shows missed rounds for transmission probability P2.

Table 4.2. Missed rounds under different transmission probabilities (star).

Figure 4.5. Missed rounds under P2 (star).

Obviously, the amount of missed rounds is proportional to the distance to the root 

node  (number  of  hops).  The  amount  of  missed  rounds  linearly  increases  with  the 

transmission probability (Table 4.2). Judging by the obtained results, we can conclude 

that  optimal  transmission  probability  for  this  topology  lies  below  0.3.  But  low 

transmission  probability  means  long  synchronization.  In  order  to  cope  with  high 

interference  level  and  shorten  synchronization  time,  it  might  be  useful  to  introduce 
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Missed rounds, %
Node P1 = 0.3 P2 = 0.56 P3 = 0.9

2 1.88 1.88 1.88
3 1.88 1.88 1.88
4 1.88 1.88 1.88
5 1.88 5.63 1.88
6 7.5 13.44 59.84
7 6.56 13.75 47.97
8 5.47 12.81 53.28
9 6.41 13.13 53.28



adaptive transmission probability.

4.2.3 Summary

We conducted experiments for two topologies using three constant transmission 

probabilities. Obtained results show, that successful dissemination depends not only on 

the  transmission  probability  but  on  the  network  topology  and  communication 

parameters. Each topology has its optimal transmission probability, mainly because of 

different  interference  levels.  Figure  4.6  shows  average  number  of  missed 

synchronization  packets  (in  %)  for  both  topologies  and  different  transmission 

probabilities.

Figure 4.6. Average number of missed rounds (in %) for both topologies.

In  order  to  achieve  both fast  and  reliable  dissemination  and low interference 

level,  we  could  use  adaptive  transmission  probabilities  (decrease  transmission 

probability  with  each  sent  time-stamped message  within  one  synchronization  round) 

and adaptive node importance levels (nodes that are not important do not transmit time-

stamped messages).
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Chapter 5. Conclusion

We implemented the core features of the Secondis dissemination protocol in the 

Contiki  OS.  We  exploit  Contiki's  multitasking  features  to  implement  the  protocol's 

behavior in a clean and efficient way. We use the COOJA simulator to evaluate our 

implementation based on the Tmote Sky wireless sensor module as the target platform. 

Our simulations on different network topologies demonstrate that in order to achieve fast 

and reliable dissemination in any network, a protocol has to be adaptive, since different 

networks have different optimal transmission probabilities.
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