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Abstract

The PermaSense project is a joint computer science and geoscience project,
aiming to understand the in�uence of climate change on permafrost. A
reliable wireless sensor network (WSN) infrastructure has been developed,
enabling scientists to constantly monitor the condition of certain rock walls
on watch in near real time. However, as the network infrastructure is opti-
mized for energy e�cient operation and low data rates, only slow physical
processes can be monitored.

This thesis explores the possibilities of acquiring sensor data at higher sam-
pling rates in the context of the existing PermaSense architecture, specif-
ically focusing on the application of acoustic emission (AE) measurements
on rock walls. To this end, the architectural concept of �processing sensors�
is introduced and a prototype AE sensing system is presented, integrating
seamlessly into the existing PermaSense WSN infrastructure. Speci�cally,
the prototype's architecture and design are discussed, followed by a system
evaluation based on laboratory experiments.

The evaluation results show that the AE sensing system designed successfully
integrates AE measurements into PermaSense. Furthermore, variations in
measurement quality depending on the ambient temperature are character-
ized qualitatively. Further steps include deploying the developed system in
the �eld in order to gain experience in the targeted operating environment,
as well as quantitatively analyzing and eliminating temperature dependent
measurement errors.

� III �



� IV �



Acknowledgements

First and foremost, I would like to thank Dr. Jan Beutel for his excellent
support, the constant feedback and all the insightful discussions throughout
this project. You challenged me to dig deeper in every aspect. I also thank
Dr. Stephan Gruber for co-advising this thesis, providing the geoscienti�c
focus and being such a patient and grateful, yet demanding �customer�. Fur-
thermore, I would like to thank Prof. Dr. Lothar Thiele for having given
me the opportunity to contribute to the research activity of the Computer
Engineering group in several student projects throughout the last few years.
Many thanks also to the following people who supported me in various as-
pects: Tonio Gsell, Roman Lim, Christoph Walser and Mustafa Yücel (Com-
puter Engineering Group), Michael Lerjen (Communication Theory Group),
Manuel Löhr and Joachim Sell (Physical Acoustics Corporation) as well as
Dr. Mauro Ciappa (Integrated Systems Laboratory).

I would also like to express my gratitude to my family and friends for all
their constant support and care. My dear parents: You have invested so
much in my life � no thank could ever measure it up. Romina, my �ancée:
You are a constant source of joy and strength in my life. Nobody else could
�ll what you are to me.

I thank God, my Father, my King. Your truth sets free!

� V �



� VI �



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic Concepts 5

2.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The PermaSense WSN Architecture . . . . . . . . . . 6

2.2 Acoustic Emission Sensing . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Sensor Technology . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Data Processing and Signal Parameter Analysis . . . . 10

2.2.3 AE Sensing in Geosciences . . . . . . . . . . . . . . . . 11

3 System Speci�cation 13

3.1 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Data Analysis from a Technical Perspective . . . . . . 14

3.2 Intented Experimental Setup . . . . . . . . . . . . . . . . . . 20

3.3 Network Bandwidth Considerations . . . . . . . . . . . . . . . 20

3.4 Functional System Speci�cation . . . . . . . . . . . . . . . . . 23

4 High Data Rate Sensing in Low Bandwidth WSNs 25

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Raw Data Reduction Strategies . . . . . . . . . . . . . . . . . 26

4.2.1 Duty-Cycling . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Raw Data Classi�cation . . . . . . . . . . . . . . . . . 27

4.3 Direct Data Aggregation . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Processing Sensors . . . . . . . . . . . . . . . . . . . . 29

5 AEBoard Hardware Design 31

5.1 Basic System Architecture . . . . . . . . . . . . . . . . . . . . 31

� VII �



5.2 AE Sensor Key Components . . . . . . . . . . . . . . . . . . . 32

5.2.1 Slave Processor . . . . . . . . . . . . . . . . . . . . . . 32

5.2.2 ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Input Signal Conditioning Circuitry . . . . . . . . . . . . . . 35

5.4 Power Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 AEBoard Prototype . . . . . . . . . . . . . . . . . . . . . . . 39

5.5.1 Changes for Revision 1.2 . . . . . . . . . . . . . . . . . 41

6 PermAE Software Design 43

6.1 General Concept . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 PermAE Messages . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 PermAE Output Messages . . . . . . . . . . . . . . . . 44

6.2.2 PermAE Dozer Commands . . . . . . . . . . . . . . . 45

6.3 Onboard Communication Protocol . . . . . . . . . . . . . . . 45

6.4 STM32 Implementation . . . . . . . . . . . . . . . . . . . . . 47

6.4.1 PermAE Initialization . . . . . . . . . . . . . . . . . . 50

6.4.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . 50

6.4.3 Data Analysis Controller Task . . . . . . . . . . . . . 52

6.4.4 Data Analysis Task . . . . . . . . . . . . . . . . . . . . 52

6.4.5 Communication Task . . . . . . . . . . . . . . . . . . . 54

6.4.6 Storage Manager Task . . . . . . . . . . . . . . . . . . 54

6.4.7 Event Statistics and Voltage Supervision Tasks . . . . 56

6.4.8 PermAE Initialization and Calibration . . . . . . . . . 56

6.5 TinyNode Implementation . . . . . . . . . . . . . . . . . . . . 57

6.5.1 AEBoard Drivers . . . . . . . . . . . . . . . . . . . . . 58

6.5.2 AEModule . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5.3 PermaDozer and DataControl . . . . . . . . . . . . . . 58

6.5.4 PermAE Top Level Application . . . . . . . . . . . . . 58

6.6 GSN Integration . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 System Evaluation 61

7.1 Measurements at Room Temperature . . . . . . . . . . . . . . 61

7.1.1 Analog Frontend Characterization . . . . . . . . . . . 61

7.1.2 Power Consumption . . . . . . . . . . . . . . . . . . . 65

7.2 Temperature Cycle Tests . . . . . . . . . . . . . . . . . . . . . 66

7.2.1 Load Test . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.2 Data Quality Test: AEBoard and USB AE Node . . . 68

7.2.3 Current Consumption . . . . . . . . . . . . . . . . . . 75

8 Conclusion and Outlook 77

� VIII �



A AEBoard and PermAE User Manual 79

A.1 Connectors and LEDs . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Deployment Preparation . . . . . . . . . . . . . . . . . . . . . 81
A.3 STM32 Debugging . . . . . . . . . . . . . . . . . . . . . . . . 82
A.4 Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.4.1 Data Sent Over the WSN . . . . . . . . . . . . . . . . 83
A.4.2 Raw Event Samples . . . . . . . . . . . . . . . . . . . 83

A.5 Sending Commands to the AEBoard . . . . . . . . . . . . . . 84

B PermAE Developer's Guide 87

B.1 STM32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.1.1 PermAE . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.1.2 PermAEInit . . . . . . . . . . . . . . . . . . . . . . . . 89
B.1.3 EventGenerator . . . . . . . . . . . . . . . . . . . . . . 89
B.1.4 Programming and Debugging the STM32 . . . . . . . 90

B.2 TinyNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C PermAE Output Messages 93

D Data Units and Conversion Functions 97

D.1 AE Data Units and Conversion Functions . . . . . . . . . . . 97
D.1.1 Start Sample, Length and Risetime . . . . . . . . . . . 97
D.1.2 Amplitude and Threshold . . . . . . . . . . . . . . . . 97
D.1.3 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
D.1.4 Threshold and Channel . . . . . . . . . . . . . . . . . 99

D.2 System Health Data Conversion . . . . . . . . . . . . . . . . . 99
D.2.1 Onboard Voltages . . . . . . . . . . . . . . . . . . . . 99
D.2.2 Onboard Currents . . . . . . . . . . . . . . . . . . . . 100
D.2.3 Temperature and Humidity . . . . . . . . . . . . . . . 100

E AEBoard PCB Schematics and Layout 103

F Performance Measurements 111

F.1 Input Filter Linearity . . . . . . . . . . . . . . . . . . . . . . . 111
F.2 Temperature Dependency of AE Parameters . . . . . . . . . . 114

G CD Contents 119

H Task De�nition 121

� IX �



� X �



List of Tables

5.1 Comparison of three potential slave processor platforms. . . . 34
5.2 Comparison of two potential ADCs. . . . . . . . . . . . . . . 35

6.1 PermAE output messages . . . . . . . . . . . . . . . . . . . . 44
6.2 Dozer command messages . . . . . . . . . . . . . . . . . . . . 45
6.3 Onboard ACK and NACK messages . . . . . . . . . . . . . . 46
6.4 Onboard command messages . . . . . . . . . . . . . . . . . . 46
6.5 Onboard data message types . . . . . . . . . . . . . . . . . . 46
6.6 PermAE memory partition. . . . . . . . . . . . . . . . . . . . 50
6.7 The PermAE initialization block . . . . . . . . . . . . . . . . 51
6.8 Raw event data block on SD card . . . . . . . . . . . . . . . . 55

7.1 AEBoard power consumption. . . . . . . . . . . . . . . . . . . 65
7.2 Data quality test results for AEBoard channel one. . . . . . . 70
7.3 Parameter standard deviations for AEBoard channel one. . . 71
7.4 Data quality test results for AEBoard channel two. . . . . . . 72
7.5 Parameter standard deviations for AEBoard channel two. . . 72
7.6 Conversion factors between PermAE and AEWin. . . . . . . . 75

C.1 Message de�nition: aedata . . . . . . . . . . . . . . . . . . . . 94
C.2 Message de�nition: aedaqhelathdata . . . . . . . . . . . . . . 95
C.3 Message de�nition: aestatistics . . . . . . . . . . . . . . . . . 95
C.4 Message de�nition: nodehealth . . . . . . . . . . . . . . . . . 96

D.1 Onboard voltage constants . . . . . . . . . . . . . . . . . . . . 100

� XI �



� XII �



List of Figures

2.1 Basic principle of a multihop WSN . . . . . . . . . . . . . . . 6
2.2 The PermaSense network architecture . . . . . . . . . . . . . 7
2.3 Piezoelectric AE sensor . . . . . . . . . . . . . . . . . . . . . 9
2.4 AE data acquisition chain . . . . . . . . . . . . . . . . . . . . 9
2.5 AE event parameters . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 AE sensor positions for preliminary experiments at Jungfraujoch 14
3.2 Channel 4 event rate. . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 The e�ect of lowering the ADC bit resolution . . . . . . . . . 18
3.4 The e�ect of downsampling . . . . . . . . . . . . . . . . . . . 19
3.5 Intended experimental setup of an AE measurement location 21
3.6 Increasing link bandwith requirements in multihop WSNs . . 22

4.1 Basic principle of duty-cycling . . . . . . . . . . . . . . . . . . 26
4.2 Basic principle of raw data classi�cation . . . . . . . . . . . . 27
4.3 Basic principle of direct data aggregation . . . . . . . . . . . 28
4.4 The processing sensor architecture . . . . . . . . . . . . . . . 29

5.1 AEBoard architectural concept . . . . . . . . . . . . . . . . . 32
5.2 Slave processor data streams. . . . . . . . . . . . . . . . . . . 33
5.3 Simpli�ed signal conditioning circuitry schematics . . . . . . . 37
5.4 Signal conditioning circuitry frequency response. . . . . . . . 37
5.5 AEBoard power concept . . . . . . . . . . . . . . . . . . . . . 40
5.6 The AEBoard prototype. . . . . . . . . . . . . . . . . . . . . . 41

6.1 Valid onboard message �ows . . . . . . . . . . . . . . . . . . . 47
6.2 PermAE application structure on the STM32 . . . . . . . . . 49
6.3 AEBoard data acquisition wiring . . . . . . . . . . . . . . . . 51
6.4 Generated data acquisition clocks . . . . . . . . . . . . . . . . 52
6.5 PermAE application structure on the TinyNode . . . . . . . . 57

7.1 Input �lter frequency response without preampli�er . . . . . . 62
7.2 Input �lter frequency response with preampli�er . . . . . . . 63

� XIII �



7.3 Uncompensated AEBoard input �lter error. . . . . . . . . . . 64
7.4 Compensated AEBoard input �lter error. . . . . . . . . . . . 64
7.5 Compensated AEBoard and preampli�er input �lter error. . . 65
7.6 Load test setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.7 System performance under varying temperature conditions. . 68
7.8 Data quality test setup. . . . . . . . . . . . . . . . . . . . . . 69
7.9 Test signal generated by the EventGenerator application. . . 69
7.10 Pro-cyclic versus anti-cyclic parameter behaviour. . . . . . . . 71
7.11 Temperature dependent mean parameter ranges.. . . . . . . . 73
7.12 The e�ect of constant perampli�er temperature. . . . . . . . . 73
7.13 USB AE Node temperature dependent variations. . . . . . . . 74
7.14 AEBoard's power consumption at varying ambient temperature. 75

A.1 AEBoard connectors and LEDs. . . . . . . . . . . . . . . . . . 80

F.1 Compensated AEBoard input �lter error (30kHz). . . . . . . . 111
F.2 Compensated AEBoard input �lter error (50kHz). . . . . . . . 112
F.3 Compensated AEBoard input �lter error (100kHz). . . . . . . 112
F.4 Comp. AEBoard input �lter error w. ext. preamp (30kHz). . 113
F.5 Comp. AEBoard input �lter error w. ext. preamp (50kHz). . 113
F.6 Comp. AEBoard input �lter error w. ext. preamp (100kHz). 114
F.7 Data quality test parameter plots for AEBoard channel 1. . . 115
F.8 Data quality test parameter plots for AEBoard channel 2. . . 116
F.9 Data quality test parameter plots for the USB AE Node. . . . 117

� XIV �



1
Introduction

1.1 Motivation

The PermaSense project [1] is a joint computer science and geoscience project,
aiming to understand the in�uence of climate change on permafrost. A spe-
cial focus lies on the stability of rock walls in alpine environments, where
natural hazards pose a constant danger to habitants and infrastructure.
PermaSense makes use of state-of-the-art ultra low-power sensor nodes that
form a multihop wireless sensor network (WSN). Data samples measured are
transmitted over the WSN to a core station, where the data is relayed to a
backend server using a WLAN link and the public internet infrastructure.

In the context of such an environmental monitoring system, low energy con-
sumption is a crucial requirement for the wireless sensor nodes. The sensor
node platform currently used in PermaSense can sense and transmit data for
3-5 years from a single battery. In order to achieve this high energy e�ciency,
platform architecture, operating modes and network protocol have been op-
timized to allow for a very low average power consumption by utilizing the
sensor node's sleep mode capabilities as extensively as possible. This setup
has proven to be very reliable and stable during the continuous operation
of PermaSense measurement campaigns at Matterhorn and Jungfraujoch for
more than three years at the time of writing.

In addition to the current measurements of rock temperature, rock humidity
and crack movement, interest arose from the geoscienti�cal side to capture
physical processes that expose faster variations. One phenomenon of par-
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CHAPTER 1. INTRODUCTION

ticular interest are acoustic emissions (AE) during crack and ice formation.
These acoustic emissions are generally very short in the order of a few mil-
liseconds and exhibit frequencies of multiple kHz. As the architecture and
operating mode of the existing sensor nodes are optimized to capture much
slower processes and thus produce at most a few samples per minute, they
are not suitable for measuring and processing such fast processes. Therefore,
new concepts are needed in order to allow the study of AE and other fast
phenomena in the context of PermaSense.

In this thesis, a sensor platform architecture concept that is capable of per-
forming high data rate measurements in a low-power WSN environment is
proposed. Furthermore, an implementation of this concept that is tailored to
measure, process and transmit AE data and fully integrates into the existing
PermaSense WSN infrastructure is presented in detail.

1.2 Contributions

The contributions of this thesis are the following:

� An architectural concept for performing high data rate measurements
in a low-power WSN environment.

� A proof-of-concept implementation tailored for AE measurements in
PermaSense, consisting of a hardware platform (�AEBoard�) and a dis-
tributed software system running in this platform (�PermAE�).

� An operational performance analysis and comparison to a commercial
AE measurement system.

1.3 Related Work

The PermaSense project [1], its �ndings and developments form the basic
context for the work presented in this thesis. The PermaSense system archi-
tecture has been described in [2, 3]. It has proved to deliver high-quality data
reliably and over an extended period of time. However, the PermaSense ar-
chitecture has so far primarily been used for measurements with a relatively
low data rate [4]. This thesis aims to extend the PermaSense ecosystem,
in order to support applications that require higher sampling rates with-
out compromising the standards of quality and reliability achieved so far.
There are also e�orts to integrate high-accuracy GPS measurements into
PermaSense, facing similar challenges but taking di�erent approaches for
data reduction [5, 6, 7].
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1.4. OUTLINE

High data rate WSN applications in general and processing of acoustic data
speci�cally have previously been studied in publications such as [8, 9]. Espe-
cially the latter publication by Simon et al. inspired some concepts that can
be found in this thesis, speci�cally the idea that a signi�cant part of the nec-
essary data processing is done directly on the sensor node, thereby reducing
the amount of data to transmit over the network signi�cantly. Werner-Allen
et al. presented another concept for data reduction in [10], transmitting raw
samples selectively based on a value metric for the measured data.

There are also projects that dealt with AE sensing in WSN speci�cally.
Grosse et al. presented a 4 channel AE device for WSN deployments in
[11, 12]. Upon detection of AE activity, a number of samples is recorded and
then transmitted over the WSN, in the meanwhile stopping data acquisition.
Bachmaier introduced another WSN AE device in [13], not sampling any
AE data at all but only estimating AE activity based on a �xed threshold.
Recently, Lédeczi et al. presented a WSN based AE monitoring system
for bridges in [14], saving power by residing in sleep mode for most of the
time and only waking up and sampling upon increased AE activity that is
indicated by a low-�delity sensor. In all these projects, the AE signal is not
continuously sampled in order to save energy and thus prolonging the system
lifetime. However, as the processes that produce AE activity in rockwalls are
not yet well understood, this thesis follows a di�erent approach. In order to
provide as much insight as possible, we focus on characterizing as many AE
events as possible at a continuously high sampling rate. Considering these
requirements, power consumption has been optimized as a secondary goal
only.

1.4 Outline

Chapter 2 discusses the concepts of AE sensing and WSNs in greater de-
tail. Chapter 3 describes the initial AE sensing experiments that initi-
ated this thesis and derives the speci�cations for an AE sensing system
in PermaSense from these preliminary results. In Chapter 4, our general
concept for high data rate measurements in a low-power WSN environment
is presented. Chapters 5 and 6 document the AEBoard hardware platform
developed as well as PermAE, a distributed software system that runs on
the AEBoard and is able to measure and transmit AE data e�ciently. The
overall system performance of AEBoard and PermAE is then evaluated in
Chapter 7. Finally, Chapter 8 summarizes the presented work and proposes
further steps based on this thesis.
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2
Basic Concepts

This chapter aims to give a brief overview over the two basic concepts un-
derneath this thesis: Wireless Sensor Networks (WSNs) as well as Acous-
tic Emission (AE) sensing. It further provides references to comprehensive
sources that cover these topics in-depth.

2.1 Wireless Sensor Networks

Wireless communication has become an ubiquitous technology these days.
Not only do personal mobile devices like smartphones and tablet computers
use wireless communication interfaces as their primary channels, also in in-
dustry and safety-critical applications, wireless technology is about to change
traditional patterns of human-machine interaction. Concepts like �The In-
ternet of Things� [15] or �Ubiquitous Computing� [16] build on the existence
of small independent computing platforms that are connected to their envi-
ronment and thus form the basic infrastructure for a "smart environment".

The term �Wireless Sensor Network� commonly refers to a distributed sys-
tem, consisting of many light computing platforms that communicate over
a wireless channel. Each of these so-called �sensor nodes� is sensing phe-
nomena of its physical environment and forwards these measurements over
the network. In many common WSN architectures, all data harvested in
the network are collected at one or multiple distinct �sink nodes�, where the
data is either being forwarded over a di�erent communication link, or can
be accessed directly.

� 5 �



CHAPTER 2. BASIC CONCEPTS

sink node

sensor node

to data relay

Figure 2.1: Basic principle of a multihop WSN

This approach of placing low-weight sensors unobtrusively in the environ-
ment allows to measure and monitor phenomena very closely and in a natu-
ral environment, as the nodes can be tailored and placed in such a way, that
they have minimal impact on the process that is to be captured [17, 18].

There is a broad palette of applications for WSNs, ranging from military
applications over environmental monitoring, health applications, monitoring
of infrastructure and buildings as well as a wide range of industrial prospects
[19]. Their generally low cost, ease of deployment and low maintenance
requirements make WSNs an area of active research and high industrial
interest.

Nevertheless, developing and deploying reliable WSNs is still a challenging
task. One key constraint on autonomous wireless platforms is energy - the
amount of energy available to the system ultimately determines the max-
imum time of unattended operation and sensing. Although there exist a
variety of concepts for energy harvesting on WSN nodes (e.g., [20]), still
most of the platforms in practical use nowadays use batteries as their sole
power supply. This requires a stringent power management on all nodes, of-
ten resulting in putting the node into a low-power mode for most of the time,
implying frequent disconnection and reconnection of nodes in the network.
The resulting very dynamic network structure requires novel approaches for
network management and routing, as classical network protocols often as-
sume rather static network topologies with infrequent changes. Thus, mul-
tiple WSN-tailored network protocols have evolved over the past decade,
e.g. Dozer [4], PEGASIS [21] or APTEEN [22], that aim to allow for an
energy-e�cient WSN communication.

2.1.1 The PermaSense WSN Architecture

The PermaSense WSN infrastructure is tailored for maximum reliability even
under harsh environmental conditions. Sudden temperature changes, snow,
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2.1. WIRELESS SENSOR NETWORKS

ice, rockfall and other natural impacts drastically increase the probability
of temporary or permanent disconnection of a node, compared to, e.g., an
indoor deployment with rather controlled environmental conditions. Fault
tolerance is therefore a key requirement on all scales.

The core WSN of PermaSense consists of sensor nodes based on the �TinyNode�
platform by Shock�sh SA [23, 24]. These TinyNodes are equipped with
a custom-built sensor interface board (SIB), that connects to various sen-
sors measuring rock temperatures, rock humidity, crack movement etc. The
sensor nodes run software based on the TinyOS operating system [25] and
communicate over the ultra low-power Dozer network protocol [4], which is
con�gured to schedule communication slots every 30 seconds. All data is
forwarded to a single sink node, which is part of the so-called �CoreStation�.
The CoreStation is basically an embedded PC platform, featuring WLAN
and GPRS downlinks to forward all data to the data backend, which is based
on the GSN software [26] and features additional control, management and
supervision interfaces. Furthermore, sensors with higher data volume such
as high resolution photo cameras [27] and GPS receivers are also connected
to the backend over separate network links.

Figure 2.2: The PermaSense network architecture

In case of normal operation, samples arrive at the data backend on the or-
der of a few minutes after measurement, assuming that no network links are
congested. Additionally, each sensor node in the WSN features a 1GB SD
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storage, where measured sensor data can be bu�ered in case of connection
loss (e.g., in case of the sensor being snowed in). Once the network connec-
tion can be re-established, the accumulated data packets are �ushed to the
backend.

The sensor nodes run on a single Li-SOCl2 battery which enabled them to
operate for more than three years. Larger components, like the core stations
as well as the high resolution cameras, are powered by a regenerative power
supply.

For more details about the current PermaSense architecture, please refer to
[2, 3, 28].

2.2 Acoustic Emission Sensing

It is commonly known from daily experience, that materials often emit
sounds under mechanical stress or when internal structures break. Gen-
erally speaking, these (often inaudible) breaking sounds are referred to as
�Acoustic Emissions� (AE):

�Acoustic Emission (AE) refers to the generation of transient
elastic waves produced by a sudden redistribution of stress in a
material. When a structure is subjected to an external stimulus
(change in pressure, load, or temperature), localized sources trig-
ger the release of energy, in the form of stress waves, which prop-
agate to the surface . . . Sources of AE vary from natural events
like earthquakes and rockbursts to the initiation and growth of
cracks, slip and dislocation movements, melting, twinning, and
phase transformations in metals. In composites, matrix cracking
and �ber breakage and debonding contribute to acoustic emis-
sions.� [29]

AE sensing technology began to evolve in the middle of the 20th century. It
is a so-called non-destructive testing (NDT) method, providing information
about ongoing stress processes in the material sample under test. In contrast
to other NDT methods, which are mostly applied before or after the material
is being stressed, AE sensing captures processes while they are taking place.
This makes AE sensing particularly interesting for applications that require
constant monitoring of certain structures, e.g. alarm systems for pipeline
leaks. Often, this method is used to detect material failure at a very early
stage of damage and before the structure fails completely ([30], chapter 1).
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2.2. ACOUSTIC EMISSION SENSING

2.2.1 Sensor Technology

AE signals are often being captured with piezoelectric sensors. These sen-
sors are directly attached to the surface of the material sample under test,
converting dynamic motions at the surface into an electrical signal.

Figure 2.3: Piezoelectric AE sensor (schematic representation). [29]

When using piezoelectric sensors, it must be considered that they are nor-
mally operated at resonance and therefore do not allow broadband detection
of AE signals. Nevertheless, the frequency ranges of the expected signals are
often fairly well known, making it possible to choose the right sensor before
the experiment. Thus, their ease of use as well as their high sensitivity make
piezoelectric sensors the instrument of choice for many AE applications, even
though more sophisticated AE sensor concepts exist (e.g. sensors based on
laser systems or on �ber optics).

Before A/D conversion, the electrical signal at the output of a piezoelectric
sensor normally needs to be �ltered and ampli�ed. This process is also
known as �signal conditioning�. It is obvious, that these components of
an acquisition system are very sensitive and heavily in�uence the overall
measurement quality. The conditioned signal is then sampled and all further
processing is then performed digitally.

Analog
Filtering

Amplification ADC
Processing

Figure 2.4: AE data acquisition chain
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2.2.2 Data Processing and Signal Parameter Analysis

As most modern data analysis systems, today's AE systems almost exclu-
sively perform the necessary signal detection, processing and characterization
tasks in the digital domain. AE activity normally occurs rapidly and ran-
domly, resulting in distinct �pulses� of oscillation in the measured AE signal.
Conventionally, a threshold is de�ned by the user in order to distinguish AE
activity from background noise. Once the AE signal crosses this threshold,
an AE event is recognized. The event is considered to be terminated when
the threshold has not been exceeded for a certain, user-de�ned amount of
time (i.e., �hit-lockout time�, �dead time� or �posttrigger time�). The AE sig-
nal between the �rst threshold crossing and the end of the posttrigger time
is also referred to as �AE Hit� or �AE event�. As especially in the early days
of AE testing technology, all of the signal processing had to be done in the
analog domain, some common signal parameters have evolved that still form
the basis for many of today's AE testing and analysis applications. These
�classical� AE signal parameters are ([30], chapter 4):

1. Event Count/Hit Count: A signal that exceeds the threshold and
causes the AE system to accumulate data. Hit counts are often used
to show the overall AE activity over a certain period of time.

2. Length/Duration: The amount of time between the �rst threshold
crossing of an event and the end of the posttrigger time.

3. Amplitude: The maximum signal amplitude within an event.

4. Rise Time: The time interval between the �rst threshold crossing and
the time of the peak amplitude.

5. Pulse Count/Count: The number of times an AE event signal ex-
ceeds the threshold value.

6. Energy: There is no single agreed de�nition of AE signal energy. In
this thesis, we de�ne the energy of an AE event as the signal energy
contained in the event, i.e., the sum of the squared sample amplitudes.
Another popular energy de�nitions is the measured area under the
recti�ed signal envelope.

Figure 2.5 illustrates these aforementioned features of an AE event.
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Threshold

Rise Time Amplitude

Length

Posttrigger

Pulse Count

Energy

Time

AE Signal

Figure 2.5: AE event parameters

From these basic parameters, further event parameters may be derived:

� The Average Frequency is calculated by dividing �Pulse Count� by
�Length�.

� The RA Value is derived from �Rise Time� divided by �Amplitude�.
This parameter can be used to classify cracks.

2.2.3 AE Sensing in Geosciences

AE sensing originally arose in the context of material sciences and is nowa-
days particularly popular in the �eld of civil engineering for structural health
monitoring. Nevertheless, this method has a much broader scope of applica-
tions, e.g., in geosciences for studying stability and structural displacements
in rock structures. In contrast to seismology, where large, long events at
low frequencies (i.e., earthquakes) are studied, AE measurements in rock
focuses on much smaller, shorter events that can give information about dis-
placements in the order of a few micrometers ([30], chapter 11). In mining,
scientists started to monitor rock pillars with AE measurements in the mid-
dle of the 20th century. The development of these practical experiments was
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accompanied by laboratory experiments, where rock samples were hydrauli-
cally stressed and monitored for AE at the same time. Also nowadays, AE in
rock structures under stress are still an area of active geoscienti�c research
(see e.g., [31, 32, 33]).

The formation of ice within rock is an important driver of near-surface frost
weathering [34] and rock damage at the depth of several meters [35], and
in steep terrain, this process may be crucial for the slow preconditioning of
rock fall from warming permafrost areas [36]. However, the transfer of cor-
responding theoretical insight and laboratory evidence to natural conditions
characterized by strong spatial and temporal heterogeneity is nontrivial. To
prepare corresponding characterization of rock fracture in natural conditions,
AE induced by natural thermal cycling and freeze/thaw in a high altitude
rock face are studied within the project PermaSense. This complements well
previous investigations within PermaSense (e.g., [37, 38]). To the knowledge
of the author, no comparable study of AE in alpine rock walls exists so far.
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3
System Speci�cation

This chapter describes the experiments and intentions, that led to the speci�-
cation of an AE sensing platform for PermaSense �nally presented in Section
3.4.

3.1 Preliminary Experiments

As no reference experiments of AE measurements in alpine rock walls exist,
preliminary experiments had to be carried out in order to get a feeling for the
type of AE activity that has to be expected during more in-depth studies.
For this purpose, AE experiments with conventional laboratory equipment
have been carried out at the Jungfraujoch site in April 2010.

3.1.1 Installation

Six piezoelectric AE sensors have been installed at di�erent positions in
the rock wall. The installation positions were selected in order to capture
varieties in rock structure and expected humidity, i.e., some sensors were
mounted at dry and compact expositions, whereas others were placed at
cracked positions featuring a constant �ow of water. The sensors were con-
nected to a laboratory computer running the AEWin software from Physical
Acoustics Corporation [39] and AE data has been acquired for a period of
four days. Both event parameters as well as the raw event waveforms have
been captured.
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The results of these measurements were very promising and reinforced in-
terest in monitoring AE activity in rock walls over longer periods of time
[40]. Thus, the development of a custom AE sensing platform that inte-
grates into the existing PermaSense infrastructure was initiated, whereof a
�rst prototype is presented in this thesis.

Figure 3.1: AE sensor positions for preliminary experiments at Jungfraujoch

3.1.2 Data Analysis from a Technical Perspective

In order to de�ne the basic requirements and constraints for a system im-
plementation, the data gathered in the aforementioned experiment has been
analyzed from a technical perspective.

All sensor channels were con�gured with a �xed threshold of 35 dB and
posttrigger value of 1ms. The signals were sampled with a quantization
resolution of 24 bits at a sampling rate of 1MHz.

Event Rate

Depending on the sensor position, the number of events occurring di�ered
signi�cantly. We could also observe that events often occur in bursts: long
periods of low AE activity follow on shorter periods with a much higher
activity level.

For the speci�cation of an AE measurement system, the following event rate
measures are therefore of particular interest:

� The maximum event rate de�nes the processing an storage bandwidth
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Figure 3.2: Observed event rate of channel 4 during the preliminary experiments.

(in events per second) an acquisition system must o�er in order to be
able to parametrize all occurring events, regardless of the current level
of AE activity.

� The average event rate de�nes the required communication bandwidth
(in events per second), given there's enough bu�er storage available to
compensate for event bursts.

For both of these values, the worst case that occurred during the preliminary
experiments was chosen for the system speci�cation in order to ensure normal
operation under heavy load. As for the number of occurred events, the sensor
at position number four showed by far the most intense AE activity. During
the four days of experimentation, a peak burst of 300 events in one second
was observed. On a minute scale, the peak event rate was at 480 events
per minute (c.f. Figure 3.2). However, generally the activity peaks did
not exceed 100 events per minute. The average event rate over the whole
experiment was in the order of only a few events per minute. Again, sensor
position four showed the highest overall activity level with an average of 3
events per minute.

Generally, the event rate observed is highly dependent on data acquisition
parameters, i.e., threshold and posttrigger time: Choosing a higher thresh-
old will decrease the number of events observed while also decreasing the
overall system sensitivity. Increasing the posttrigger time will concatenate
events, that would have been detected as distinct events otherwise. A suit-
able compromise has to be found for every deployment, depending on the
activity characteristics expected.
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Frequency Bandwidth

The frequency bandwidth of the observed signals depends heavily on the
sensor devices used for measuring. As piezoelectric sensors generally show
distinct resonances in their frequency response, they already �lter the me-
chanical input signal signi�cantly. It is therefore important to know the type
of AE activity that is expected to be observed. As the speed of sound in
(fractured) rock is relatively low (i.e., about 3600m/s) compared to, e.g.,
steel due to its lower density, the expected AE frequencies are rather low,
i.e., below 100 kHz ([30], chapter 11). In our preliminary experiments, piezo-
electric sensors of the type R6α by Physical Acoustics Corporation were used
[41]. The sensors' frequency response is measured in V/(m/s), i.e., output
voltage as a function of the rock's speed of movement. The peak resonance of
the R6α sensors lies at a frequency of 55 kHz, with a loss of less than 10 dB
(V/(m/s)) in a range of 35 to 100 kHz. This also matches the observed
average event frequencies on Jungfraujoch.

Event Length

Event length, together with the sampling rate, determines memory bu�er
size requirements in order to store event samples. In the preliminary experi-
ments, the observed event length was generally in the order of 1 up to 5ms.
However, also event lengths of up to 180ms have been detected. Again,
this parameter heavily depends on the set threshold and posttrigger time: A
higher threshold or a longer posttrigger time would have resulted in more,
but shorter events.

Amplitude Dynamic Range

The highest event amplitudes observed in the preliminary experiment were
104 dB. As for parametrization, every signal or pulse not exceeding the
threshold of 35 dB is classi�ed as noise, the dynamic range of the observed
signal is about 70 dB.

The event amplitudes' dynamic range is important in order to specify the
necessary ADC resolution. As a result of quantization, the signal to noise
ratio of an ideal ADC with a resolution of N bits is given as

SNRdB[MAX](N) = 6.021 dB ·N − 1.763 dB [42]

Thus, a sampling resolution of at least 12 bits is needed to cover the given
dynamic range, as SNRdB[MAX](12) = 70.5 dB.

In order to get a better impression of the e�ects of lowering the bit resolution,
the captured waveforms have been resampled and reparametrized. Figure 3.3
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compares the parametrization errors to the original parametrization when
lowering the sampling resolution from 24 bits to 20, 16 and 12 bits. It clearly
shows that a signal quantization of 12 bits introduces signi�cant errors in
the signal parametrization process, whereas a resolution of 20 bits performs
almost equally to the full resolution of 24 bits. A quantization resolution
of 16 bits o�ers a good trade-o� between complexity and introduced error,
as still for 85% of the expected events, all parameters show an error of less
than 10%. The theoretical dynamic range of an ideal 16 bit ADC is given as
SNRdB[MAX](16) = 94.6dB.

Sampling Rate

The second important parameter determining the error introduced by sam-
pling and quantizing an analog signal is the sampling rate used. Higher
sampling rates improve the temporal resolution of the measurement and al-
low to capture higher signal frequencies, but on the other hand thereby also
increase the required signal processing capabilities. As already discussed
in Section 3.1.2, the expected AE signal frequencies are in the range of up
to 100 kHz. According to the Nyquist-Shannon sampling theorem [43], the
sampling frequency must be at least twice the highest frequency occurring
in the measured signal in order to capture the signal unambiguously (i.e.,
without aliasing e�ects). Sampling at the Nyquist rate would allow to recon-
struct the measured signal perfectly, given that it is strictly bandlimited to
the speci�ed bandwidth. Nevertheless, as signal reconstruction would intro-
duce signi�cant processing overhead compared to parametrizing the sampled
signal, higher sampling rates are needed in order to minimize the error in-
troduced. Figure 3.4 shows the e�ect of downsampling the measured events,
originally sampled at 1MHz.

Obviously, sampling at the Nyquist rate of 200 kHz introduces signi�cant er-
rors to the event parametrization. As expected, deeper analysis also showed
that this error is higher for events with average frequencies close to 100 kHz
and lower for events with comparably low average frequencies. Sampling at
900 kHz already introduces notable errors, while lowering the sampling rate
from 900 to 500 kHz, the loss of parametrization precision is comparably
small. Thus, a sampling rate of 500 kHz seems to perform reasonably well,
again introducing parametrization errors of less than 10% for more than 85%
of all occurring events.
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Figure 3.3: The e�ect of lowering the ADC bit resolution on the captured AE
events. The reparametrization results are compared to the original
result with a full resolution of 24 bits.
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Figure 3.4: The e�ect of downsampling the captured AE events. The
reparametrization results are compared to the original result sampled
at 1MHz.
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3.2 Intented Experimental Setup

Having studied and analyzed the Jungfraujoch data [40], the geoscienti�c
PermaSense partners de�ned an experimental setup for studying AE activity.
Speci�cally, the measured AE activity shall be correlated with the already
existing temperature and moisture measurements, giving further insight into
the role of water in, e.g., crack formation.

As rock moisture and temperature are measured in multiple depths, it is
also desirable for the AE platform to sense not only general activity, but
also give a notion of how deep the event source was located. A planar
location of the events is however of smaller interest, as signal attenuation
in fractured rock is comparably high and thus AE signals are not expected
to travel over distances in the order of meters or more. Therefore, event
location requirements have been limited to linear depth location, requiring
at least two AE sensors mounted in di�erent depths. AE source depth can
then be estimated by measuring the arrival time di�erence of an AE signal
at the two sensors. Furthermore, the event rise time at both sensors also
gives information about the source location, i.e., the longer the rise time,
the further was the AE source located.

Measuring the arrival time di�erence between the two sensors requires exact
time synchronization in the order of microseconds: As the speed of sound
in rock is about 3000m/s and the sensors will be mounted at a distance of
approximately one meter, the arrival time di�erences will be in the order of
less than one millisecond. As in the Dozer based PermaSense network, no
exact time synchronization can be achieved between two sensor nodes, both
AE sensors belonging to one location need to be read and processed by a
single node in order to achieve the necessary temporal precision. Figure 3.5
therefore sketches the intended experimental AE measurement setup.

3.3 Network Bandwidth Considerations

So far, the data streams measured in PermaSense have been transferred to
the backend completely, meaning that each and every measured sample has
�nally been stored in the PermaSense database and could be retrieved from
there to be analyzed. Naturally, this approach o�ers the highest degree of
reliability as well as �exibility in data analysis, as all processing steps can
be done o�ine (i.e., not in real time) and non-destructively, i.e., without
loosing any data. Currently, an average PermaSense node generates less
than 100Bytes of payload data per minute. When considering the �ndings
and requirements from Sections 3.1 and 3.2 however, it is easy to see that a
reasonable AE sensing platform will produce much more data:
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rock

sensor rod
(temperature / humidity)

sensor node
for sensor rod

AE node

AE sensors

Figure 3.5: Intended experimental setup of an AE measurement location

Bandwidthall samples = N · fs · w
= 2 · 500 · 106 s−1 · 16 bits

= 16 · 106 bits/s

= 2MB/s

= 120MB/min

where N denotes the number of channels, fs denotes the sampling frequency
and w denotes the bit width per sample. Thus, given that the AE sensing
board should integrate into the existing PermaSense WSN infrastructure,
streaming all measured AE data samples to the backend is not feasible.

A �rst step of reducing the amount of data to be transferred would be to
only forward raw samples when an event (i.e., a signal that exceeds a set
threshold) has been detected. Again referring to the �ndings from Section
3.1, we would expect an average event rate of about two events per minute,
each event having a length of about 2ms. In this case, the required network
bandwidth for serving one AE sensor node would be
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Bandwidthevent samples = dBandwidthall samples · fe · lee

= d16 · 106 bits/s · 2

60 s
· 2 · 10−3 se

= 134Bytes/s

= 8040Bytes/min

with fe denoting the expected event frequency and le denoting the expected
event length. Obviously, only forwarding event data samples would re-
duce the required network bandwidth signi�cantly. When aggregating data
streams at a sinknode or over multiple WSN hops however, the required
bandwidth for one point to point link is much higher than the amount of
data produced by a single node as Figure 3.6 illustrates:

AE node

sink node

AE node

AE node

relay node
relay node

67 Bytes/s

67 Bytes/s

134 Bytes/s

67 Bytes/s

201 Bytes/s

required link bandwith

Figure 3.6: Increasing link bandwith requirements in multihop WSNs

Thus, the probability of congesting the PermaSense WSN with AE data
streams is still high, making the transmission of raw samples undesirable
from a technical perspective.

However, when only considering the transmission of the event parameters
discussed in Section 2.2.2, the required bandwidth can again be reduced
drastically:

Bandwidthevent parameters = fe · sp

=
2

60 s
· 23Bytes

= 46Bytes/min

where fe again denotes the expected event frequency and sp denotes the
maximum payload size of one Dozer packet in PermaSense, assuming that all
event parameters �t into one Dozer packet. Even with the worst case average
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event rate of three events per minute, only 69Bytes of data per minute would
be produced. Thus, the required network bandwidth for an AE sensing
platform that only transmits the event parameters is of the same order as
for the existing sensors. This approach seems to be the most promising in
order to achieve a seamless and tight integration into the existing PermaSense
infrastructure.

3.4 Functional System Speci�cation

The �ndings from Sections 3.1 to 3.3 formed the basis to de�ne the following
functional speci�cation for a PermaSense AE sensor node:

� The AE sensor node shall integrate seamlessly into the existing PermaSense
WSN infrastructure. Speci�cally, it shall communicate its data over the
Dozer WSN.

� Two piezoelectric sensors shall be sampled with a sampling rate of
500 kHz and a quantization resolution of 16 bits. Input signals with
frequencies between 20 kHz and 100 kHz shall be captured.

� The sensor data shall be processed directly on the sensor node. The
processing must thereby respect the following priorization:

1. Count the occurring events and transmit the cumulative number
over a period of two minutes. This counter value must be accurate
and up to date under all circumstances, i.e., also under high AE
activity load.

2. Parametrize the occurring events and transmit the event param-
eters. If AE activity load is too high to parametrize all events,
parametrization may be done on a best e�ort basis.

3. Store the raw event samples on an internal storage device for
later o�ine inspection and analysis if resources are not busy with
counting and parametrizing events.

The processing must behave robust under high AE activity, i.e., if not
all detected events can be parametrized and / or stored, the system
must not run into an illegal state and return to normal operation when
AE activity decreases.

� The two channels' measurements must be temporally correlatable with
an accuracy of one sample.

� The threshold and posttrigger values shall be adaptable in operation,
i.e., with command messages sent to the AE sensor node.
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� The most important system voltages as well as on board temperature
and humidity shall be measured and transmitted to the backend every
two minutes.

� Energy consumption shall be minimized as far as possible. Multiple
power supply domains shall be switchable by the user in order to opti-
mize the system's energy e�ciency. The system shall run at a supply
voltage of 12V DC. If desired, a photovoltaic power supply may be
used instead of batteries.

� The AE sensor must feature an operating range from -40 to +65◦C,
with a max. change rate of 5◦C per minute.
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4
High Data Rate Sensing in Low

Bandwidth WSNs

Before going into implementation details of the developed AE sensing plat-
form, this chapter introduces some general design concepts. Speci�cally, a
generic architectural concept for sensing data with high sampling rates in a
low bandwidth WSN environment is presented, that may also be used for
applications other than AE sensing.

4.1 Problem Statement

Most WSN architectures and protocols are optimized to maximize unat-
tended lifetime. As many sensor nodes are battery powered, energy is often a
key factor limiting the independent operating timespan. However, especially
in environmental monitoring, the physical processes captured often expose
relatively slow temporal variations, requiring only low sampling rates in the
order of a few samples per minute to measure them adequately. Thus, many
WSN operating approaches aim to save energy by putting the sensor nodes
into some low power mode for most of the time, regularly waking them up
for performing short data sampling and/or communication sequences. This
inherently also decreases the available network bandwidth and node reactiv-
ity.

Integrating measurements of processes that - due to their faster varying na-
ture - require continuous sampling at higher rates thus produce data in the
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order of multiple MB/second thus requires novel architectural and opera-
tional approaches. As the available bandwidth does not allow to stream
all measured data through the WSN, some form of data reduction must
take place directly on the sensor node itself. Besides compressing the data
to transmit over the network with generic statistical data compression al-
gorithms such as Hu�man coding [44], some more speci�c approaches are
possible that are discussed in the following.

4.2 Raw Data Reduction Strategies

The simplest possibility to reduce the required bandwidth for high data
rate measurements is to reduce the amount of raw data samples that is
transmitted over the WSN. To this end, two basic approaches are possible
which are presented in the following sections.

4.2.1 Duty-Cycling

Bandwidth requirements for high data rate measurements can be lowered by
reducing the timespan, during which the phenomenon of interest is sampled,
i.e., only sampling for short periods with intermediate longer periods where
no sampling takes place. E.g., consider an application where sensor data is
sampled with a sampling rate of fs = 1 kHz and a quantization resolution
of w = 8bits. Thus, during sampling, br = fs · w = 1 kBytes/second of raw
data are being produced. When reducing the sampling period to one minute
per hour, the average required bandwidth is only br

60 = 16Bytes/second; the
required bandwidth could be reduced by the same factor as the sampling time
was reduced. The advantage of this method lies in its exact predictability of
the bandwidth requirements, comparable to measurements with much lower
constant sampling rates.

In PermaSense, the current e�orts to integrate GPS measurements are based
on a duty-cycling approach (c.f. [6, 7]).

time

sampling periods

Figure 4.1: Basic principle of sampling time reduction: Periodical short periods of
sampling reduce the average data rate.
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4.2.2 Raw Data Classi�cation

Although providing excellent predictability of bandwidth requirements, sam-
pling time reduction is only suitable for special measurement cases. Often,
it is unknown in advance when data should be sampled, as the processes of
interest (e.g., AE activity) occur spontaneously and would not be captured
by periodic short measurement sequences. Thus, as already depicted in Sec-
tion 3.3, the amount of transmitted raw data may also be reduced by some
sort of data classi�cation, basically deciding for each sample whether it is
worthy to be sent over the network or not. E.g., in the case of AE measure-
ments, this decision process is fairly simple, as all samples that belong to
an event are forwarded and all others are discarded. Similar simple decision
processes might be de�ned for other phenomena, minimizing the required
on-node processing power.

time

continuous sampling aperiodic interesting sequences

Figure 4.2: Basic principle of raw data classi�cation: Data is sampled continuously,
but only interesting sequences are forwarded.

The network bandwidth required with this approach can generally only be
estimated, as it depends on the fraction of samples that need to be forwarded,
which is unknown for spontaneous processes. With pf denoting the expected
fraction of samples to forward and br denoting the raw data rate being pro-
duced when sampling, the required network bandwidth is equal to br · pf .
For the speci�c case of AE sensing, a more detailed example is presented in
Section 3.3.

4.3 Direct Data Aggregation

As already discussed in Section 3.3, for certain applications, reducing the
amount of transmitted raw data is still not su�cient in order to meet given
network bandwidth constraints of a low power WSNs. Either valuable data
would be discarded, or the WSN would quickly su�er congestion. Thus,
for such applications it is desirable to perform substantial parts of the data
processing directly on the sensor node itself, aiming to reduce the amount
of transmitted data as much as possible without discarding information of
interest. Basically, no raw samples are transmitted over the network at all,
but merely meaningful aggregates thereof that can be used for further anal-
ysis. In the case of AE sensing for example, the events may be detected and
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parametrized directly on the sensor nodes, leaving only the AE parameters
to be transmitted over the WSN.

Again, as the processes of interest are assumed to occur spontaneously, the
required network bandwidth can only be estimated based on expected ac-
tivity rates. A bandwidth calculation example for the case of AE sensing is
presented in Section 3.3. Naturally, direct data aggregation especially makes
sense if local processing can reduce the data by multiple orders, as it is the
case for AE event detection and parametrization.

time

continuous sampling aperiodic interesting sequences

direct data aggregation

Figure 4.3: Basic principle of direct data aggregation: Data is sampled continu-
ously, interesting sequences are �rst aggregated and then forwarded.

In order to e�ectively employ such an approach, a precedent solid under-
standing of the phenomenon studied is required: Opposed to the analysis
of raw data that has arrived at the backend, data aggregation happens very
early in the process. This prohibits the application of any other form of
analysis on the samples measured than the prede�ned aggregation functions.
Nevertheless, for certain high data rate applications, this may be the only
approach to make a successful WSN integration feasible.

However, the low power optimization trend in WSN development did not
only concern the operating mode of the sensor nodes: Also the sensor node
hardware itself is optimized to operate very power e�ciently. This generally
also implies that the processing capacity of most sensor nodes is very limited,
tailored to sense and forward data and at most perform some very basic
aggregation operations. In the context of direct data aggregation for high
data rate measurements, common sensor nodes simply lack the computation
power to perform the necessary signal processing tasks. On the other hand,
building a heterogeneous WSN that integrates commodity sensor nodes as
well as higher performance platforms presumably implies a lot of hassle with
cross-platform compatibility issues, complicating network management and
monitoring. As an approach to address this dilemma, we propose the concept
of "processing sensors".
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4.3.1 Processing Sensors

The concept of processing sensors basically attempts to insert an additional
layer of abstraction between data acquisition and data transmission, signi�-
cantly reducing the amount of data to forward and thereby virtually reducing
the sensor's data rate. This is achieved by adding an additional processing
element between the physical sensor and the sensor node platform, serving
as data acquisition controller, data processing instance and sensor data in-
terface at the same time. Ideally, this data processing platform keeps its own
state and is only loosely coupled to the sensor node, separating concerns as
much as possible in order to allow virtually independent operation. Figure
4.4 illustrates this basic principle:

sensor

common low data rate architecture

data

control interface
low power 

sensor node 
platform

processing sensor architecture

data

control interface

low power 
sensor node 

platform

performant
data processing

platform

control interface

sensor

processing sensor

radio

radio

data

Figure 4.4: The processing sensor architecture. From a sensor node platform's per-
spective, a processing sensor does not di�er much from any other low
data rate sensor.

The approach of processing sensors o�ers the following advantages over in-
tegrating higher performance computing platforms directly into the WSN:

� Manageability: Deploying and operating a WSN reliably is a di�cult
task. It becomes even harder, if the network consists of a heteroge-
neous mix of di�erent platforms. Relying on a single WSN optimized
platform therefore eases network management signi�cantly.

� Robustness and speed of development: A command based point
to point data interface is simpler to implement and less prone to cross-
platform compatibility issues than a full WSN network stack.

� Modularity: As long as the data interface between the sensor node
platform and the processing element stays unaltered, the two compo-
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CHAPTER 4. HIGH DATA RATE SENSING IN LOW BANDWIDTH WSNS

nents may be developed and improved independently. Changes in the
WSN platform code or hardware do not a�ect the processing sensor
platform and vice versa.

� Predictability: As each platform keeps and manages its own state,
there's virtually no interference between data acquisition/processing
and network communication. This makes it easier to predict data ac-
quisition and processing performance as it is not in�uenced by network
link quality and other factors related to communication.

Naturally, introducing a second processing element on a sensor node gener-
ally increases its power consumption. It is therefore important to carefully
trade computation power (i.e., power consumption) versus the amount of
data to transmit (i.e., network bandwidth requirements) for each individual
application.
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5
AEBoard Hardware Design

This chapter presents an AE sensing hardware platform called �the AEBoard�,
custom designed for performing AE measurements in PermaSense (c.f. Chap-
ter 3).

5.1 Basic System Architecture

The AEBoard's system architecture basically follows the approach of a pro-
cessing sensor (c.f. Section 4.3.1): An intelligent sensor reduces the amount
of data to transmit drastically, such that existing WSN hard- and software
can be reused as if a low-data rate sensor was interfaced.

Speci�cally, the AEBoard features a TinyNode WSN platform as system
master, controlling all sensors as well as taking care of the WSN communi-
cation. The TinyNode receives AE parameter data over its serial interface
from a processing AE sensor, consisting of a slave microprocessor and the ac-
tual AE sensing circuitry. Furthermore, two SD memory cards are included:
One SD card is attached to the TinyNode to serve as network packet back-
log memory in case of missing network connectivity or AE data bursts. The
other SD card may be used by the slave processor to store raw AE data of oc-
curring events (c.f. Section 3.4). Figure 5.1 sketches this basic architecture.

Additionally, a combined sensor for temperature and humidity has been at-
tached to the TinyNode for system health monitoring as well as measurement
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Figure 5.1: AEBoard architectural concept

calibration. The TinyNode also monitors several voltage levels and supply
currents with its internal ADCs and is able to power cycle the slave processor
(c.f. Section 5.4).

5.2 AE Sensor Key Components

As no similar measurements have been done in PermaSense so far, the
AEBoard's processing sensor has been designed from scratch. The follow-
ing sections describe the various considerations that were taken into account
when selecting the sensor's key components.

5.2.1 Slave Processor

The slave processor platform is the heart of a processing sensor: It controls
the data acquisition (DAQ) process, performs signi�cant parts of the data
analysis and interfaces the actual WSN platform to forward data. Further-
more, the AE sensor slave processor has to store raw event data on its SD
card. Thus, besides being able to perform the necessary signal processing in
real time, the slave processor must be able to coordinate multiple internal
and external data streams, as Figure 5.2 illustrates.

Therefore, a key requirement for the slave processor platform are powerful
communication interfaces and a memory architecture that o�ers enough size
and bandwidth to serve all communication interfaces virtually in parallel.
Ideally, the slave processor o�ers true parallelism for certain tasks (e.g.,
parallel communication and signal processing).

Based on these requirements, candidate devices for the slave processor have
been evaluated. Three platform variants have been considered:

� Digital signal processor (DPS) platforms
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Figure 5.2: Slave processor data streams.

� Programmable logic devices, i.e., several PLDs and FPGAs

� General purpose microprocessor platforms (e.g., ARM Cortex based
platforms)

Table 5.1 compares the three most promising devices (one of each platform
variant) in detail.

Out of the three components presented, the ARMCortex M3 based STM32F103RD
has been selected for the following reasons:

� The STM32 o�ers comparably many communication interfaces, all of
them o�ering direct memory access (DMA) capabilities. This allows
the processing core to spend more capacity for signal processing instead
of managing communication tasks.

� The included 64 kBytes SRAM o�ers enough space for bu�ering the
various data streams.

� Native SDIO support o�ers high writing performance to the SD card.

� An FPGA based solution would have o�ered more �exibility, true hard-
ware parallelism as well as assumably lower power consumption. How-
ever, there is no FPGA know-how in PermaSense so far. Thus, as the
AEBoard shall be productively integrated into PermaSense as soon as
possible, a microprocessor based approach seemed to be more compat-
ible with further project developments.

� The STM32 microprocessors are well available at comparably low prices.
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ADSP2186M IGLOO AGL600 STM32F103RD

General
Type DSP FPGA Microprocessor

Manufacturer Analog Devices Actel STMicroelectronics

CPU
Core ADSP-2100 ARM Cortex M1 ARM Cortex M3
fmax 75MHz 60MHz 72MHz

Bus width 16 bits 32 bits 32 bits
Clocking external external / external external

Memory
RAM type SRAM Dual-Port SRAM SRAM
RAM size 40 kBytes 13.5 kBytes 64 kBytes
ROM type n/a Flash Flash
ROM size n/a 1 kBit 384 kBytes

Power
Supply voltage 2.5V - 3.6V 1.2V - 1.5V 2.0V - 3.6V

Low power modes 1 2 4
Wakeup source n/a ext Pin ext Pin

Est. Power at 60MHz 20mW 15mW 20mW

Connectivity
SPI ports 2 con�gurable 3
USARTs 0 con�gurable 5

SDIO 0 con�gurable 1
max GPIOs 8 235 51

Miscellaneous
Operating temp. -40◦C to +85◦C -40◦C to +85◦C -40◦C to +85◦C

Price per unit 16CHF 75USD 12CHF

Table 5.1: Comparison of three potential slave processor platforms. All technical
values base on the corresponding datasheets [45, 46, 47].

Some preliminary tests with the STM32Discovery evaluation kit further ver-
i�ed that the system speci�cations can be met with the STM32 slave pro-
cessor.
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5.2.2 ADCs

When digitally capturing and processing analog data, the ADC naturally
heavily in�uences the measurement quality achieved. Thus, choosing an
appropriate ADC is crucial for good measurement quality. For the AEBoard,
besides o�ering a quantization resolution of 16 bits at a sampling rate of
500 kHz, the ADCs have to operate between -40◦C to +85◦C and o�er low
power consumption.

Many available low-power ADCs either only o�er a resolution up to 12 bits or
don't achieve the sampling rates required. While for audio applications with
sampling rates up to 96 kHz a broad variety of 16 bit ADCs exists, products
in the 16 bit / 500 kHz class are rather rare. Finally, two candidate ADCs
could be identi�ed, which are compared in Table 5.2.

ADS8327 AD7980

General
Manufacturer Texas Instruments Analog Devices

Conversion
Maximal sampling rate 500 kHz 1000 kHz

Resolution 16 bits 16 bits

Miscellaneous
Typ. power dissipation at 500 kHz 10.6mW 3.5mW

Operating temp. -40◦C to +85◦C -40◦C to +125◦C
Interface SPI SPI

Price per unit 30CHF 40CHF

Table 5.2: Comparison of two potential ADCs. All technical values base on the
corresponding datasheets [48, 49].

Because of its lower power consumption as well as the possibility to increase
the sampling rate above 500 kHz if necessary, the AD7980 ADC from Analog
Devices has been chosen for the AEBoard. Its output format is compatible
to the well-known SPI protocol, which is well supported by the STM32.

5.3 Input Signal Conditioning Circuitry

Before sampling the AE sensor's output voltage, several signal conditioning
tasks have to be performed in order to ensure optimal sampling quality:

� Filter the input signal with a bandpass �lter in order to minimize
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unwanted noise.

� Adapt the signal's voltage range in order to utilize the ADC's full
dynamic range.

� Drive the ADC with a low-impedant signal source for maximal quan-
tization accuracy.

Piezoelectric sensors generally produce relatively weak output signals that
are not suitable to drive cables longer than a one or two meters. Therefore,
the AE signals have to be ampli�ed very close to the sensor. The Physical
Acoustics Corporation o�ers both active sensors that already have the neces-
sary ampli�er built into the housing (e.g., the PK6I sensor [50]) and passive
sensors that need to be connected to an in-line ampli�er after at most two
meters of cable (e.g., the R6α sensor [41] together with a IL-LP-6S preampli-
�er). In both cases, the preampli�er is supplied with electric power over the
signal line by lifting it to a DC bias voltage of 4 to 7V. The sensor output
signal then rides on this supply voltage, featuring a maximal amplitude that
is equal to the supply voltage.

On the other hand, the AD7980 ADC requires the constant reference voltages
Vref and GND. It then samples input voltages between GND and Vref with
a resolution of 16 bits. Input voltages smaller than GND or higher than Vref
are saturated at the respective output value [49].

Thus, the signal conditioning circuitry must bandpass the input signal to the
speci�ed frequency range of 20 kHz to 100 kHz, and adapt its voltage range
such that the maximal ADC input voltage lies at Vref and its minimum lies
at GND potential. For this purpose, an active �lter has been designed, using
the ADA4841 operational ampli�er by Analog Devices [51] which is recom-
mended to drive the AD7980 ADC. The DC supply voltage is removed at the
�lter input by a serial capacitor, whereas a 50Ω serial resistor decouples the
signal from the supply voltage regulator. The signal conditioning circuitry's
simpli�ed schematics are shown in Figure 5.3.

Circuit simulation with LTSpice [52] was used to adequately dimension the
passive components. Figure 5.4 shows the simulated �lter frequency re-
sponse.

For this simulation, the input source was simply modelled as an AC source
with an o�set voltage of 4.5V instead of exactly modelling the sensor /
preampli�er source. Thus, the 4.5V bias voltage a�ects the input signal,
resulting in an overall -6 dB damping in the simulation results. The LTSpice
simulation �les are also contained on the enclosed CD (c.f. Appendix G).
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Figure 5.4: Signal conditioning circuitry frequency response, simulated with LT-
Spice. The solid line shows the �lter ampli�cation, which is relevant
to de�ne the usable frequency range. The dotted line shows the less
important �lter phase.
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5.4 Power Concept

The AEBoard features various components requiring electrical power supply.
In order to minimize the overall power consumption, the input voltage for
each component should be as low as low as possible in it's speci�ed supply
range. Thus, power consumers on the AEBoard have been divided into the
following supply voltage categories:

� 4.5V: The AE sensors need a supply voltage Vs of at least 4V, ad-
ditional 0.5V have been added to provide enough headroom. Conse-
quently, the operational ampli�ers also have to be powered with the
same voltage in order to support the required output range of 0V to
Vs.

� 2.8V: SD cards require a minimum supply voltage of 2.7V [53]. Adding
0.1V of headroom, the STM32 as well as the TinyNode need to be pow-
ered with at least 2.8V in order to meet the requirements for SD card
hosts.

� 2.5V: The AD7980 ADC requires a supply voltage of exactly 2.5V.
Thus, it requires a separate power supply circuit. Furthermore, it also
requires a reference voltage Vref that is equal to the maximum ampli�er
output, i.e., 4.5V, as well as a digital input / output level voltage VIO
of 2.8V.

Additionally, in order to gain �ner control over the AEBoard's operation and
save power when necessary, the three following possible operating modes have
been de�ned:

� Standby: Only the TinyNode's power supply is turned on. The slave
processor as well as the DAQ circuitry are cut from power supply com-
pletely.

� Data transfer: In addition to the Standby mode, the slave processor
is supplied with power. This mode allows for data exchange between
the TinyNode and the STM32, but no AE data can be sensed.

� AE sensing: All components are powered and operational.

Consequently, as the actual sensing circuitry shall be completely hidden from
the TinyNode, it only controls the STM32's power supply. The slave pro-
cessor in turn controls all DAQ components' supply and reference voltages.

In order to ensure optimal measurement quality and minimize coupling be-
tween the two channels, each input channel is biased by a separate voltage
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regulator. Furthermore, the ADC reference voltage as well as the ampli�er
supply voltage are generated by distinct sources.

Initial estimates assumed a constant operating current of about 40mA in the
AE sensing mode. As even high capacity batteries would discharge in a few
days under this load, the AEBoard is designed to be fed by a solar power
supply, providing an input voltage of 12V. For power e�ciency reasons,
these 12V are converted to an intermediate voltage of 5.5V by a switched
capacitor voltage regulator. This intermediate voltage is then converted to
the required voltage levels by linear regulators. Figure 5.5 sketches this
power concept.

Due to a voltage drop of approximately 0.5V at the power switch transistors
used, the TinyNode and its SD card are fed with a supply voltage of 3.3V to
ensure the required 2.8V for the STM32 after the power switch. For system
health supervision purposes, voltage and current are measured at various
points: Voltages and currents in the prescaling and digital master domain
are sensed by the TinyNode, voltages in the sensing domain are supervised
by the slave processor.

5.5 AEBoard Prototype

The hardware concept described has been implemented in an AEBoard pro-
totype. In addition to the features already mentioned, the following compo-
nents and features have been added:

� JTAG programming and debugging ports for both the TinyNode
and the STM32. The 20 pin port for the STM32 is thereby compatible
with the ST-LINK programmer by STMicroelectronics, the TinyNode's
14 pin port is compatible with various MSP430 JTAG programmer
devices.

� Reset buttons for both the TinyNode and the STM32.

� Serial console connector for the STM32 which could be used to
output debug messages to a PC. It is pin compatible with the TTL-
232R-3V3 USB TTL serial cable from FTDI chip [54].

� Three debug LEDs for the STM32.

� Serial communication debug LEDs that indicate data �ow be-
tween the TinyNode and the STM32.

� Two shared GPIO connections between the TinyNode and the
STM32 in addition to the serial interface.
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Figure 5.6: The AEBoard prototype.

� Switchable boot mode for the STM32 to recover the processor
from corrupted program memory by booting it from the factory boot-
loader.

� Switchable processor supply voltage to 2.8V or 3.3V. This feature
has been removed for further hardware revisions, as a supply voltage of
3.3V is required for proper functionality (c.f. Sections 5.4 and 5.5.1).

� ESD protection diodes at the signal inputs.

� Test pins at various points to measure supply and reference voltages
manually.

For detailed design schematics and PCB layout �gures of the so far manu-
factured hardware revision 1.1, please refer to Appendix E.

5.5.1 Changes for Revision 1.2

Although the �rst AEBoard prototype basically worked as expected, a few
changes have been made for further hardware revisions (the component des-
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ignators refer to the respective schematics). These changes have already
been included in the latest schematics and layout �les that may be found on
the enclosed CD (c.f. Appendix G) or in the PermaSense SVN repository
under /trunk/pcb/projects/0011_acoustic_emission.

� Pins 5 and 13 of the STM32's JTAG interface have been interchanged
in order to allow JTAG access. This bug could be circumvented by
either patching the access ribbon cable or using the ARM speci�c single
wire debug (SWD) protocol instead of JTAG for programming and
debugging.

� The current supervision ICs' supply voltage has been corrected from
5.5V to 3.3V. As a consequence of the wrong supply voltage, the
current supervision circuits in revision 1.1 are not usable.

� An LED (D10) has been added to indicate the the presence of supply
power.

� A pull-down resistor (R77) has been added to the STM32 reset cir-
cuitry, preventing spontaneous resets due to a �oating reset control
line.

� The TinyNode's supply voltage has been �xed to 3.3V by removing
jumper W2 as well as resistor R20, as an output voltage of 2.8V at the
linear voltage regulator U9 is not su�cient for powering the STM32's
SD card after the voltage drop of 0.5V at the switching transistor (c.f.
Section 5.4).
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PermAE Software Design

This chapter describes a distributed piece of software called �PermAE�, that
runs on the AEBoard and meets the system speci�cations described in Chap-
ter 3.

6.1 General Concept

Consequently following the principle of a �processing sensor� (c.f. Chapter
4), PermAE is split into two virtually independent parts: One part is running
on the STM32 slave processor and is responsible to control and supervise the
data acquisition process, process the raw data, forward detected AE event
parameters as well as status messages to the TinyNode and store raw event
samples on its SD card. The other part of PermAE runs on the TinyNode
and basically controls the slave processor, manages the WSN connection,
forwards received AE parameter and status messages to the data sink and
monitors air temperature and humidity. The two devices communicate over
a UART port by a set of well de�ned commands and messages as presented
in the following section. This serial port, together with the TinyNodes ca-
pability of power cycling the STM32, forms the only interface between these
two components, allowing to develop and test many of the respective internal
matters independently (c.f. Figure 5.1).
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6.2 PermAE Messages

As producing data messages is the main purpose of a sensor node in PermaSense,
the expected output messages are speci�ed �rst. Note that from an end
user's perspective, it does not matter whether a message was produced by
the STM32 or by the TinyNode. Rather, a user should not even notice that
two independent processors are involved.

6.2.1 PermAE Output Messages

Table 6.1 brie�y outlines the messages generated by PermAE and �nally
stored in the backend database.

Message Description Contents

aedata Information about one
measured AE event.

Occurrence time infor-
mation, event parame-
ters, posttrigger used,
threshold used and mea-
surement channel

aestatistics Event counter values,
aggregated over two
minutes.

Total events mea-
sured, total events
parametrized, total
raw events stored (c.f.
Section 3.4)

aedaqhealthdata AEBoard health and
system status data.

Monitored supply volt-
ages and currents,
monitored reference
voltages, number of free
raw event blocks on the
SD card, power state of
the STM32 (on / o�).

nodehealth PermaDozer standard
message representing
the TinyNode's status

Packet count, system
voltages, air temper-
ature and humidity,
SD card status and
TinyNode uptime.

Table 6.1: PermAE output messages

Additionally, further standard PermaDozer messages (eventlogger, rssi, state-
counter) are generated. For detailed format speci�cations, refer to Appendix
C. The values' units are described in detail in Appendix D.
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6.2.2 PermAE Dozer Commands

According to the functional system speci�cation in Section 3.4, threshold
and posttrigger values must be adaptable from the backend. Furthermore,
data acquisition (i.e., the whole processing sensor) may be power cycled
manually. To this end, PermAE uses the Dozer beacon mechanism to receive
commands. As the maximum number of Dozer commands is limited to 16
per deployment, only one new command type (�AEBOARD_CTL_CMD�)
has been de�ned. The command argument then encodes the message that
is sent to PermAE as speci�ed in Table 6.2:

Command Description Argument to send

DAQ_OFF turn data acquisition o� 256
DAQ_ON turn data acquisition on 512
SET_THR set the threshold value 1024 + threshold [dB]
SET_PTRG set the posttrigger value 2048 + posttrigger [samples]

Table 6.2: Dozer command messages. To set a threshold of, e.g., 53 dB, the argu-
ment must be set to 1024 + 53 = 1077. To set a posttrigger value of,
e.g., 600 samples, the argument must be set to 2048 + 600 = 2648.

Note that the threshold value is limited to 7 bits and therefore to a maxi-
mum value of 127 dB. Likewise, posttrigger values are limited to 11 bits or a
maximum value of 2047 samples.

The Dozer commands can easily be sent to a node running PermAE by
utilizing the dozer_command virtual sensor in the PermaSense webinterface
(c.f. Section A.5).

6.3 Onboard Communication Protocol

As already outlined, the two parts of PermAE communicate over a serial
UART interface. Communication is achieved by a simple command based
protocol. Generally, every communication round is started by the TinyNode
sending a command. The STM32 may then respond according to the fol-
lowing protocol. In order to request an exchange of messages (e.g., to for-
ward AE event parameters to the TinyNode), the STM32 raises one of the
shared GPIO pins (called the �ARM_COMM_FLAG�) and waits for the
TinyNode to start communicating. All prede�ned commands and messages
have a length of 1Byte.

The onboard communication protocol uses a simple acknowledgement scheme.
Table 6.3 de�nes the messages used. If any party sends a NACK message
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at any point in a message exchange, the communication �ow is aborted and
the protocol must be reset on both sides.

Hex ASCII Description

0x41 A acknowledge (ACK)
0x4E N not acknlowledge (NACK)

Table 6.3: Onboard ACK and NACK messages

To initiate a communication round, the TinyNode sends one of the com-
mands speci�ed in Table 6.4.

Hex ASCII Description

0x53 S start data acquisition
0x4F O stop data acquisition
0x45 E set threshold value
0x49 I set posttrigger value
0x4D M send a message

Table 6.4: Onboard command messages

When requested to send a message, the STM32 responds with a message
indicating the data message type to follow. Table 6.5 speci�es the possible
types.

Hex ASCII Description Size Dozer equivalent

0x45 E AE event data 23Bytes aedata
0x53 S AE statistics 6Bytes aestatistics
0x48 H health data 14Bytes n/a

Table 6.5: Onboard data message types

AE event data messages and AE statistics messages are equivalent to the
respective Dozer messages and may be directly forwarded by the TinyNode.
The health data is �rst extended by additional values measured by the
TinyNode and only then forwarded in an �aedaqhealthdata� message (c.f.
Appendix C).

The possible valid communication �ows are �nally speci�ed in Figure 6.1.
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Figure 6.1: Valid onboard message �ows

Both parties must send a NACK message if either an invalid command /
message was received or if an expected response has not arrived within 50ms.
The protocol state must then be reset on both sides and communication
restarts.

6.4 STM32 Implementation

The STM32 slave processor is mainly responsible for acquiring and process-
ing AE sensor data as well as forwarding detected event parameters. Fur-
thermore, as many raw events as possible shall be stored on the SD card
attached and the DAQ system's health shall be supervised regularly. As all
these tasks must virtually run in parallel, the FreeRTOS real time operat-
ing system kernel [55] has been utilized to implement this part of PermAE
e�ciently.

FreeRTOS features a fully preemptive task model with execution timeslots
of a �xed maximum length. Tasks preferably communicate over FreeRTOS'
FIFO queues. Reading from an empty queue or writing to a full queue may
or may not block the respective task depending on the programmer's deci-
sion. When either an execution timeslot has expired or after a read or write
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operation on a queue, the scheduler gives control to the highest priority task
that is not blocked, explicitly delayed or suspended. For more information
about the FreeRTOS execution model, please refer to the FreeRTOS docu-
mentation [56, 57] on the enclosed CD.

The STM32 application has been split into the following tasks:

� The data analysis controller task enables and disables the data ac-
quisition process. It however only does so when receiving an according
command from the TinyNode via the communication task.

� Two data analysis tasks analyze the incoming raw data samples,
detect AE events and parametrize them. Each data analysis task is
responsible for analyzing one input channel's data.

� The communication taskmanages the serial interface to the TinyNode.
It therefore implements the communication protocol speci�ed in Sec-
tion 6.3.

� The storage manager task manages the SD card resource and writes
incoming raw event sample bu�ers onto the SD card.

� The event statistics task reads and resets the event counter values
every two minutes and generates the according aestatistics messages.
Likewise, the voltage supervision task measures the supervised sys-
tem voltages with the internal ADCs and generates the system health
messages every two minutes.

Tasks are listed according to their assigned priorities, i.e., the data analysis
controller tasks has the highest priority and suspends all other tasks, whereas
the event statistics and voltage supervision tasks have the lowest priorities.
These task priorities directly re�ect the output data priorization speci�ed in
Section 3.4: Data acquisition and event count is done with highest priority,
forwarding of parameter is done with medium priority and storage of events
on the internal SD card is done with low priority. System supervision tasks
are �nally carried out with lowest priority as they are not critical for the de-
tection of AE activity. Figure 6.2 depicts the PermAE application structure
on the STM32.

For e�ciency reasons, all necessary data bu�ers are allocated statically dur-
ing initialization. Thus, the tasks only pass pointers to these static bu�ers
via FreeRTOS queues. Consequently, PermAE also requires feedback queues,
containing pointers to empty / processed bu�ers that may be �lled with new
data. These feedback queues have been omitted in Figure 6.2 for simplicity.
Table 6.6 displays PermAE's memory partition.
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Figure 6.2: PermAE application structure on the STM32
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Size [kB] Description # of Bu�ers

5 Task Stacks n/a
36 Raw Data Input Bu�ers 18
9 Parameter Bu�ers 400
4 Storage Bu�ers 2
7 Queues n/a

Table 6.6: PermAE memory partition. Total memory size is 64 kB.

6.4.1 PermAE Initialization

Before data acquisition and analysis may start, the PermAE application
must be initialized. An initialization task (not included in Figure 6.2) takes
care of allocating bu�er memory and initializing all required data structures.

In order to ensure correct initialization after power cycling the STM32,
PermAE stores some information in an initialization block on the SD card.
This block is initially generated by the PermAEInit application (c.f. Section
6.4.8). Table 6.7 speci�es its format and contents.

The PermAE initialization task starts by reading this initialization block and
checking the magic bytes as well as the device ID in order to ensure that
this SD card has been initialized with the current AEBoard. It then uses
the rest of the initialization block's information to prepare data acquisition,
analysis and storage. Finally, after all other tasks and data structures have
been created successfully, the initialization task suspends itself forever.

For debugging purposes, the initialization task features verbose status mes-
sages on the AEBoard's debug console connector, which can be checked by
connecting the AEBoard to a terminal emulation software such as, e.g., mini-
com (c.f. Appendix A).

6.4.2 Data Acquisition

The AEBoard connects the AD7980 ADCs to two of the STM32's SPI in-
terfaces. The ADCs' operating mode requires their controller to initiate
sampling by pulling their CNV input to �high�, waiting for a �xed amount of
time and then releasing CNV again. The sample may then be read by gen-
erating 16 clock pulses on the SCK input and reading the output line SDO
at each raising clock edge [49]. In PermAE, both AE channels are sampled
synchronously. The conversion clock, as well as the SPI clock, are generated
by two timer peripherals on the STM32. Consequently, the SPI peripherals
are con�gured to operate in slave mode. Figure 6.3 illustrates this wiring.
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O�set Size [Bytes] Name Description

0x00 4 magic bytes The static string �AEP�
0x04 12 device ID The STM32's unique de-

vice identi�er
0x10 4 serial number The current AE event

counter value
0x14 4 blocks stored The number of raw

events stored on the SD
card

0x18 2 stored event size The size of one raw event
stored on the SD card

0x1A 2 stored event samples The number of raw sam-
ples per stored event

0x1C 2 channel 1 o�set O�set calibration value
for channel 1 (c.f. Sec-
tion 6.4.8)

0x1E 2 channel 2 o�set O�set calibration value
for channel 2 (c.f. Sec-
tion 6.4.8)

0x20 2 threshold The event detection
threshold

0x22 2 posttrigger The event detection pos-
sttrigger value

0x24 476 reserved Reserved for future use

Table 6.7: The PermAE initialization block

               STM32

SPI1

    ADC2 SPI2

MOSISDO

MOSISDO

SCK SCK

SCK SCK

SCK Timer

CNV Timer

    ADC1

CNV

CNV

Figure 6.3: AEBoard data acquisition wiring

When data acquisition is enabled by the data analysis controller task, the
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CNV timer generates a periodic acquisition pulse with a frequency of 500 kHz.
The SCK timer basically generates a continuous clock signal, but it's output
signal is masked by a windowing timer such that per sampling period, only
16 well-timed pulses appear at the SCK output.

t

2us

CNV

SCK window

SCK internal

SCK output

Figure 6.4: Generated data acquisition clocks

The received samples are transferred to a raw data bu�er via DMA, only
generating an interrupt when the raw sample bu�ers are full (i.e., after read-
ing 1024 samples) and thereby minimizing unnecessary interrupt overhead.
An interrupt service routine re-initializes the DMA controller with new in-
put bu�ers and passes the full bu�ers to the data analysis tasks (c.f. Figure
6.2). Unfortunately, this process takes more than two microseconds and
consequently, one sample per channel is lost at each bu�er switch. To min-
imize the introduced error, the missing sample is estimated by calculating
the mean value of its preceding and its subsequent sample.

6.4.3 Data Analysis Controller Task

Even though the data analysis controller task is the highest priority task in
PermAE, it is generally the least active. Its sole purpose is to enable and
disable the data acquisition process and to thereby indirectly control the
data analysis tasks as outlined in Algorithm 1.

6.4.4 Data Analysis Task

Each AE channel's raw data is analyzed in a separate task. Once a sam-
ple's absolute value exceeds the set threshold, an event is detected. Event
parametrization runs until the threshold has not been exceeded for the num-
ber of samples that is de�ned by the posttrigger value. Assuming that the
�rst threshold crossing occurred at sample i and the event ends at sample
j (i.e., the last threshold crossing occurred at sample j − posttrigger), Al-
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Algorithm 1 PermAE data analysis control task

1: initialize data analysis;
2: while true do
3: wait for DAQ_START;
4: initialize data acquisition;
5: start data acquisition;
6: wait for DAQ_END;
7: stop data acquisition;
8: end while

Algorithm 2 PermAE event parametrization

1: length := j − i;
2: amplitude := 0;
3: risetime := 0;
4: energy := 0;
5: count := 0;
6: for k = [i . . . j] do
7: if abs( samples[k] ) > amplitude then
8: amplitude := abs( samples[k] );
9: risetime := k − i;

10: end if
11: energy = energy + (samples[k])2

512 ;
12: if samples[k − 1] < threshold and samples[k] >= threshold then
13: count := count +1;
14: end if
15: end for

gorithm 2 is equivalent to PermAE's event parametrization algorithm (c.f.
Section 2.2.2 and Figure 2.5):

There are two points noteworthy about this implementation:

� In line 11, the squared samples are �rst divided by a scaling factor of
512 before being added to the energy parameter. This scaling prevents
energy parameter values from over�owing the assigned range of 32 bits.

� Some AE parametrization algorithms use extended criteria to de�ne
a threshold crossing in order to suppress high frequency oscillations.
PermAE however counts every single exceeding of the positive thresh-
old as depicted in Figure 2.5.
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AE Event Metadata

In addition to the actual event parameters, metadata is added to the event
parameters: A global event counter is incremented every time an event was
parametrized. This counter value is attached to the event data as the event's
serial number. The serial number can only be reset by re-initializing the SD
card. Thus, it uniquely identi�es every event of a sensor's deployment. The
event's serial number is also crucial for correlating raw event data from the
SD card with parameters stored in the PermaSense database. Furthermore,
in order to temporally correlate the AE events precisely (c.f. Section 3.4),
a sample counter value indicating the start sample's counter value is added
to each parameter set. E.g., if event A's sample counter value is equal to
468194 and event B's sample counter value is equal to 468276, for event A,
the �rst threshold exceedance occurred 82 samples (=164µs) before event
B's �rst threshold exceedance.

As the sample counter value is only 32 bits wide, it over�ows and restarts
from zero every 232 samples, which is equivalent to 143minutes at a sampling
rate of 500 kHz. It is furthermore reset when data acquisition is stopped and
restarted.

Details about converting the parameter values into physical units are given in
Appendix D. Once parameter detection has �nished, the detected parameters
are passed to the communication task, whereas the event's raw samples and
some metadata are passed to the storage manager task (c.f. Figure 6.2).

6.4.5 Communication Task

The communication task basically implements the communication protocol
speci�ed in Section 6.3. As soon as PermAE on the STM32 is fully initialized,
the ARM_COMM_FLAG line is raised to signal communication readiness.
Data acquisition is only enabled or disabled upon the accordant TinyNode
commands.

If there are multiple data messages to forward, they are transmitted in
strictly prioritized order, depending on their type as shown in Algorithm
3.

6.4.6 Storage Manager Task

The storage manager task controls and manages access to the SD card stor-
age. The SD card is accessed via the STM32's SDIO peripheral, allowing
e�cient data input / output using bulk DMA transfers.

Raw event data bu�ers are received from the data analysis tasks and written
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Algorithm 3 PermAE data message transmission

1: if AE parameters waiting then
2: transmit AE parameters;
3: else if AE statistics messages waiting then
4: transmit statistics message;
5: else if Health data message waiting then
6: transmit health message;
7: end if

to the SD card unaltered. For e�ciency reasons, the raw data samples of all
events are stored in blocks of �xed size, which is de�ned at device calibration
time (c.f. Section 6.4.8). E.g., if this event bu�er size is set to 2048Bytes,
one raw event block on the SD card would have the following format:

O�set Size [Bytes] Name Description

0x00 4 serial number The event's serial number (c.f
Section 6.4.4)

0x04 4 start sample The event's start sample (c.f
Section 6.4.4)

0x08 2 length The event's length parameter
0x0A 2 threshold The detection threshold used
0x0C 2 posttrigger The detection posttrigger value

used
0x0E 2032 event data The raw event samples

Table 6.8: Raw event data block on SD card

Thus, maximally 1016 samples per event will be stored. Longer AE events
are simply cropped to 1016 samples, shorter AE events do not utilize the
whole storage block. Nevertheless, �xing a stored event's block size allows
for very e�cient write operations, as SD cards are always written in blocks
of 512Bytes. This, however, also limits the possible storage block sizes to
multiples this basic block size.

As no PC readable �le system is used to store the raw AE events, the data
stored on a PermAE SD card must �rst be preprocessed in order to be used
in third party software. For this purpose, a PHP script is provided on the
enclosed CD that generates a simple-formatted ASCII �le for each event
stored on the memory card. These �les may then further be processed with
third party software tools, e.g., with MATLAB. For details, refer to Section
A.4.2.

The storage manager task also periodically updates the PermAE initializa-
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tion block stored on the SD card at address 0 (c.f. Sections 6.4.1 and 6.4.8),
ensuring initialization block actuality and validity even after power cycles.

6.4.7 Event Statistics and Voltage Supervision Tasks

This rather simple tasks generate information blocks in two minute intervals.
The event statistics task reads and resets the event counter values (measured
events, parametrized events, stored events) and generates a statistics message
thereof. Furthermore, the voltage supervision task samples the following
system voltages every two minutes (c.f. Figure 5.5):

� Bias voltages for channel 1 and 2 (4.5V)

� ADC supply voltage (2.5V)

� ADC reference voltage (4.5V)

� Operational ampli�er supply voltage (4.5V)

These voltages, together with the number of free event blocks on the SD
card, are forwarded to the communication task as a data acquisition health
message.

6.4.8 PermAE Initialization and Calibration

In order to use the STM32 PermAE implementation, some initial system
parameters must be set (c.f. Section 6.4.1):

� The initial threshold value

� The initial posttrigger value

� The block size of one raw event data block (c.f. Section 6.4.6)

Furthermore, the AE measurement channels need to be calibrated: For
each channel, the input signal theoretically features a static o�set of ex-
actly 2.25V, which would correspond to an ADC output value of 32768 (c.f.
Figure 5.3 and Appendix D). However, due to component inaccuracies, this
o�set voltage varies for every AEBoard input channel, making a preliminary
calibration necessary.

For calibration and initialization, a separate application called �PermAEInit�
is provided. PermAEInit measures each AE channel's o�set value by sam-
pling 1024 samples and calculating the mean value. Therefore, it is important
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Figure 6.5: PermAE application structure on the TinyNode

to remove the AE sensors before calibrating to make sure that no unwanted
sensor stimulation occurs. After measuring the channel o�sets, PermAEInit
generates the initialization block and writes it onto the SD card (c.f. Section
6.4.1).

The mentioned detection and storage parameters are compiled statically into
the application's binary, requiring recompilation of PermAEInit to change
them (c.f. Appendix B). For further information about initializing an AEBoard,
please refer to Appendix A.

6.5 TinyNode Implementation

In contrast to the implementation on the STM32, the TinyNode part of
PermAE is built upon an already existing software stack consisting of the
TinyOS operating system [25] and the PermaDozer network stack [4, 2].
Building on this existing infrastructure, the PermAE TinyOS application
only has to implement the communication protocol speci�ed in Section 6.3
and provide data source modules as well as a hardware description layer for
the AEBoard. Figure 6.5 depicts the application's basic architecture.

All in all, much of the necessary code could be reused from other PermaSense
applications, greatly facilitating a seamless integration into the existing PermaSense
infrastructure.
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6.5.1 AEBoard Drivers

The AEBoard driver layer abstracts the AEBoard hardware resources: SD
card and SPI bus, the UART interface to the STM32, the MSP430 ADCs
for measuring system voltages and currents as well as the SHT21 temper-
ature and humidity sensor [58]. As most of the components attached to
the TinyNode have already been used on other PermaSense platforms (i.e.,
the sensor interface board (SIB) and the PermaDozer base board), most of
the hardware layer code could be reused from the already existing codebase
in a slightly adapted form. Comparably lightweight datasource plugins for
the PermaDozer DataControl module implement the actual measurement
routines.

6.5.2 AEModule

The AEModule basically implements the onboard communication protocol
(c.f. Section 6.3). On one hand, it provides a control interface to the PermAE
top level application to send command messages to the STM32 (start / stop
data acquisition, setting the threshold and posttrigger values). On the other
hand, it reads data messages from the STM32 and injects them into the
PermaDozer message queue.

6.5.3 PermaDozer and DataControl

The PermaDozer and DataControl libraries already available from other
PermaSense applications manageWSN communication and SD storage, there-
for utilizing the AEBoard driver hardware abstractions. The existing SD
storage engine was slightly adapted for PermAE: In other PermaSense ap-
plications, data was written to the SD card only every two minutes. As
in these applications, the data rate is well known, queue over�ows could
easily be avoided. In PermAE however, data packets arrive irregularly and
in bursts, sooner or later over�owing the storage module's �xed-size input
queue. Thus, the PermAE storage queue adds incoming data packets to the
SD card storage bu�er immediately, instead of rejecting new packets when
the input queue is full. Furthermore, the PermaDozer component generates
a few other standard messages (eventlogger, rssi, statecounter) for network
management purposes.

6.5.4 PermAE Top Level Application

The PermAE module is the top level TinyOS application. After initializing
the hardware, it turns on the STM32 and waits for the ARM_COMM_-
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FLAG pin to be raised (c.f. Section 6.3). Then, it sends a START_DAQ
command to initiate sampling of AE data. Once up and running, the appli-
cation behaves as follows:

� When the ARM_COMM_FLAG pin is raised again, a message read
operation by the AEModule is initiated.

� Upon reception of a WSN command (c.f. Section 6.2.2), the command
is parsed and an according command is sent to the STM32 through
the AEModule.

� Every two minutes, PermaDozer initiates periodic measurements. PermAE
then starts the system health measurement routines to generate a
�nodehalth� as well as an �aedaqhealthdata� packet. The latter packet
bases on the last received health message from the STM32 and is ex-
tended with some values measured by the TinyNode.

For further information about the generated packets, refer to Appendices C
and D.

6.6 GSN Integration

As the PermAE implementation on the TinyNode bases on the same mech-
anisms as all other PermaSense WSN nodes, AE data integration into GSN
is a fairly simple process. The TinyOS mig tool converts the message for-
mat de�nitions in the PermAE header �les to Java classes, which in turn
can be integrated into the PermaSense GSN instances. As the mig Make�le
has been adapted accordingly, integrating AE messages into another GSN
instance is just a matter of running the mig tool and copying the generated
class �les to the respective GSN instance path. For closer details about this
process, refer to the PermaSense documentation.

As usual in PermaSense, data calibration/conversion to physical units is
done in between the �Private� and the �Public� GSN instances. I.e., when
accessing AE data on the �Public� GSN instance, the data displayed has
already been converted to physical units (c.f. Appendices C and D).
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7
System Evaluation

To complete the presentation of the AEBoard and PermAE, the system's
performance characteristics are evaluated in this chapter. A special focus
thereby lies on the reliable system operation under harsh environmental con-
ditions.

7.1 Measurements at Room Temperature

7.1.1 Analog Frontend Characterization

In order to ensure a good quality of the measured samples, the analog fron-
tend has been characterized in terms of frequency response and linearity.
For both measurements, the input signal has once been applied directly at
the AEBoard signal input, and once at the input of the IL-LP-6S external
preampli�er by Physical Acoustics.

Input Frequency Response

Figure 7.1 shows the AEBoard's analog frontend frequency response. The
input signal has been applied at the AEBoard input test pins and no pream-
pli�er has been attached at the input channel. The output was measured
directly at the ADC input.

The system's input is attenuated by 6 dB, due to the bias voltage providing
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Figure 7.1: Frequency response of the onboard signal conditioning circuitry.

power to the external preampli�er (c.f. Section 5.3). If more input gain is
required, the operational ampli�er feedback path's resistor value could be
increased (c.f. Figure 5.3 and Appendix E).

The frequency response has also been measured with the external pream-
pli�er included in the signal path. The input signal has been applied at
the preampli�er input, the output was measured again directly at the ADC
input. Figure 7.2 depicts this measurements' results.

For the whole signal conditioning chain, the point of maximal ampli�cation
lies at a frequency of 35 kHz with an ampli�cation of 22 dB. In the frequency
range of 20 to 100 kHz, the loss compared to the maximal ampli�cation does
never exceed 1 dB. Thus, the input �lter matches the system speci�cations
in Section 3.4, requiring an input frequency bandwidth of 20 to 100 kHz.

Filter Linearity

Besides the frequency response, the input �lter's linearity is another factor
that heavily a�ects the sampled signal's quality. A linear �lter only changes
amplitude and phase of an input signal's frequency parts, without introduc-
ing frequencies that have not been part of the original signal. Thus, if a linear
�lter is fed with a perfectly sinusoidal signal, its output is a phase-shifted,
ampli�ed copy of the input signal.

The signal conditioning circuitry's linearity has been analyzed at input fre-
quencies of 30, 50 and 100 kHz. The sinusoidal input signal was attached at
the AEBoard's input connector and the �lter output has been measured at
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Figure 7.2: Frequency response of the signal conditioning circuitry including the
external preampli�er.

the ADC input. As the AEBoard input �lter is inverting the input signal,
the sum of both signals is equal to the signal change introduced by �ltering.
Figure 7.3 shows the input and output signal for the 50 kHz measurement,
as well as their sum.

Obviously, the error signal is also sinusoidal, indicating a linear �lter char-
acter. Indeed, after shifting and amplifying the output signal adequately
(i.e., compensating the linear �ltering), the di�erence between the signals is
smaller than 5% as shown in Figure 7.4.

However, when adding the external preampli�er to the signal conditioning
chain, the linearity is lost. Figure 7.5 clearly shows, that even after com-
pensating phase shift and ampli�cation, signi�cant nonlinear distortions of
the output signal remain. Because the IL-LP-6S preampli�er also inverts its
input signal, the output signal must now be subtracted from the input in
order to �nd the error introduced.

Nevertheless, although this nonlinear behaviour certainly a�ects the raw
event data that is stored on the SD card, it should not notably a�ect the
AE event parametrization results. However, further analysis based on the
stored raw samples that includes frequency domain calculations should take
these nonlinear e�ects into account.

For all linearity measurement results, please refer to Section F.1.
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Figure 7.3: Uncompensated error introduced by the AEBoard input �lter.

Figure 7.4: Phase and amplitude compensated error, introduced by the AEBoard
input �lter.
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Figure 7.5: Phase and amplitude compensated error, introduced by the external
preampli�er and AEBoard input �lter.

7.1.2 Power Consumption

The AEBoard's power consumption has been measured at room temperature
for various isolated system parts as well as for the whole system in operation.
Table 7.1 summarizes these measurements.

Power Domain Input
Voltage

Input
Current

Input
Power

Digital Master Domain 3.3V 23mA 75mW
Digital Slave Domain 2.8V 44mA 122mW
Sensing / Conversion Domain 5.5V 13.7mA 75mW
System in operation 12V 48mA 576mW

Table 7.1: AEBoard power consumption (for domain names, refer to Figure 5.5)

The di�erence between the total system power consumption and the accu-
mulated subsystem consumption is due to losses in the power supply system.
These losses clearly dominate the overall power consumption with a total of
304mW, probably leaving much potential for further optimization.

From the beginning, the AEBoard was designed to support a photovoltaic
power supply. Nevertheless, the Li-SOCl2 batteries currently used in PermaSense
(the �LSH 20� model by Saft batteries [59]) feature a nominal capacity of
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13Ah per cell. When combining three of these 3.6V batteries to a 10.8V
power supply, an AEBoard could continuously acquire data for about 10
days. This may be su�cient for shorter AE sensing campaigns. For long-
term measurements however, a photovoltaic power supply is inevitable.

7.2 Temperature Cycle Tests

In order to evaluate the system performance under realistic environmental
conditions, the following performance tests have been carried out under vary-
ing temperature conditions. To this end, an automatic climate chamber has
been utilized to ensure controlled experimental conditions. The following
questions have been studied speci�cally:

� Is the system operating stable under quickly varying temperature con-
ditions?

� Does temperature a�ect the system's performance in terms of maximal
AE activity load that can be processed and stored?

� Does temperature a�ect the system's power consumption?

� How does the signal conditioning circuitry behave under temperature
cycles and how is the parametrization result a�ected?

To answer these questions, two experiments have been carried out in the
temperature chamber, as discussed in the following sections. As the experi-
mental conditions shall be reproducible, no piezoelectric AE sensor has been
used for these experiments. Instead, the �STM32Discovery� evaluation kit
for the STM32 platform has been utilized to simulate the output of a piezo-
electric AE sensor. Thus, the following experiments are strictly electrical
and do not consider any mechanical or electrical characteristics of the AE
sensor itself. The application used for event simulation is also included on
the enclosed CD or in the PermaSense SVN repository (c.f. Appendix B and
G).

7.2.1 Load Test

The �rst temperature test setup was designed to evaluate the overall system
stability under changing temperature conditions as well as measuring the
system's event processing capabilities over an extended period of time and for
di�erent temperatures. The AEBoard, as well as the external preampli�ers,
have been placed in the climate chamber, whereas the power supply and the
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Climate Chamber

AEBoard

Preamp

Preamp

Channel 1

Channel 2

event generator

power supply

5kOhm

1kOhm

Figure 7.6: Load test setup.

event generator were kept at room temperature in order to ensure stable
conditions. Figure 7.6 sketches this setup.

Every �ve minutes, the event generator produced �fteen AE events per sec-
ond on both acquisition channels over a period of 30 seconds, resulting in
900 generated AE events per stimulation period. This event rate is high
enough to be above all expected event bursts occurring in a real measure-
ment deployment (c.f. Section 3.1.2). All generated AE events were identical,
featuring an amplitude of 80 dB (1V) at the ADC input and an event length
of about 2700 samples (1.35ms). For each stimulation period, the according
�aestatistics� messages have been analyzed in order to evaluate the system's
parametrization and storage performance. During the experiment duration
of totally seven hours, the ambient temperature was varying between -35◦C
and +50◦C. Figure 7.7 shows the results of this load test experiment.

Obviously, the varying temperature conditions did not a�ect the system's
performance in terms of operational stability as well as parametrization and
storage capability. Furthermore, according to the preliminary experimental
results described in Section 3.1, the applied load is unrealistically high. Ad-
ditional tests showed that by reducing the stimulation period to only 15 sec-
onds, all occurring events during a stimulation period could be parametrized,
and over 90% of the events could be stored on the SD card. The system's
performance bottleneck in terms of parametrization capability is the serial
port's communication speed to the TinyNode - as more events arrive than
can be forwarded, the acquisition system slowly runs out of input bu�ers.
SD storage performance however is not limited by the speed of the SDIO
interface. Rather, as the storage task features a lower priority than the com-
munication task, it simply does not have enough processor time to store all
events. Raising the storage task's priority would solve this problem but also
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Figure 7.7: System performance under varying temperature conditions.

violate the system speci�cation (c.f. Sections 3.4 and 6.4).

7.2.2 Data Quality Test: AEBoard and USB AE Node

Even tough temperature seems not to in�uence the system's overall relia-
bility and speed, it certainly a�ects the data acquisition system's analog
components and thus also the parametrization results. In order to investi-
gate on these e�ects, data acquisition quality has been tested and compared
to a commercially available system.

Again, the AEBoard has been placed in the climate chamber, together with
the external preampli�er for channel one. The preampli�er for channel two
however was placed outside the chamber to allow for analysis of the pream-
pli�er's impact on data quality. Furthermore, an USB AE Node by Physical
Acoustics Corporation [60] together with a preampli�er was also placed in
the climate chamber in order to get reference measurements of a state of
the art AE measurement device. This USB device was connected to a PC
running the AEWin software [39]. Figure 7.8 depicts the data quality test
setup.

All AE preampli�ers were fed with the same input signal generated by the
aforementioned event generator based on the STM32Discovery evaluation
kit and the �EventGenerator� software. The test signal, as shown in Figure
7.9, simulates an AE event consisting of three frequency components at 35,
50 and 60 kHz, with the 50 kHz oscillation being the dominant frequency
component. This characteristics match well the �average� waveform that
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Figure 7.8: Data quality test setup.

has been captured during the preliminary experiments. For detection, a
threshold value of 52 dB was used in conjunction with a posttrigger time of
400 samples (800µs).

Figure 7.9: Test signal generated by the EventGenerator application.
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The test signal was generated exactly once every 60 s over the total exper-
iment duration of 18 hours. Ambient temperature varied in the range of
-30◦C up to +40◦C during that timespan. The measured parameters for all
captured test signals have then been compared. In an ideal system, these
measured parameters would have remained constant over the whole experi-
ment.

Generally, this data quality test showed that some AE parameters are heavily
in�uenced by temperature variations, while others are not. Section F.2 shows
the result plots for all parameters and channels, while the most outstanding
e�ects are discussed in the following.

Temperature Dependent Parameter Variations

Table 7.2 gives an overview of the results for AEBoard channel one, which
is the most relevant measurement for the estimation of the AEBoard's data
quality in a productive deployment. The mean values at room temperature
are compared to the mean values at -30◦C and +40◦C. The �B� column in-
dicates, whether the parameter exposes pro-cyclic1 or anti-cyclic2 behaviour
with temperature.

Param. Mean +15◦C Mean -30◦C Mean +40◦C B

Length 1266 1321 (+4.3%) 1229 (-2.9%) a
Risetime 218 218 (+0.0%) 218 (+0.0%) n/a
Amplitude 20421 19376 (-5.2%) 20532 (-0.5%) p
Count 73 77 (+5.5%) 70 (-4.1%) a
Energy 382e6 418e6 (+9.4%) 317e6 (-17.0%) a

Table 7.2: Data quality test results for AEBoard channel one. �p� stands for pro-
cyclic, �a� for anti-cyclic behaviour. See Section F.2 for the according
plots.

The table shows, that the risetime parameter was not in�uenced by the
temperature variations at all and in fact, it almost stayed constant over the
whole experiment, thus featuring an absolute precision of less than 5µs. The
other parameters however were in�uenced stronger by temperature changes.
Especially the energy parameter exposes a bandwidth of almost 30% of its
average room temperature value.

Figure 7.10 depicts the pro-cyclic parameter behaviour of the amplitude pa-
rameter versus anti-cyclic behaviour at the example of the energy parameter.

1Pro-cyclic: The parameter value rises when temperature rises.
2Anti-cyclic: The parameter value falls when temperature rises.
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Figure 7.10: Pro-cyclic versus anti-cyclic parameter behaviour.

Another data quality indicator is the parameter variation for constant tem-
perature. As all stimulation events are identical, in an ideal system this
variations would be zero for phases with reasonably constant ambient tem-
perature. Table 7.3 lists the constant temperature standard deviations for all
AE parameters measured at channel one in absolute units as well as relative
to the mean value at the respective temperature.

Param. Std Dev +15◦C Std Dev -30◦C Std Dev +40◦C

Length 14.4 (1.1%) 24.8 (2.0%) 10.6 (0.8%)
Risetime 0.5 (0.2%) 0.4 (0.2%) 0.5 (0.2%)
Amplitude 175.4 (0.9%) 125.2 (0.6%) 183.6 (0.9%)
Count 1.1 (1.5%) 1.3 (1.8%) 0.8 (0.9%)
Energy 106e4 (0.3%) 65e4 (0.2%) 212e4 (0.6%)

Table 7.3: Parameter standard deviations at constant temperatures for AEBoard
channel one. See Section F.2 for the according plots.

Obviously, although temperature variations in�uence the measurements heav-
ily, parameter variations for constant ambient temperatures expose a stan-
dard deviation of less than 2% for all parameters.

Thus, for reasonably constant ambient conditions, the parametrization result
can reliably be reproduced. For changing temperature conditions however,
the parametrization results should be adapted appropriately. To gain reliable
understanding of the temperature dependent parameter variations however,
further tests under controlled conditions are necessary.
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In�uence of the External Preampli�er

As already described at the beginning of Section 7.2.2, the external pream-
pli�er for AEBoard channel two was placed outside the temperature chamber
in order to analyze its e�ect on the temperature dependent parameter vari-
ations. Like in the previous section, Tables 7.4 and 7.5 list the temperature
dependent variations as well as the parameter standard deviation at constant
temperatures.

Param. Mean +15◦C Mean -30◦C Mean +40◦C B

Length 1260 1276 (+1.3%) 1238 (-1.7%) a
Risetime 218 218 (+0.0%) 218 (+0.0%) n/a
Amplitude 20853 20931 (+0.4%) 20914 (+0.3%) n/a
Count 72 73 (+1.4%) 71 (-1.4%) a
Energy 396e6 389e6 (-1.5%) 373e6 (-5.6%) a

Table 7.4: Data quality test results for AEBoard channel two. �p� stands for pro-
cyclic, �a� for anti-cyclic behaviour. See Section F.2 for the according
plots.

Param. Std Dev +15◦C Std Dev -30◦C Std Dev +40◦C

Length 15.5 (1.2%) 17.1 (1.4%) 9.6 (0.8%)
Risetime 0.5 (0.2%) 0.5 (0.2%) 0.5 (0.2%)
Amplitude 174.4 (0.8%) 190.9 (0.9%) 185.6 (0.9%)
Count 0.9 (1.3%) 0.9 (1.3%) 0.6 (0.8%)
Energy 424e3 (0.1%) 396e3 (0.1%) 933e3 (0.2%)

Table 7.5: Parameter standard deviations at constant temperatures for AEBoard
channel two. See Section F.2 for the according plots.

When comparing these values with the values from Section 7.2.2, we �nd
that keeping the external preampli�er's ambient temperature constant

� signi�cantly reduces the temperature dependent parameter variations
for all parameters (except the risetime parameter, which does not show
any temperature dependency at all).

� slightly reduces the parameter variation for constant AEBoard ambient
temperatures.

Figure 7.11 illustrates the �rst �nding by depicting the mean ranges from
Tables 7.2 and 7.4.

� 72 �



7.2. TEMPERATURE CYCLE TESTS

!"#$%

!&'()*

+,-.. *+-.. .*-.. ./-..

.

.0.+

.0.*

.0.1

.0.2

.0.3

.0.,

.0./

.0.4

.0.5

.0+

61.

6*.

6+.

.

+.

*.

1.

2.

3.

78""($%

9(:;("&%8"()<=7>

9#:(

7
8
""
(
$
%)
?
@
$
A8
:
;
%#@
$
)<
B
>

9
(
:
;
(
"&
%8
"(
)<
=7
>

C($'%D E#A(%#:( B:;F#%8G( 7@8$% H$("'I

4.

43

5.

53

+..

+.3

++.

7D&$$(F)+

7D&$$(F)*J
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Figure 7.12 shows the energy parameter plots for both channels, further
demonstrating the reduction in temperature dependent parameter variations.!"#$%
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Figure 7.12: The e�ect of keeping the external preampli�er's ambient temperature
constant at the example of the energy parameter.

This �ndings indicate that keeping the preampli�er's ambient conditions
constant only reduces the e�ects on the parametrization result, but does not
change the e�ects' characteristics. Hence, the AEBoard's signal conditioning
circuitry's behaviour under temperature variations is qualitatively as well as
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quantitatively well comparable to state of the art industry products such as
the IL-LP-6S preampli�er.

USB AE Node Test Results

As for the USB AE Node, no temperature speci�cation is given by the man-
ufacturer, it was also exposed to the full temperature cycle in order to test
out its limits. Basically, the results show a behaviour that is comparable
to the AEBoard's results. However, the USB AE Node only seems to oper-
ate reliably in a temperature range between -10◦C and +30◦C. Figure 7.13
illustrates this with the USB AE Node's risetime and count plots.
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Figure 7.13: USB AE Node temperature dependent variations. At temperatures
below -10◦C and above +30◦C, some parameter values start to expose
strong variability. See also Section F.2 for other parameter plots.

Furthermore, the USB AE Node requires a PC in order to acquire data.
Most of these devices are also not speci�ed for extreme temperatures. Thus,
utilizing the USB AE Node for reference AE tests is only recommended if
the environmental conditions are controlled or well known in advance.

Comparing PermAE with AEWin Results

A further goal of the data quality test was to compare results of the PermAE
running on the AEBoard with results from a commercial reference system,
i.e., the USB AE Node with AEWin. Our �ndings are that, qualitatively,
both devices expose comparable behaviour under the same environmental
conditions (c.f. Section F.2). However, a quantitative comparison of the
results is di�cult, as both the AEBoard and the USB AE Node feature
di�erent internal analog signal ampli�cation and �ltering. Thus, the signal
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measured at both ADCs is never the same, even tough the devices have
received the same stimulating signal.

For the three parameters length, rise time and energy, the conversion con-
stants could roughly be estimated based on the data quality test results.
Of course, only results within the USB AE Node's reliable operating tem-
perature range have been considered. Table 7.6 lists the respective factors.

Parameter PermAE unit AEWin unit c (vAEWin = c · vPermAE)

Length samples µs 2µs
Risetime samples µs 2µs
Energy V2 V2 80e3

Table 7.6: Conversion factors between PermAE and AEWin based on the data
quality test results.

For the event amplitude and pulse count parameters, the results from PermAE
and AEWin di�er signi�cantly. Probably, this di�erence is due to di�erent
signal ampli�cation factors in the device's signal conditioning circuitry. The
conversion functions between PermAE and AEWin results for these two pa-
rameters are most probably not linear and their identi�cation would require
further in-depth investigations.

7.2.3 Current Consumption

During the data quality test, also the AEBoard's current consumption at a
supply voltage of 12V has been constantly monitored (c.f. Section 7.1.2).
As Figure 7.14 shows, the AEBoard's current consumption does not exhibit
a distinct temperature dependency.
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Figure 7.14: AEBoard's power consumption at varying ambient temperature.
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8
Conclusion and Outlook

In this thesis, the architectural approach of processing sensors has been pre-
sented, allowing to sense data with high sampling rates in a low-power op-
timized WSN environment (c.f. Chapter 4). With processing sensors, a low
data rate sensor is emulated by performing parts of the data processing al-
ready on the sensor device and thus reducing the data volume drastically.
Although this thesis focuses on the application of AE sensing, processing
sensors may also be used for other applications, e.g., on sensor processing of
camera images.

Based on the concept of processing sensors, an AE sensing platform for
PermaSense has been implemented (c.f. Chapters 5 and 6). The neces-
sary data acquisition hard- and software systems have been designed from
scratch, whereas the TinyNode could be used as WSN platform, thereby en-
suring maximal compatibility with the existing PermaSense infrastructure.
An evaluation of various system characteristics showed that the developed
system indeed meets its speci�cations and is also competitive with commer-
cially available AE sensor systems (c.f. Chapter 7). However, the system's
stability and reliability in an outdoor deployment still needs to be proven.
According experiments are scheduled for summer 2011.

System tests with heavy load showed that PermAE currently is not always
able to parametrize and store all events occurring (c.f. Section 7.2.1). Nev-
ertheless, the performance achieved is su�cient for the speci�c application,
as the applied load was much higher than the expected activity peaks in
�eld experiments. However, it is not clear whether bu�er sizes and task pri-
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orities chosen in the current PermAE implementation are optimal in order
to achieve maximal parametrization and storage throughput. As PermAE's
basic structure is essentially not very complex, analytical modelling could
help to further optimize PermAE's performance.

As parametrization results vary signi�cantly with changing ambient tem-
perature (c.f. Section 7.2.2), care must be taken when analyzing the results
produced in order to not interpret temperature dependent changes as changes
in AE characteristics. From the perspective of possible applications in early
warning systems, it is even desirable to automate the according error com-
pensation processing and integrate it either in the parametrization software
itself or at a later stage in the data backend.

Further steps based on this work may include the following:

� Deploying the developed AE sensors in the �eld in order to validate
their robust operation over longer periods of time.

� Optimizing the AEBoard's power consumption.

� Optimizing PermAE's parametrization performance under heavy load
possibly using analytical modelling techniques.

� Quantitatively analyzing the measurement errors introduced by tem-
perature variations in order to eliminate these errors before further
data analysis.

� Building other high data rate sensors based on the concept of process-
ing sensors.

Of course, from a non-technical perspective, further steps also include application-
focused �eld deployments in order to gain insight into crack formation pro-
cesses in rock walls.

We hope that the work presented will eventually contribute to the develop-
ment of reliable rockfall warning systems, potentially saving many human
lives from these natural hazards. Technology must always be about people
after all.

�Das Gefährlichste an der Technik ist, dass sie ablenkt von dem,
was den Menschen wirklich ausmacht, von dem, was er wirklich
braucht.� Elias Canetti
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AEBoard and PermAE User Manual

This chapter gives a short overview of the AEBoard's functionality and ex-
plains how to prepare it for deployment. All instructions refer to hardware
revision 1.1 and may need to be adapted for further revisions.

A.1 Connectors and LEDs

Figure A.1 schematically depicts the AEBoard's connectors and LEDs.

� Power supply connector: Connect to a power source with an output
voltage between 7 and 20V.

� On / O� switch: Use to switch the main power supply on or o�.

� Conversion frequency jumper: Apply a jumper to �x voltage con-
version switching frequency. Should be removed for power e�ciency
reasons.

� Digital supply voltage jumper: A jumper must be applied at the
right position (3.3V) to ensure correct system operation. This jumper
has been removed in rev. 1.2 and digital supply voltage was �xed to
3.3V.

� TinyNode reset button: Press to reset the TinyNode.
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On / Off Switch

Power Supply Connector

Conversion Frequency Jumper

Digital Supply Voltage Jumper

TinyNode Reset Button
TinyNode JTAG connector

TinyNode SD card

TinyNode

STM32

STM32 Reset Button

STM32 SD card

Tx / Rx LEDs
STM32 power jumper

Debug LEDs 1-3

Console Connector

STM32 JTAG Connector

STM32 bootmode jumper

Sensor Connectors

Figure A.1: AEBoard connectors and LEDs.

� TinyNode JTAG connector: Use to program or debug the TinyNode's
MSP430 microprocessor.

� TinyNode SD card: Insert an SD card to enable TinyNode backlog-
ging (c.f. Section A.2).

� TX / RX LEDs: UART tra�c LEDs to indicate communication
between the TinyNode and the STM32.

� STM32 power jumper: Apply a jumper in order to turn on the
STM32 once the main power supply is enabled. This jumper must be
removed for productive operation and is only intended for deployment
preparation (c.f. Section A.2).

� Debug LEDs 1-3: Display PermAE's status on the STM32:

� LED1 (red): Indicates that the STM32 is turned on.

� LED2 (orange): Indicates a software error if turned on (c.f. Sec-
tion A.3).

� LED3 (green): Toggles upon detection of an AE event.

� Console connector: Attach e.g. a TTL-232R-3V3 USB TTL serial
cable [54] to display debug messages on a PC console (c.f. Section
A.3).
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� STM32 JTAG connector: Use to program or debug the STM32
microprocessor (c.f. Section A.2 and Appendix B).

� STM32 SD card: Insert an SD card for the STM32 (c.f. Section
A.2).

� STM32 bootmode jumper: Apply a jumper at the left position to
ensure correct system operation. Applying a jumper to the right would
let the STM32 boot from its factory bootloader (c.f. [47]).

� STM32 reset button: Press to reset the STM32.

� Sensor connectors: Attach the external perampli�er's output di-
rectly to these SMA connectors.

A.2 Deployment Preparation

The following guide assumes the reader to be already familiar with Per-
maDozer and the TinyOS toolchain. Furthermore, the following prerequi-
sites must be met in order to prepare an AEBoard for deployment:

� A windows PC with the �STM32 ST-LINK Utility� software installed1.

� An ST-LINK JTAG programmer.

� A working TinyOS 2.x toolchain with all PermaSense speci�c libraries
in order to build and �ash PermAE for the TinyNode.

� An SIB to format the TinyNode's SD card.

Once these requirements are met, go through the following steps:

1. Make sure that the main power supply is switched o�.

2. Remove the TinyNode, both SD cards and both AE sensor from the
AEBoard.

3. Apply the STM32 boot mode jumper at the left position and the digital
supply voltage jumper at the right position (c.f. Section A.1).

4. Apply a jumper to the STM32 power jumper connector.

5. Connect the AEBoard to a PC using the ST-LINK JTAG programmer
connected to the STM32 JTAG port.

1Downloadable at http://www.st.com/internet/evalboard/product/219866.jsp
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6. Switch the AEBoard's main power supply on.

7. On your PC, open the STM32 ST-LINK Utility software.

8. For AEBoard revision 1.1., make sure to either use a patched ribbon
cable (interchanging pins 5 and 13) or enable SWD instead of JTAG
communication under �Target - Settings...�.

9. Program the STM32 with the PermAEInit.hex binary image that can
be found in the Binaries folder either on the enclosed CD (c.f. Ap-
pendix G) or under /trunk/soft/AEBoard in the PermaSense SVN
repository. This initializes the signal processing with a threshold of
50 dB, a posttrigger of 400 samples (800µs) and a storage block size
for raw events of 2048Bytes (1016 samples). To change these initial-
ization values, PermAEInit needs to be recompiled as described in
Appendix B.

10. Insert the STM32's SD card, reset the STM32 and wait until the LED3
(green) is turned on. The SD card is now initialized.

11. Program the STM32 with the PermAE.hex binary image that can be
found in the Binaries folder either on the enclosed CD (c.f. Appendix
G) or in the PermaSense SVN repository under /trunk/soft/AEBoard.

12. Switch the main power supply o� and remove the STM32 power jumper
connector.

13. Format the TinyNode's SD card with an SIB and the SibFormatSDCard
application.

14. Build the TinyOS PermAE application (located in the PermaSense SVN
repository at /trunk/soft/tinyos-2.1/apps) with the desired node
ID and �ash it to the AEBoard's TinyNode.

15. Insert the TinyNode's SD card and attach the TinyNode on the AEBoard.

16. Connect the sensors to the sensor connectors and the TinyNode's an-
tenna to the TinyNode antenna connector.

The AEBoard is now ready to be deployed.

A.3 STM32 Debugging

In order to more closely monitor an AEBoard's status, a TTL-232R-3V3 USB
TTL serial cable [54] may used to connect the console connector to a PC's
USB port. If PermAE and PermAEInit for the STM32 were compiled with
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the �CONSOLE_ON� option (c.f. Appendix B), the STM32 then outputs
debug information over this console port. A terminal emulator (e.g., minicom
under Linux) may be used to display the AEBoard's data stream which is
output at a baudrate of 2000000 bits/s per default. Console communication
is unidirectional and the STM32 does not process any data received over the
console port.

If the STM32's LED2 (orange) is illuminated, a software failure occurred.
This can be one of the following:

� An initialization error. Use the console debugging port to get more
information about the initialization error that has occurred.

� The data acquisition has run out of input bu�ers, probably because the
data analysis tasks were too slow in processing the input data. Even
though data is lost, the system continues normal operation as soon as
empty input bu�ers are available.

For PermAE code debugging, refer to Appendix B.

A.4 Data Retrieval

A.4.1 Data Sent Over the WSN

The data packets produced by PermAE may simply be retrieved over the
PermaSense data webinterface, i.e., http://data.permasense.ch. The rel-
evant virtual sensors are called according to the message types speci�ed in
Appendix C. On the �Public� GSN instance, data conversion to physical
units (c.f. Appendices C and D) has already been performed by GSN.

For a detailed description of the messages produced by PermAE, refer to
Section 6.2 as well as Appendix C. For a description of the exact event
parametrization algorithm as well as the timing correlation between events,
refer to Section 6.4.4.

A.4.2 Raw Event Samples

The raw event data storage on the STM32's SD card does not use a PC
readable �lesystem. Thus, in order to use the stored data for further analysis,
it must be converted into �les readable by third party software.

Raw data can be retrieved with the help of a PHP script, reading the raw
SD card data stream and writing the raw events to ASCII �les. The script is
named convertStoredEvents.php and may be found in the AEBoard/Tools
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folder on the enclosed CD or in the PermaSense SVN repository. On a Unix
PC, the dd tool may be used to forward the raw data to the PHP script.
E.g., if the SD card can be accessed at /dev/sdb and the generated ASCII
�les shall be written to /home/user/RawData, enter the following command
in a terminal:

sudo dd if=/dev/sdb | convertStoredEvents.php /home/user/RawData

When the command has �nished, /home/user/RawData contains �les named
event_XX.txt, where XX denotes the event's serial number. The output �les
have a very simple format, e.g.,

serial#: 0

startSample: 4166340

length: 1016

threshold: 580

posttrigger: 400

channel: 1

-745

...

-1056

The �rst six lines refer to the relevant information contained in the initial-
ization block (c.f. Section 6.4.6), the rest of the lines contain the event's
sample values in PermAE's internal data format (for converting these values
to V or dB, refer to D.1.2).

A.5 Sending Commands to the AEBoard

As already described in Section 6.2.2, commands may be sent to the AEBoard
in order to enable and disable data acquisition as well as controlling the
threshold and posttrigger values used for event detection.

The simplest way to send a command to a deployed AEBoard is via the
dozer_command virtual sensor on the PermaSense data webinterface. On
the GSN homepage, select the dozer_command virtual sensor according to
your deployment (e.g., jungfraujoch_dozer_command, open the �Upload�
tab and �ll out the form as follows:

� destination: The AEBoards TinyNode node ID.

� command: Select �AEBOARD_CTL_CMD�.

� arg: Fill in the encoded message as described in Section 6.2.2.
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� repetitioncnt: You may enter a number of 3 repetitions.

To send the Dozer command, �nally press the �upload� button. You may
check your command's e�ect in incoming AE messages (the aedata virtual
sensor) for threshold and posttrigger settings, or in the following aedaqhealth-
data messages for the STM32's power state (c.f. Appendix C).
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PermAE Developer's Guide

B.1 STM32

For developing the PermAE software on the STM32 processor, the TrueSTU-
DIO/STM32 IDE from Atollic has been used. A �Lite Version� of this IDE
can be downloaded on the Atollic website1. TrueSTUDIO is based on the
Eclipse IDE framework and o�ers an integrated work�ow for programming
the STM32 microprocessors as well as in-circuit debugging.

For simplicity, the AEBoard directory, either on the enclosed CD or in the
PermaSense SVN repository, directly contains a complete Atollic TrueSTU-
DIO/STM32 workspace. For adapting the software, it is therefore su�cient
to download the IDE and open the AEBoard folder when prompted for the
desired workspace location.

The three projects contained in the STM32 workspace are described in
greater detail in the following sections.

B.1.1 PermAE

PermAE is the main application, running on the STM32 when the AEBoard
is in operation. The /src directory contains all application source �les, i.e.,
C source and header �les.

1http://www.atollic.com/index.php/targets/stm32
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� PermAEParams.h: Parameters that a�ect the application's behaviour,
e.g., the static task priorities and bu�er sizes. Furthermore, the data
output mode can be changed, i.e., if parameters are forwarded to the
TinyNode or if they are output on the console port.

� PermAE.h: Header �le de�ning all application data structures, i.e.,
tasks, queues etc.

� CommunicationProtocol.h: De�nitions for the onboard communica-
tion protocol (c.f. Section 6.3).

� FreeRTOSConfig.h: FreeRTOS con�guration �le. For details about
con�guring FreeRTOS, please refer to the FreeRTOS documentation
[56, 57] on the enclosed CD.

� main.c: The main program �le. Basically, only the AEBoard is ini-
tialized and then FreeRTOS is started immediately, starting with the
initialization task.

� task*.c: The FreeRTOS tasks as described in Section 6.4.

� ISR_*.c: Interrupt service routines for data acquisition and console
port communication.

The STM32 workspace is con�gured to enable console text output when com-
piling PermAE. If console output is not desired for any reason, the symbol
CONSOLE_ON must be removed in Project - Properties - C/C++ General
- Paths and Symbols - Symbols.

The PermAE application links to a Lib directory, containing �rmware and
drivers for the STM32 in the STM32 directory, AEBoard speci�c drivers in the
AEBoard directory as well as the FreeRTOS kernel in the FreeRTOS directory.
Note that the �rmware source �les in STM32 are slightly adapted versions of
the original vendor �les. Speci�cally, the following changes to the original
�les have been made:

� startup_stm32f10x_hd.s has been adapted in order to point to the
FreeRTOS system hooks.

� system_stm32f10x.c has been adapted to expect a 6MHz oscillator
input instead of 8MHz.

Furthermore, note that FreeRTOS o�ers three possible memory allocation
implementations, de�ned in Lib/FreeRTOS/MemMang. As in PermAE all
memory is allocated statically, the simplest implementation (heap_1.c) has
been used. Make sure that always only one of the three implementation �les
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is included in compilation. You may edit the according source �lter in Project
- Properties - C/C++ General - Paths and Symbols - Source Location. For
more information about memory allocation in FreeRTOS, refer to [56].

B.1.2 PermAEInit

The PermAEInit application must be used to initialize an SD card to be used
on an AEBoard (c.f. Section 6.4.8). As some initialization parameters are
directly compiled into the application, you may need to adapt PermAEInit
accordingly before initializing the AEBoards. The /src directory contains
all application source �les, i.e., C source and header �les.

� AEDetectionParameters.h: Change this �le in order to adapt the
initial threshold, posttrigger and storage bu�er size parameters (c.f.
Section 6.4.8)).

� AEInitApplication.h: Some application speci�c data structures.

� FreeRTOSConfig.h: FreeRTOS con�guration �le. For details about
con�guring FreeRTOS, please refer to the FreeRTOS documentation
[56, 57] on the enclosed CD.

� main.c: The main program �le. Basically, only the AEBoard is ini-
tialized and then FreeRTOS is started immediately, starting with the
initialization task.

� taskInit.c: The only FreeRTOS task in this application, calibrating
and initializing the AEBoard and writing the calibration data onto the
SD card.

� ISR_DAQ.c: Interrupt service routine for the calibration data acquisi-
tion.

PermAEInit is linked to the same Lib directory as PermAE. Remember that
every change in Lib a�ects both applications (c.f. Section B.1.1).

For further information about PermAE on the STM32, refer to Section 6.4
as well as the comments in the sourcecode.

B.1.3 EventGenerator

The EventGenerator application was used to generate the stimulation events
during the temperature chamber tests. It basically outputs a well-de�ned
analog signal pulse at pin PA4 in con�gurable intervals. The EventGen-
erator's directory structure is directly based on TrueSTUDIO's template
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projects and runs on the STM32Discovery evaluation kit. The whole ap-
plication code can be found in the main.c �le. At the top of main.c, the
parameter de�nitions may be changed in order to generate di�erent stress
periods as described in Section 7.2.

The samples to be output at the STM32's DAC are stored in the eventBuffer.h
�le. This �le has been generated using the genEventBuffer.php script. For
further documentation of the EventGenerator, please refer to the sourcecode
comments.

B.1.4 Programming and Debugging the STM32

For programming or debugging PermAE or any other application on the
STM32, the default debugging con�gurations shipping with TrueSTUDIO
may be used together with the ST-LINK programmer device. For the AEBoard
rev. 1.1, make sure to either use a patched ribbon cable or enable SWD
instead of JTAG access in Debug Con�gurations - PROJECTNAME.elf -
Debugger (c.f. Section 5.5.1).

For converting the �nished software to a .hex �le that can be �ashed to
the STM32 using the ST-LINK Utility Software (c.f. Section A.2), the
objcopy.exe tool from the Codesourcery toolchain2 may be used. It can
also be found on the enclosed CD or in the PermaSense SVN repository
at AEBoard/Tools. E.g., the following command makes a newly compiled
version of PermAE ready for the ST-LINK Utility Software:

objcopy.exe -O ihex PermAE.elf PermAE.hex

In order to use the EventGenerator software, simply attach your STM32Discovery
device to the host PC and use the standard TrueSTUDIO debug con�gura-
tion.

B.2 TinyNode

The TinyNode part of PermAE is heavily dependent on the PermaSense spe-
ci�c TinyOS libraries. Therefore, its sourcecode is not included on the en-
closed CD. Rather, the whole PermaSense speci�c TinyOS toolchain should
be installed as described in the PermaSense wiki3.

The PermAE application is located in apps/PermAE. This directory contains
the following �les:

2http://www.codesourcery.com/sgpp/lite/arm
3http://people.ee.ethz.ch/~nccr/permasense/wiki/TinyOS
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� AcousticEmissions.h: The main header �le, containing all PermAE
speci�c de�nitions and datatypes.

� PermAEC.nc / PermAEP.nc: The top level application �les.

� AEModuleC.nc / AEModuleP.nC: The AEModule, handling the commu-
nication with the STM32.

� AEStorageQueue.h / AEStorageQueueC.nc / AEStorageQueueP.nc: A
slightly adapted version of the standard PermaDozer storage queue (c.f.
Section 6.5.3).

� AEParamControl.nc / ResetSplitControl.nc: Some interface de�ni-
tions used in PermAE.

� Makefile: The application's make�le.

Furthermore, the PermAE application is dependent on some AEBoard spe-
ci�c driver �les. These are located in tos/sensorboards/AEBoard.

The AEBoard speci�c PermaDozer datasources can be found in

tos/lib/PermasenseData/datasources:

DataSourceAcousticEmissionsC.nc / DataSourceAcousticEmissionsP.nc
as well as DataSourceAEBoardHealthC.nc / DataSourceAEBoardHealthP.nc.

For further details about the TinyNode part of PermAE, refer to Section
6.5. For details about compiling and installing TinyOS applications on a
TinyNode, please refer to the TinyOS and PermaSense documentation.
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C
PermAE Output Messages

In addition to some standard PermaDozer messages (eventlogger, rssi, state-
counter), PermAE basically produces four di�erent messages containing AE
data as well as system status information (c.f. Table 6.1). These messages
are speci�ed in detail in Tables C.1 to C.4. Thereby, the following data type
conventions are used:

� uint8 unsigned 8 bit integer number

� uint16 unsigned 16 bit integer number

� uint24 unsigned 24 bit integer number

� uint32 unsigned 32 bit integer number

In the �Conv� column, the conversion function to physical units is given with
x denoting the �eld's value. The �Unit� column then gives the according unit
after conversion. For a derivation of units, refer to Appendix D. When re-
trieving data on the �Public� GSN instance (i.e., http://data.permasense.
ch), data values have already been converted and are displayed in physical
units.
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aedata

Message ID: 0xCO

Field Type Conv Unit Meaning

serial uint32 x The event's serial
number.

startSample uint32 2 · x µs Time of the event's
�rst threshold ex-
ceedance.

length uint16 2 · x µs The event's length
parameter.

risetime uint16 2 · x µs The event's rise time
parameter.

amplitude uint16 x·4.5
65536 V The event's ampli-

tude parameter.
count uint16 x The event's pulse

count parameter.

energy uint32 x·4.52
223

V2 The event's energy
parameter.

posttrigger uint16 x samples The posttrigger value
used for parametriza-
tion.

thresholdChannel uint8 c.f. D.1.4 Encoding of the
threshold value used
for parametrization
and the AEBoard
channel the event was
measured on.

Table C.1: Message de�nition: aedata
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Message ID: 0xC2

Field Type Conv Unit Meaning

VccCh1 uint16 2 · x mV Bias voltage for AE channel
1

VccCh2 uint16 2 · x mV Bias voltage for AE channel
2

VccAdc uint16 1 · x mV ADC supply voltage
RefAdc uint16 2 · x mV ADC reference voltage
VccOpa uint16 2 · x mV Operation ampli�ers' supply

voltage
Vcc55V uint16 2.4 · x V 5.5V intermediate voltage
I12V uint16 n/a n/a Not valid on AEBoard rev.

1.1 (c.f. Section 5.5.1)
I55VAnalog uint16 n/a n/a Not valid on AEBoard rev.

1.1 (c.f. Section 5.5.1)
I55VDigital uint16 n/a n/a Not valid on AEBoard rev.

1.1 (c.f. Section 5.5.1)
SDEventsFree uint32 x Number of free event blocks

on the STM32's SD card

DAQPowerState uint8 x
1: STM32 powered ON
0: STM32 powered OFF

Table C.2: Message de�nition: aedaqhelathdata

aestatistics

Message ID: 0xC4

Field Type Conv Unit Meaning

measured uint32 x The number of events detected
during the last two minutes.

parametrized uint32 x The number of events
parametrized and forwarded to
the TinyNode during the last
two minutes.

stored uint16 x The number of events stored on
the SD card during the last two
minutes.

Table C.3: Message de�nition: aestatistics
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nodehealth

Message ID: 0x80

Field Type Conv Unit Meaning

sample uint16 x Current
PermaSense
sample number

uptime uint24 x s TinyNode uptime
in seconds

sysvoltage uint16 1 · x mV TinyNode supply
voltage

sdivoltage uint16 6 · x mV 12V external
supply voltage

temperature uint16 x·175.72
16384 − 46.85 ◦C Onboard temper-

ature
humidity uint16 x·125

4096 − 6 % Onboard humid-
ity

sibcurrent uint16 n/a n/a n/a

msptemperature uint16
x· 1.5

4095
−0.986

0.00355
◦C MSP430 internal

temperature
�ashStatus uint16 x Bytes SD card storage

used
ququeSize uint8 x Bytes Queue bu�er used
parentId uint16 x The parent

node's ID
hopCount /
childCount

uint8 x Dozer hop and
child count

Table C.4: Message de�nition: nodehealth
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D
Data Units and Conversion Functions

The units and conversion functions used in this thesis are speci�ed and de-
rived in the following.

D.1 AE Data Units and Conversion Functions

D.1.1 Start Sample, Length and Risetime

As the AE signal sampling rate is �xed to 500 kHz, the smallest time unit
in PermAE is 2µs. Thus, the start sample, event length and event risetime
parameters are all measured in multiples of 2µs (c.f. Table C.1). Thus,
with m denoting the time in samples and t denoting the time in seconds, the
following conversion functions apply:

t = 2 · 10−6 ·m [seconds]
m = 5 · 105 · t [samples]

D.1.2 Amplitude and Threshold

Both amplitude and threshold refer to the signal level. This level can equiv-
alently be measured in V or dB. The input signals at the AEBoard ADCs
range from 0 to 4.5V. This range is sampled with a resolution of 16 bit,
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resulting in a base voltage unit of

4.5V

216
= 68.66µV

and thus, the conversion functions from

All values in dB refer to a reference voltage of 0.1mV, i.e.,

xdB = 20 · log10

( xV
0.0001V

)
with xdB denoting the signal level in dB and xV denoting the signal level in
V.

Thus, with xs additionally denoting the signal level in generic PermAE units,
the following conversion functions apply:

xV = 68.66 · 10−6 · xs [V]
xs = xV

68.66·10−6 [generic]

xdB = 20 · log10

(
xs·68.66·10−6 V

0.0001V

)
[dB]

xs = 10
xdB
20 · 0.0001V

68.66·10−6 V
[generic]

xV = 10
xdB
20 · 0.0001 [V]

xdB = 20 · log10

(
xV

0.0001V

)
[dB]

D.1.3 Energy

During parametrization, the energy of a sample is calculated as

ε =
∑ x2

s

29

with ε denoting the energy and xs denoting the sample value (c.f. Section
6.4.4). Thus, the energy parameter's physical unit is V2. Given that the
basic sample value unit is equal to 4.5V

216
, the energy parameter's conversion

functions are

e = ε·4.52
223

[V 2]

ε = e·223
4.52

[generic]

with e denoting the energy in V 2.
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D.1.4 Threshold and Channel

In order to �t all AE event information into one PermaDozer packet, the
threshold used for event detection as well as the channel the event was
measured on were encoded into one 8 Byte value (c.f. Table C.1). The
thresholdChannel �eld is built as follows:

TC = 2 · tdB + c− 1 c ∈ [1, 2]

where TC denotes the thresholdChannel �eld value, tdB the threshold value
in dB and c the AE channel number the AE event was measured.

Thus, the thresholdChannel �eld may be decoded as follows:

tdB = bTC2 c [dB]
c = TC mod2− 1

D.2 System Health Data Conversion

D.2.1 Onboard Voltages

All onboard voltages are sampled with 12 bit ADCs, either by the STM32 or
by the TinyNode (c.f. Figure 5.5). The reference voltages for these ADCs is
the corresponding device supply voltage, i.e., 2.8V for the STM32 and 3.3V
for the TinyNode. In order to scale the measured voltages to this range,
voltage dividers have been applied (c.f. Appendix E). Thus, with R1 and R2

denoting the divider resistors, vADC denoting the voltage at the ADC and
vM the voltage to measure, it holds that

vADC = vM ·
R2

R1 +R2

With x denoting the ADC output value received at the data backend and
vREF denoting the ADC reference voltage, the following function may be
used to convert it back to the original value:

vM = x ·
vREF·

R2
R1+R2

212
[V]

Table D.1 lists the voltage divider values and conversion constants c =
vREF·

R2
R1+R2

212
.
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Field Message vREF [V] R1 [Ω] R2 [Ω] c [mV]
VccCh1 aedaqhealthdata 2.8 100k 50k 2
VccCh2 aedaqhealthdata 2.8 100k 50k 2
VccAdc aedaqhealthdata 2.8 100k 200k 1
RefAdc aedaqhealthdata 2.8 100k 50k 2
VccOpa aedaqhealthdata 2.8 100k 50k 2
Vcc55V aedaqhealthdata 3.3 100k 50k 2.4
sysvoltage nodehealth 3.3 100k 200k 1
sdivoltage nodehealth 3.3 100k 15k 6

Table D.1: Onboard voltage constants

D.2.2 Onboard Currents

For current measurements, the MAX9923H current sense ampli�ers by Maxim
are utilized on the AEBoard [61]. Their output voltage is then sampled with
the TinyNode's 12 bit ADC. As the MAX9923H features a constant gain of
100V/V and input voltages are measured over 0.033Ω resistors, the relation
between current I and output voltage vi is

I =
100 · vi
0.033Ω

[A]

Thus, as the output voltages are not fed through a voltage divider, the follow-
ing conversion function from a current value xi (i.e., the I12V, I55VAnalog
and I55VDigital �elds in the aedaqhealthdata message) to the actual current
I applies:

I =
100·xi· 3.3V

212

0.033Ω [A]

Note that due to a design error, current measurements on the AEBoard rev.
1.1 are invalid (c.f. Section 5.5.1)

D.2.3 Temperature and Humidity

SHT21 output values

According to the SHT21 datasheet [58], temperature T and relative humidity
H may be derived from the raw values xt and xh as follows:

T = xt·175.72
214

− 46.85 [◦C]

H = xh·125
212

− 6 [%]
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MSP430 Internal Temperature

The MSP430's internal temperature sensor value may be converted to ◦C as
follows [62]:

TMSP430 =
xmsp430· 1.5

4095
−0.986

0.00355 [◦C]
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E
AEBoard PCB Schematics and Layout

The AEBoard's schematics and PCB layer prints are shown on the following
pages. Note that these schematics refer to AEBoard revision 1.1. Some
changes have been made for revision 1.2, c.f. Section 5.5.1. The according
schematics for revision 1.2 may be found on the enclosed CD (c.f. Appendix
G) or in the PermaSense SVN repository under

/trunk/pcb/projects/0011_acoustic_emission
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F
Performance Measurements

F.1 Input Filter Linearity

The following plots show the phase and amplitude compensated error plots
as presented in Section 7.1.1.

Figure F.1: Phase and amplitude compensated error, no preampli�er, 30 kHz input
frequency.
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APPENDIX F. PERFORMANCE MEASUREMENTS

Figure F.2: Phase and amplitude compensated error, no preampli�er, 50 kHz input
frequency.

Figure F.3: Phase and amplitude compensated error, no preampli�er, 100 kHz in-
put frequency.
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F.1. INPUT FILTER LINEARITY

Figure F.4: Phase and amplitude compensated error, with external preampli�er,
30 kHz input frequency.

Figure F.5: Phase and amplitude compensated error, with external preampli�er,
50 kHz input frequency.
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APPENDIX F. PERFORMANCE MEASUREMENTS

Figure F.6: Phase and amplitude compensated error, with external preampli�er,
100 kHz input frequency.

F.2 Temperature Dependency of AE Parameters

The following �gures show the data quality test results for both AEBoard
channels as well as for the USB AE Node (c.f. Section 7.2.2).
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F.2. TEMPERATURE DEPENDENCY OF AE PARAMETERS
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Figure F.7: Data quality test parameter plots for AEBoard channel 1.
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Figure F.8: Data quality test parameter plots for AEBoard channel 2.
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Figure F.9: Data quality test parameter plots for the USB AE Node.
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G
CD Contents

The following directory structure is contained on the enclosed CD:

� AEBoard

� Binaries: PermAE and PermAEInit binaries (c.f. Section A.2).

� PCB Design: Design �les including a detailed bill of material, as
well as schematic and PCB prints of AEBoard rev. 1.1 and 1.2.

� STM32 Workspace: Atollic IDE workspace (c.f. Section B.1.1).

� Tools: convertStoredEvent.php (c.f. Section A.4.2) and objcopy.exe
(c.f. Section B.1.4)

� Datasheets and Manuals: Datasheets of PCB parts and Physical Acous-
tics Equipment as well as the FreeRTOS documentation and manuals
concerning the STM32 processor.

� Image Originals: The source �les of some �gures contained in this
thesis. All �gures are in the OpenO�ce drawing format.

� LTSpice: The LTSpice simulation �les for the input circuitry simula-
tion (c.f. Section 5.3).

� MATLAB Scripts: MATLAB Scripts for data analysis of AEWin ex-
ported data. Refer to the contained README.txt for details.

� Presentations: Slides of the initial and of the �nal presentation.

� Thesis Sources: The LaTeX sources of this thesis.

� 119 �



APPENDIX G. CD CONTENTS

� 120 �



H
Task De�nition

The task de�nition for this master thesis is included in the following two
pages.
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Für 
Josua Hunziker 

 
Betreuer: Jan Beutel 

Stellvertreter: Stephan Gruber 
 

Ausgabe: 22. September 2010 
Abgabe: 06. Mai 2011 

 
Acoustic Emission Sensing for Wireless Sensor Networks 

 
Das PermaSense Projekt befasst sich mit der Beobachtung physikalischer Parameter des 
Permafrostes in den Schweizer Alpen. Zu diesem Zweck entwickelt und betreibt das Projekt 
verschiedene Messsysteme. Zu den existierenden Messungen von Temperaturen, 
Spaltausdehnung und Leitfähigkeitsprofilen sollen nun neue Sensoren entwickelt werden, die im 
Gegensatz zu den bisher eingesetzten Systemen schneller ablaufende Prozesse erfassen können. 
Die akustischen Emissionen während der Riss- und Eisbildung im Fels eignen sich hierfür in 
mehrfacher Hinsicht. Aus geowissenschaftlicher Sicht handelt es sich um relevante, jedoch wenig 
verstandene Prozesse im Permafrost, aus technischer Sicht stellt sich eine komplexe jedoch 
überschaubare Aufgabe in der Signalverarbeitung.  In dieser Arbeit soll auf Basis der Feldversuche 
mit Akustik Sensoren am Jungfraujoch im April 2009 ein dediziertes System entwickelt werden.  
 
Das Auftreten relevanter Signaturen in Akustiksignalen ist sporadisch und bedingt durch die stark 
gedämpfte Ausbreitung im Fels als lokal zu betrachten. Dadurch ergibt sich ein Ansatz mit einer 
lokalen Vorverabeitung der Signale nahe am Sensor, einer Reduzierung der Datenmenge auf 
wesentliche Merkmale der zu detektierenden Signaturen und eine anschließende Übertragung 
mit einem drahtlosen Netzwerk. Der Sensor soll sich, falls möglich, in das stromsparende 
PermaDozer Netzwerk einbinden lassen und kann ggf. auch eine weitere Netzwerkressource zur 
Datenübertragung (WLAN) benutzen. Der Sensor soll für den Betrieb im Hochgebirge ausgelegt 
sein, keine manuellen Interventionen benötigen, und kann bei Bedarf von einer Solarzelle 
gespiesen werden.  
 
Aufgabenstellung 
 

• Erstellen Sie einen Projektplan und legen Sie Meilensteine sowohl zeitlich wie auch 
thematisch fest. Erarbeiten Sie in Absprache mit dem Betreuer ein Pflichtenheft.  

• Machen Sie sich mit den relevanten Arbeiten im Bereich Sensornetze, piezoakustischen 
Sensoren, Digitaler Signalverarbeitung vertraut. Führen Sie eine Literaturrecherche durch. 
Suchen Sie gezielt nach relevanten Publikationen. Prüfen Sie welche Ideen/Konzepte Sie 
aus diesen Lösungen verwenden können. 

• Erstellen Sie eine Übersicht der Anforderungen an einen Akustik Sensor für das 
PermaSense Projekt. Beziehen Sie hierzu auch die bestehenden Erfahrungen mit ein. In 
Bezug auf Know-how soll besonders auf das Wissen der Gruppe von D. Amitrano (U. 
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Grenoble) zurückgegriffen werden. Gegebenenfalls könnte auch ein Besuch im Labor in 
Grenoble zielführend sein. 

• Erstellen Sie eine Funktionsspezifikation auf Basis einer eingehenden Analyse der 
vorhandenen Rohdaten der Feldversuche. 

• Entwerfen Sie auf Basis der Funktionsspezifikation einen lauffähigen Prototyp. 
Implementieren Sie diesen. 

• Validieren Sie den Prototyp mittels eines Referenzsystems.  
• Achten Sie darauf, dass die angestrebte Lösung auch in der Praxis anwendbar ist. Dies gilt 

insbesondere für die Konzepte und Implementierung der Software für die Steuerung. 
 
• Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer kleinen Demonstration, 

sowie mit einem Schlussbericht.  
 
Durchführung der Masterarbeit 
 
Allgemeines 

• Der Verlauf des Projektes soll laufend anhand des Projektplanes und der Meilensteine 
evaluiert werden.  Unvorhergesehene Probleme beim eingeschlagenen Lösungsweg 
können Änderungen am Projektplan erforderlich machen. Diese sollen dokumentiert 
werden.  

• Sie verfügen über PCs mit Linux/Windows für Softwareentwicklung und Test.  Für die 
Einhaltung der geltenden Sicherheitsrichtlinien der ETH Zürich sind Sie selbst 
verantwortlich. Falls damit Probleme auftauchen wenden Sie sich an Ihren Betreuer.  

• Stellen Sie Ihr Projekt zu Beginn der Semesterarbeit in einem Kurzvortrag vor und 
präsentieren Sie die erarbeiteten Resultate am Schluss im Rahmen des 
Institutskolloquiums Ende Semester.  

• Besprechen Sie Ihr Vorgehen regelmäßig mit Ihren Betreuern.  Verfassen Sie dazu auch 
einen kurzen wöchentlichen Statusbericht (email).  

 
Abgabe 

• Geben Sie zwei Exemplare des Berichtes spätestens am 06. Mai 2011 dem betreuenden 
Assistenten oder seinem Stellvertreter ab.  Diese Aufgabenstellung soll im Bericht 
eingefügt werden genauso wie das unterschriebene Unterschriftenblatt „Plagiat“ des 
Rektorats. Die Entsprechenden Richtlinien des Rektorats sind einzuhalten.  

• Räumen Sie Ihre Rechnerkonten soweit auf, dass nur noch die relevanten Quellcode- und 
Binärdateien, Konfigurationsdateien, benötigte Verzeichnisstrukturen usw. bestehen 
bleiben. Der Programmcode sowie die Dateistruktur sollen ausreichend dokumentiert sein. 
Eine spätere Anschlussarbeit soll auf dem hinterlassenen Stand aufbauen können.  
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