
Institut für
Technische Informatik und
Kommunikationsnetze

Master Thesis

at the Department of Information Technology

and Electrical Engineering

Thermal Simulation and Analysis Methods

for Many-Core Platforms

AS 2010

Lars Schor

Advisors: Dr. Iuliana Bacivarov

Dr. Hoeseok Yang

Professor: Prof. Dr. Lothar Thiele

Zurich

30th January 2011

Abstract

The integration of multiple processors on a single chip and three-dimensional
stacking are both considered as future technologies in microprocessor design
to achieve unprecedented performance. However, the integration of multiple
processors on a single chip increases the power density, and three-dimensional
stacking makes cooling almost impossible. This leads to various drawbacks
with regard to the reliability of a system, and consequently, it becomes
infeasible to guarantee real-time constraints. Therefore, new system-level
methodologies are required that guarantee both thermal constraints and real-
time deadlines at the design time.

This master thesis introduces a novel approach to analyze the transient ther-
mal behavior of a many-core system in an early design stage and proposes
SLTE, a compositional thermal evaluation model. A low-level thermal eval-
uation tool chain is designed to automatically calibrate the proposed model
with the required thermal and timing parameters. A prototype implemen-
tation of SLTE is implemented in DOL and is used to evaluate the model
in three case studies. In comparison with the low-level tool chain, SLTE
o�ers signi�cant speed-ups in the order of three magnitudes while preserving
a high accuracy, that is, the di�erence between the maximum temperatures
is less than one percent.

Calculating an upper bound of the maximum temperature is crucial for em-
bedded real-time systems. This master thesis proposes an analytic frame-
work to calculate the maximum temperature of a many-core system under
all possible scenarios of task executions. All event-streams are modeled as
arrival curves and the only requirement towards the processing components
is that the real-time scheduling algorithms are work-conserving. As a special
case, periodic streams with bounded jitter and bursts are considered to evalu-
ate the framework in several case studies. The achieved results highlight that
the impact of the proposed framework on the design process of embedded
real-time systems is fundamental.

� II �

Acknowledgements

First of all I would like to express my sincere gratitude to Prof. Dr. Lothar
Thiele for giving me the opportunity to write this master thesis in his research
group. All the fruitful discussions about my problems and the promising
approaches on how to solve them had notably in�uence on the outcome of
this thesis.

I would also like to thank my advisors Dr. Iuliana Bacivarov and Dr. Hoeseok
Yang for their constant support during this master thesis. They always asked
the right questions and helped me to solve the di�cult problems of this
thesis. Without their assistance, this work would never have been possible.
In particular, I would like to thank them for giving me the opportunity to
take part at the thermal meeting at EPFL, which introduced me to the
research �eld of thermal analysis.

Furthermore, I would like to express my thankfulness to Dr. Wolfgang Haid
for introducing me to the challenges of distributed systems and sharing his
joy for multi-processors systems with me.

Finally, my warmest thanks go to my family and my girlfriend for supporting
and motivating me during my studies.

� III �

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Contributions . 4
1.4 Outline . 6

I Thermal Simulation 8

2 Thermal Simulation: An Introduction 9
2.1 Overview . 9
2.2 Related Work . 10

3 Thermal Evaluation Tool Chain 13
3.1 Overview and System Speci�cation 14
3.2 From Execution to Power Traces 18
3.3 From Power Traces to Temperature Traces 26
3.4 Summary . 34

4 System-Level Thermal Emulation 35
4.1 Overview . 36
4.2 Abstract Power Evaluation Models 39
4.3 Temperature Evaluation . 53
4.4 Summary . 55

5 Automated Model Calibration 57
5.1 Model Parameters and their Sources 57
5.2 Extracting Timing Parameters 59
5.3 Extracting Thermal Parameters 63
5.4 Summary . 70

6 System-Level Thermal Simulation in DOL 71
6.1 Automated Model Calibration 71
6.2 Calculating the Temporal Power Consumption 77
6.3 System-Level Thermal Simulation in DOL 81
6.4 Summary . 83

� IV �

7 Experimental Results 84
7.1 Experimental Setup . 84
7.2 Applications . 86
7.3 Discussion . 98
7.4 Summary . 100

8 Thermal Simulation: Conclusion and Outlook 101
8.1 Conclusion . 101
8.2 Outlook . 102

II Analytic Thermal Analysis 103

9 Analytic Thermal Analysis: An Introduction 104
9.1 Overview . 104
9.2 Related Work . 105

10 Worst-Case Peak Temperature of a Many-Core System 106
10.1 System Model . 106
10.2 Thermal Analysis . 111
10.3 Period-Jitter-Delay Model . 121
10.4 Summary . 127

11 Experimental Results 129
11.1 Experimental Setup . 129
11.2 Peak Temperature Analysis 131
11.3 Summary . 138

12 Analytic Thermal Analysis: Conclusion and Outlook 139
12.1 Conclusion . 139
12.2 Outlook . 140

13 Conclusion 141

A Details of Experimental Results 144
A.1 Transient Thermal Behavior 144

B Presentation Slides 155

C Symbols 169

D Acronyms 171

� V �

List of Figures

1.1 Y-Chart Design Methodology 3

1.2 Design Space Exploration . 4

3.1 High-Level Block Diagram of the Thermal Evaluation Tool
Chain . 14

3.2 High-Level Schema of the MPARM Architecture 19

3.3 MPARM Power Model . 21

3.4 Power Model Invocation Techniques in the MPARM Virtual
Platform . 21

3.5 Sampling Trade-O�s to Generate Power Traces 23

3.6 Power Trace File . 24

3.7 High-Level Block Diagram of the Thermal Simulator 26

3.8 Temperature Trace File . 27

3.9 Equivalent RC Network to Model the Heat Transfer 29

3.10 Stacked Layer Model Used by HotSpot 29

4.1 Block Diagram of the Compositional Temperature Evaluation
Model . 37

4.2 Abstraction Levels of the Power Analysis Model 38

4.3 Example of the Component-Based Power Annotation Model . 42

4.4 Example of the Process-Based Power Annotation Model . . . 44

4.5 Block Diagram of the Segment-based Power Annotation Model 47

4.6 Example of the Segment-based Power Annotation Model . . . 48

4.7 Power Annotation of Shared Resources 50

5.1 Process State Model to Illustrate the Context Switch 63

5.2 Example of the Average and Peak Power Consumption 65

5.3 Extraction of the Power Consumption of Shared Resources . . 66

5.4 Measured Power Traces of the Producer's Scratchpad of the
Example Outlined in Fig. 5.3 66

5.5 Actual Power Consumption of the Example Outlined in Fig. 5.3 67

6.1 Three-Step Procedure to Calculate the Calibration Data . . . 75

6.2 Repetitive Behavior of an SDF Application 80

� VI �

6.3 Implementation of the Power Annotator 81

7.1 Process Network of the Producer-Consumer Application . . . 88

7.2 Process Network of the Matrix Multiplication Application . . 90

7.3 Temperature Evolution of the Matrix Multiplication, Map-
ping I. 92

7.4 Temperature Evolution of the Matrix Multiplication, Map-
ping VII. 93

7.5 Process Network of the MJPEG Decoder Application 94

7.6 Temperature Evolution of the MJPEG Decoder Application,
Mapping I, Tile 1 & 2 . 96

7.7 Temperature Evolution of the MJPEG Decoder Application,
Mapping I, Tile 3 & 4 . 97

10.1 RC Circuit to Support the Sketch Proof of Lemma 10 116

10.2 Upper Bounded Period-Jitter-Delay Model 122

10.3 Illustration of the Proof of Lemma 18 125

11.1 Worst-Case Peak Temperature Analysis of the First Example
Application . 131

11.2 Sketch of Algorithm 11.1 and Algorithm 11.2 134

11.3 Sketch of the Picture-In-Picture Application 136

11.4 Approximation of the Arrival Curve to Calculate an Upper
Bound on the Worst-Case Peak Temperature 136

11.5 Worst-Case Peak Temperature Analysis of the Picture-In-
Picture Application . 137

13.1 Tradeo� Between Accuracy and Evaluation Speed for the
Thermal Evaluation . 142

A.1 Temperature Evolution of the Matrix Multiplication, Map-
ping II. 147

A.2 Temperature Evolution of the Matrix Multiplication, Map-
ping IV. 148

A.3 Temperature Evolution of the MJPEG Decoder Application,
Mapping II, Tile 1 & 2 . 149

A.4 Temperature Evolution of the MJPEG Decoder Application,
Mapping II, Tile 3 & 4 . 150

A.5 Temperature Evolution of the MJPEG Decoder Application,
Mapping IV, Tile 1 & 2 . 151

A.6 Temperature Evolution of the MJPEG Decoder Application,
Mapping IV, Tile 3 & 4 . 152

� VII �

List of Tables

4.1 Power Values Used in the Example of the Process-Based
Power Annotation Model . 43

4.2 Example of an Application Schedule 49

4.3 Execution Times and Power Consumptions of the Processor
Used in the Scenario Discussed in Section 4.2.2 52

5.1 Overview of the Timing and Thermal Parameters Required
by a Compositional Thermal Evaluation Model 58

6.1 Event Types to Monitor the Context Switching 74

6.2 Di�erent Stages that an Application Can Adapt in the SDF
Simulator . 80

7.1 Thermal Con�guration of HotSpot 86

7.2 Evaluation Results of the Producer-Consumer Application:
Execution Times of a Process 88

7.3 Evaluation Results of the Producer-Consumer Application:
Process Chain Length . 89

7.4 Evaluation Results of the Producer-Consumer Application:
Di�erent Mappings . 89

7.5 Evaluation Results of the Matrix Multiplication Application:
Dimension . 91

7.6 Evaluation Results of the Matrix Multiplication Application:
Di�erent Mappings . 91

7.7 Evaluation Results of the MJPEG Decoder, One Frame: Dif-
ferent Mappings . 95

7.8 Evaluation Results of the MJPEG Decoder, Two Frames In
Parallel: Di�erent Mappings 95

11.1 Parameters of the Example Applications in Chapter 11 130

11.2 Power and Thermal Parameters of the Simulated System in
Chapter 11 . 130

� VIII �

11.3 Peak Temperatures of the Randomly Generated Workload
Traces Case Study . 132

11.4 Peak Temperatures of the Evaluation of the Approximation
Algorithms . 135

11.5 Peak Temperatures of the Picture-In-Picture Application . . . 138

A.1 Mappings for the Evaluation of the Producer-Consumer Ap-
plication: Di�erent Chain Lengths 145

A.2 Mappings for the Evaluation of the Producer-Consumer Ap-
plication: Di�erent Mappings 145

A.3 Mappings for the Evaluation of the Matrix Multiplication Ap-
plication: Di�erent Mappings 146

A.4 Mappings for the Evaluation of the MJPEG Decoder Appli-
cation, One Frame: Di�erent Mappings 146

A.5 Mappings for the Evaluation of the Matrix Multiplication Ap-
plication, Two Frames In Parallel: Di�erent Mappings 146

A.6 Evaluation Results of the IIR Application: Di�erent Mappings 153

A.7 Mappings for the Evaluation of the IIR Applications: Di�er-
ent Mappings . 153

A.8 Evaluation Results of the FFT Application: Di�erent Mappings154

A.9 Mappings for the Evaluation of the FFT Application: Di�er-
ent Mappings . 154

� IX �

List of Algorithms

5.1 Extraction of the Power Consumption of an Individual Process
from the Total Power Consumption of Shared Resources . . . 69

6.1 Monitoring of the Process Invocation 73

6.2 Monitoring of the Write Method Invocation 73

6.3 Process Scheduling Algorithm 79

10.1 Accumulated Computing Time Function that Leads to the
Worst-Case Peak Temperature 126

11.1 Accumulated Computing Time Function that Leads to an Up-
per Bound on the Maximum Temperature: Approximation 1 . 133

11.2 Accumulated Computing Time Function that Leads to an Up-
per Bound on the Maximum Temperature: Approximation 2 . 134

� X �

Listings

3.1 Process Network File . 16

3.2 Simpli�ed Code Segment of the Square Process 17

4.1 Source Code Sketch of a Fire Method to Illustrate Segments 46

5.1 Sketch of a Typical Process of a KPN 61

5.2 Monitoring of the Start and the End Time of an Iteration . . 61

5.3 Monitoring of the Start and End Times of the Read and Write
Segments . 62

6.1 Extended XML Speci�cation of a Process Network as Used to
Store the Thermal and Timing Parameters 76

7.1 Illustration of the Idea of Unite Short Segments into a Large
Segment . 99

� XI �

1
Introduction

1.1 Motivation

Current trends in microprocessor design include the integration of multiple
processors on a single chip. The widely used Cell Broadband Engine [1] from
STI, that was �rst delivered in 2006, integrates eight data processing engines
on a single chip. The newly announced Intel Single-chip Cloud Computer
(SCC) [2] already integrates 48 cores to stay abreast of the ever increasing
demand of computation performance. However, the obtained increase in
performance imposes a major increase in power density, which in turn may
create hot spots on the die.

The continuous increase in power density leads to various drawbacks with
regard to the reliability of a system. The excess of a threshold temperature
could lead to a reduction of the system performance, a reduced lifetime, or
even a damage of the physical system. The cooling costs of such systems
highly increase with the number of processing engines and su�cient cooling
becomes even infeasible in various embedded systems like cell phones.

To tackle the new challenges of many-core systems, three-dimensional stack-
ing is even considered as future technology to achieve unprecedented perfor-
mance. However, the placement of computational units on top of each other
continuously increases the power density and complicates the task of cooling
the system.

Reactive thermal management techniques that are widely used at the
hardware-level of high-performance systems can lead to a major loss in per-
formance. Like hardware-level techniques, the use of Operating System (OS)

� 1 �

1.2. CONTEXT

schedulers that take into account thermal management, can lead to renege on
real-time constraints, and complicates the predication of the system behav-
ior. Therefore, new system-level methodologies that guarantee both thermal
constraints and real-time deadlines at design time are required. Analyzing
thermal issues only in a late stage of the design cycle can have adverse e�ects
including increased hardware costs or an abortion of the project. Therefore,
thermal analysis methods are required that address the problem of evaluating
the temperature already in an early design stage when the system is often
only described by its software synthesis speci�cations.

This master thesis addresses these challenges and proposes solutions to esti-
mate the temperature already in a very early design stage. Methods to both
estimate the transient temperature behavior and calculate the worst-case
peak temperature of a many-core system are proposed. Finally, the suggested
methods are implemented in Distributed Operation Layer (DOL) [3, 4] or
Modular Performance Analysis (MPA) [5].

1.2 Context

This master thesis is carried out in the framework of the European project
PRO3D to which the ETH Zurich is contributing in terms of performance
analysis and mapping optimization. In the following, the PRO3D project,
DOL, and the main techniques for mapping optimization are brie�y intro-
duced.

1.2.1 PRO3D

The aim of the European project PRO3D is the devolvement of a system
design methodology for future embedded computing. On the one hand,
from the hardware perspective, its outputs are new three-dimensional ar-
chitecture concepts for many-core platforms. On the other hand, from the
software perspective, the goal is the development of a system software �ow
that guarantees the correct operation of hardware and software. Therefore,
new formal methods are required for evaluating performance and thermal
impacts already in an early design stage.

The target platform of the project is a novel industrial many-core System On
Chip (SoC), namely the Platform 2012 [6] provided by STMicroelectronics.
Besides a speci�c version of the Multiprocessor ARM (MPARM) virtual
platform for three-dimensional architectures, the Platform 2012 will be used
as case study for three-dimensional developments.

� 2 �

1.2. CONTEXT

Application

Mapping

Architecture

System Simulation

Performance Analysis Evolutionary Algorithm

System Synthesis

Design Space Exploration

Figure 1.1: The Y-Chart design methodology as it is used in DOL.

1.2.2 Distributed Operation Layer (DOL)

DOL [3, 4] is a platform independent programming framework for Multi-
processor System-on-Chips (MPSoCs), which implements parallel real-time
applications onto many-core architectures. Originally developed during
the project SHAPES [7], DOL is currently extended within the European
projects EURETILE1 and PRO3D at the ETH Zurich. The thermal evalu-
ation methods developed in this thesis will be used to extend DOL with the
functionality to analyze thermal-aware constraints.

Following the Y-Chart [8] design methodology outlined in Fig. 1.1, DOL con-
sists of an application programming interface for multi-processor systems, a
functional simulation and a mapping optimization. The DOL programming
model uses the Kahn Process Network (KPN) [9] semantic as model of com-
putation. The behavior of the application is de�ned in C/C++ and an
XML representation has been selected to syntactically describe the coordi-
nation of the process network so that the application can be de�ned in an
architecture-independent way. Recently, DOL has already been coupled with
MPARM [10], the target platform for this thesis.

1.2.3 Design Space Exploration

The design space exploration describes the process of exploring various design
alternatives of a system to �nally decide, which one to implement [11]. In this
thesis, design space exploration refers to the task of exploring the optimal
mapping of a multi-processor streaming application onto a distributed mem-
ory architecture in a time and thermal e�cient manner. The corresponding
�ow-chart is outlined in Fig. 1.2.

1http://euretile.roma1.infn.it

� 3 �

http://euretile.roma1.infn.it

1.3. CONTRIBUTIONS

Design Space
Exploration
(Mapping

Optimization)

Evaluate Candidate
Mapping

Timing AnalysisThermal Analysis

Thermal
Parameters

Timing
Parameters

Model Calibration

Application
Specification

Low-Level
Simulation

System Synthesis

Architecture
Specification

Optimal Mapping
Thermal

Simulation

Figure 1.2: Flow-chart of the design space exploration of a multi-processor
streaming application that is mapped onto a distributed architecture.

The design �ow can be summarized as follows: Prior to the design space
exploration, the Model Calibration is performed, where timing and thermal
parameters are extracted from low-level and thermal simulation, respectively.
During the actual design space exploration, the analysis models fall back on
these parameters to model the actual timing and thermal behavior of the
system. Due to their well-known intractability of the problem, evolutionary
algorithm based approaches are often used during the design space explo-
ration to explore the design space [3, 12]. The performance and thermal
characteristics of every Candidate Mapping is analyzed during the Timing
and Thermal Analysis, respectively. Finally, the output of the design space
exploration is the optimal mapping of a given multi-processor application
onto a distributed memory architecture.

In PRO3D, DOL will be used to calculate the mapping in a thermal and
timing e�cient manner. While DOL already supports mapping optimization
with respect to timing constraints, in this thesis, DOL will be extended with
the capability to collect thermal-aware metrics in order to support mapping
optimizations with respect to thermal-aware constraints.

1.3 Contributions

This master thesis addresses the task of thermal evaluation in the design op-
timization process of a multi-processor streaming application. This mainly
includes the development of methods to quickly evaluate thousands of candi-
date mappings during design space exploration in terms of thermal aspects.

� 4 �

1.3. CONTRIBUTIONS

Evaluation methods for both the transient temperature evolution and worst-
case peak temperature of a many-core system that is only described by its
software synthesis speci�cations, are proposed. In the following, a list of
contributions of this thesis is provided.

Thermal Evaluation Tool Chain. Multiple steps are required to sim-
ulate the temperature of an application described by its software synthesis
speci�cations. We discuss an approach that concatenates three di�erent
tools, namely a software synthesis tool, a low-level virtual platform and a
thermal analysis model to calculate the transient thermal behavior of an
application. The proposed solution is integrated in the DOL design �ow
using the MPARM virtual platform [13] and HotSpot [14]. Besides the con-
catenation of the three tools into one chain, the tools have been extended
in this thesis with the following functionalities. The DOL synthesis tool is
extended to automatically generate the architecture information, namely the
�oor-plan and the thermal parameters. Two major upgrades are required for
the MPARM virtual platform:

1. The calculation of the transient energy and power consumption from
the already existing functionality to compute the overall energy and
the average power consumption.

2. The extension of the power models with the ability to calculate the
static power consumption and to distinguish between the static and
dynamic power consumption.

Finally, a software wrapper for HotSpot has been developed that is able to
handle the power consumption as provided by the MPARM virtual platform
and to reevaluate the static power consumption as a quadratic function of
the current temperature.

Automated Calibration of Thermal Evaluation Models. Composi-
tional thermal analysis models have many advantages over low-level based
evaluation methods during design space exploration, but they have the disad-
vantage of requiring timing and thermal parameters to model the behavior of
a multi-processor streaming application. In this thesis, we propose methods
for the automated calibration of abstract thermal analysis models during
which all the required data is collected, and after post-processing, added to
the system speci�cations. The proposed solution is implemented in DOL for
the automated extraction of the timing and thermal parameters of a multi-
processor streaming application targeting the MPARM virtual platform.

� 5 �

1.4. OUTLINE

Transient Temperature Emulation at System-Level. The �rst main
contribution of this thesis is a compositional thermal evaluation model to
estimate the transient temperature evolution of a multi-processor applica-
tion. We discuss the computation of the transient power consumption using
a trace-based simulation framework and the calculation of the temporal tem-
perature behavior by means of a precomputed thermal analysis method. We
implement the proposed model in DOL targeting the MPARM virtual plat-
form and show that speed-ups of up to 2000 times are achieved over low-level
simulation.

Worst-Case Peak Temperature of Multi-Core Systems. The sec-
ond main contribution of this thesis is an extension of the framework to
calculate the worst-case peak temperature for single-processor systems [15]
to many-core systems. After reformulating the task to an optimization prob-
lem, we propose an algorithm that solves the problem for periodic streams
with bounded jitter and bursts. By performing experiments with a prototype
implementation of our algorithm in MPA, we compare the framework with
two approximation algorithms that o�er signi�cant speed-ups.

1.4 Outline

The remainder of this master thesis is organized in two parts. Thermal eval-
uation methods and appropriate techniques to obtain thermal characteristics
by simulation are the topic of the �rst part of this thesis. Afterwards, the
second part discusses the question of obtaining the worst-case peak temper-
ature of a multi-processor streaming application using analytic worst-case
methods.

The �rst part is organized in seven chapters. It starts with a short introduc-
tion to thermal simulation and a description of related work in Chapter 2.
Afterwards, Chapter 3 introduces the concept of a thermal evaluation tool
chain consisting of a high-level software synthesis tool, a low-level simulator,
and a thermal analysis model. The viability of the proposed tool chain is
assessed by a prototype implementation based on DOL, the MPARM virtual
platform, and HotSpot. However, the tool chain seems inadequate for the
thermal evaluation of several thousand candidate mappings as it is the case
in design space exploration of a multi-processor streaming application.

Chapter 4 addresses this drawback by presenting the System Level Thermal
Emulator (SLTE), an abstract thermal evaluation model to estimate the
transient temperature evolution of a multi-processor streaming application
in an early design stage. Compositional temperature evaluation models use
timing and thermal parameters to model the behavior of a multi-processor

� 6 �

1.4. OUTLINE

streaming application. Chapter 5 presents a general approach for extracting
these parameters by using a set of benchmark mappings to simulate the
system on a low-level platform.

In Chapter 6, the viability of the proposed abstract model for emulating the
transient temperature evolution, SLTE, is assessed by integrating a prototype
implementation in DOL. Additionally, we discuss extensions for the thermal
evaluation tool chain to carry out automated model calibration. In Chap-
ter 7, we present three case studies, which are used to test and evaluate the
prototype implementation of SLTE from Chapter 6. We discuss the speed-up
and the accuracy of the proposed compositional temperature analysis model
over the thermal evaluation tool chain. Finally, in Chapter 8, the proposed
approaches for the thermal simulation are summarized and further work is
listed.

The second part of this thesis is organized in four chapters and starts with an
introduction to thermal analysis methods and an overview of related work.
In Chapter 10, the task of computing an upper bound on the worst-case
peak temperature of a multi-processor streaming application is reformulated
as a multidimensional optimization problem. In this context, an algorithm
to calculate this upper bound is proposed for applications, that only have
periodic tasks with jitter. The approach to calculate the worst-case peak
temperature is �nally implemented in MPA. Afterwards, Chapter 11 presents
various case studies to verify the viability of the proposed approaches. To
improve the evaluation time, two approximation algorithms are discussed
and evaluated. Finally, Chapter 12 summarizes the proposed methods and
achieved evaluation results, and gives a review of further work.

In Chapter 13, the proposed approaches of this master thesis are summarized
and compared in terms of their value for design space exploration of a multi-
processor streaming application.

Appendix A collects additional case studies and supplementary material for
the prototype implementation of SLTE. Appendix B presents the slides of
the �nal presentation of this thesis and the mathematical symbols, which
are used to formally describe the proposed models, are listed in Appendix C.
To simplify the reading, Appendix D lists all acronyms introduced in this
thesis.

� 7 �

Part I

Thermal Simulation

� 8 �

2
Thermal Simulation:

An Introduction

2.1 Overview

Nowadays, reactive thermal management techniques are the preferred
method to avoid overheating in microprocessors. However, these techniques
can lead to a major loss in performance and complicate the prediction of
the system behavior. One way to tackle this challenge is the use of system-
level methodologies that guarantee both thermal constrains and real-time
deadlines at the design time. Therefore, thermal evaluation methods are
required to estimate the thermal characteristics of an application in an early
design stage.

The �rst part of this master thesis addresses various techniques in conjunc-
tion with thermal simulation, that is, techniques that are based on simulating
an application on a virtual or abstract platform. Although thermal simula-
tion has various drawbacks over analytic best-case/worst-case methods [16],
thermal simulation methods are still essential in the thermal evaluation for
the following three aspects:

Transient Temperature Behavior. Analytic methods only calculate in-
dividual characteristics of an application, but they do not compute the tran-
sient evolution of the application. However, detailed investigations of the
transient thermal behavior of an application are particularly required in
a second design stage where typical questions include how long a speci�c
temperature has been exceeded or how fast a system cools down.

� 9 �

2.2. RELATED WORK

Modeling Scope. While analytic methods are often restricted to a speci�c
system model, simulation methods cover a much wider spectrum of speci�-
cations. For example, the analytic method to calculate the worst-case peak
temperature of a single-node system that is presented in [15], only covers
two power modes, however, real platforms often have a range that can be
covered by the power dissipation.

Model Calibration. Compositional thermal evaluation models typically
require a large number of thermal and timing parameters from di�erent
sources to accurately characterize a multi-processor system. Therefore, au-
tomated model calibration is required to extract the model parameters of
such a system. As the low-level simulation is often the only accurate source
for most of those parameters, thermal simulation is required to extract them.

To tackle these three aspects, we �rst propose a thermal evaluation tool
chain, that is, a tool chain where the transient temperature evolution of a
streaming application speci�ed in a system-level language can be simulated.
However, as the use of the thermal evaluation tool chain is too expensive in
terms of execution time to be included in design space exploration, we pro-
pose the System Level Thermal Emulator (SLTE) in Chapter 4. It computes
the temporal temperature evolution of each hardware component when the
system speci�cation and corresponding timing and thermal parameters are
given. Based on the required timing and thermal parameters of SLTE, we
discuss in Chapter 5 an approach to use the thermal evaluation tool chain
to automatically calibrate such models. Afterwards, in Chapter 6, a proto-
type implementation of SLTE in the Distributed Operation Layer (DOL) is
described, that is used to evaluate SLTE in Chapter 7. In three case studies,
the advantages and drawbacks of the proposed approaches are discussed.

2.2 Related Work

Thermal management becomes a crucial task in modern integrated cir-
cuits as the areal heat dissipation has increased with submicron and three-
dimensional integrated circuit design. Nowadays, hot spot heat �uxes can be
up to 250 W/cm2 [17] and jeopardize the reliability and timing guarantees
of real-time applications. Puttaswamy et al. [18] investigated the thermal
behavior of a high-performance microprocessor build in a three-dimensional
technology and reported increases of the maximum temperature by 33 ◦C
compared to a planar Integrated Circuit (IC). Therefore, in recent years
e�cient thermal management methods have been a hot topic in research.
For example, in [19], a convex optimization technique for temperature-aware
frequency assignment is proposed. Various architectural-level techniques for
thermal management like Dynamic Voltage and Frequency Scaling (DVFS)

� 10 �

2.2. RELATED WORK

and the stop-go policy are compared in [20]. Coskun et al. evaluated various
thermal-aware job scheduling techniques in [21, 22]. In particular, the focus
of [21] is on thermal management techniques with unknown workload like
load balancing or a temperature-aware random policy scheduling. Dynamic
thermal-aware job scheduling techniques for three-dimensional systems are
presented in [22]. ThreshHot, a technique to reduce the number of thermal
trespasses by selecting at each step the hottest job that does not exceed the
thermal threshold, is proposed in [23].

Thermal management on the architectural or even on the Operating System
(OS)-level has the drawback that real-time constraints cannot be guaranteed.
Sabry et al. [24] proposed compilation techniques to reduce the percentage
of hot spots based on a register allocation technique. A mixed-integer linear
programming formulation to reduce the peak temperature of an application
by guaranteeing hard real-time constraints is proposed in [25]. In [26, 27],
temperature-aware task allocation and scheduling algorithms for embedded
Multiprocessor System-on-Chip (MPSoC) are explored by comparing various
thermal-aware with power-aware heuristics. All these approaches show that
both the performance and the thermal analysis are crucial tasks in the design
of streaming applications for modern two- and three-dimensional MPSoCs.
However, there is currently a lack of tools for fast and accurate thermal anal-
ysis during early design stages of many-core streaming applications. Modern
design �ows for applications modeled as Kahn Process Network (KPN) or
Synchronous Data�ow (SDF) enable the e�cient design of multi-processor
streaming applications for MPSoCs by providing automatic mapping of ap-
plications onto multi-processor platforms [3] and enable the reuse of the
application for many di�erent platforms. Artemis [28] or DOL [4] are two
examples of such multi-processor software design �ows and have in com-
mon that they support system-level performance analysis but have a lack
in thermal analysis options. Model calibration is used to couple DOL with
Modular Performance Analysis (MPA) [29] to provide a complete tool chain
to analyze the performance of a multi-processor streaming application in an
early design stage.

Simulating the thermal behavior of a multi-processor streaming application
in a low-level simulator is the most obvious approach for thermal analysis
during early stages of the design �ow. In recent years, both software as well
as hardware simulators for MPSoC platforms have been developed. The Mul-
tiprocessor ARM (MPARM) virtual platform [13] is an example of a cycle-
accurate simulator in low-level SystemC [30] that emulates a multi-processor
ARM architecture and includes a detailed power model [31]. Wattch [32]
is another example of an architectural-level power-analysis framework to
obtain the power dissipation of a modern platform. Furthermore, in [33],
an architecture-level power analysis framework is presented that models the
processor pipelines as networks to improve speed-up and accuracy. However,

� 11 �

2.2. RELATED WORK

the slow evaluation speed of software simulators makes their use during de-
sign space exploration almost infeasible. Nowadays, hardware emulators are
viable alternatives. In [34], Field Programmable Gate Array (FPGA) pro-
totyping is used to speed-up co-veri�cation of pure software simulators. In
[35], a HW/SW emulation framework is proposed where an FPGA emulator
is used to model the hardware components of a considered MPSoC to speed-
up the evaluation time.

Estimating system temperature is typically based on thermal simulation or
steady-state analysis. The later is based on approximating the thermal be-
havior by its steady-state temperature [36]. However, it can easily be shown
that the use of the steady-state temperature might lead to wrong assump-
tions about the thermal behavior of an application. HotSpot [14] is the most
popular member of the group of thermal simulators and has been extended by
various features like oil-silicon cooling [37]. Focusing more on liquid cooling
of three-dimensional ICs, 3D-ICE [17] is another architecture-level thermal
simulator. Due to the need to solve the thermal di�erential equation, the
thermal simulation time is often a major bottleneck during design space
exploration. Model reduction [38, 39] is a promising approach to reduce the
overhead introduced by solving the thermal di�erential equation. Another
approach is presented in [40] where the solution of the thermal di�erential
equation is precomputed for estimating the actual temperature of a Pentium
4 processor and reducing the temperature by adjusting the task schedule of
an OS.

All of the presented models and tools have in common that none of them
directly calculates the thermal behavior of a multi-processor streaming ap-
plication de�ned by its software synthesis speci�cations, but all of them
only provide a speci�c task towards the estimation of the thermal behavior.
In [41], a virtual platform is proposed for evaluating and testing power and
thermal management solutions based on the full system simulation platform
Simics [42]. While providing various analysis tools, the virtual platform
has the drawback of the evaluation speed and its restriction to the Intel
Pentium 4 platform. In [35, 43] a hardware/software emulation framework
is extended by connecting an FPGA emulation platform with a software
thermal analysis library running on a host computer calculating the current
system temperature of the on-chip components at runtime. The drawback
of this emulation framework is the necessity of the additional hardware and
the involved costs.

� 12 �

3
Thermal Evaluation Tool Chain

When modeling the thermal behavior of a multi-processor system at system-
level, it turns out that the typical speci�cations used in performance analysis
including the application, architecture, and mapping speci�cation, are inad-
equate. Additional thermal characterizations like the temperature increase
of an architectural component while executing a speci�c process are required
to completely describe the thermal behavior.

In this chapter, a thermal evaluation tool chain is introduced, that is, a tool
chain where the thermal behavior of a streaming application speci�ed in a
system-level language can be simulated. Finally, because the thermal evalu-
ation tool chain is too expensive in terms of execution time to be included
in design space exploration, an abstract, fast thermal evaluation model will
be used instead. The proposed thermal evaluation tool chain will be mainly
used for model calibration as well as to verify the abstract models proposed
in Chapter 4. As a proof of concept, the proposed tool chain has been im-
plemented using the Distributed Operation Layer (DOL) framework [4], the
Multiprocessor ARM (MPARM) simulator [13], and the HotSpot thermal
analysis model [14].

After presenting the concept of a thermal evaluation tool chain in Section 3.1,
the MPARM simulator is brie�y introduced in Section 3.2. The thermal
simulator and the temperature-dependency of the power are discussed in
Section 3.3 and the chapter concludes with a short summary.

� 13 �

3.1. OVERVIEW AND SYSTEM SPECIFICATION

Synthesis Tool
(DOL)

Low-Level Simulator
(MPARM)

Thermal Analysis Model
(HotSpot)

Platform-Dependent Code

Power Traces

Application
Specification

Mapping
Specification

Architecture
Specification

Temperature
Traces

Steady State
Temperatures

Figure 3.1: High-level block diagram of the thermal evaluation tool chain.

3.1 Overview and System Speci�cation

One way to extract the thermal characteristics of a multi-processor system
is the use of a thermal simulation tool chain. In this chapter, the three step
tool chain depicted in Fig. 3.1 is discussed. This section gives an overview
of this thermal evaluation tool chain. First, its setup is described, while
in Section 3.1.2, the system speci�cation is presented in detail. Finally,
Section 3.1.3 illustrates the thermal characteristics extracted from the tool
chain.

3.1.1 Tool Chain

The transient thermal behavior of a process network is the result of a three
step calculation. Based on the system speci�cation, that is, the application,
platform, and mapping speci�cation, a synthesis tool generates the glue code
of the application in the �rst step. In the second step, the application is ex-
ecuted in a low-level simulator to determine the transient power behavior of
the application. The transient power behavior describes the temporal power
consumption of the application while being executed on the speci�ed archi-
tecture. In the last step, the transient thermal behavior, that is, the tempo-
ral temperature evolution, and the steady-state temperatures are calculated
from the transient power behavior by a thermal simulator. The advantage of
having three separate tools is that every tool can independently be upgraded
as well as having the possibility to abstract each phase separately as we will
show in Chapter 4.

� 14 �

3.1. OVERVIEW AND SYSTEM SPECIFICATION

Although the principles used for designing the thermal evaluation tool chain
are not restricted to a speci�c synthesis tool, low-level simulator, and ther-
mal analysis model, we use the DOL framework [4], the MPARM simula-
tion platform [13], and HotSpot [14] to show the viability of our approach.
The DOL framework introduced in Section 1.2.2 is based on a platform-
independent programming model and supports the generation of glue code
for multi-processor streaming applications on di�erent platforms. Although
many low-level simulation platforms are available such as Wattch [32], the
ARM simulator proposed by Zhu et al. [44], or Sim-Panalyzer [45], to name
only a few of them, the MPARM simulator [13] developed by the University
of Bologna has the advantage that it provides an easy extendable statistic
module [31] and is already coupled with DOL [10].

Timing information and power consumption of the process network are ex-
tracted from MPARM, the technical details of which are explained in Sec-
tion 3.2. Both the dynamic and static power consumption of every microelec-
tronic component are determined separately in the low-level simulation plat-
form. The dynamic power has its source in charging and discharging various
load capacitances of a CMOS device and is independent of the temperature.
As the leakage current, the main source of the static power consumption,
is temperature-dependent, the static power consumption is dependent on
the current temperature of the system, as well. Therefore, the advantage of
separating dynamic and static power is given by the ability to determine the
actual, temperature-dependent static power in the thermal analysis model
as explained in Section 3.3.3. The low-level simulation platform computes
the static power consumption for a reference temperature, that is �xed in
advanced and known by the thermal simulator. The granularity of the
components can individually be selected based on the analyzed problem.
Nonetheless, it turned out that a fragmentation in CPU cores, data and
instruction memories, and buses provides a good balance between accuracy
and computation speed.

The power characteristic of an application does not capture localized heating
and the time dependency of the heat �ow. Thus, thermal simulation is used
to determine the actual thermal behavior. In our proof of concept imple-
mentation of the thermal tool chain, this task is performed by HotSpot [14],
a thermal analysis model developed by the University of Virginia. As the
thermal behavior does not only depend on the power characteristic of an ap-
plication but also on the ambient temperature, the processor layout, and the
heatsink con�guration, HotSpot also requires additional input �les, namely
the �oor-plan of the Integrated Circuit (IC) and the package con�guration.
The DOL framework is extended to automatically generate the �oor-plan
according to the architectural speci�cation. Nonetheless, for more accurate
simulation results, the �oor-plan ought to be re�ned based on the real chip

� 15 �

3.1. OVERVIEW AND SYSTEM SPECIFICATION

Listing 3.1: Process network �le used to specify the structure of a stream-
ing application in DOL. The connection elements between the channels and
processes are missing in this sketch.

1 <process name="generator">

2 <port type="output" name="10"/>

3 <source type="c" location="generator.c"/>

4 </process >

5

6 <process name="square">

7 <port type="input" name="0"/>

8 <port type="output" name="1"/>

9 <source type="c" location="square.c"/>

10 </process >

11

12 <process name="consumer">

13 <port type="input" name="100"/>

14 <source type="c" location="consumer.c"/>

15 </process >

16

17 <sw_channel type="fifo" size="10" name="C1">

18 <port type="input" name="0"/>

19 <port type="output" name="1"/>

20 </sw_channel >

21

22 <sw_channel type="fifo" size="10" name="C2">

23 <port type="input" name="0"/>

24 <port type="output" name="1"/>

25 </sw_channel >

layout. Additional information about the thermal simulator is given in Sec-
tion 3.3.

3.1.2 System Speci�cation

The system speci�cation of a Multiprocessor System-on-Chip (MPSoC) in-
cludes the application, architecture and mapping speci�cation. It is the task
of the synthesis tool to generate from the given system speci�cation the glue
code for executing the streaming application on the selected platform. The
DOL framework includes a synthesis tool to generate code to be executed
on MPARM out of the DOL speci�cation [4].

Application Speci�cation. The model of computation used in this
project is the Kahn Process Network (KPN) [9], which has the advantage
that the computation is separated from the communication and therefore, the
application behavior is speci�ed independently of the process network [3, 46].
An XML representation has been selected to syntactically describe the coor-
dination of the process network. In Listing 3.1, such a process network �le

� 16 �

3.1. OVERVIEW AND SYSTEM SPECIFICATION

Listing 3.2: Simpli�ed code segment of the square process to describe its
functionality. The corresponding process network is outlined in Listing 3.1.

1 void init() {

2 }

3

4 int fire() {

5 float i;

6

7 DOL_read ((void*)PORT_IN , &i);

8 i = i*i;

9 DOL_write ((void*)PORT_OUT , &i);

10

11 return 0;

12 }

is outlined. A sw-channel describes the connection between two processes,
which are de�ned by a process block. In a KPN, each process has its own
processing characteristics while the overall functionality of the application is
the combination of them. The source tag in the coordination �le de�nes the
source code �le of a process, which is written in the host language, that is,
in our case plain C/C++.

The coding rules to model the processing characteristics of a process are
sketched in Listing 3.2. A process has to implement the init() and the
fire() procedure. The former is executed once during the initialization of
the application and its purpose is comparable with the one of a constructor.
The fire() procedure is called repeatedly and contains the functionality of
the process. Communication between processes is supported by dedicated
primitives. In particular, DOL_read() is used to invoke a blocking read and
DOL_write() is used to perform a blocking write.

Platform Speci�cation. The information about the underlying architec-
ture is summarized in the platform speci�cation. Targeting the system-level
design of an MPSoC, the platform speci�cation is provided in an abstract
model. The granularity depends on the requirements of the software syn-
thesis framework. However, a typical system speci�cation often includes the
basic processing components, their attributes like the clock speed, and the
way the components are connected. A custom-based XML format is used
for the platform speci�cation.

Mapping Speci�cation. The speci�cation of where and how a process is
executed on an MPSoC is de�ned as mapping and consists of two parts. The
binding de�nes the mapping of processes to processors, while the scheduling
de�nes the mapping in the temporal domain, that is, the scheduling policy of
each resource. Again, XML is used as format for the mapping speci�cation.

� 17 �

3.2. FROM EXECUTION TO POWER TRACES

3.1.3 Thermal Speci�cation

The thermal evaluation tool chain calculates the thermal behavior of an ap-
plication, and is used to record di�erent thermal characteristics depending
on the scope of application of the evaluation tool chain. To name only a few
of them, the temporal temperature evolution, the steady-state temperature,
and the maximum temperature of potential hot spots are often of interest.
The temporal temperature evolution describes the temperature of a compo-
nent at speci�c events in time and the steady-state temperature refers to the
thermal behavior of a system when the transient power behavior recurs peri-
odically. In our implementation of the tool chain, the temperature is recorded
on a regular basis and the steady-state behavior of the system is calculated.
Because we aim at estimating the temperature of several hundreds of design
alternatives, in one design space exploration loop, we will use the proposed
tool chain only to extract thermal parameters and calibrate faster analytic
models with these realistic parameters.

3.2 From Execution to Power Traces

In our prototype implementation of the thermal evaluation tool chain, we
use MPARM [13] as low-level simulator that provides the transient power
behavior of a multi-processor streaming application. For this purpose, we
extended the statistic and power modules of MPARM with the ability to
compute power traces. The remainder of this section is organized as fol-
lows: First, the MPARM virtual platform is brie�y introduced. Afterwards,
in Section 3.2.2, the MPARM power models are presented in detail. The
calculation of the transient power behavior is described in Section 3.2.3 and
Section 3.2.4 presents the generation of glue code by the DOL synthesis tool
to run streaming applications in the MPARM simulator.

3.2.1 MPARM Virtual Platform

MPARM [13] is a cycle-accurate virtual platform for emulating an ARM-
based MPSoC. Originally developed by the University of Bologna to simulate
multiple ARM processors connected by a simple bus, it has continuously
been extended, and it is currently adapted to supports modern 3D ICs. An
overview of the MPARMmulti-processor platform is outlined in Fig. 3.2. The
recon�gurable platform is composed of a variable number of identical 32-bit
ARM processors, which are connected by a shared bus. Optionally, shared
memories and Direct Memory Access (DMA) devices can be connected to
the bus. SystemC [30] is used as modeling and simulation environment.

� 18 �

3.2. FROM EXECUTION TO POWER TRACES

SystemC Wrapper

C++ Class (SWARM)

Lo
ca

l B
u

s

ARM Core

Instruction
and Data

Cache

AMBA Bus

A
M

B
A

 I/
F

Shared Memory

A
M

B
A

 I/
F

Instruction
and Data

Scratchpad

Instruction
and Data
Memory

SystemC Wrapper

C++ Class (SWARM)

Lo
ca

l B
u

s

ARM Core

Instruction
and Data

Cache

Instruction
and Data

Scratchpad

Instruction
and Data
Memory

ARM Processor 0 ARM Processor 1

A
M

B
A

 I/
F

A
M

B
A

 I/
F

A
M

B
A

 I/
F

Figure 3.2: High-level schema of the MPARM architecture. The number of
processors and shared memories can be individually adjusted.

Processing Elements. The most time-consuming part of a multi-
processor simulation platform are the processing elements. Therefore, they
have to be implemented in a fast and accurate way. Instruction-Set-
Simulators (ISSs), which are often written in C/C++, provide a good balance
between performance and accuracy. SystemC wrappers are used to connect
the cycle-accurate communication architecture of the simulation platform
with the coarse granularity domain of an ISS.

In MPARM, the default processing elements are ARM7 cores [13], which
are modeled using the open source Software ARM (SWARM) simulator [47].
The SWARM simulator is basically written in C++ and communicates with
its host using a cycle function that performs one clock cycle. Therefore, Sys-
temC wrappers are used to embed the SWARM simulator into the SystemC
environment. Note that the modular structure of the MPARM simulator
allows an easy exchange of the SWARM simulator with another processor
simulator.

Advanced Microcontroller Bus Architecture (AMBA) Bus Model.
The shared bus used in the MPARM architecture is modeled as an AMBA
bus. This is a widely used bus model for on-chip buses in MPSoC designs.
AMBA supports scalability by the ability to plug-in multiple masters and
slaves through proper bus interfaces and supports multi-master communica-
tion, which is indispensable for multi-processor systems.

� 19 �

3.2. FROM EXECUTION TO POWER TRACES

Memories. MPARM supports three hierarchies of memories: scratchpad,
caches, and main memory. As outlined in Fig. 3.2, every processing module
has its own scratchpad, instruction cache, and data cache. They are directly
connected to the core through the local bus of the processing element. Ad-
ditionally, there exists an instruction and data memory for every processing
element. However, these are only connected to the shared bus as slave de-
vices, there exists no direct connection between local memory and its core.
Furthermore, a various number of shared memories are supported, connected
to the shared bus as slave devices, as well.

Operating-System Support. The real-time operating system Real-Time
Executive for Multiprocessor Systems (RTEMS) [48] is running on top of the
MPARM platform to provide high-level support for applications. Multipro-
cessor streaming applications can easily be implemented in RTEMS, because
it provides both preemptive scheduler and message queues.

3.2.2 Power and Energy Statistics

MPARM implements a multifunctional statistics collector that has been ex-
tended to support energy and power statistics [31]. Each component is con-
nected with a power model that calculates the energy consumption of every
execution cycle. In its original con�guration, the statistic collector supports
just the record of the total energy consumption, and the calculation of the
average power consumption of each component.

Overall Structure. The overall structure of the power model is outlined
in Fig. 3.3. The Statistic Collector module provides multiple methods to
handle and record events [13]. It analyzes every operation performed by
a component and records timing, structural, and energy statistics of this
operation. The later option is supported by attaching a Power Model [31],
that provides the energy spent by the corresponding operation on a cycle-
by-cycle basis, to every component.

All components except the SWARM processor and the AMBA bus invoke
the power model when the module is activated. This power model computes
the energy consumption for the operation performed by the component in a
cycle and returns this value. At this turn, the activated module forwards the
energy to the Statistic Collector module as shown in Fig. 3.4(a). The energy
collection of the ARM core is implemented in a di�erent way and is outlined
in Fig. 3.4(b). As the ISS does not run whenever the ARM core is stalling,
the energy collection is invoked by a separate routine that is activated at
each cycle and keeps track of the current state of the core. In this way, the

� 20 �

3.2. FROM EXECUTION TO POWER TRACES

SystemC Wrapper

C++ Class (SWARM)

Lo
ca

l B
u

s
ARM Core

Instruction
and Data

Cache

Instruction
and Data

Scratchpad

Instruction
and Data
Memory

ARM Processor

AMBA Bus

A
M

B
A

 I/
F

Shared
Memory

A
M

B
A

 I/
F

Statistic Collector

Core
Power
Model

Cache
Power
Model

Scratch-
pad

Power
Model

Memory
Power
Model

Bus
Power
Model

Figure 3.3: Overall structure of the MPARM power model. There exists a
power model for each component, that calculates the energy consumption of
an operation on a cycle-by-cycle basis.

energy spent in every cycle is provided. The energy collection for the AMBA
bus is implemented similar to the one of the ARM core.

By summing up the energy of the individual invocations, the MPARM simu-
lator collects the total energy consumed by every component. The simulator
can also calculate the average power of each component by dividing the total
energy by the total execution time. The MPARM simulator does not provide
methods to output the energy consumption during the simulation, but only
after the simulation has completed.

Cache Module

Power Model Statistics Collector

Operation Energy Energy

(a) Power model invocation for the mem-
ory modules.

ARM Core Module

ARM Core Power Model

Statistics Collector

Processor State
Energy

(b) Power model invocation for the ARM
core module.

Figure 3.4: The two implementations of power model invocation used in the
MPARM virtual platform.

� 21 �

3.2. FROM EXECUTION TO POWER TRACES

Power Models of the Individual Components. In the following, the
di�erent power models of the components used in this project are described.
A 0.13µm technology is assumed in all models.

� SWARM Core. The power model of the SWARM processor di�ers
between the states RUNNING, STALLED, and IDLE. IDLE can only
be reached using a software interrupt, and has the smallest power con-
sumption of all states. The state STALLED models the situation when
the instruction pipeline is blocked. The state RUNNING is used in all
other cases. The individual energy values are obtained from an ARM7
processor on a 0.13µm technology [31]. While the RUNNING state
consumes 0.055 mW/MHz, STALLED and IDLE states consume only
66% and 10%, respectively, of the energy consumed in the RUNNING
state.

� Memory. The power model of both the caches and the private mem-
ories are based on an empirical model derived from the interpolation
of the data extracted from a memory generator by STMicroelectron-
ics [31]. The model di�ers between the four operations READ,WRITE,
STALL and NOP. Furthermore, the energy consumption is a paramet-
ric value varying with the size of the memory.

� Cache. The cache is modeled by two distinct cell arrays, for data and
tag memory, with di�erent energy consumptions. Additionally, the
energy consumption depends on the cache type, and the line size of
the cache. A more detailed description of the power model for the
cache can be found in [31].

� Bus. The energy consumption of the AMBA bus is modeled according
to [49] and is parameterized by the number of packets that are in transit
on the bus.

3.2.3 Power Traces

The calculation of the temporal temperature evolution of an application
requires the knowledge of the transient power behavior of the system. This
subsection summarizes the extension of the MPARM virtual platform to
sample the power consumption on a regular basis.

Sampling the Power Consumption. The MPARM virtual platform al-
ready consists of a simple model to calculate the energy and power con-
sumption of a system as described in the previous subsection. Nonetheless,
it does not provide the functionality to record the transient power behavior.

� 22 �

3.2. FROM EXECUTION TO POWER TRACES

Application / Run-time environment

MPARM Simulator

Simulation Support

Statistics

Power Recorder

(a) Event-based power trace sampling
where the events are speci�ed by the run-
time environment.

MPARM Simulator

Processor Wrapper

Statistics

Power Recorder

Application / Run-time environment

(b) Power trace sampling on a regular ba-
sis. Therefore, no connection between the
runtime environment and the simulator is
necessary to sample the power.

Figure 3.5: Sampling trade-o�s to generate power traces.

Using the total energy consumptionW at time ti−1 and ti, the average power
consumption Pavg(ti, ti−1) of the period ∆ti = ti− ti−1 can be expressed as:

Pavg(ti, ti−1) =
Wti −Wti−1

ti − ti−1
(3.1)

When using a su�ciently small period ∆ti, the power trace P (ti) at time ti
can be approximated as

P (ti) ≈ Pavg(ti, ti−1) (3.2)

Skadron et al. reported in [50] that the use of a sampling interval of
10 k cycles provides a good trade-o� between overhead and precision.

Power traces can either be sampled at speci�c events or on a regular basis.
Sampling the power traces at speci�c events requires runtime environment
support for invoking the simulator to record the power consumption when-
ever such an event occurs. The runtime environment has only the ability to
perform such commands during the communication process or at the begin-
ning of a process invocation. This sampling method is outlined in Fig. 3.5(a)
and has the advantage that the original structure of the MPARM simulator
is not modi�ed and that the runtime environment controls the number of
sampled power traces. One of the disadvantages is the limitation of the
sampling frequency, in particular for computational intensive applications.
Furthermore, the execution of additional commands in the runtime environ-
ment might reduce the performance of the application and thus, a�ects the
statistics.

� 23 �

3.2. FROM EXECUTION TO POWER TRACES

time, core_0, iCache_0, dCache_0, scratch_0, iScratch_0, ...

20000, 8.6273, 7.1619, 1.8557, 0.0000, 0.0000, ...

40000, 8.5663, 6.2899, 1.5568, 0.0000, 0.0000, ...

..., ..., ..., ..., ..., ..., ...

460000, 8.8297, 8.2180, 1.8033, 0.0000, 0.0000, ...

480000, 8.7763, 7.9730, 1.7606, 0.0000, 0.0000, ...

500000, 8.8297, 8.2018, 1.8012, 0.0000, 0.0000, ...

520000, 8.8662, 8.5722, 1.9026, 0.0000, 0.0000, ...

540000, 8.9993, 9.6324, 1.3115, 0.0000, 0.0000, ...

560000, 8.8981, 8.4545, 1.3346, 0.0000, 0.0000, ...

580000, 8.8897, 7.9940, 1.1514, 0.1183, 0.0000, ...

600000, 8.6198, 6.5693, 1.0055, 0.0000, 0.0000, ...

620000, 8.9984, 9.8187, 1.3155, 0.0098, 0.0000, ...

640000, 8.9478, 9.3617, 1.4531, 0.0000, 0.0000, ...

660000, 8.8728, 8.4902, 1.3827, 0.0000, 0.0000, ...

680000, 8.9927, 9.0625, 1.4188, 0.1183, 0.0000, ...

700000, 8.6170, 6.6372, 0.9385, 0.0000, 0.0000, ...

720000, 9.1239, 10.7169, 1.4838, 0.0197, 0.0000, ...

Figure 3.6: Sketch of a power trace �le as it is generated by the MPARM
simulator. The �rst column contains the end time in nanoseconds of the
interval that was used to record the power consumption. Every other column
contains the power trace of one component.

To sample the power traces on a regular basis, a speci�c statistic method has
to be invoked periodically as outlined in Fig. 3.5(b). As several units might
operate at di�erent frequencies, we need to track progress in terms of absolute
time and not of simulation cycles. Recording the power traces on a regular
basis has the advantage that it does not a�ect the simulated execution time of
the application, thus does not in�uence the statistics. Furthermore, sampling
the power traces at a su�ciently small interval, that is, every few thousands
cycles, ensures that all relevant events are recorded. Disadvantages might
include the overhead in generating data when the sample interval is selected
to be much smaller than the time span between switches of the processor
state. As the periodic sampling method does not in�uence the statistics
and provides a higher resolution of the power consumption, we extended the
MPARM simulator with this periodic power sampling module. In Fig. 3.6,
an example of a power trace �le is sketched. The �rst column includes the
end time of the interval that was used to record the power consumption.
Every other column contains the power trace of one component.

Static Power Consumption. In Section 3.3.3, the temperature-
dependency on the power consumption will be discussed in detail. As will

� 24 �

3.2. FROM EXECUTION TO POWER TRACES

become apparent in the next section, the static power consumption highly
depends on the temperature of the system, while the dynamic power con-
sumption is temperature-independent. However, as the MPARM simulation
platform has no knowledge of the temperature, the static power consump-
tion can only be calculated for a reference temperature. Later, the thermal
analysis model is able to calculate the static power consumption for the
actual temperature of a component using the knowledge of the reference
temperature.

This requires that the transient evolution of the dynamic and the static power
is separately calculated by the MPARM virtual platform. Furthermore, as
the power model of the ARM core is the only power model that provides
support for the calculation of the static power consumption, we have ex-
tended all other power models to calculate their static energy consumption,
as well. For this purpose, the overall power consumption is split into dynamic
and static power consumption by using the ratio of the static power to the
dynamic power for a prede�ned temperature as explained in Section 3.3.3.

3.2.4 DOL Software Synthesis for MPARM

Recently, DOL has been extended to support the MPARM simulation plat-
form as target architecture [10]. Thus, applications coded as DOL speci�-
cations can automatically be executed on the MPARM virtual platform by
the step that we call automatic software synthesis. Software synthesis is
the generation of glue code to enable applications described at system-level
in DOL to use services provided by the runtime environment executed on
MPARM.

The fact that DOL is based on KPN model of computation has the advantage
that a runtime environment for the MPARM simulation platform only needs
to provide two basic functionalities: multi-processing for each separate core
and the software channel implementation. Related to the multi-processing
feature, as a process network is completely data-driven, a global clock and
thus, global scheduling is not required. Instead, for processes sharing the
same processor, local scheduling is provided by the multi-tasking feature of
the RTEMS Operating System (OS) [10]. Related to the implementation of
software channels, we distinguish between di�erent software channel com-
munication implementations for processes mapped onto the same tile, and
for processes mapped onto di�erent tiles. In addition to the classic message
passing approach using shared memory, the First-In First-Out (FIFO) bu�ers
can be allocated in the local scratchpad of the sender process as well as the
one of the receiver process or even be split into two parts allocated in both
the local scratchpads of the sender and receiver.

� 25 �

3.3. FROM POWER TRACES TO TEMPERATURE TRACES

Thermal Simulator

HotSpotLeakage Power

Simulation Runner

Power Trace
Reader

Temperature
Writer

MPARM Simulator

Dynamic Power Traces Static Power Traces

Figure 3.7: High-level block diagram of the thermal simulator used in the
thermal evaluation tool chain to compute the transient thermal behavior of
an application.

3.3 From Power Traces to Temperature Traces

The characterization of a system only on the basis of its power consumption
has two disadvantages: It does not capture local heating and its non-linear
behavior. Therefore, we need to calculate the temporal temperature evo-
lution of an application using a low-level thermal simulator. HotSpot [14],
a thermal analysis model developed by the University of Virginia, is used
to calculate the temperature evolution in our thermal evaluation tool chain.
This section details the thermal evaluation and is structured as follows: First,
an overview of the thermal simulator is given by introducing the various
modules of the thermal simulator. Afterwards, in Section 3.3.2, the used
thermal analysis model, that is, HotSpot, is presented in detail. Finally, the
temperature dependency on the static power is studied in Section 3.3.3.

3.3.1 Overview

The thermal simulator is after the synthesis tool and the low-level simulator,
the third and last part of the thermal evaluation tool chain and is used
to calculate the transient thermal behavior of an application. A high-level
overview of the thermal simulator is given in Fig. 3.7. The input of the
thermal simulator includes the power consumption, that is, the traces of
both the dynamic and static power consumption, the �oor-plan of the IC,
and the package con�guration. The MPARM simulator calculates the static
power traces for a reference temperature that is well-known by the thermal
simulator. This facilitates the thermal simulator to adjust the static power
consumption to the current temperature of the speci�c microelectronic com-
ponent. Besides HotSpot, the thermal analysis model to carry out most of the

� 26 �

3.3. FROM POWER TRACES TO TEMPERATURE TRACES

time, core_0, iCache_0, dCache_0, scratch_0, iScratch_0, ...

20000, 318.160, 318.154, 318.151, 318.151, 318.150, ...

40000, 318.168, 318.158, 318.152, 318.152, 318.150, ...

..., ..., ..., ..., ..., ..., ...

340000, 318.244, 318.208, 318.172, 318.172, 318.165, ...

360000, 318.247, 318.211, 318.173, 318.174, 318.166, ...

380000, 318.251, 318.215, 318.175, 318.175, 318.167, ...

400000, 318.254, 318.218, 318.177, 318.177, 318.168, ...

420000, 318.257, 318.221, 318.179, 318.178, 318.170, ...

440000, 318.260, 318.224, 318.180, 318.180, 318.171, ...

460000, 318.263, 318.227, 318.182, 318.181, 318.172, ...

480000, 318.266, 318.230, 318.184, 318.182, 318.173, ...

500000, 318.269, 318.234, 318.186, 318.184, 318.175, ...

520000, 318.272, 318.237, 318.187, 318.185, 318.176, ...

540000, 318.275, 318.241, 318.189, 318.187, 318.177, ...

560000, 318.277, 318.244, 318.191, 318.188, 318.178, ...

580000, 318.280, 318.247, 318.192, 318.189, 318.179, ...

600000, 318.282, 318.249, 318.194, 318.191, 318.181, ...

620000, 318.285, 318.252, 318.195, 318.192, 318.182, ...

Figure 3.8: Sketch of a temperature trace �le as it is generated by the tem-
perature writer of the thermal simulator. The �rst column contains the time
stamp in nanoseconds, and every other column contains the corresponding
temperature at that time. The time is provided in nanoseconds and the
temperature in Kelvin.

computations, four additional modules are required to completely integrate
the thermal simulator into the tool chain.

The Simulation Runner is responsible to control the thermal simulator. It
calls the modules to calculate the alteration of the temperature by one power
sample. The �rst module that the Simulation Runner calls, is the Power
Trace Reader. After verifying the consistency of the dynamic and static
power trace �les, it transforms the power trace values in a format readable
by HotSpot. The power traces are forwarded to the Leakage Power mod-
ule to adjust the static power consumption to the temperature calculated
in the previous iteration. The cumulative power consumption is calculated
by summing up the dynamic and static power traces and is used as input
of HotSpot. This thermal analysis model, described in detail in following
subsection, is used to calculate the alteration of the temperature for one
power sample. Finally, the Temperature Writer module writes the temporal
temperature behavior as temperature traces to an output �le for analyzing it
with external tools and informs the Simulation Runner that the current iter-
ation is completed. In Fig. 3.8, an example of such an output �le is sketched.

� 27 �

3.3. FROM POWER TRACES TO TEMPERATURE TRACES

Finally, after executing this loop for every power sample in order to generate
the temporal temperature behavior, the Simulation Runner calculates the
steady-state temperatures of the process network using the HotSpot library,
as well.

3.3.2 HotSpot

In this project, HotSpot [14, 37], a fast and accurate thermal analysis model
developed by the University of Virginia, is used to analyze the transient
temperature behavior of our system. Validated using �nite element simu-
lation [50], many thermal-aware research projects (e.g., [20�22, 25, 26]) use
HotSpot to calculate the thermal behavior of their system nowadays. This
subsection brie�y introduces the thermal model of HotSpot and illustrates
the use of a thermal analysis model in a thermal evaluation tool chain.

Overview. HotSpot uses the well-known duality between the heat transfer
and an electrical network [51] to calculate the temporal temperature evolu-
tion: the heat �ow inside a microelectronic device is analyzed by considering
a network of thermal resistances and capacitances. Using the �oor-plan and
the package con�guration, it calculates an adjacency matrix that represents
the RC circuit of the microelectronic components. The �oor-plan describes
the microarchitectural blocks and their layout. The package con�guration
de�nes the heatsink con�guration, the ambient temperature, and various
speci�c densities of the material used to manufacture the IC. In addition
to classic heatsinks often used in desktop computers, HotSpot also supports
natural convection in its newest version [37]. Natural convection is the pro-
cess in which the �uid motion is only generated by the density di�erence in
the �uid occurring due to temperature gradients.

HotSpot uses the transient power behavior as current sources in the equiv-
alent electrical circuit and obtains the transient thermal behavior of the
system by simulating the electrical circuit. By using the average power
consumption, HotSpot also supports the calculation of the steady-state tem-
perature. Although providing a simple interface to run as stand-alone ap-
plication, HotSpot is mainly a model or library that can be used by other
simulators to analyze the transient thermal behavior.

Model. The heat transfer can be investigated in analogy to an electrical
phenomenon: The heat �ow is modeled as current passing through a thermal
resistance and the temperature di�erence is equivalent to the voltage [50].
In Fig. 3.9, an equivalent network to model the heat transfer of a single node
is sketched. Thermal capacitances are used to model the time dependency
of the temperature. Then, the thermal-aware circuit can be characterized

� 28 �

3.3. FROM POWER TRACES TO TEMPERATURE TRACES

R
Th
er
m
al

C
Th
er
m
al

H
ea
t-
Fl
o
w

Figure 3.9: Equivalent RC network to model the heat transfer of a single
node [14].

by its exponential rise and fall times in analogy to its thermal RC time
constants. This duality between the heat transfer and an electrical circuit is
the background of the thermal model used in HotSpot, which is presented
in detail in the following.

The package used in most modern VLSI systems consists of several stacked
layers made of di�erent materials. Typical layers are the heatsink, the heat
spreader, and the silicon die. Furthermore, each individual layer is subdi-
vided into a number of blocks. Architecture-level units or regular grid cells
can be used as substructures of the blocks. Each block is represented by
one node in the RC circuit. The node is connected by a thermal resistance
to the node of the next layer. To model the heat �ow in lateral direction,
each node is connected by a lateral resistance to the nodes representing the
neighboring blocks in the same layer. The inter-layer model is outlined in
Fig. 3.10(a), which sketches the side view of the stacked layer model. The
two layers n and n+1 are connected by a thermal resistance Rvertical. A top

Rlateral

Rvertical

Rlateral

Rlateral Rlateral

Layer n+1

Layer n

(a) Side view of the stacked layer model
of HotSpot. The two layers n and n +
1 are connected by a thermal resistance
Rvertical.

Rlateral

Rlateral

Rlateral

Rlateral

Rlateral

Rlateral

Rlateral

Rlateral

Rlateral

RlateralRlateral

Rlateral

Rlateral

(b) Top view of one layer of the thermal-
model used in HotSpot. Each block is con-
nected with its neighboring blocks by a lat-
eral resistance.

Figure 3.10: Sketch of the stacked layer model used by HotSpot.

� 29 �

3.3. FROM POWER TRACES TO TEMPERATURE TRACES

view of a single layer is given in Fig. 3.10(b). Three blocks are connected to
each other by using lateral resistances.

A detailed description of calculating the values of the resistances and ca-
pacitances of a thermal RC model is given in [14], but the most important
formulas are summarized next. The vertical thermal resistance can be com-
puted by

Rvertical =
t

k ·A
(3.3)

where t is the thickness, k the thermal conductivity of the layer, and A the
cross-sectional area of the block. To calculate the lateral thermal resistance,
one must account the heat spreading in lateral direction. Therefore, the
resistance can be considered as the spreading/constriction thermal resistance
of the neighboring part within a layer to that speci�c block [14]. A thermal
capacitance is used to connect each node to the ground. The value of the
thermal capacitance is given by

Cth = α · cp · ρ · t ·A (3.4)

where α ≈ 0.5 is a scaling factor [14], cp and ρ are the speci�c heat and
density of the material, respectively. Furthermore, the heatsink-to-air con-
vection thermal resistance is modeled in HotSpot as

Rconvection =
1

h ·A
(3.5)

with h the heat transfer coe�cient and A the surface area. Connecting all
these resistances and capacitances results in a RC network that describes
the transient thermal behavior of a modern IC.

3.3.3 Leakage Power

Nowadays, the power consumption is one of the biggest challenges in the
design and production of CMOS devices and two power sources are dis-
tinguished: (1) dynamic power, that comes from charging and discharging
various load capacitances, and (2) static power, also called leakage power,
whose main source is the leakage current. As recently as a few years ago,
it has been assumed that the only signi�cant source of power consumption
is the dynamic power. But by shrinking the processor's technology below
100 nanometers, the supply voltage is reduced and less dynamic power is
generated. This causes that the static power begins to dominate the power
consumption of modern CMOS devices [52].

Unlike the dynamic power, the static power of a CMOS device highly depends
on its temperature. Fallah et al. [53] have shown that the static power

� 30 �

3.3. FROM POWER TRACES TO TEMPERATURE TRACES

consumption of a 15 mm die fabricated in a standard 0.1µm technology is
only 6% of its dynamic power consumption at 30 ◦C, but 33% at 80 ◦C and
56% at 110 ◦C. Thus, to accurately estimate the power consumption of a
modern multi-processor system, the temperature-dependency of the static
power has to be taken into account. The mechanism used in the thermal
simulator to adjust the static power consumption to the system temperature
is presented in detail in the following.

Power Consumption of CMOS Devices. The dynamic power depends
on the total capacitance load C of all gates, the transistors supply voltage
V , and the operational frequency f and can be expressed by

PDyn = C · V 2 · f. (3.6)

The main source of the leakage power is the leakage current ILeak, which
leaks through the transistors even if they are turned o�. Thus, the total
power consumption can be expressed by the sum of the dynamic and leakage
power:

PTot = PDyn + PLeak = C · V 2 · f + V · ILeak (3.7)

where Pdyn is expressed by (3.6). The total leakage current in a CMOS
transistor results from four di�erent sources [53]: the reverse-biased junction
leakage, the gate induced drain leakage, the gate direct-tunneling leakage
and, the subthreshold leakage. The later is the dominant component of
the leakage power [53] as it is much larger than the other leakage current
components. Thus, the total leakage current can be expressed as

ILeak ≈ ISub. (3.8)

The subthreshold leakage is also called weak inversion leakage and can be
computed by the following equation, again borrowed from [53]:

ISub =
W

L
· µ · ν2

th · Csth · e
VGS−VT−Voff

η·νth ·
(

1− e
VDS
νth

)
(3.9)

where W is the transistor's width and L its length, µ denotes the carrier
mobility, and νth = k·T

q the thermal voltage at temperature T , where k is
the Boltzmann constant and q is the charge of an electron. Furthermore,
the summation of the depletion region capacitance and the interface trap
capacitance is denoted as Csth, η is the subthreshold swing coe�cient, VGS
is the gate voltage, VT denotes the threshold voltage, and Vo� is an empirical
BSIM3 parameter1.

1BSIM3 is a MOSFET SPICE model developed by the University of California, Berke-
ley that is used for circuit simulation and CMOS technology development [54].

� 31 �

3.3. FROM POWER TRACES TO TEMPERATURE TRACES

Temperature Dependent Leakage Power As recently as a few years
ago, the leakage power was often neglected or assumed to have a small,
constant value. However, recently, various methods have been developed to
approximate the leakage power as it becomes the dominant factor in prospec-
tive CMOS devices. Heo et al. [55] �rst introduced a simple exponential
model for the leakage power:

PLeak = PLeak,0 · eβ(Tj−T0) (3.10)

where Pleak,0 denotes the leakage power at temperature T0, and β is a tech-
nology parameter.

By using the Taylor series expansion of the subthreshold leakage current, Liu
et al. [56] expressed the leakage power as a linear function of the tempera-
ture. They could show that the linear model is fairly accurate in the normal
operating temperature range of modern ICs. As a linear model has various
advantages in theoretical research, the model is used in various other publi-
cations like [15, 25]. A di�erent approach is used in [36]. By demonstrating
that the exponential term eVDS/νth in (3.9) is negligible, they formulated the
leakage power as a function with a quadratic dependency of temperature.

In this project, we are mainly interested in guaranteeing that the critical
temperature of an IC is not exceeded as a discarding of this limit might result
in a reduction of the clock frequency and real-time constraints cannot be met
any more. Thus, our leakage power model should be applicable to all devices
of our architecture and its calculation speed should be pretty fast in order
to not excessively increase the execution time of our simulation. On the one
hand, both the exponential method from [55] as well as the linear approach
from [56] might not provide accurate temperatures at the boundaries of our
temperature range. However, the upper bound of the temperature range is
the most interesting region in the design space exploration. On the other
hand, leakage power simulators like [57] provide accurate results for almost
all temperature ranges but are often only applicable to speci�c devices like
the cache.

In this project, we will use the method presented in [50, 58] to calculate the
ratio between the dynamic and the leakage power as it is a good trade-o�
between speed and accuracy. A detailed explanation and derivation of the
method can be found in [58] while the following paragraph gives a short
overview of the method.

Leakage Power Model. Without introducing a signi�cant error, we �rst
assume that the supply voltage is much greater than the threshold voltage.
After grouping the constants to a technology parameter, the subthreshold
current from (3.9) can be rewritten as

ISub = K1 · T 2 · e
q
kη

(
VGS−VT−Vo�

T

)
(3.11)

� 32 �

3.3. FROM POWER TRACES TO TEMPERATURE TRACES

where K1 is an empirical constant depending on the technology. Following
the explanations in [58], we can express the subthreshold swing coe�cient η
as

η = S · q

K · T · ln(10)
(3.12)

where S is called the subthreshold slope. Then, the threshold voltage can
be calculated by using the leakage current in its edge case:

VT = η · k · T
q
· ln
(
J0

I0

)
(3.13)

where J0 is called the saturation drive current and denotes the leakage cur-
rent under the condition VGS = VT and I0 is the subthreshold leakage cur-
rent, that is, the leakage current when VGS = 0.

By assuming that the transistor is o� and combining the technology-
dependent voltages to a constant, the leakage current can be expressed as

ILeak = K1 · T 2 · e−
K2
T (3.14)

where

K2 =
q

k · η
· (VT + Vo�) . (3.15)

Using the supply voltage V and (3.14), the total leakage power can be com-
puted by

PLeak = ILeak · V = K1 · V · T 2 · e−
K2
T . (3.16)

The dynamic power remains constant with respect to the temperature, thus
the ratio RT of the leakage power to the dynamic power at temperature T
can be expressed by

RT =
R0 · PLeak,T
PLeak,T0

(3.17)

where T0 is the reference temperature, PLeak,T0 the leakage power at tem-
perature T0 and R0 denotes the corresponding ratio. Using (3.16), the above
formula can be expressed as

RT =
R0

V0 · T 2
0

· e
K2
T0 · V · T 2 · e

−K2
T (3.18)

where V0 is the nominal voltage.

This ratio between the leakage power and the dynamic power is used in
the thermal interface to calculate the temperature-dependent leakage power.

� 33 �

3.4. SUMMARY

We assume to have a constant subthreshold slope of 85 mV/dec [58] and
calculate the ratio between the saturation drive current and subthreshold
leakage current using the values from the ITRS report for process integration,
devices and structures [59]. The empirical BSIM3 parameter Vo� is de�ned
in [60] and R0 = 10 % is used as ratio at the reference temperature 85 ◦C [50].
Note that a 130 nm technology generation is assumed for all constants as
the energy consumption used in the MPARM simulator are calculated with
respect to this technology [31].

3.4 Summary

As the areal density of the heat dissipation increases rapidly in modern
2D/3D ICs, the thermal analysis of candidate mappings becomes indispens-
able in the design space exploration of a modern multi-processor streaming
application. Hot spots might cause a processor to reduce its clock frequency
and real-time constraints cannot be guaranteed any more. As the power
characteristic of an application does not capture localized heating as well
as its non-linear behavior, the temporal temperature evolution has to be
analyzed.

In this chapter, a model of a thermal evaluation tool chain has been proposed.
Three di�erent tools are required to accurately model the thermal behavior of
a multi-processor streaming application speci�ed in a system-level language.

In the �rst step, a synthesis tool generates glue code that connects the appli-
cation described at system-level with the services provided by the runtime
environment of the low-level platform. In the second step, the transient
power behavior of the system is determined by simulating the application in
a low-level simulation platform. Finally, the temporal temperature evolution
of the streaming application is calculated in the thermal simulator. After
adjusting the static power consumption to the current temperature of the
system, a thermal analysis model is used to perform the actual calculation
of the temperature alteration. To show the viability of our proposed ther-
mal evaluation tool chain, an implementation with the DOL framework, the
MPARM simulation platform, and the HotSpot thermal analysis model is
discussed.

� 34 �

4
System-Level Thermal Emulation

The process of determining the optimal mapping of a complex multi-
processor streaming application often requires the evaluation of thousands
of design alternatives. Therefore, the method for the timing and thermal
evaluation of the design alternatives has a high in�uence on the execution
time of the design space exploration. The use of the thermal evaluation tool
chain presented in the last chapter seems inadequate as even the evaluation
of a single design suggestion might take more than 24 hours as shown in [10].

In this chapter, we answer the question how to represent the thermal be-
havior of each hardware component when the system speci�cation, that is,
the application, architecture, and mapping speci�cation, and the required
timing and thermal parameters are given. For this purpose, we introduce
the System Level Thermal Emulator (SLTE), a compositional temperature
evaluation model for multi-processor streaming applications. The model
consists of two parts. First, the application scheduling and the correspond-
ing power consumption of the system are determined by a segment-based
power annotation model. Afterwards, the temporal temperature evolution
of the system is computed by an extended thermal simulator that performs
compute-intensive calculations during the model calibration.

First, in Section 4.1, the considered problem is stated, along with an overview
of the various abstraction levels for the thermal analysis. Afterwards, in Sec-
tion 4.2, the proposed approach for the power model is presented in detail. A
method to partly solve the thermal di�erential equation system in advanced
is presented in Section 4.3 and �nally, a summary concludes the chapter.

� 35 �

4.1. OVERVIEW

4.1 Overview

An e�cient implementation of the design space exploration to �nd a time and
thermal optimal mapping between a multi-processor streaming application
and a distributed architecture requires the use of fast and accurate evaluation
methods for timing and thermal analysis. Even though multiple approaches
for measuring the timing behavior of a system have been proposed, there
exists a lack of methods to analyze the thermal behavior of an application
in an e�cient manner. After giving a formal statement of the considered
problem, the proposed compositional temperature evaluation model is sum-
marized in this section. Its remainder is structured as follows: Section 4.1.1
de�nes the discussed problem while Section 4.1.2 introduces the methodol-
ogy of compositional performance evaluation. Finally, in Section 4.1.3, the
various levels of abstraction in the design of an abstract thermal model are
summarized.

4.1.1 Problem Statement

Given the speci�cation of a parallel application and a multi-core large scale
architecture, we address the problem of �nding the mapping, that is, the
binding and scheduling of the application onto the architecture in a time
and thermal optimal manner. Both the binding of application elements to
computation resources as well as the scheduling policies and their parame-
ters for each computation and communication resources are varied until the
optimal mapping is found.

In order to reduce the number of binding and scheduling combinations that
need to be analyzed in the design space exploration, evolutionary algorithm
based approaches have been proposed as feasible and e�ective solutions [12].
Fast and accurate evaluation methods for system performance and temper-
ature are key ingredients of this mapping optimization. Recently, many fast
and accurate evaluation methods for the system performance are proposed,
such as [29, 61, 62]. Consequently, in this project, we aim to develop a fast
and accurate evaluation method for the temperature.

The use of a low-level simulator to measure the transient temperature evolu-
tion of an application is one possible evaluation method. Chapter 3 discusses
this concept by using a low-level simulation platform in combination with a
thermal analysis model. While providing accurate results for the transient
power and temperature behavior of an application, the simulation method
has the disadvantage of low evaluation speed. Huang et al. [10] have shown
that simulating the MPEG-2 decoder [63] on the MPARM platform with �ve
parallel tiles may take more than 5000 times its execution time. However,
this does not even include the thermal analysis model. Thus, the use of

� 36 �

4.1. OVERVIEW

Compositional Power Evaluation

Thermal Simulator

Application
Specification

Architecture
Specification

Mapping
Specification

Calibration
Data

Thermal Specification

Figure 4.1: High-level block diagram of a compositional temperature evalu-
ation model for extracting thermal characteristics of a many-core system.

low-level simulation methods for the computation of the optimal mapping in
the design space exploration is infeasible and faster estimation methods are
required.

Starting in this chapter, we discuss the problem of generating and calibrat-
ing a compositional temperature analysis model for accurate and fast design
space exploration. We aim to achieve an evaluation time that is faster then
the execution time of the corresponding application on the simulated plat-
form.

4.1.2 Compositional Temperature Evaluation

Compositional evaluation models have been shown to be a good choice for
performance analysis by providing accurate and fast estimations of the per-
formance characteristics of a multi-processor system [29]. In compositional
evaluation, subsystems are individually characterized and analyzed by com-
bining pre-characterized evaluation components. When using compositional
evaluation models for temperature characterization, a piece of software exe-
cuting on a speci�c processor might be modeled for instance by its Average
Case Execution Time (ACET) and the maximum power consumption of
the processors subcomponents. A compositional evaluation model has the
advantage that the characterization of each individual component needs to
be performed only once. Afterwards, components can be processed as black
boxes and combined to build the system.

Fig. 4.1 provides a high-level overview of the compositional temperature
evaluation model proposed in this project. In addition to the system spec-
i�cation, that is, the application, architecture, and mapping speci�cation,

� 37 �

4.1. OVERVIEW

Accuracy

Performance

Low High

Fa
st

Sl
o

w

Cycle Accurate Simulator

Instruction Set Simulator

Segment-Based Power Annotation Model

Process-Based Power Annotation Model

Component-Based Power Annotation Model

Figure 4.2: Overview of various levels of abstraction of designing a power
evaluation model.

calibration data is used as input to the temperature evaluation model. The
calibration data include thermal and timing parameters of the application.
The process of performing the model calibration is presented in detail in
Chapter 5, while various approaches for generating a thermal analysis model
are discussed in this chapter.

4.1.3 Levels of Abstraction

Thermal evaluation models generated from synthesizable speci�cations can
be designed at di�erent levels of abstractions, in a trade-o� between the
model accuracy and performance. To increase the performance of an evalua-
tion model, the speci�c behavior and characteristics of a system are required
to be abstracted out. In the area of compositional evaluation, the level of
abstraction is also in a strict correlation with the acquisition of calibration
data, as di�erent characteristics might be required depending on the gran-
ularity of the system. In this model, we mainly concentrate on abstracting
the power consumption of an application.

In Fig. 4.2, various power consumption models are outlined and compared
with respect to performance versus accuracy. While the use of a cycle ac-
curate simulator and ISS promises relatively accurate power estimates, they
su�er from low execution time. Therefore, they are mostly used at low-level
for validating the �nal design and to extract performance data. On the
other hand, compositional evaluation models are used at system-level where
various designs have to be explored and compared, and fast decisions have

� 38 �

4.2. ABSTRACT POWER EVALUATION MODELS

to be taken. Based on the ideas of a compositional evaluation model, the
segment-based power annotation model proposed in Section 4.2.3 to compute
the power consumption of an application, o�ers a good trade-o� between per-
formance and speed. The simulation speed can further be increased either
using a process-based or even a component-based power annotation model,
as presented in Section 4.2.2.

4.2 Abstract Power Evaluation Models

In Section 4.1, we have shown that compositional evaluation models seem
to be a good choice to model the transient power consumption of a multi-
processor system at system-level. By abstracting out the power characteris-
tics of a system as being constant for a speci�c time interval, the transient
power consumption of the system can be calculated much faster than using
a low-level simulator. While the concepts of the proposed models can be ap-
plied to any distributed system, we focus us in this chapter to applications
modeled as KPN that are executed on distributed memory architectures.

In the following, three models of various granularities to approximate the
power consumption of a multi-processor streaming application are intro-
duced. This ranges from assigning a constant power value to each com-
ponent, to segmenting a process in various small sequences of instructions,
and each segment being annotated with the corresponding power and timing
characteristics. Note that we are only interested in estimating the dynamic
power consumption of a system. In this project we assume that the static
power consumption of a component is independent of the instructions that
are executed on the corresponding unit. This section is organized as follows:
First, in Section 4.2.1, the problem is formally described. Afterwards, in
Section 4.2.2, two simple models with block-based power annotation are pre-
sented, while �nally, in Section 4.2.3, a power annotation model is presented
where all processes are segmented in various small sets of instructions.

4.2.1 System Speci�cation and Problem Formalization

As a general evaluation model does not exist, we restrict our model to con-
sider KPN based applications executing on a distributed memory architec-
ture. Although this class of systems is similar to the ones described in
Chapter 3, we �rst formally describe this class of systems as well as the
considered problem to establish a common language.

Formal System Speci�cation. While Section 3.1.2 gives an overview of
our high-level speci�cations of the system, this section introduces a formal
de�nition of the system1.

1An overview of all symbols used in this section is given in Appendix C.

� 39 �

4.2. ABSTRACT POWER EVALUATION MODELS

� Application: We represent a KPN application as a directed, connected
graph A = (V,Q). Every process v ∈ V represents a node in the graph.
Edges are used to model the unbounded FIFO channels q ∈ Q that are
used by processes to communicate.

� Architecture: The architecture T is assumed to be a homogenous multi-
processor system with distributed memory architecture. We call a
heterogeneous processor subsystem a tile θ ∈ Θ. The architecture
T consists of totally n homogenous tiles θi, i ∈ {1, . . . , n}. Each tile
θi has m components cj,i, j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}, cj,i is the jth
component of the ith tile, and o shared components sck, k ∈ {1, . . . , o}.

� Mapping: The mapping of the application onto the architecture con-
sists of the binding b and the scheduling information s. The binding
can be represented by a vector b = (b1; . . . ; b|V |) ∈ {1, . . . , |T |}|V | where
bi = k if process vi is assigned to tile tk.

� Power Model: Given an application speci�cation A and an archi-
tecture speci�cation T , the power consumption of the component c
when performing the process v is Pc. The power consumption of
a tile θ with totally n components can be represented as a vector
P (t) = (P1(t); . . . ;Pn(t)).

� Calibration Data: The calibration data is represented by a set ψ =
(ψTime, ψThermal), where ψTime are timing parameters and ψThermal
thermal parameters.

Formal Problem Statement. Using the notations introduced above, the
problem of estimating the power consumption can be stated as follows:

Given a system speci�cation S = {A, T , (b; s)} consisting of an application
speci�cation A, an architecture speci�cation T , and a mapping speci�cation
(b; s), generate the transient power characterization P (t) of the system by
using some pre-characterized calibration data ψ.

4.2.2 Block-Based Power Annotation Models

Generating an accurate power annotation model is a nontrivial task as both
the thermal and temporal characterization of the system have to be con-
sidered. To illustrate the use of a compositional evaluation model, two
simple power annotation models are presented in this subsection, namely
the component-based and process-based power annotation model. While
the former does not consider timing parameters, the later includes timing
parameters to re�ne a compositional evaluation model.

� 40 �

4.2. ABSTRACT POWER EVALUATION MODELS

Component-Based Power Annotation Model. First, a really simple
model to perform thermal evaluation during design space exploration is in-
troduced. The power consumption is computed in two steps. In the �rst
step, a constant power value is calculated for every type of component. In
the second step, the system speci�cations and the power values are combined
to calculate the transient power behavior of the system by setting the power
consumption of each individual component to the corresponding power value.
For example, having a system with n cores, their transient power behavior
can be expressed as

Pcore1(t) = Pcore2(t) = . . . = Pcoren(t) = Pcore = const ∀t. (4.1)

As the power values of the components only depend on the thermal param-
eters of the system but not on the mapping, the transient power behavior is
the same for all mappings and therefore, the model is trivial and cannot be
used to make mapping decisions in the design space exploration. However,
this model can be used to quickly verify whether thermal analysis is necessary
in the design space exploration or all design alternatives automatically ful�ll
the thermal requirements of the system, that is, the critical temperature of
a component is never exceeded. With the peak power consumption of the
components as power metrics, the models calculates an upper bound of the
transient power behavior of the system and the following equation is always
ful�lled:

Psystem, c(t) ≤ Pmodel, c(t) ∀t, c (4.2)

where Psystem, c(t) is the actual transient power consumption of a component
c and Pmodel, c(t) is the estimated upper bound on the transient power con-
sumption of the component c using the component-based power annotation
model. Obviously, this outcome can be used to calculate an upper bound of
the transient temperature trace of the system, that is, the predicted temper-
ature will always be equal or higher as the actual temperature of the system.
Whenever all predicted temperatures are lower than the critical tempera-
ture, no thermal evaluation is required for this multi-processor streaming
application.

As an example, the transient power behavior of a system with two homoge-
nous tiles is outlined in Fig. 4.3. The core consumes 10 mW and the cache
7.5 mW. In the analyzed system, process B and E are mapped to tile 0 while
process A, C, and D are mapped to tile 1. In this naive model, obviously,
the power consumption of every core is always 10 mW and the one of the
cache 7.5 mW.

Process-Based Power Annotation Model. It is well known that the
power consumption of a component depends on the actual instructions that

� 41 �

4.2. ABSTRACT POWER EVALUATION MODELS

t [ms]

P [mW]

5

10

15

Core 1

t [ms]

P [mW]

5

10

15

Cache 1

t [ms]

P [mW]

5

10

15

Core 0

t [ms]

P [mW]

5

10

15

Cache 0

Process A Process D Process A Process C

Process B Process BProcess E Process E

Figure 4.3: Example of the component-based power annotation model using
a system with two homogenous tiles. The transient power behavior of every
core and cache is constant all the times.

are executed. As all processes of a KPN often execute di�erent instructions,
the power characteristics of the processes di�er from each other. To tackle
this issue, the process-based power annotation model di�ers between indi-
vidual processes to get a more accurate estimation of the transient power
behavior of a system than the naive component-based model.

Similar to the component-based power annotation model, the generation of
the transient power evolution is split into two steps. In the �rst step, there
is a constant power value calculated for each process and type of component
using the thermal parameters of the calibration data. In the second step, a
process-based scheduling of the system is annotated with the power values
to calculate the transient power characteristic. As an example, given that

� 42 �

4.2. ABSTRACT POWER EVALUATION MODELS

processes A and C are mapped to core i, the transient power behavior of
core i can be expressed as

Pcorei(t) =

PA, core(t) = const1 t ∈ tA
PC, core(t) = const2 t ∈ tC
0 else

(4.3)

where PA, core(t) and PC, core(t) denote the power consumption of a core when
processes A and C are executed for time spans tA and tC , respectively.

Compared to the component-based power annotation model, this model re-
quires timing parameters to calculate the execution order of the individual
processes. Trace-based simulation, as it is presented in [64], is one option to
calculate the execution order of processes.

An example of the power traces generated by the process-based power anno-
tation model is given in Fig. 4.4. The architecture consists of two homoge-
nous tiles. Process B and E are mapped to tile 0, and process A, C and D
are mapped to tile 1. The individual power values of di�erent processes are
outlined in Table 4.1.

Compared to the component-based power annotation model, the output of
the process-based power annotation model is a closer estimation of the real
transient power consumption, but it is also much slower as the scheduling of
processes has to be calculated. Note that the power consumption estimated
by this model will never be an upper bound of the power consumption, as it
is de�ned by (4.2).

Table 4.1: Power values used in the example of the process-based power
annotation model illustrated in Fig. 4.4.

Process Core Cache

A 10.0 mW 7.5 mW
B 5.0 mW 15.0 mW
C 2.5 mW 5.0 mW
D 15.0 mW 2.5 mW
E 12.5 mW 12.5 mW

4.2.3 Segment-Based Power Annotation Model

The process-based power annotation model already considers di�erent power
consumption characteristics of processes, but it does not distinguish between
the various types of operations which might have di�erent power consump-
tion characteristics. Consider, for example, that not only the power con-
sumption of the computation units a�ects the total power consumption, but

� 43 �

4.2. ABSTRACT POWER EVALUATION MODELS

t [ms]

P [mW]

5

10

15

Core 1

t [ms]

P [mW]

5

10

15

Cache 1

t [ms]

P [mW]

5

10

15

Core 0

t [ms]

P [mW]

5

10

15

Cache 0

Process A Process D Process A Process C

Process B Process BProcess E Process E

Figure 4.4: Example of the process-based power annotation model using a
system with two homogenous tiles. The transient power consumption of a
single process is constant.

also the one of the memories. In the prototype implementation of DOL for
the MPARM virtual platform, the data scratchpad is only accessed during
executing the read or write methods and therefore, the process only con-
sumes dynamic power if it executes one of these methods.

In this subsection, the segment-based power annotation model is introduced.
To address the above issues, it di�erentiates between various types of opera-
tions within a process. We use this model in SLTE to to estimate the power
consumption. After introducing the notation of a segment, a brief overview of
the power model is given. Afterwards, the application scheduling generation
and power annotation are presented. Finally, the limitations of the model
are listed and its value for the design space exploration is discussed.

� 44 �

4.2. ABSTRACT POWER EVALUATION MODELS

Segments. The core idea of the segment-based power annotation model
is to split a process in various segments of di�erent types and individually
annotate these segments with corresponding power values. Thus, before
explaining the model in detail, we need to de�ne a segment as well as the
types of segments that are distinguished in this thesis.

A segment sj,v = {i1,j , i2,j , . . . , ik,j} is a logical grouping of consecutive in-
structions i within a process v and has the following properties:

� either no channel or exactly one channel is accessed during executing
a segment,

� a segment consists of at least one instruction:

sj,v = {i1,j , i2,j , . . . , ik,j}, k ≥ 1 (4.4)

� a segment that accesses a channel consists of exactly one instruction:

∃il,j ∈ sj,v access a channel ⇒ sj,v = {il,j} (4.5)

� the collection of all segments Sv = {s1,v, s2,v, . . . , sl,v} of a process v
contains all instructions Iv of this process exactly once, thus Sv is an
exact cover of Iv.

When comparing this de�nition of a segment with the de�nition of the KPN
given in Section 4.2.1, three di�erent types of segments can be identi�ed:

� Computing : The segment consists of instructions that do not access a
channel:

T(sj,v) = Computing

⇔ im,j does not access a channel ∀m ∈ {1 . . . k}
(4.6)

� Reading : The segment only consists of a read instruction:

T(sj,v) = Reading⇔ i1,j is a read instruction (4.7)

� Writing : The segment only consists of a write instruction:

T(sj,v) = Writing ⇔ i1,j is a write instruction (4.8)

Note that the process is only interacting with other processes in the reading
or writing segments and therefore, a process only accesses the resources from
a tile other than its own tile during executing segments of these types. To
illustrate the principle of segments, the fire method of the simple process
whose source code is outlined in Listing 4.1, is analyzed. The method reads

� 45 �

4.2. ABSTRACT POWER EVALUATION MODELS

Listing 4.1: Source code sketch of the fire method of a typical process as
used in a process network. In the method, a value is read from an input
port, squared and �nally written to the output port. Using the de�nition
of a segment as given in Section 4.2.3, the method can be divided into �ve
segments.

1 int fire() {

2 float i = 0; // computing , segment 1

3 float j = 0; // computing , segment 1

4

5 read((void*)PORT_IN , &i); // reading , segment 2

6 j = i*i; // computing , segment 3

7 write((void*)PORT_OUT , &j); // writing , segment 4

8

9 return 0; // computing , segment 5

10 }

a value from an input port, squares it, and �nally writes it to the output
port. In this example, one can di�erentiate between �ve segments. The �rst
segment, an executing segment, spans from Line 2 to Line 3. The second
segment is of type reading and includes only read instruction on Line 5. The
next segment includes Line 6, and therefore, it is of type computing, while
the fourth segment is of type writing and contains the write instruction on
Line 7. Finally, the last segment is the return statement on Line 9 and
is of the type computing. As all of these �ve segments perform di�erent
operations, it is likely that all segments have a di�erent power consumption.

Overview of the Model. After giving the de�nition of a segment,
the segment-based power annotation model is brie�y introduced next. In
Fig. 4.5, a high-level overview of the model is given. The inputs to the
segment-based power annotation model are the system speci�cation, that is,
the application, architecture, and mapping speci�cation. Furthermore, the
calibration data extracted from the low-level simulation is used to annotate
the model with thermal and timing parameters. The Application Schedule
Creator uses the system information and the timing parameters to compute a
schedule of the system. Finally, in the Power Annotation block, the schedul-
ing information is combined with the thermal parameters provided by the
calibration data. The result of this block is the estimated transient power
consumption of the system, also called power traces.

In Fig. 4.6, an example of the segment-based power annotation model is
given. The system is similar to the one used in Section 4.2.2, but processes
are separated in segments that have individual power consumptions.

� 46 �

4.2. ABSTRACT POWER EVALUATION MODELS

Application Schedule
Creation

Power Annotation

Application
Specification

Architecture
Specification

Mapping
Specification

Calibration Data

Thermal Parameters ψThermal

Timing Parameters ψTime

Power Traces

Figure 4.5: High-level overview of the segment-based power annotation
model.

Application Schedule. The transient power trace is created from two
inputs, namely the thermal parameters and the scheduling information of
the system. The scheduling information is represented as one timetable per
tile that describes the temporal execution order of the processes bound to
the corresponding tile. In the following, the Application Schedule Creator,
whose output is the scheduling information, is discussed. The application
scheduler of the process-based power annotation model is much simpler as
the one introduced for this model, mainly as the knowledge of read and write
events is missing.

Given a KPN A = (V,Q) as de�ned in Section 4.2.1, the timetable for tile γ
is a sequence of segments θγ with the following properties:

� A timetable θγ contains only segments that are mapped to its tile γ:

sj,v ∈ θγ ⇔ bv = γ. (4.9)

.

� The timetable θγ considers all segments mapped to the tile γ:

⋃
∀γ∈Γ

θγ =
⋃
∀v∈V

 ⋃
∀s∈Sv

s

 . (4.10)

� The scheduling rules and policies of the modeled architecture are taken
into account in the timetable.

� If no segment can be executed, the idle process Pidle is scheduled.

� 47 �

4.2. ABSTRACT POWER EVALUATION MODELS

t [ms]

P [mW]

5

10

15

Core 1

t [ms]

P [mW]

5

10

15

Cache 1

t [ms]

P [mW]

5

10

15

Core 0

t [ms]

P [mW]

5

10

15

Cache 0

Process A Process D Process A Process C

Process B Process BProcess E Process E

Segment 1 Segment 1 Segment 2 Segment 1 Segment 2 Seg. 2 Segment 1

Seg. 1 Segment 2 Segment 1 Segment 2 Seg. 1 Seg. 2 Segment 1

Figure 4.6: Example to illustrate the principle of the segment-based power
annotation model using a system of two homogenous tiles.

In Table 4.2, an example of an application schedule is outlined. The archi-
tecture consists of totally three tiles, and each column contains the timetable
of one single tile.

The level of abstraction used to create the scheduling information is a trade-
o� between accuracy and execution speed. An ISS provides high-accuracy,
but is most probably too slow for design space exploration. A higher eval-
uation speed can be achieved by using a trace-based simulator. Recently,
various implementations of a trace-based simulator for KPNs have been pro-
posed in [64�66]. Nonetheless, their performance is often too slow for design
space exploration and less accurate simulators are required. In [67], an Syn-
chronous Data�ow (SDF) simulator is proposed to reduce the evaluation

� 48 �

4.2. ABSTRACT POWER EVALUATION MODELS

Table 4.2: Example of an application schedule as it is created by the Appli-
cation Scheduler Creator.

Time Tile γ1 Tile γ2 Tile γ3

5 ms
s1,p2

s1,p1 s1,p410 ms
s2,p115 ms

s2,p420 ms
s1,p325 ms s1,p5

30 ms s2,p3

s2,p5

s3,p4

35 ms
Idle

Idle40 ms
45 ms s2,p3 s3,p150 ms s2,p2 s3,p4

time even more. In the current version of our prototype implementation, an
SDF simulator is implemented (see Section 6.2.1), as well.

Power Annotation. The Application Schedule Creator computes a time-
table θ for each tile γ ∈ Γ. This scheduling information is forwarded to the
power annotation block, where it is combined with the thermal parameters
ψThermal to estimate the transient power consumption of the system.

Given a system speci�cation S = {A, T , (b, s)} as de�ned in Section 4.2.1,
the thermal parameters ψThermal are de�ned as a mapping of a segment s to
a collection of power values. The exact number of power values contained in
this collection depends on the type of segment, but it always includes:

� A power value for each type of component c, which represents the
power consumption of the component when the segment s is executed
on the tile γ of this component.

� A power value for each type of component cp, which might be involved
in a communication step as a peer resource. This value represents the
power consumption of the component when the segment s accesses the
component c of tile γc from tile γ other than γc.

� A power value for each type of shared component sc, which is involved
in the execution of the segment s.

We assume that the architecture consists of homogenous tiles, each with n
components c, as it is the case for the target platform of this project, namely
the MPARM virtual platform. Additionally, we assume that m components
are involved as peer resources in the communication segments and that the

� 49 �

4.2. ABSTRACT POWER EVALUATION MODELS

P(t)

v1 is running

P1

P2

P1 + P2

t1 t2 t3 t4 t5 t6 t7 t8 t9

v2 is running

time

Figure 4.7: Example of power annotation when more than two processes
concurrently access a shared resource.

architecture is composed of o shared components sc. Then, the thermal
parameters of the calibration data can be expressed by

ψThermal : s 7→ {c1, . . . , cn, cp,1, . . . , cp,m, sc1, . . . , sco}. (4.11)

In heterogeneous systems, the de�nition of the thermal parameters remains
the same with the only exception that more components have to be taken
into account. Using the de�nition of the thermal parameters given in (4.11),
the power annotation can be de�ned as

(θγ , ψThermal) 7→ Pγ(t) (4.12)

where Pγ(t) is the transient power behavior of tile γ. Obviously, the power
annotation of the components that are not shared between multiple tiles or
involved in any communication transaction is a simple one-way assignment.
However, the power annotation of all other components requires a slightly
more di�cult approach. Their total power Pc(t) is de�ned as

Pc(t) =
∑
s∈Sc

Ps,c (4.13)

where Sc is the collection of all segments that might access the component
c, either as a local component or as a peer component and Ps,c is the power
consumption of c when it is accessed by s.

The core idea of the power annotation of shared resources is outlined in
Fig. 4.7. In this example, two processes, both running concurrently on dif-
ferent tiles, access the same shared resource. Process v1 accesses it from time
t2 to time t6 while process v2 accesses the same resource from t4 to t8. This
scenario corresponds for instance to the case when p1 writes a huge amount
of data to a scratchpad while process v2 concurrently starts to read the data

� 50 �

4.2. ABSTRACT POWER EVALUATION MODELS

from the same scratchpad. From t2 to t6, the total power consumption is
only the power consumption of process v1 while between t4 and t6, the power
consumption is the sum of the power consumption of both processes. Finally,
between t6 and t8, the total power consumption corresponds to the power
consumption of process v2.

Limitations. Although the segment-based power annotation model con-
siders various cases and its accuracy can be modularly adjusted by using a
di�erent scheduler, it has various limitations in performance and accuracy.
In the following, the two core limitations of the model are discussed, that
is, the constant power consumption and the lack of an upper bound of the
power consumption.

The core idea of the power models discussed in this section is to abstract the
power consumption of a component as a �xed number. Various granularities
have been presented from an all-constant value to segment-based power con-
sumption. Nonetheless, it is obvious that �xed power consumption might
not lead to the real temperature. This is mainly important if one tries to
use this model to estimate the peak temperature of a system. The use of the
peak power consumption as power numbers would partly solve this problem,
however, this may result in a very bad approximation of the real temperature
curve as we will show in Chapter 7.

This leads to the second restriction: even though the peak power consump-
tion of a segment is used as its power value, the segment-based power annota-
tion model does not calculate an upper bound of the maximum temperature
of a system. The Application Scheduling Creator assumes �xed execution
times for the segments to create a timetable for each tile of the system.
However, annotating these timetables with the worst-case power consump-
tion of each segment might not lead to an upper-bound temperature as the
following example shows. The application A consists of only one process p
that has two segments s1,p and s2,p. The execution times and the power
consumptions of the processor of both segments are outlined in Table 4.3.
One can easily verify that a higher temperature can be observed if segment
s1,p only runs for 3 ms and s2,p runs for 4 ms for a given time span compared
to the case where the execution time of both segments is always their average
execution time. In reality, one has also to consider various other components
like the memory or the cache, which might have a complete di�erent power
characterization with respect to the processor.

An approach to overcome this problem would be to calculate the segments
that might run at a speci�c time and select the maximum power consumption
of all these segments. However, the results form Yang et al. [68] show that
such an approach is not feasible for design space exploration.

� 51 �

4.2. ABSTRACT POWER EVALUATION MODELS

Table 4.3: Execution times and power consumptions of the processor used in
an example application. BCET, ACET and WCET denote the best-case, the
average-case and the worst-case execution time of the segment, respectively,
and BCPC, ACPC, WCPC denote the best-case, average-case and worst-
case power consumption of a segment, respectively. The discussed scenario
in Section 4.2.2 is highlighted with a star.

BCET ACET WCET BCPC ACPC WCPC

s1,p 3 ms∗ 4 ms 5 ms 8 mW 10 mW 12 mW
s2,p 2 ms 3 ms 4 ms∗ 10 mW 12 mW 14 mW

Discussion. The abstract power model presented in this subsection is used
to estimate the transient power consumption in SLTE, the proposed composi-
tional temperature analysis model. By not only considering the computation,
but also the communication aspects of a system, an accurate estimation of
the transient power consumption can be calculated. Nonetheless, the model
is limited in calculating an upper bound of the temperature as the com-
putation of such a bound for an arbitrary streaming application executed
on a distributed architecture can be very complex mainly for the following
reasons:

� There is no direct correlation between the temperature of the system
and the workload of the system. Furthermore, the temperature of a
single component depends not only on the workload executed on this
component, but also on the workload executed on all other components
including the ones on all the other tiles.

� The transient power behavior is not directly correlated with the system
speci�cation as it depends on two characteristics: the power consump-
tion itself and the scheduling information. Obviously, there is also no
connection between the worst-case execution time and an upper bound
of the transient power behavior.

In the second part of this thesis, we will revise this topic by proposing a
framework to calculate the worst-case peak temperature of a many-core sys-
tem.

Another point that needs to be discussed in this section is the performance.
Self-evident, the segment-based power annotation model is much slower as
the other power-annotation models presented in this section. The perfor-
mance of the current model is mainly determined by the performance of the
Application Scheduling Creator, thus, there exists a trade-o� between perfor-
mance and accuracy. In Chapter 6, we will limit the streaming application
to the SDF model and improve the performance of the application scheduler
creator by recognizing repetitive behavior in streaming applications.

� 52 �

4.3. TEMPERATURE EVALUATION

4.3 Temperature Evaluation

A widely used duality to analyze the heat transfer of a modern VLSI system
is to model the heat-�ow as current passing through a thermal resistance
and the thermal di�erence as the corresponding voltage [15, 51, 69, 70].
This duality is used to generate an RC system that describes the evolution
of temperature when a speci�c power consumption is applied. Mathemat-
ically, this system can be represented by a �rst-order di�erential equation
system and thus, the calculation of the temperature evolution is the most
computationally intensive task of a thermal simulator.

As it is often too complicated to solve this di�erential equation system ana-
lytically, numeric approaches are favored. For example, in [17], a backward
Euler method or in [14], an adaptive forth-order Runge-Kutta method is
used to solve the di�erential equation system. In this section, we present an
approach to improve the performance of the thermal simulation by partly
precomputing the solution of the di�erential equation system. After intro-
ducing the basic thermal model, the proposed approach is presented in detail
in Section 4.3.2. Finally, some advantages and drawbacks of the method are
discussed in Section 4.3.3.

Note that a similar approach is used in [23, 40] for estimating the actual
temperature of a system and then to reduce this temperature by adjusting
the task scheduler of an OS. Compared to [23, 40], however, we use the
method for improving the temperature behavior of an application o�ine, at
system-level.

4.3.1 Thermal Di�erential Equation System

The temperature model used in this thesis is similar to the one introduced
in [14]. In particular, the heat transfer can be expressed as a linear �rst-order
di�erential equation:

C · dT(t)

dt
+ G ·T(t) = P(t), T(0) = T0 (4.14)

where T is the temperature vector, C a diagonal capacitance matrix, G the
conductance matrix and P the power vector. All vectors have a dimension
of m× 1 and all matrices a dimension of m×m. Both the capacitance and
conductance matrix only depend on the architecture, that is, the �oor-plan,
but not on the input, namely the power consumption. Using A = C−1 ·G
and B = C−1, (4.14) can be rewritten as

dT(t)

dt
= −A ·T(t) + B ·P(t), T(0) = T0. (4.15)

� 53 �

4.3. TEMPERATURE EVALUATION

4.3.2 Partly Precomputing the Solution of the Thermal Dif-
ferential Equation System

Using the general solution of a non-homogeneous �rst-order di�erential equa-
tion system, the temperature can be calculated by

T(t) = e−A·t ·T0 + e−A·t
∫ t

0
eA·ξ ·B ·P(ξ) dξ. (4.16)

To simplify this equation, the following assumptions are made:

1. During a speci�c time interval ∆t, the power consumption is constant:

P(t) = P = const, 0 ≤ t ≤ ∆t. (4.17)

2. The time interval ∆t is constant for the whole simulation:

∆t = const. (4.18)

3. The only temperature of interest is at time ∆t.

The �rst assumption follows from the fact, that a trace-based power mea-
surement is considered. Thus, between two traces, the power consumption
is �xed for all components. As the power is measured on a regular basis,
the time interval between two traces is always constant and legitimates As-
sumption 2. As a thermal network has a pretty large time constant τ , the
network behaves quite lazy The temperature does not change immediately,
and it is enough to analyze the temperature at the end of a time interval ∆t
and Assumption 3 is justi�ed. Applying Assumption 1 to (4.16), it leads to
the following simpli�cations of the transient temperature:

T(t) = e−A·t ·T0 + e−A·t ·
∫ t

0
eA·ξ dξ ·B ·P, 0 ≤ t ≤ ∆t. (4.19)

Thus, the temperature can be expressed as

T(t) = e−A·t ·T0 + A−1 ·
(
I− e−A·t

)
·B ·P, 0 ≤ t ≤ ∆t (4.20)

with I, the identity matrix of dimension m ×m. Using Assumption 3, the
temperature at time ∆t can be expressed as:

T(∆t) = e−A·∆t︸ ︷︷ ︸
E

·T0 + A−1 ·
(
I− e−A·∆t

)
·B︸ ︷︷ ︸

F

·P (4.21)

where E and F are both independent of the input and mapping. As As-
sumption 2 states that the time interval ∆t is constant during the entire
simulation, both matrices E and F can be calculated once during the de-
sign space exploration. By de�ning T[k] = T(k ·∆t), the alteration of the
temperature can be calculated by two matrix-vector multiplications:

T[k + 1] = E ·T[k] + F ·P[k]. (4.22)

� 54 �

4.4. SUMMARY

4.3.3 Discussion

Making assumptions always restricts the possible use cases of a method. In
the following, the drawbacks introduced by our assumptions are discussed
and the method is compared with the adaptive forth-order Runge-Kutta
method.

The main drawback of the precomputed di�erential equation system method
is the �xed step size that is required. Although this is the normal case
when simulating a system on a low-level simulator, high-level simulators like
the ones presented in Section 4.2, do not automatically calculate the power
consumption on a regular basis. Nonetheless, it can be shown that a �xed
step size in the high-level simulators introduces much less overhead as the
use of a Runge-Kutta method to solve the di�erential equation system.

Another drawback of our method is that it can only be used if the system is
linear, that is, the conductance matrix is constant. Our assumptions would
become invalid in more complicated models with a temperature-dependent
conductance matrix, as for example in a system with temperature-dependent
thermal conductivity [71]. However, a linear approximation of the conduc-
tance matrix can be calculated by using Taylor's theorem to still apply the
proposed approach in the design space exploration.

The most computationally intensive task of a thermal analysis model is the
calculation of the temperature alteration. The presented method reduces the
number of multiplications that need to be performed after every power trace
by calculating the computationally intensive matrix exponential only once in
the design space exploration. Therefore, the presented method is much faster
than any numerical approach that solves the complete di�erential equation
system after every trace. Furthermore, the method encourages the use of
sparse matrix algorithms to improve the performance even further. Finally,
note that the method does not reduce the accuracy of the solution as it is
only a di�erent approach to solve the thermal di�erential equation system.

4.4 Summary

The thermal evaluation is a key component in the design phase of a multi-
processor streaming application for both modern two- and three-dimensional
systems. Violating thermal constraints of an IC may have serious conse-
quences on the reliability of the system as well as on the ability to guarantee
real-time constraints. To address thermal issues in an early design phase,
fast and accurate thermal evaluation methods are required to estimate the
thermal behavior of a candidate mapping already at system-level. In this
chapter, SLTE, a system-level thermal evaluation model has been introduced,

� 55 �

4.4. SUMMARY

that is a �rst attempt to integrate compositional power evaluation into the
design �ow of multi-processor streaming applications.

However, including the thermal evaluation in the design space exploration
can be a waste of time if all candidate mappings ful�ll the thermal con-
strains of the architecture. Therefore, we have introduced a �rst very simple
power analysis model that addresses the question if thermal analysis is even
essential during design space exploration for a given multi-processor stream-
ing application. Afterwards, a more re�ned, segment-based abstract power
analysis model has been introduced and presented in detail. By considering
running, reading, and writing segments separately, an accurate estimation of
the temporal power consumption of an application can be computed. In the
second part of the chapter, we have shown that the temperature alteration
of a power trace can be calculated by two matrix-vector multiplications in
the design space exploration. SLTE, our proposed compositional thermal
evaluation model for the design space exploration, uses the segment-based
abstract power evaluation model to calculate the power consumption of a
candidate mapping. Afterwards, the temperature evolution of the system is
calculated by the proposed method to partially precompute the solution of
the thermal di�erential equation system.

In this chapter, we assumed that all required timing and thermal parameters
are available and calculated in advanced. However, this data has to be
extracted during model calibration. In Chapter 5, we will address this topic
and propose various methods to generate the calibration data of a multi-
processor streaming application using a low-level simulator.

� 56 �

5
Automated Model Calibration

Unlike low-level thermal evaluation methods, compositional thermal evalu-
ation models use timing and thermal parameters to model the behavior of
a multi-processor streaming application. In this context, model calibration
refers to the extraction of the model parameters that are used to param-
eterize compositional thermal evaluation models. It is typically the �rst
task that is performed during the design space exploration of a new multi-
processor streaming application. Therefore, in this chapter, we will close
the gap between the low-level simulation tool chain and the compositional
thermal evaluation models by presenting an approach to use the thermal
evaluation tool chain to automatically calibrate abstract evaluation models
as, for example, the SLTE.

The presented approach includes the execution of a set of benchmark map-
pings in a low-level simulator to determine timing and power characteristics
of the application. Afterwards, the thermal con�guration of the architec-
ture is extracted from a low-level thermal analysis model. This chapter is
structured as follows: First, in Section 5.1, the required parameters and
their sources are presented. In Sections 5.2 and 5.3, strategies to determine
the timing and thermal parameters are discussed, respectively, and �nally, a
summary concludes the chapter.

5.1 Model Parameters and their Sources

As a large number of parameters from di�erent sources is required to accu-
rately characterize a multi-processor system, neither the task of extracting

� 57 �

5.1. MODEL PARAMETERS AND THEIR SOURCES

Table 5.1: Overview of the timing and thermal parameters required by a
compositional thermal evaluation model as, for example, the SLTE model.

Entity Parameter Unit Source

segment s average-/best-/worst-case execu-
tion time ACET(s), BCET(s),
WCET(s)

sec / iteration low-level sim.

average / maximum average / peak
power consumption

W low-level sim.

queue q minimal / maximal token size
Nmin(q), Nmax(q)

bytes/access functional
sim.

write rate, read rate w(q), r(q) 1 functional
sim.

processor clock frequency cycles/sec hardware
data-sheet

architecture T capacitance matrix C J/K low-level sim.

conductivity matrix G W/K low-level sim.

the timing and thermal parameters, nor the post-processing of the raw data
should be underestimated. Considering the most common sources for model
calibration, that is, physical implementations, simulation platforms, or for-
mal methods, all of them have in common that various parameters cannot be
directly extracted. As complex multi-processor streaming applications, like
video decoders often require thousands of such parameters, manual model
calibration is practically impossible.

In this section, we specify the timing and thermal parameters, and identify
their sources. Unfortunately, we will show that there is not a single source
where all parameters could be obtained from. In the following, the overall
process of obtaining the timing and thermal parameters from a low-level
simulation is described.

In Table 5.1, the most important parameters of a compositional thermal
evaluation model are summarized. We will discuss these parameters in this
and the following sections in detail. As already mentioned, the parameters
can be categorized in two subsets. On the one hand, the timing parameters
include the execution time and the characteristics of the channels, and on the
other hand, the thermal parameters include the power consumption and the
thermal con�guration of the architecture. Although the categorization into
timing and thermal parameters is the most obvious one, the parameters can
also be categorized into their sources or in directly and indirectly observable
parameters. While timing parameters are often directly measurable, the
power consumption of a process is an example of an indirectly observable
parameter, as additional post-processing is required to extract the individual

� 58 �

5.2. EXTRACTING TIMING PARAMETERS

power consumptions. In the context of this project, we di�er between the
following three sources to obtain the thermal and timing parameters:

� Hardware data sheets: The simplest sources for model parameters are
the hardware data sheets. Compared to all other sources, it is the only
source where parameters have to be obtained manually. Hardware data
sheets are used to determine the clock frequency of microelectronic
chips, and to extract various thermal parameters as, for example, the
conductivity of the heat sink.

� Functional simulation: Mapping-independent parameters can mainly
be extracted from the functional simulation. Examples of mapping-
independent parameters are the minimal and maximal token size as
well as the read and write rates of channels.

� Low-level simulation: A typical source to calibrate a system with their
architectural and mapping-dependent parameters is a low-level virtual
platform. The execution times and the power consumption can be
extracted from a virtual platform, and the thermal con�guration of
the architecture is obtained from a low-level thermal analysis model.

5.2 Extracting Timing Parameters

The computation of an accurate scheduling of a multi-processor applica-
tion requires various timing parameters. While the model calibration of
an analytic analysis model has to calculate safe bounds on the characteristic
parameters [72], abstract simulation models like SLTE require an average be-
havior of the timing parameters as the consideration of best-case and worst-
case bounds makes it impossible to calculate the temperature evolution. In
this section, we present methods to extract timing parameters: After intro-
ducing the idea of a functional simulator to extract mapping-independent
parameters, the extraction of timing-dependent parameters using low-level
simulation is illustrated. Again, we focus on applications modeled as KPN
that are executed on distributed memory architectures.

The problem of obtaining timing parameters for performance models was
already discussed in [29, 72] and our method is based on their approaches.
However, the following points demonstrate the main di�erences between the
two methods:

� The approach of Haid et al. [29, 72] mainly concentrates on extracting
safe bounds of the timing parameters, while our method extracts the
average behavior as well as bounds on the timing parameters.

� 59 �

5.2. EXTRACTING TIMING PARAMETERS

� Instead of extracting all parameters process-based, all timing parame-
ters are obtained separately for each segment.

� As the scheduling is only an interstage product to calculate the ther-
mal behavior of a multi-processor streaming application, a way higher
resolution is required in a thermal model as in a performance model.
Therefore, the overhead of the OS, that is, the context switch and the
process invocation, has to be determined, as well.

5.2.1 Functional Simulation

A functional simulator is an application that executes a given process net-
work on a standard computer. One possibility to implement the process
network is to map every process to a system thread. Obviously, this simu-
lation is very fast, but can only be used to determine mapping-independent
values. Possible parameters that can be determine by the functional sim-
ulation include the minimal and maximal token size Nmin(q), Nmax(q) and
the read and write rate r(q) and w(q) of the queues. Practically, a monitor
in the generic read() and write() methods of the functional simulator can
be used to obtain these values. Note that the read and write rates are in
general not constant for a KPN, and therefore, they need to be extracted
separately for design alternative.

5.2.2 Low-Level Simulation

The source of all time dependent parameters of a multi-processor streaming
application is a low-level simulation on a virtual platform. Cache misses,
contentions on the bus or other features of modern processors cause these
parameters to vary between every iteration and mapping. A viable strategy
for the model calibration in the context of the design space exploration is to
determine a safe bound and the average value of these timing parameters.
For example, for the execution time, the Best Case Execution Time (BCET),
ACET, and Worst Case Execution Time (WCET) are obtained and provided
to the compositional thermal evaluation models. With T being the set of all
measured values, the BCET can be expressed as

BCET = min
t∈T

(t), (5.1)

the ACET as

ACET =

∑
t∈T t

|T |
, (5.2)

� 60 �

5.2. EXTRACTING TIMING PARAMETERS

and the WCET as

WCET = max
t∈T

(t). (5.3)

The execution times can be obtained in a similar manner to the functional
simulation by monitoring the generic routines provided by the runtime en-
vironment. It is important to note that the observed quantities should not
be a�ected by the monitoring itself. In a virtual platform, this can be guar-
anteed by using non-intrusive tracking methods provided by the platform
itself.

Execution Times of the Segments. As mentioned in Section 4.2.3, three
types of segments are distinguished: (1) reading from a FIFO channel, (2),
writing to a FIFO channel, and (3) computing, that is, the process computes
some calculations and is neither reading nor writing. As mentioned before,
the execution time of these segments can be obtained by monitoring the
generic functions of the runtime environment. In Listing 5.1, a typical pro-
cess of a KPN is sketched. The method starts and stops with a computing
segment and might be interrupted by some reading or writing segments. To
determine the start and end time of an iteration, the runtime environment
calls a monitor immediately before and after the �re method as sketched
in Listing 5.2. The start and end points of a read and write segment are
obtained by extending the corresponding stub methods of the runtime en-
vironment with monitor calls as outlined in Listing 5.3. We can show by
induction, that this strategy can be used to di�er between all computing,

Listing 5.1: Sketch of a typical process of a KPN. The fire method is called
by the runtime environment in every iteration.

1 int fire() {

2 // processing

3 READ();

4 // processing

5 WRITE();

6 // processing

7 }

Listing 5.2: Extension of the runtime environment to monitor the start and
the end time of an iteration.

1 MONITOR(SEGMENT_START , COMPUTING , CURRENT_SIMULATION_TIME);

2 fire();

3 MONITOR(SEGMENT_STOP , COMPUTING , CURRENT_SIMULATION_TIME);

� 61 �

5.2. EXTRACTING TIMING PARAMETERS

Listing 5.3: Extension of the read and write stubs of the runtime environ-
ment to monitor the start and end times of the read and write segments.

1 read() {

2 MONITOR(SEGMENT_STOP , COMPUTING , CURRENT_SIMULATION_TIME);

3 MONITOR(SEGMENT_START , READING , CURRENT_SIMULATION_TIME);

4 // reading

5 MONITOR(SEGMENT_STOP , READING , CURRENT_SIMULATION_TIME);

6 MONITOR(SEGMENT_START , COMPUTING , CURRENT_SIMULATION_TIME);

7 }

8

9 write() {

10 MONITOR(SEGMENT_STOP , COMPUTING , CURRENT_SIMULATION_TIME);

11 MONITOR(SEGMENT_START , WRITING , CURRENT_SIMULATION_TIME);

12 // writing

13 MONITOR(SEGMENT_STOP , WRITING , CURRENT_SIMULATION_TIME);

14 MONITOR(SEGMENT_START , COMPUTING , CURRENT_SIMULATION_TIME);

15 }

reading, and writing segments. Then, the execution times of a single seg-
ment can be calculated after the simulation using a parsing algorithm. Using
an o�ine parsing algorithm, the execution times of the single segments can
be calculated after the simulation.

Context Switch Overhead. In performance analysis, the overhead in-
troduced by the context switch is often neglected in model calibration as its
in�uence on the overall execution time is small. However, the power con-
sumption of the context switch might be large as the context of the process is
stored and restored from memory. Consequently, the extraction of its power
consumption requires the recording of the temporal behavior of the context
switch.

A simpli�ed process state model with the three states active, blocked, and
ready is outlined in Fig. 5.1. A process is active if it is currently executed,
ready if it could be executed but another process is currently running and
blocked if the process is waiting for some external events. Assuming that the
scheduling policy is �xed priority, a necessary condition for a context switch
is that any process is reading from or writing to a FIFO channel. Therefore,
we can di�er between two scenarios of a context switch:

1. A process is not able to read from or write to a FIFO channel and be-
comes blocked. The process noti�es the OS, which in turn suspends the
process, stores its context and restores the context of another process.

2. After being blocked, a process with a higher priority becomes able to
read or write. The active process is interrupted and resumed by the
OS. Afterwards, the OS stores the context of the currently running
process and another process' context is restored.

� 62 �

5.3. EXTRACTING THERMAL PARAMETERS

Active

Ready

Blocked

Dispatch

Read / Write Occurred

FIFO Queue Full/Empty

Read / Write Occurred

Figure 5.1: Simpli�ed process state model to illustrate the context switch
in a real-time OS under the assumption that the scheduling policy is �xed
priority.

Monitors are added at the beginning and at the end of the suspending,
resuming, context storing, and context restoring methods to extract the start
and end times of the individual parts of the context switch. Note that the
idle task is monitored, as well, to obtain the overhead introduced in switching
the processor's state to idle and vice versa.

Runtime Environment Overhead. In addition to the context switch,
the OS and the runtime environment of the process network generate some
overhead in repetitively calling the fire method of the process. However,
this overhead can easily be detected with the already existing monitors
around the fire method.

5.3 Extracting Thermal Parameters

Obviously, a compositional thermal evaluation model requires a second cat-
egory of parameters, that we call thermal parameters. They include the
power consumption and the thermal con�guration of the architecture. The
thermal parameters are often obtained from two di�erent sources: First, a
two-step procedure is required to extract the power parameters with a low-
level simulation platform. After measuring the transient power behavior
as described in Section 3.2.3, the power traces are split into processes and
segments, respectively, by using the timing information extracted by the
methods introduced in the previous section. Secondly, the thermal con�gu-
ration of the architecture is calculated by a low-level thermal analysis model.

The remainder of this section is organized as follows: First, some power
metrics are brie�y introduced while Section 5.3.2 presents the extraction of

� 63 �

5.3. EXTRACTING THERMAL PARAMETERS

the actual power values from the power traces. The extraction of the power
values from components that are used by more than one process in parallel
is discussed in Section 5.3.3, and �nally, in Section 5.3.4, the use of a low-
level thermal analysis model for calculating the thermal characteristics of
the architecture is presented in detail.

5.3.1 Power Metrics

Similar to abstracting the execution time of a process or segment as BCET,
WCET or ACET, the power consumption is modeled by a power metric. In
this project, three power metrics are used to express the power consumption
of a segment or process: the average, maximum average, and the peak power
consumption. The average power consumption is expressed as

Pavg =

∑
i∈I Pavg,i

|I|
(5.4)

where I is the collection of all iterations and Pavg,i is the average power
consumption during iteration i. The second power metric, the maximum
average power consumption is calculated by

Pmax avg = max
i∈I

Pavg,i. (5.5)

Finally, the third power metric, the peak power consumption, is de�ned as

Ppeak = max
i∈I

(
max
t∈Ti

P (t)

)
(5.6)

where Ti is the time span of iteration i. The determination of the average,
maximum average, and peak power consumption is outlined in Fig. 5.2. Ob-
viously, the peak power consumption Ppeak of both iterations is the peak
power of the iteration i + 1, the average power consumption Pavg is the
average of both average power consumptions of the iteration i and i+ 1 and
the maximum average power consumption Pmax avg is the average power
consumption of iteration i+ 1.

5.3.2 Extracting the Power Parameters

As already mentioned, the extraction of the power parameters from the power
traces is performed in a two-step procedure:

1. The transient power behavior of each component is measured in a low-
level simulation and stored as power traces.

� 64 �

5.3. EXTRACTING THERMAL PARAMETERS

Time [s]

Power [mW]

Iteration i Iteration i+1

Peak Power Consumption of Specific Iteration
Average Power Consumption of Specific Iteration

Figure 5.2: Example of the average and the peak power consumption over
two iterations.

2. The power traces are segmented according to the desired granularity,
that is, process-based or segment-based and any of the previous pre-
sented power metrics can be used to calculate the actual power values.

Note that is is not only calculated the power consumption of the individual
segments and processes, but also the power consumed by the context switch
and the runtime environment when completing and restarting an iteration.

5.3.3 Shared Elements

While the extraction of the power consumption is straightforward for compo-
nents that are only used by one process per time, it is much more complicated
for components that are used by multiple processes in parallel. The described
problem is also illustrated in Fig. 5.3. Two processes, namely the producer
and consumer process, are each mapped onto di�erent tiles. It is assumed
that the FIFO channel is implemented in the scratchpad of the producer
process. As both processes are mapped onto a di�erent tile, they can be
executed in parallel and thus, can also simultaneously access the scratchpad
of the producer. Note that simultaneously only means that two segments
are running on parallel on the system level, which di�ers from the de�nition
of simultaneously on the hardware level.

Figure 5.4 illustrates the power consumption extracted on a regular basis
from a low-level simulation platform. As both the producer and the con-
sumer process access the scratchpad in parallel, the total power consumption
measured by the low-level simulation platform of the scratchpad is caused

� 65 �

5.3. EXTRACTING THERMAL PARAMETERS

Tile 0

Core

Producer

Scratchpad

Tile 1

Core

Consumer

Scratchpad

Write
Peer Read

Local Read

Producer Consumer

Figure 5.3: Process network to illustrate the simultaneously access of two
processes to a shared resource.

by both processes and is averaged over the whole trace. However, a di�erent
candidate mapping might change the schedule in a way that both processes
do no longer read or write in parallel. Therefore, total power consumption
is divided into the power consumption caused by the producer process and
the one caused by the consumer process. This approach is also illustrated in
Figure 5.5.

In the general case, we have the following information available after a multi-
processor streaming application has been executed on a low-level platform:

� The total average power consumption of a scratchpad per power trace,

� the starting and stopping points of all segments that read from and
write to the scratchpad, and

� the power consumption ratio between a read and a write instruction of
the scratchpad.

Tr
ac

e
1

Tr
ac

e
3

Tr
ac

e
2

P(t)

t
Producer is writing

Consumer is reading

P1

P2

Figure 5.4: Measured power traces of the producer's scratchpad of the ex-
ample outlined in Fig. 5.3. Both the producer and the consumer process
access the scratchpad in parallel.

� 66 �

5.3. EXTRACTING THERMAL PARAMETERS

Tr
ac

e
1

Tr
ac

e
3

Producer
(writing)

Consumer
(reading)

Tr
ac

e
2 Consumer

(reading)

P(t)

t

Figure 5.5: Actual power consumption of the example outlined in Fig. 5.3.
The total power consumption is divided into the power consumption caused
by the producer process as well as the one caused by the consumer process.

The latter depends on the implementation of the channels in the runtime
environment and can be calculated by using the hardware data sheets of the
scratchpad and by considering the implementation of the FIFO channels,
that is, the read and write stubs of the runtime environment. In this sub-
section, we address the problem of separating the total power consumption
of a shared resource into the individual processes that access the resource in
parallel.

The basic idea is to split the total energy consumption, that is, the area
below the power curve, among the individual processes. Afterwards, the
average power consumption can be calculated by dividing the individual
energy consumptions by the amount of time that the process accessed the
shared resource. The total energy consumption in trace tri ∈ Tr can be
computed by

Etri = ∆Ptri · ttri =
∑
v∈V

tv,tri ·∆Pv,tri (5.7)

where Etri is the total energy consumed in trace tri, ∆Ptri is the average
power consumption in trace tri and ttri is the length of trace tri. Further-
more, v ∈ V is the set of processes accessing the scratchpad in trace tri,
tv,tri the amount of time that process v is executed in trace tri and ∆Pv,tri
the average power consumption of process v in trace tri. As all processes
are either reading from or writing to the scratchpad, the power consumption
can be recapped as

Preading = Pv ∀v ∈ Vreading (5.8)

and

Pwriting = Pv ∀v ∈ Vwriting (5.9)

� 67 �

5.3. EXTRACTING THERMAL PARAMETERS

where Vreading is the set of all processes that read from the scratchpad and
Vwriting is the set of all processes that write to the scratchpad. Using (5.8)
and (5.9), (5.7) can be rewritten as follows:

∆Ptri · ttri =
∑

v∈Vreading

tv,tri ·∆Preading

+
∑

v∈Vwriting

tv,tri ·∆Pwriting.
(5.10)

The power consumption ratio r of a read and a write instruction

r =
Pwriting
Preading

(5.11)

is known in advance. Expressions (5.10) and (5.11) form a system of two
equations, that can be solved for the power consumption Preading of a read-
ing process and the power consumption Pwriting of a writing process. Al-
gorithm 5.1 shows the pseudocode to extract the power consumption from
the total power consumption of a component that is simultaneously used
by multiple processes. However, as a process always copies the data from
the peer scratchpad to its local scratchpad, the algorithm di�ers between
accesses to the local and peer scratchpad, as well.

Note that the algorithm presented in this subsection is for communication
channels that are implemented in the scratchpad of the producer or con-
sumer. However, only minimal modi�cations to the algorithm are necessary
for using it with other software channel communication implementations like
shared memories.

5.3.4 Temperature Parameters

Compositional thermal evaluation models use timing and power parameters
to model the power consumption of a multi-processor streaming application.
Additionally, the thermal con�guration of the architecture is required to
model the temperature behavior of the application. The thermal con�gura-
tion includes the capacitance matrix C, the conductivity matrix G, and the
ambient temperature T0. These parameters can simply be extracted from
a low-level thermal analysis model that uses the �oor-plan and the thermal
con�guration as input, and creates the thermal di�erential equation system.

As several compositional thermal evaluation models require di�erent param-
eters for the thermal con�guration, additional post-processing is required.
A numerical computing environment is often most suitable for this task as
it includes multi-dimensional computations like calculation of the matrix
exponential.

� 68 �

5.3. EXTRACTING THERMAL PARAMETERS

Algorithm 5.1: Pseudo-code to extract the power consumption of an indi-
vidual process from the total power consumption of a component that is
simultaneously used by multiple processes. The local tile denotes the tile
that the process is mapped onto while the peer tile is the tile of the peer
process.

1: procedure PowerExtraction()
2: for all trace tr ∈ Tr do
3: instantiate a collection M per tile γ ∈ Γ
4: for all segment s ∈ S do . �nd all active segments in tr
5: if s is a read or write segment and s is active in tr then
6: t← amount of time that s was active in tr
7: M(local tile).put(s, type←local, t) . in�uence local scratchpad
8: M(peer tile).put(s, type←peer, t) . in�uence peer scratchpad
9: end if
10: end for
11: for all tile γ ∈ Γ do . calculate individual power consumption
12: Etr ← energy in trace tr . total energy in trace tr
13: w ← TotalWeight(S)
14: for all segment s, time ts, type ∈M(γ) do
15: f ← ts∗ SegmentFactor(s, type) / w
16: Es ← f · Etr . energy fraction of segment s
17: Ps ← Es/ts . power of segment s
18: end for
19: end for
20: end for
21: end procedure
22:

23: function TotalWeight(Segments S)
24: w = 0
25: for all segment s, time ts, type ∈ S do
26: w ← w + ts∗ SegmentFactor(s, type)
27: end for
28: return w
29: end function
30:

31: function SegmentFactor(Segment s, type)
32: if s is a write segment then
33: return writefactor(type) . ratio when writing
34: else if s is a read segment then
35: return readfactor(type) . factor when reading
36: end if
37: end function

� 69 �

5.4. SUMMARY

5.4 Summary

Compositional thermal evaluation models like SLTE outperform low-level
simulation in the design space exploration by providing a much faster evalu-
ation time of the candidate mappings. However, compositional thermal eval-
uation models require timing and thermal parameters to model the behavior
of a multi-processor streaming application. As the modeling of the thermal
behavior often requires thousands of parameters, manual model calibration
becomes practically impossible. Talking this challenge, we presented strate-
gies to automatically calibrate a compositional thermal evaluation model.

Unfortunately, there does not exist a single source for all model parameters.
Hardware data sheets, functional, and low-level simulations are required to
extract all kind of parameters. Clock frequencies and the thermal character-
istics of the heat sink are extracted by considering hardware data sheets. The
read and write rate of the channels are examples of parameters determined
with a functional simulation as they are often independent of the architecture
and mapping. Finally, low-level simulation is used to determine bounds on
the execution time and the power consumption as well as to calculate the
thermal characteristics of the architecture.

The execution times of processes and segments are modeled by their BCET,
ACET, and WCET. Similarly, we de�ned three power metrics to model their
power consumption. After introducing various approaches to extract the
power consumption of a segment or a process from a low-level simulation
platform, the extraction of the thermal characteristics of the application
from a low-level thermal analysis model has been discussed. In summary,
this chapter has enabled the use of a compositional thermal evaluation model
in the design space exploration by providing approaches to automatically
calibrate such models with the use of a low-level thermal evaluation tool
chain.

� 70 �

6
System-Level Thermal Simulation in DOL

In the previous chapters, the core ideas of a fast and accurate compositional
thermal evaluation model have been described. To demonstrate the viability
of our approaches, we present the details of a prototype implementation
of SLTE in DOL in this chapter. To calibrate the model with the tim-
ing and thermal characteristics of a multi-processor streaming application,
a set of benchmark mappings has been executed on a low-level simulation
platform. Although using the MPARM virtual platform and the HotSpot
analysis model for the model calibration, porting the presented prototype
implementation to another platform is relatively easy as the low-level simu-
lators are only used for the model calibration.

This chapter is structured as follows: First, the extension of a low-level
tool chain consisting of the MPARM simulator and the HotSpot thermal
analysis model for the automated model calibration is discussed. In Sec-
tions 6.2 and 6.3, a prototype implementation of SLTE is presented. After
discussing the computation of the power consumption in DOL in Section 6.2,
its extension with the precomputed thermal analysis method is presented in
Section 6.3. Finally, a summary concludes the chapter.

6.1 Automated Model Calibration

The automated model calibration of SLTE is performed by executing a set of
benchmark mappings on a low-level simulation platform. First, the thermal
evaluation tool chain presented in Chapter 3 is extended to measure the

� 71 �

6.1. AUTOMATED MODEL CALIBRATION

execution times and the power consumption of the application. Afterwards,
a post-processing method is used to calculate the timing and power param-
eters. Finally, the thermal characteristics of the architecture are extracted
from the low-level thermal analysis model, that is, HotSpot, and is post-
processed to be used in SLTE. In the following, a prototype implementation
of each of these steps is illustrated.

6.1.1 Simulation and Measurement

Two di�erent simulators are used for the extraction of the timing and thermal
parameters. In the following, both simulators are shortly introduced.

Functional Simulation. The functional simulation is used to obtain the
mapping-independent parameters. An already existing functional simulator
described in [29, 64] is used for this purpose. As the simulator is based on the
SystemC libraries, it uses SystemC threads for the computational tasks and
SystemC channels to implement the FIFO queues. As no timing-information
is extracted from the functional simulator, a data-driven scheduler is used
to control the application.

Low-Level Simulation. The architecture and mapping-dependent pa-
rameters are obtained from a low-level simulation. The thermal evaluation
tool chain introduced in Chapter 3 is used to measure the execution times
and the power consumption of the multi-processor streaming application.
Although both types of data are obtained from the same simulation, di�erent
methods are used to extract the timing behavior and the power consumption.
On the one hand, to extract the timing information of an application, it is
monitored by macros included in the runtime environment. On the other
hand, the power consumption of the application is measured as power traces
similar to the approach presented in Section 3.2.3. As the simulator samples
the power consumption on a regular basis, there is no need to extend the
runtime environment for the measurement of the power dissipation.

The work�ow of the thermal evaluation tool chain is as follows: Based on the
system speci�cation, DOL generates the required glue code for executing a
multi-processor streaming application on the distributed architecture. This
glue code, together with the source code of the streaming application, is com-
piled to run on top of the RTEMS OS. Finally, the binaries can be executed
in the MPARM simulator, and the execution times and the power consump-
tion can be measured. Mainly two functionalities of the glue code have to be
extended for the model calibration: The process wrappers with the ability
to measure the start and end points of an iteration and the communication
primitives with the ability to recording read and write activities.

� 72 �

6.1. AUTOMATED MODEL CALIBRATION

Algorithm 6.1: Code snippet of the glue code that invokes the actual process
by calling the fire method. Monitors are added immediately before and
after the process invocation to record the start and end time of the process.
The log method prints the current simulation time together with the event
type.

1: while (true) do
2: log("invocation_start") . log the start of the process invocation
3: �re() . invoke the process
4: log("invocation_end") . log the end of the process invocation
5: end while

In Algorithm 6.1 outlines a code snipped of the extended glue code to record
the start and end time of the process invocation. Immediately before and
after the process invocation, the current simulation time and the event type,
that is, invocation start or invocation end, are logged. A similar approach is
also used to extend the communication primitives with the ability to record
the start and end time of a FIFO channel invocation. Algorithm 6.2 outlines
a code snipped of the write method that enables the measurement of the
execution times of all segments according to their de�nition in Section 4.2.3.
Note that the log method calls a script that is recognized by the simulator
for recording, and therefore, its in�uence on the execution time is negligible.
All logged events are written to a logging �le that can later be post-processed
to analyze the detailed system behavior.

The same technique is also used to measure the characteristics of the context
switch as well as the one of the idle task. However, to monitor the context
switch, additional logging asserts are required. As described in Section 5.2.2,
two scenarios for a context switch can be distinguished: (1) a process be-
comes blocked and therefore, the OS suspends the process or the (2) the OS
resumes a new process after an interrupt. Therefore, �ve di�erent events are
distinguished to record the characteristics of the context switch. We refer
to Table 6.1 for a detailed description of all events. The same asserts are
used to monitor the characteristics of the idle task, that is, to record the

Algorithm 6.2: Code snippet of the DOL_Write method as included in the
glue code for the MPARM platform. The log method prints the current
simulation time together with the event type.

1: procedure DOL_Write(size,bu�er)
2: log("write_start") . log the start of the write method
3: write(size, bu�er) . write the data to the FIFO
4: log("write_end") . log the end of the write method
5: end procedure

� 73 �

6.1. AUTOMATED MODEL CALIBRATION

Table 6.1: Event types to monitor the context switching of the RTEMS OS.
Whenever multiple event names are listed for the same description, they all
denote the same event.

Event Description

Start Suspend Process is unable to read (FIFO channels are empty)
or write (FIFO channels are full). Therefore, the
process becomes blocked and the OS suspends the
process.

Start Interrupt An interrupt occurs as a process has read from or has
written to a FIFO channel that is used by a blocked
process bound to this processor.

End Suspend
End Interrupt
Start Store

The context switch handler starts to store the context
of the currently running process.

End Store
Start Restore

The context switch handler starts to restore the con-
text of the new process.

End Restore The context of the new process is completely restored
and the execution of the new process can continue.

overhead of switching the processor's state to idle and vice versa. The later
is necessary, as these stages often have much higher power consumptions as
the idle process itself.

6.1.2 Timing and Power Parameter Extraction

In the last subsection, the thermal evaluation tool chain has been extended
to log the start and end times of segments and to monitor the characteris-
tics of the context switch. Furthermore, the temporal power characteristics
of a component are measured by power traces. However, additional post-
processing is required to obtain the model parameters. In the following, a
prototype implementation of a three-step procedure to calculate the timing
and thermal parameters is presented.

Following the work�ow outlined in Fig. 6.1, the multi-processor streaming ap-
plication is simulated in the thermal evaluation tool chain that monitors the
start and end points of the segments and calculates the temporal power con-
sumption. In the �rst step, the MPARM Logger parses the log �le to extract
the running times of the segments and to calculate their average execution
time. The second and third step are responsible to back-annotate the timing
and the power parameters to an extended process network �le. Besides the

� 74 �

6.1. AUTOMATED MODEL CALIBRATION

MPARM Logger

DOL Timing Annotation DOL Power Annotation

Log Files

Average Execution Times / Segment InformationExecution Times per Segment

Power Traces

Annotated Process Network File

Application
Specification

Benchmark Mapping
Specification

Architecture
Specification

Thermal Evaluation Tool Chain

Figure 6.1: Three-step procedure to calculate the timing and thermal pa-
rameters from the output of the thermal evaluation tool chain.

original information about the process network, it contains the pro�ling data
of the application. In Listing 6.1, an example of such an extended process
network �le is given. While the only task of the Timing Annotation block
is to write the average execution times to the extended process network �le
(e.g., Lines 13 and 28 in Listing 6.1), the Power Annotation block calculates
the power parameters and writes them to the extended process network �le
(e.g., Lines 19 to 21 in Listing 6.1). To extract the power consumption of the
context switch, its timing behavior is split into various segments, as well. As
all these context switch segments are only used whenever the execution �ow
requires it, they are stored as subelements of the segment that was executed
at the time of the context switch (e.g., Lines 14 to 17 in Listing 6.1).

6.1.3 Extracting the Thermal Con�guration

To take advantage of the characteristics of the design space exploration to
reduce the evaluation time of the thermal analysis, the precomputed thermal
analysis model, which has been introduced in Section 4.3, is used to calculate
the temperature in SLTE. Besides the temporal power consumption, the
thermal analysis model requires two matrices, that characterize the thermal
di�erential equation system. These matrices are extracted in a two-step
procedure from the thermal evaluation tool chain.

In the �rst step, the low-level thermal analysis model, that is, HotSpot [14],
is extended to write the capacitance matrix C, and the conductivity matrix

� 75 �

6.1. AUTOMATED MODEL CALIBRATION

Listing 6.1: Extended XML speci�cation of a process network as used to
store the thermal and timing parameters in the prototype implementation of
SLTE. A comma-separated format is used to store the power consumption
of the individual components. ACPWR denotes the power consumption
calculated with the average power consumption metric, MACPWR the one
calculated with the maximum average power consumption metric and �nally,
PEAKPWR denotes the power consumption calculated with the peak power
consumption metric.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <processnetwork >

3 <process name="generator" basename="generator" range="">

4 <port name="1" basename="1" range="" type="output" />

5 <source type="c" location="generator.c" />

6 <profiling name="NumOfFires" value="60" />

7 <profiling name="1. accesses" value="1" />

8 <profiling name="1. tokensize" value="4" />

9 <profiling name="1. initialAccesses" value="0" />

10 <profiling name="1. initialtokensize" value="0" />

11 <profiling name="NumOfSegments" value="4" />

12 <profiling name="seg .0. TYPE" value="COMPUTING" />

13 <profiling name="seg .0. ACET" value="1036" />

14 <profiling name="seg .0. INTERRUPT" value="2705" />

15 <profiling name="seg .0. RESTORE" value="926" />

16 <profiling name="seg .0. SUSPEND" value="2279" />

17 <profiling name="seg .0. STORE" value="570" />

18 ...

19 <profiling name="seg .0. MACPWR" value="

46.9600 ,63.8083 ,8.8267 ,0.0000 ,24.1899 ,0.3336 ,0.0126" />

20 <profiling name="seg .0. ACPWR" value="

45.7866 ,53.9803 ,7.3715 ,0.0000 ,15.0240 ,0.2465 ,0.0093" />

21 <profiling name="seg .0. PEAKPWR" value="

46.9600 ,63.8083 ,8.8267 ,0.0000 ,26.3541 ,0.3336 ,0.0126" />

22 <profiling name="seg .0. INTERRUPT.MACPWR" value="

44.4932 ,41.5235 ,7.4479 ,0.0000 ,20.1316 ,0.1815 ,0.0068" />

23 <profiling name="seg .0. INTERRUPT.ACPWR" value="

44.4932 ,41.5235 ,7.4479 ,0.0000 ,20.1316 ,0.1815 ,0.0068" />

24 <profiling name="seg .0. INTERRUPT.PEAKPWR" value="

46.2009 ,57.6663 ,8.3935 ,0.0000 ,23.5495 ,0.1868 ,0.0070" />

25 ...

26 </process >

27 ...

28 <profiling name="idle.STORE.ACET" value="609" />

29 ...

30 <profiling name="static" value="

1.50 ,3.11 ,2.00 ,14.63 ,1.25 ,4.05 ,4.05 ,0.00 ,0.00 ,0.79 ,0.31 ,0.45"

/>

31 <profiling name="idle.STORE.MACPWR" value="

46.37 ,60.14 ,8.09 ,0.00 ,11.05" />

32 ...

33 </processnetwork >

� 76 �

6.2. CALCULATING THE TEMPORAL POWER CONSUMPTION

G to a text �le. In the second step, a Matlab script is generated and executed
that calculates the following characteristic matrices:

E = e−C
−1·G·∆t (6.1)

and

F =
(
C−1 ·G

)−1 ·
(
I− e−C−1·G·t

)
·C−1. (6.2)

To not overload the extended process network �le, that is used to store the
thermal and timing parameters, both matrices are stored in separate text
�les.

6.2 Calculating the Temporal Power Consumption

To demonstrate the viability of the proposed approaches of a compositional
thermal evaluation model, we present the details of a prototype implemen-
tation of SLTE. Before demonstrating the extension of DOL with the pre-
computed thermal analysis model in the next section, an implementation
of the segment-based power annotation model is presented in the following.
Note that all other abstract power models presented in Section 4.2.2 are
simpli�cations of the segment-based power annotation model and therefore,
a corresponding prototype implementation can easily be derived from the one
presented in this section. Following the structure of the segment-based power
annotation model, the scheduling creation is �rst presented in Section 6.2.1.
Afterwards, in Section 6.2.2, the power annotation step is illustrated in de-
tail.

6.2.1 Scheduling Creation

As the computation of the timetables takes the most time to calculate the
power consumption of a design alternative, a fast scheduling creator is es-
sential in the design space exploration. In Section 4.2.3, the segment-based
power annotation model has been described for KPNs. However, KPN ap-
plications have various drawbacks in the area of performance analysis: The
data dependency of the process behavior makes the calculation of a static
schedule impossible and arbitrary complex control �ows are possible [65].
Therefore, we restrict ourselves to applications modeled as an SDF [73, 74].
In the following, another scheduling creator for SDF applications is presented
that guarantees both adequate accuracy and a high speed-up, and is included
in the proposed prototype implementation of SLTE.

The restriction to SDF applications for performance analysis is quite com-
mon in research [29, 75, 76], mainly due to fact that the control �ow can

� 77 �

6.2. CALCULATING THE TEMPORAL POWER CONSUMPTION

be calculated in advance. However, as most multi-processor streaming ap-
plications' origin is the �eld of signal processing, they can easily be modeled
as an SDF. An SDF is de�ned as a �network of synchronous blocks� [73]
and can formally be described as a graph A = (V,Q,W). The de�nitions of
the nodes V and the edges Q correspond to the ones of a KPN as given in
Section 4.2.1. W = {w1, . . . , w|Q|} describes the token consumption behavior
of an SDF and is the main restriction of an application modeled as an SDF
compared to the KPN model. The token consumption wq of the channel q is
represented as a triple (pe, ce, de). Assuming q connects the node v1 and v2,
the number of tokens produced by node v1 in every execution is denoted as
pe. The second parameter of the triple, ce is the number of tokens consumed
by v2 in every execution and the initial amount of token in the channel q is
called de as it represents the delay.

An SDF simulator has been developed for the computation of the scheduling
of the application with respect to the new mapping. The simulator models
the behavior of the RTEMS OS and the MPARM platform by creating an
application �ow sequence of the segments that conforms to the new mapping.
A segment is characterized by its average execution time and an adequate
accuracy is guaranteed by modeling the interruption of processes and the
storing and restoring of process states according to the description given in
Section 6.1.1.

In Algorithm 6.3, the process scheduling algorithm of the SDF simulator is
outlined in pseudocode. Fixed priority is assumed as scheduling policy in the
algorithm and there exists an instance of this scheduling algorithm for each
tile γ ∈ Γ. The algorithm is executed whenever the state of a process bind to
tile γ is changed. By introducing the subsegments SUSPEND, RESUME, STORE,
and RESTORE, the algorithm takes into account the overhead caused by the
context switch. Obviously, these subsegments are only scheduled whenever
a new process becomes the non-blocked process with the highest priority.
After restoring the context of a new process, it might happen that a process
with a higher priority is not blocked any more. Therefore, the in�nite loop
(Line 2) guarantees that a process could directly be interrupted after being
restored.

In the design space exploration, the time to evaluate a design alternative is
critical. The consideration of the repetitive behavior of an SDF application
can signi�cantly reduce this amount of time. Due to the facts that (1) the
FIFO channels only have a limited token size, (2) the scheduling policy is
�xed priority, and (3) and all segments are modeled by constant execution
times, the sequence of segments is continuously repeated. In Fig. 6.2, a
simple process network is outlined. Both the producer and the consumer
process are mapped onto di�erent tiles that are connected by a FIFO channel
with a capacity of three tokens. After startup, the pattern of executing one
producer iteration and one consumer iteration in parallel is continuously

� 78 �

6.2. CALCULATING THE TEMPORAL POWER CONSUMPTION

Algorithm 6.3: Pseudocode of the process scheduling algorithm when �xed
priority is selected as scheduling policy in the SDF scheduler. There exists
an instance of this code for each tile γ ∈ Γ.

Require: Vs = {v1, . . . , vn} the set of all processes mapped to this processor.
The processes are sorted by descending priority, that is, P{vi} ≥ P{vi+1}
with P{v} the priority of v.

Require: a, the current active process
1: procedure NextProcessToSchedule()
2: loop
3: switch state s
4: case: NONE
5: if all processes are done then
6: a← IdleTask

7: return DONE

8: end if
9: v ← �rst process of Vs that is not blocked.
10: if all processes are blocked then
11: a← IdleTask

12: return STALLING

13: else if new process is already active then
14: return COMPUTING

15: else
16: if a is STALLING then
17: schedule suspend of a, s← SUSPEND

18: else
19: schedule resume of a, s← RESUME

20: end if
21: return COMPUTING

22: end if
23: case: RESUME
24: case: SUSPEND
25: schedule store of a, s← STORE

26: return COMPUTING

27: case: STORE
28: schedule restore of v, s← RESTORE

29: return COMPUTING

30: case: RESTORE
31: a← v, s← NONE

32: continue
33: end switch
34: end loop
35: end procedure

� 79 �

6.2. CALCULATING THE TEMPORAL POWER CONSUMPTION

Producer Consumer
1 1

C = 3

Consumer

Producer

Startup Iteration Iteration

t
5 10 15

Figure 6.2: Example of the repetitive behavior of an application modeled as
an SDF. The processes have a �xed execution time and are connected by a
FIFO channel with a capacity of three tokens.

repeated. Obviously, such an application can be in one of the three stages
that are summarized in Table 6.2. Note that an application might not enter
the repetitive stage if the capacity of the FIFO channels is too big and the
number of iterations is too small. In the current version of the prototype
implementation of the SDF simulator, we have implemented a detection
mechanism for the repetitive stage so that the creation of their timetables
only have to be performed once.

Table 6.2: Overview of the di�erent stages that an application, modeled as
an SDF, can adapt in the SDF simulator.

Startup stage Stage until all FIFO channels reach their steady-state
behavior.

Repetitive stage Stage where a pattern of segments is repetitively exe-
cuted.

End stage Stage where no other iteration of the repetitive stage
can be executed until the �rst process is completed and
the time period until all other processes are completed.

6.2.2 Power Annotation

In the second part of the prototype implementation of the segment-based
power annotation model, the timetables created by the SDF simulator are
combined with the thermal parameters, that is, the power consumption of
the segments, to estimate the transient power behavior of the system. In
this subsection, the modular structure of the power annotator used in the
prototype implementation is shortly described.

� 80 �

6.3. SYSTEM-LEVEL THERMAL SIMULATION IN DOL

+

Scheduling Information

Average Power Model

Average Max Power Model

Peak Power Model

Power Traces

Figure 6.3: Sketch of the power annotator as used in the prototype imple-
mentation of SLTE.

A rough sketch of the power annotator implementation is outlined in Fig. 6.3.
In our framework, we have implemented three power models designed accord-
ing to the power metrics introduced in Section 5.3.1. Each of the models,
the average power model, maximum average power model, and peak power
model, is annotated with the power values calculated by the corresponding
power metric formulas. The power annotator contains one package for each
power model; however, due to the modular design of our implementation, it
could easily be extended by new power models.

The composition of the power values and the scheduling information di�ers
between components that are only used by one process per time (e.g., the core
or the cache) and components that are concurrently used by all processes (e.g.
scratchpads or shared memories). The power consumption of the components
that are only used by one process per time corresponds to the power values
of the segment that is currently executed. However, the power consumptions
of the other components are the sum of the power values of all segments that
access the component at this time.

6.3 System-Level Thermal Simulation in DOL

In SLTE, the precomputed thermal analysis model introduced in Section 4.3
is used to calculate the temperature evaluation of a design alternative and
to reduce the computational e�ort to two matrix-vector multiplications per
power trace. In the following, the implementation of the precomputed ther-
mal analysis model in DOL is brie�y introduced. Afterwards, based on
the thermal model of HotSpot, a simple approach to reduce the number of
multiplications by another 25 % is illustrated.

Motivated by the fact that the thermal analysis model has only to calcu-
late two matrix-vector multiplications, we implemented the model as an
extension of DOL. However, as DOL is written in a high-level programming

� 81 �

6.3. SYSTEM-LEVEL THERMAL SIMULATION IN DOL

language, that is, Java1, additional native libraries are required to perform
the matrix-vector multiplications in an e�cient manner. For the prototype
implementation of SLTE, we use Matrix-Toolkits-Java (MTJ)2 to compute
the linear algebra operations. MTJ is based on the netlib-java library3 that
can be con�gured to use a native optimized implementation of BLAS4 and
LAPACK5 for e�cient matrix-vector multiplications.

Four layers are used to model a 2D processor in HotSpot: the silicon, the
interface, the heat spreader and the heat sink layer. Assuming a �oor-plan
with n components, the total number of nodes in the model is m = 4 ·n+12,
where the factor 4 accounts the four layers and the additional summand
models extra nodes for the spreader, the heat sink and the peripheral heat
sink [69]. Using the precomputed thermal analysis model, the number of
multiplications per power trace can be reduced to 2·m2, which is independent
of the selected interval length or accuracy.

From the de�nition of the thermal model, it follows that each node has an
associated temperature value. Furthermore, every node of the silicon layer
has the corresponding power dissipation as power value, and both the nodes
of the heat sink layer and the extra nodes are used to model the in�uence
of the ambient temperature. As the nodes of the interface and the heat
spreader layer have no associated power values, we can reduce the number
of multiplications by almost another forth as calculated next:

F ·P =

 f11 · · · f1m
...

. . .
...

fm1 · · · fmm

 ·

p1
...
pn
0
...
0

p3·n+1

pm

=

 f11 · · · f1n f1{3·n+1} · · · f1m
...

. . .
. . .

. . .
. . .

...
fm1 · · · fmn fm{3·n+1} · · · fmm

 ·

p1
...
pn

p3·n+1

pm

(6.3)

1http://www.java.com/
2http://code.google.com/p/matrix-toolkits-java/
3http://code.google.com/p/netlib-java/
4http://www.netlib.org/blas/
5http://www.netlib.org/lapack/

� 82 �

http://www.java.com/
http://code.google.com/p/matrix-toolkits-java/
http://code.google.com/p/netlib-java/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/

6.4. SUMMARY

6.4 Summary

The evaluation of potential design alternatives in the design space explo-
ration of a multi-processor streaming application requires fast and accurate
methods for performance and thermal analysis. Low-level simulators like
MPARM [13] provide very detailed information about the power and timing
behavior of an application, however, because they are too expensive in terms
of execution time, they seem to be inadequate for design space exploration.

In this chapter, speci�c details of a prototype implementation of SLTE have
been illustrated to demonstrate the viability of the concepts introduced in
Chapters 4 and 5. The thermal evaluation tool chain has been extended
with various post-processing methods to automatically calibrate SLTE with
its timing and thermal parameters. Having various advantages for thermal
evaluation, we use the SDF model as design methodology of our prototype
implementation. To reduce the evaluation time of a candidate mapping in
the design space exploration, an SDF simulator has been developed that
recognizes the repetitive behavior of a multi-processor streaming applica-
tion. In the next chapter, the discussed implementation of SLTE is used
to demonstrate the viability of the proposed approaches by analyzing the
thermal behavior of three multiprocessor streaming applications.

� 83 �

7
Experimental Results

In the �rst part of this thesis, SLTE, a compositional temperature evaluation
model for multi-processor streaming applications, has been proposed as an
e�cient method for the thermal evaluation of design alternatives. In this
chapter, three case studies are used to highlight the key bene�ts and demon-
strate the viability of the proposed method. A prototype implementation of
the thermal evaluation tool chain is used for the automated model calibra-
tion. Furthermore, the previously discussed extension of DOL with SLTE
performs the thermal evaluation of the design alternatives. A producer-
consumer application, a distributed matrix multiplication application, and a
Motion JPEG (MJPEG) application are used to analyze the proposed model
in detail.

After describing the experimental setup in Section 7.1, the mentioned appli-
cations are introduced and various measurements are reported in Section 7.2.
Afterwards, Section 7.3 discusses the accuracy and the speed-up of the results
and �nally, a summary concludes the chapter.

7.1 Experimental Setup

The MPARM virtual platform and the HotSpot thermal analysis model in-
troduced in Chapter 3 have been used for the automated model calibration
and to compare the outcomes of the abstract models. In the following, the
hardware/software platform, the thermal setup, the experimental setup, and
the evaluation metric are described.

� 84 �

7.1. EXPERIMENTAL SETUP

Hardware/Software Multi-Processor Platform. The MPARM plat-
form [13] presented in Section 3.2 is used as hardware platform to run all ap-
plications. The ARM7 cores and the shared bus operate at a clock frequency
of 200 MHz. The platform has the advantage that its number of tiles can
easily be adjusted. The RTEMS OS [48] that was shortly introduced in Sec-
tion 3.2.1, has the ability to provide the functionality of quasi-parallelism and
has an already existing FIFO implementation. In all experiments, RTEMS
is used as real-time OS and the scheduling policy is selected to be �xed
priority. Compared to the version of RTEMS provided by the MPARM
platform, the implementation of the idle task has been adjusted. Originally
implemented as a busy wait, the idle task switches the processor state of the
ARM7 processor to the idle mode [77] to reduce the power consumption in
the prototype implementation.

Power and Thermal Setup. The power model of the MPARM simulator
introduced in Section 3.2.2 is used to calculate the power consumption in all
experiments. The power consumption of the MPARM platform is multiplied
by a factor of �ve for a better illustration of its impact. Note that the abso-
lute power value has no in�uence on the viability of the proposed approach as
the power model of SLTE is based on the thermal parameters extracted from
the MPARM simulator. Therefore, both the system-level and the low-level
simulation models use the same power values. In case the power model of
MPARM does not support the memory sizes of our architecture, the power
values of MPARM are interpolated to the required size by taking advantage
of CACTI [78]. In all experiments, a sampling interval of 100µs is used to
generate the power traces.

The �oor-plan of this prototype implementation is based on the examples
given in [35], but they are adjusted to the MPARM platform and the number
of tiles of the concrete architecture. The thermal con�guration that is used
in [79] for the HotSpot model, simulates almost no heatsink. Therefore,
we adapted it for our prototype implementation, as well. In Table 7.1,
the detailed thermal con�guration used in all experiments is summarized.
Again note that the viability of the model is independent of the thermal
con�guration as all thermal parameters are extracted from HotSpot.

Experimental Setup. All experiments are performed on a Intel Core 2
Duo E6600 with 2 GByte RAM and GCC version 3.4.3 is used as compiler
for all simulators and applications. The prototype implementation of DOL
is compiled with Java version 6.

Evaluation Metric. To determine the performance and the accuracy of
our proposed approaches, we simulate all applications in the thermal eval-
uation tool chain introduced in Chapter 3. In the following, speaking from

� 85 �

7.2. APPLICATIONS

Table 7.1: Thermal con�guration of HotSpot as used in this project. Most
of the values are borrowed from [79] to neglect the e�ects of the heatsink.

Parameter Symbol Value

Silicon thermal conductivity [W/(m ·K)] kchip 100
Silicon speci�c heat [J/(m3 ·K)] pchip 1.75 · 106

Thickness of the chip [mm] tchip 0.8
Convection resistance [K/W] rconvec 13.9
Heatsink width [m] ssink 0.011
Heatsink thickness [mm] tsink 0.1
Heatsink thermal conductivity [W/(m ·K)] ksink 400
Heatsink speci�c heat [J/(m3 ·K)] psink 3.55 · 106

Thickness of the interface material [mm] tinterface 0.025
Ambient temperature [K] Tamb 300

low-level simulation always refers to the thermal evaluation tool chain. The
speed-up denotes the ratio between the execution time of the low-level sim-
ulator and the prototype implementation of SLTE. The execution time of
the low-level simulation corresponds to the sum of the execution time of the
MPARM simulator and the one of the HotSpot thermal analysis model.

To quantify the distance between the maximum temperature of the low-level
simulation and the prototype implementation of SLTE, we introduce the
pessimism metric. It measures their normalized di�erence, i.e. normalized
by the maximum variation of the temperature, and is de�ned as

pessimism =
|T ∗ −max(Tsim)|

margin
(7.1)

where the margin is the thermal di�erence between the maximum tempera-
ture when executing the system with utilization 100% and 0%, T ∗ is the max-
imum temperature of the prototype implementation of SLTE and max(Tsim)
is the maximum temperature occurred in the low-level simulation of the ap-
plication. The pessimism is calculated separately for each component and
an average of all pessimisms is used as metric of the accuracy.

7.2 Applications

The viability of the proposed model is analyzed with three multi-processor
streaming applications. The synthetic producer-consumer application is used
to illustrate the behavior of SLTE for di�erent lengths of process chains and
observe the impact of the segment's execution time on the accuracy of SLTE.

� 86 �

7.2. APPLICATIONS

The scalability of the proposed model is studied with the matrix application
where the multiplication of two matrices is distributed over many processes.
Finally, the MJPEG decoder is used to con�rm the observed trends with a
real-world application.

The calibration of the thermal model follows the procedure described in
Chapter 5. Unless stated otherwise, the same mapping is used for model
calibration and thermal analysis. However, if various candidate mappings are
compared, a single, randomly selected mapping is used for calibration1. Note
that the following characteristics are outlined for each evaluation scenario
(Tables 7.2 to 7.8):

1. the average, maximum, and the minimum pessimism when the average
power consumption is used as power parameter for SLTE,

2. the actual execution time of the application on the real platform, that
is, the MPARM platform, and

3. the time that is used to simulate the system in SLTE and the corre-
sponding speed-up of SLTE compared to the low-level simulation.

A detail description of all mappings used in this section and supplementary
results of the applications as well as a Fast Fourier Transform (FFT) and
In�nite Impulse Response (IIR) application are listed in Appendix A.

7.2.1 Producer-Consumer

The producer-consumer application is a simple synthetic application that
consists of three or more processes that are mapped on a distributed archi-
tecture with three processors. Its process network is outlined in Fig. 7.1
for a chain of �ve processes. The functionality of the application can be
described as follows: The producer process generates a stream of �oating
point numbers which are passed to the �rst worker process. Every worker
process squares the �oating point number various times before passing the
value to the next worker process. Finally, the last consumer process prints
the received value. To compare the results among themselves, the ability to
recognize the repetitive behavior of the application has been deactivated in
all experiments.

Three di�erent scenarios are investigated with the producer-consumer ap-
plication. First, the execution time of an iteration of the worker process is
altered. The considered structure of the application consists of three worker

1In the following, the mapping that is used to perform the model calibration is marked
with a star.

� 87 �

7.2. APPLICATIONS

Producer Worker 0 ConsumerWorker 2Worker 1

Tile 0

Bus

Tile 1 Tile 2

Figure 7.1: Process network of the producer-consumer application with three
worker processes. The application is mapped onto a distributed architecture
of three tiles.

processes and the corresponding results are outlined in Table 7.2. In the
second scenario, the number of worker processes is altered from one to eight
processes. Again, the pessimism, the execution times and the speed-up are
summarized in Table 7.3. Finally, in the third scenario, seven di�erent map-
pings of the producer-consumer application are compared. The application
contains three worker processes and its characteristics are reported in Ta-
ble 7.4.

Table 7.2: Producer-Consumer, Execution Time of Process:
Pessimism, execution times and speed-ups of the �rst evaluation scenario.
The execution time T of the worker process is altered. The chain is extended
to three worker processes and mapped onto a distributed architecture of
three tiles. The same mapping is used for model calibration and evaluation.

Pessimism Execution Time

Average Min Max Platform SLTE Speed-up

T = 0.2ms 0.0036 0.0017 0.0084 2.45 s 2.20 s 1678
T = 0.4ms 0.0021 0.0015 0.0075 2.37 s 1.73 s 2000
T = 1.0ms 0.0011 0.0007 0.0026 2.33 s 1.63 s 2046
T = 2.0ms 0.0006 0.0001 0.0027 2.31 s 1.52 s 2146
T = 4.0ms 0.0009 0.0003 0.0047 2.30 s 1.45 s 2230
T = 10ms 0.0005 0.0000 0.0040 2.30 s 1.32 s 2457
T = 20ms 0.0003 0.0000 0.0028 2.29 s 1.24 s 2559
T = 40ms 0.0003 0.0000 0.0034 2.29 s 1.30 s 2676

� 88 �

7.2. APPLICATIONS

Table 7.3: Producer-Consumer, Process Chain Length:
Pessimism, execution times and speed-ups of the second evaluation scenario.
The number of worker processes (WPs) is altered from one to eight processes,
but the application is always mapped onto a distributed architecture of three
tiles. The same mapping is used for model calibration and evaluation.

Pessimism Execution Time

Average Min Max Platform SLTE Speed-up

1 WP 0.0032 0.0001 0.0090 2.37 s 1.71 s 2013
2 WPs 0.0015 0.0003 0.0021 2.46 s 1.89 s 2108
3 WPs 0.0019 0.0005 0.0024 2.48 s 1.79 s 2245
4 WPs 0.0013 0.0008 0.0030 2.50 s 1.77 s 2560
5 WPs 0.0014 0.0010 0.0033 2.26 s 1.70 s 2214
6 WPs 0.0010 0.0004 0.0024 2.27 s 1.69 s 2416
7 WPs 0.0010 0.0008 0.0021 2.43 s 1.74 s 2386
8 WPs 0.0009 0.0002 0.0036 2.44 s 1.77 s 2473

Table 7.4: Producer-Consumer, Di�erent Mappings:
Pessimism, execution times and speed-ups of the third evaluation scenario
where seven di�erent mappings are compared. The chain is extended to three
worker processes and is mapped onto a distributed architecture of three tiles.
The mapping that is used to perform the model calibration is marked with
a star.

Pessimism Execution Time

Average Min Max Platform SLTE Speed-up

Mapping 1∗ 0.0019 0.0005 0.0024 2.48 s 1.78 s 2244
Mapping 2 0.0033 0.0014 0.0040 2.48 s 1.78 s 2243
Mapping 3 0.0048 0.0022 0.0053 1.34 s 1.58 s 1806
Mapping 4 0.0022 0.0013 0.0028 2.48 s 1.77 s 2282
Mapping 5 0.0035 0.0000 0.0092 3.72 s 2.10 s 2488
Mapping 6 0.0039 0.0006 0.0051 3.73 s 2.13 s 2459
Mapping 7 0.0021 0.0005 0.0034 2.43 s 1.75 s 2251

� 89 �

7.2. APPLICATIONS

Producer

Tile 0

Consumer

Multi-
plication

N/N/1

Bus

Tile 1 Tile 2

Multi-
plication

N/N/2

Multi-
plication
N/N/N

Multi-
plication

1/1/N

Multi-
plication

1/1/1

Multi-
plication

1/1/2
A11, B11

A12, B21
A1N, BN1

Out Out

C11

AN1, B1N

AN2, B2N

ANN, BNN

CNN

Out Out

Figure 7.2: Process network of a distributed implementation of the matrix
multiplication. Every multiplication process executes exactly one multiplica-
tion and addition. The application is mapped onto a distributed architecture
of three tiles.

7.2.2 Matrix Multiplication

The matrix multiplication application calculates an N ×N matrix multipli-
cation in a distributed way by splitting up the matrix product into single
multiplications and additions. Therefore, the resulting streaming application
outlined in Fig. 7.2 consists of N3 multiplications, an input generator, and
an output consumer process. Assuming the application is used to calculate
the product C of the N ×N matrices A and B. The input to the multiplica-
tion process (i/j/k) is Aij , Bji and the output of the multiplication process
(i/j/k − 1). It calculates Aij · Bji + out(i/j/k−1) and forwards this to the
multiplication process (i/j/k+1). The �rst process of a line, that is, (i/j/1)
has zero as input instead of the previous result and the last process of a line,
that is, (i/j/N) forwards the result to the output consumer process. The
application is mapped onto a distributed architecture of three tiles.

The matrix multiplication application is used to investigate two di�erent
evaluation scenarios. In the �rst scenario, the viability of SLTE is compared
for three di�erent dimensions of the matrix, namely N = 1, N = 2, and

� 90 �

7.2. APPLICATIONS

Table 7.5: Matrix Multiplication, Dimension:
Pessimism, execution times and speed-ups of the �rst evaluation scenario
where three di�erent matrix dimensions N are compared. The application is
mapped onto a distributed architecture of three tiles and the same mapping
is used for model calibration and evaluation.

Pessimism Execution Time

Average Min Max Platform SLTE Speed-up

N = 1 0.0030 0.0021 0.0087 2.61 s 1.57 s 2775
N = 2 0.0010 0.0003 0.0027 2.52 s 1.81 s 2195
N = 3 0.0018 0.0001 0.0042 2.52 s 2.32 s 1760

Table 7.6: Matrix Multiplication, Di�erent Mappings:
Pessimism, execution times and speed-ups of the second evaluation scenario
where seven di�erent mappings are compared. The application is mapped
onto a distributed architecture of three tiles and the mapping that is used
to perform the model calibration is marked with a star.

Pessimism Execution Time

Average Min Max Platform SLTE Speed-up

Mapping 1∗ 0.0010 0.0003 0.0027 2.52 s 1.81 s 2195
Mapping 2 0.0017 0.0001 0.0046 2.31 s 1.57 s 2413
Mapping 3 0.0076 0.0058 0.0113 2.59 s 1.64 s 2487
Mapping 4 0.0012 0.0002 0.0022 2.32 s 1.49 s 2571
Mapping 5 0.0014 0.0004 0.0020 2.32 s 1.49 s 2565
Mapping 6 0.0025 0.0008 0.0070 2.32 s 1.48 s 2574
Mapping 7 0.0055 0.0040 0.0083 2.70 s 1.73 s 2420

N = 3. The pessimism, the execution times and the speed-ups are reported
in Table 7.5. Various mappings are the topic of the second evaluation sce-
nario and its results are summarized in Table 7.6.

In Fig. 7.3, the temporal temperature evolution of the �rst mapping of Ta-
ble 7.6 is plotted. Other than the temperature recorded from the low-level
simulation, the temperature simulated with SLTE is plotted for three dif-
ferent power annotations, that is, the average, maximum average, and peak
power consumption introduced in Section 5.3.1. Similarly, the temporal tem-
perature evolution of the seventh mapping is plotted in Fig. 7.4.

� 91 �

7.2. APPLICATIONS

(a) Tile 0, Core (b) Tile 0, Data Cache

(c) Tile 1, Core (d) Tile 1, Data Cache

(e) Tile 2, Core (f) Tile 2, Data Cache

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure 7.3: Matrix Multiplication, Mapping I:
Temperature evolution of three tiles of the MPARM virtual platform when
the matrix multiplication application is executed. For each tile, both the core
and data cache is outlined. The application has been simulated with SLTE
using three di�erent power values, that is, the average, maximum average,
and peak power consumption. As the temperature evolution of SLTE with
the average power consumption as power value is almost indistinguishable
from the temperature evolution recorded from the low-level simulation, their
lines fall on each other.

� 92 �

7.2. APPLICATIONS

(a) Tile 0, Core (b) Tile 0, Data Cache

(c) Tile 1, Core (d) Tile 1, Data Cache

(e) Tile 2, Core (f) Tile 2, Data Cache

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure 7.4: Matrix Multiplication, Mapping VII:
Temperature evolution of three tiles of the MPARM virtual platform when
the matrix multiplication application is executed. For each tile, both the core
and data cache is outlined. The application has been simulated with SLTE
using three di�erent power values, that is, the average, maximum average,
and peak power consumption. As the temperature evolution of SLTE with
the average power consumption as power value is almost indistinguishable
from the temperature evolution recorded from the low-level simulation, their
lines fall on each other.

� 93 �

7.2. APPLICATIONS

Split
Stream

Tile 0

Split
Frame

Merge
Stream

Merge
Frame

Bus

Tile 1 Tile 2

Decode

Split
Frame

Merge
Frame

Decode

Tile 3

Figure 7.5: Process network of a distributed implementation of the MJPEG
decoder when two frames are decoded in parallel.

7.2.3 Motion JPEG Decoder

The third application that is considered in the evaluation of SLTE is an
MJPEG decoder [80]. MJPEG is a video codec in which each video frame
is separately compressed as a JPEG image. The process network of the
decoder considered in this evaluation is outlined in Fig. 7.5. The decoder's
input is a video stream that is �rst split into its individual frames. The
second subactor splits the frames into macroblocks, which are separately
decoded. The decoded macroblocks are stitched together into a frame and
�nally into a stream. To improve the performance of the application, various
frames can be decoded in parallel as outlined for the case of two frames in
Fig. 7.5.

We consider two di�erent parallelizations in this evaluation. In the �rst
scenario, no parallelization is considered, that is, only one frame is decoded
per time. As the process network only consists of totally �ve processes,
we map the whole application onto a distributed platform with three tiles
and its characteristics are summarized in Table 7.7. In the second scenario,
two frames are decoded in parallel and the application is mapped onto a
distributed architecture of four tiles. Again, pessimism, the execution times,
and the speed-up are reported in Table 7.8. In both scenarios, a stream of
eight frames is decoded during one run of the system.

� 94 �

7.2. APPLICATIONS

Table 7.7: MJPEG Decoder, One Frame, Di�erent Mappings:
Pessimism, execution times and speed-ups of the �rst evaluation scenario
where four di�erent mappings are compared. The application is mapped
onto a distributed architecture of three tiles and the mapping that is used
to perform the model calibration is marked with a star.

Pessimism Execution Time

Average Min Max Platform SLTE Speed-up

Mapping 1* 0.0014 0.0002 0.0074 1.46 s 6.38 s 394
Mapping 2 0.0054 0.0004 0.0182 1.46 s 5.99 s 408
Mapping 3 0.0021 0.0006 0.0081 1.49 s 6.24 s 406
Mapping 4 0.0019 0.0002 0.0114 1.48 s 5.95 s 409

Table 7.8: MJPEG Decoder, Two Frames In Parallel, Di�erent Mappings:
Pessimism, execution times and speed-ups of the second evaluation scenario
where four di�erent mappings are compared. The application is mapped
onto a distributed architecture of four tiles and the mapping that is used to
perform the model calibration is marked with a star.

Pessimism Execution Time

Average Min Max Platform SLTE Speed-up

Mapping 1* 0.0023 0.0000 0.0128 1.45 s 6.99 s 410
Mapping 2 0.0028 0.0001 0.0148 1.45 s 6.99 s 411
Mapping 3 0.0028 0.0011 0.0050 1.44 s 7.64 s 373
Mapping 4 0.0012 0.0001 0.0081 1.40 s 7.94 s 391

To demonstrate the viability of SLTE in estimating the transient tempera-
ture evolution of an application, the temperature evolution of totally twelve
components are plotted when the MJPEG decoder is executed. Figures 7.6
and 7.7 plot the temperature evolution of the �rst and second tile, and
the third and forth tile, respectively. The system corresponds to the �rst
mapping of Table 7.8. Again, the temperature evolution computed by SLTE
is plotted when the average, maximum average, and the peak power con-
sumptions are used to calibrate the model. The temperature of the low-level
simulation is plotted as reference.

� 95 �

7.2. APPLICATIONS

(a) Tile 0, Core (b) Tile 1, Core

(c) Tile 0, Data Cache (d) Tile 1, Data Cache

(e) Tile 0, Scratchpad (f) Tile 1, Scratchpad

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure 7.6: MJPEG Decoder, Mapping I, Tile 1 & 2:
Temperature evolution of two tiles of the MPARM virtual platform when
the MJPEG decoder application is executed. Three components, namely the
core, data cache and scratchpad, are outlined for each tile. The application
has been simulated with SLTE using three di�erent power values, that is,
the average, maximum average, and peak power consumption.

� 96 �

7.2. APPLICATIONS

(a) Tile 2, Core (b) Tile 3, Core

(c) Tile 2, Data Cache (d) Tile 3, Data Cache

(e) Tile 2, Scratchpad (f) Tile 3, Scratchpad

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure 7.7: MJPEG Decoder, Mapping I, Tile 3 & 4:
Temperature evolution of two tiles of the MPARM virtual platform when
the MJPEG decoder application is executed. Three components, namely the
core, data cache and scratchpad, are outlined for each tile. The application
has been simulated with SLTE using three di�erent power values, that is,
the average, maximum average, and peak power consumption.

� 97 �

7.3. DISCUSSION

7.3 Discussion

To evaluate a multi-processor streaming application already in an early de-
sign stage, automatically calibrated thermal evaluation models are required
whose input are the software synthesis speci�cations. Having such a model,
we aimed to achieve an evaluation time that is faster as the system's execu-
tion time on the real platform. Therefore, many mappings can be evaluated
during design space exploration without having too much computational
overhead. Furthermore, an adequate accuracy is required, that is, the pes-
simism should be less than one percent.

7.3.1 Accuracy

In all results listed in Tables 7.2 to 7.8, the average pessimism is less than
one percent. From the group of experiments, that use the same mapping for
model calibration and analysis, the pessimism is even less than 0.36 %. Only
�ve experiments have a maximum observed pessimism that is higher than
one percent, however, the pessimism never exceeds 1.5 %. To interpret these
results, we �rst transform them to absolute temperature values. In our exper-
iments, roughly 0.2 K corresponds to a pessimism of one percent. Therefore,
the absolute error of the peak temperature does never exceed 0.3 K. The
inaccurate estimation of the temperature of individual components can be
attributed to the following two factors:

1. While the power consumption is approximately constant for comput-
ing components, the power curve of other components swings much
more during a segment. Consider, for example, the local memory, an
application only consumes power if the required data is not yet cached.
Therefore, their power consumption is unequally distributed over time,
which results in a higher peak temperature.

2. In all experiments, only one benchmark mapping has been used to
calibrate the system. However, the accuracy strongly depends on the
selection of the benchmark mapping. Every process or even segment
uses a di�erent characteristic amount of time to restore and store its
context and only these characteristics that are actually observed during
model calibration can be accurately modeled in SLTE.

The comparison of the results of the producer-consumer and matrix multipli-
cation application makes trends even more clear. On the one hand, execution
times that are small often lead to many context switches and therefore, higher
inaccuracy. On the other hand, the constant power consumption approxi-
mation leads to an inaccuracy in estimating the temperature of applications
with segments that have a long execution time.

� 98 �

7.3. DISCUSSION

7.3.2 Speed-up

In both the producer-consumer application and the matrix multiplication
application, the time to evaluate a system in SLTE is always lower than the
execution time of the system on the real platform. This means that the
thermal characteristics of the system are obtained in real time. However,
evaluating the MJPEG decoder in SLTE takes four to �ve times the execution
time of the system on the real platform. The average speed-up of all 41
experiments is 1939. It is noticeable, that the speed-up of the MJPEG
decoder is very low compared to all other applications. To interpret this
result, we need to consider the code structure of the MJPEG decoder. The
code is assembled of a large number of small segments that only forward some
data from one node to another node. Furthermore, as only eight frames have
been decoded in all experiments, no repetitive behavior of the decoder can
be observed that would reduce the time to evaluate the application in SLTE.

The experiments can be categorized in two groups, with either the compu-
tation of the power consumption or the computation of the temperature as
bottle neck. All experiments involving the MJPEG decoder are examples of
the �rst group. The time to calculate the power consumption mainly de-
pends on the actual execution time of the segments. Therefore, an approach
to improve the time to calculate the power consumption would be to unite
short segments that logically belong together into one large segment. In
Listing 7.1, the reading of a large array is split into various small segments.
In the current version of SLTE, this code would generate two times NB_SEND
segments. As the in�uence of the computing segments on the overall power
consumption is negligible, a viable approach is to unite all these short seg-
ments into a large segment. However, its impact on the accuracy of the
temperature is an open question.

Listing 7.1: Example code to illustrate the idea of unite short segments into
a large segment to improve the computing time of the power consumption
in SLTE.

1 for (int i = 0; i < NB_SEND; i++) {

2 read((void *) PORT_IN , &buffer[MAX_SEND * i]);

3 }

The evaluation of various mappings of the matrix application is an example of
the second group. The speed-up is mainly bounded by the time to compute
the temperature out of the power consumption. The easiest approach to
reduce this time is the selection of a higher sampling interval, however, this
often results in reduced accuracy. Another approach to reduce the time to
evaluate a system is the use of model reduction [39, 81]. Nonetheless, both
approaches do not require a conceptual change of our model.

� 99 �

7.4. SUMMARY

7.4 Summary

This chapter described various case studies to evaluate the proposed thermal
emulation techniques for estimating the transient temperature evolution of
a multi-processor streaming application. In all three case studies, we con-
sidered streaming applications that are described as process networks and
mapped onto a distributed platform. It was shown that SLTE has remarkable
advantages over traditional low-level simulation methods in the design space
exploration.

A prototype implementation of SLTE in DOL is used to demonstrate the
viability of the proposed approaches. It was shown that speed-ups of more
than 2000 are achieved over a low-level thermal evaluation tool chain by
an overall reduction of the accuracy of less than one percent. Finally, the
MJPEG decoder application was used to highlight the fact that the speedup
is reduced if the application consists of segments that are much smaller than
the sampling period.

� 100 �

8
Thermal Simulation:

Conclusion and Outlook

8.1 Conclusion

Multi-processor streaming applications with real-time requirements demand
system-level methodologies that guarantee both thermal constraints and real-
time deadlines at the design time. The �rst part of this master thesis tackles
this challenge and proposes techniques to estimate the transient temperature
behavior of a many-core system in an early design stage.

Compositional thermal evaluation methods outperform traditional, low-level
based evaluation methods due to a much faster execution time when com-
paring thousands of design alternatives. However, compositional thermal
evaluation models require timing and thermal parameters to model the be-
havior of the application. The �rst contribution of this part of the thesis is
the design and implementation of a thermal evaluation tool chain to auto-
matically calibrate compositional thermal evaluation models. The tool chain
is made up of three fundamental tools, namely a synthesis tool, a low-level
virtual platform, and a thermal simulator. The viability of the tool chain is
assessed by a prototype implementation based on DOL, the MPARM virtual
platform, and HotSpot. The MPARM virtual platform has been extended
to support the computation of the transient power dissipation, and to dif-
fer between static and dynamic power consumptions in order to tackle the
challenge of temperature-dependent static power dissipation.

The second contribution is the design of SLTE, a compositional thermal
evaluation model. It emulates the transient temperature evolution of a dis-

� 101 �

8.2. OUTLOOK

tributed system that is described by its high-level speci�cation, namely the
application, architecture, and mapping speci�cation, and additional thermal
and timing parameters. The calculation of the transient temperature evolu-
tion is made up of three parts. First, the scheduling of a system is calculated
with a trace-based simulator. Afterwards, the scheduling is annotated with
the corresponding power consumption and �nally, the temperature is cal-
culated with a method to partly precompute the solution of the di�erential
equation system.

A prototype implementation of SLTE in DOL is used to evaluate the model
in three case studies. It shows that SLTE provides speed-ups in the order of
three magnitudes over the low-level tool chain while having an average error
of less than one percent. So far, hardware/software emulation frameworks
that are based on a Field Programmable Gate Array (FPGA) emulation plat-
form have been the state-of-the-art method for thermal analysis in terms of
evaluation time. However, SLTE achieves similar speed-ups and accuracies,
but is much more �exible and cheaper.

While providing detailed information about the transient temperature char-
acteristics of a multi-processor streaming application, thermal simulation has
the drawback that it only covers a fraction of all possible system behaviors.
Therefore, it cannot be used to determine hard bounds on the temperature
as it is often required by modern embedded real-time systems. In the sec-
ond part of this thesis, we will tackle this drawback and propose an analytic
method to calculate the worst-case peak temperature of a many-core system.

8.2 Outlook

As thermal simulation methods are indispensable in an early design stage of
a multi-processor streaming application, future research should cover all the
discussed aspects and there are still several interesting topics for supplemen-
tary research.

First of all, the proposed compositional thermal analysis method should
be extended to support other platforms and architectures. Basically, this
includes two steps. On the one hand, the automated model calibration
method has to be transferred to the new platform to support the extrac-
tion of the required timing and thermal parameters. On the other hand,
the actual emulation model has to be extended with an accurate model of
every novel type of component like Network-on-a-Chip (NoC) or Dynamic
Random Access Memory (DRAM). In particular, the transformation of the
proposed models to a real platform would be interesting to investigate, as the
approximated temperature could be compared with the actual temperature
of the hardware. Examples of such platforms include the newly announced
Intel Single-chip Cloud Computer (SCC) [2] platform or the Platform 2012 [6]
that even supports three-dimensional stacking.

� 102 �

Part II

Analytic Thermal Analysis

� 103 �

9
Analytic Thermal Analysis:

An Introduction

9.1 Overview

In hard real-time systems, the completion of a task after its deadline is con-
sidered as useless as it may cause a failures of the system. Therefore, such
systems require safe bounds on timing properties, and, as the predictability
of a system highly depends on its temperature, safe bounds on the temper-
ature. Consequently, the identi�cation of the worst-case peak temperature
is a crucial task in the design of a multi-processor streaming application for
modern embedded real-time systems.

Thermal simulation methods, as considered in the �rst part of this master
thesis, only cover a fraction of all possible system behaviors, and therefore,
they cannot be used to determine hard bounds on the temperature. In the
second part of this thesis, we discuss the question of obtaining the worst-
case peak temperature of a multi-processor streaming application that is
mapped onto a distributed architecture by using analytic worst-case analysis
methods.

Consequently, we propose and evaluate a method to calculate the worst-case
peak temperature of a many-core system. Based on a former work to calcu-
late the worst-case peak temperature of a single-node system, we derive in
Chapter 10 an analytic worse-case peak temperature method for many-core
systems. A concrete implementation of the method is presented for event

� 104 �

9.2. RELATED WORK

streams described by the period-jitter-delay model. Afterwards, in Chap-
ter 11, the method is applied to various case studies and two approximation
algorithms that tremendously reduce the evaluation time, are discussed and
evaluated.

9.2 Related Work

To the best of our knowledge, this work is the �rst framework that calculates
a tight upper bound on the worst-case peak temperature of a multi-processor
streaming application. Current approaches to analyze the temperature char-
acteristics of a multi-processor application mainly include solutions based on
simulation and exclude analytic methods. A broad overview of thermal sim-
ulation methods is given in the �rst part of this master thesis, in Section 2.2.
In addition to this summary, the �rst part of this thesis presented methods to
simulate the temporal temperature evolution of a multi-processor streaming
application.

Providing hard bounds of the analysis parameters is nowadays essential for
real-time embedded systems. In the last decade, various techniques for
analytical performance analysis have been proposed. Compositional best-
case/worst-case methods like Modular Performance Analysis (MPA) [5] or
Symbolic Timing Analysis for Systems (SymTA/S) [61] provide upper and
lower bounds of the timing parameters of a distributed application. Recently,
Rai et al. [15] proposed a method to extract the worst-case peak temperature
of a single-core system. Its extension to multi-core systems will be discussed
in the following.

� 105 �

10
Worst-Case Peak Temperature of a

Many-Core System

The derivation of a framework to obtain the worst-case peak temperature of
a multi-processor streaming application that is mapped onto a distributed
architecture, is the topic of this chapter. The work is an extension of [15],
which calculates the worst-case peak temperature of a single-node system.
However, as the thermal in�uence of one node on another node is delayed,
new approaches are required to tackle the problem. The proposed framework
considers an event model based on arrival curves of network and real-time
calculus. Its only requirement towards the processing components is that
they are work-conserving, that is, they have to process an event if there is at
least one event in the ready queue. To the best of our knowledge, this work
is the �rst framework that calculates a tight upper bound on the worst-case
peak temperature of a multi-processor streaming application.

After presenting the basic thermal and computational model in Section 10.1,
Section 10.2 introduces the thermal analysis model and provides an opti-
mization problem that constructs the worst-case accumulated computing
time function. In Section 10.3, the optimization problem is solved for event
streams described by the period-jitter-delay model. The chapter concludes
with a short summary.

10.1 System Model

Based on the previous explanation of a thermal model and the ideas of arrival
curves [82] for modeling the event streams, we introduce the basic models

� 106 �

10.1. SYSTEM MODEL

to calculate the worst-case peak temperature of a multi-processor system in
this section. However, to establish a common language, we �rst introduce a
few basic terms of the linear algebra.

De�nition 1. A real n× n matrix G is called non-negative if and only if

gi,j ≥ 0 (10.1)

for all i, j.

De�nition 2. A real n× n matrix G is called non-positive if and only if

gi,j ≤ 0 (10.2)

for all i, j.

De�nition 3. A real n × n matrix G is called essentially non-negative if
and only if

gi,j ≥ 0 i 6= j. (10.3)

10.1.1 Thermal Model

The duality between the heat transfer and an electrical network has been
used to derive a thermal model in Sections 3.3.2 and 4.3. Similarly, in this
chapter, we model the transient temperature behavior of a multi-processor
system as a multi-dimensional �rst-order di�erential equations:

C · dT

dt
= (P + S ·Tamb)− (G + S) ·T (10.4)

where C is the thermal capacitance matrix, G the thermal conductance
matrix, S the thermal ground conductance matrix, P the power dissipation
vector, T the temperature vector, and Tamb = Tamb · [1, . . . , 1]′ the ambient
temperature vector. G is a non-positive matrix whose diagonal elements
are 0 and S is a non-negative diagonal matrix. Only the power P and the
temperature T are assumed to be time-variant, however, we will not present
the time variable for P and T if the context is clear.

From Section 3.3.3, we know that the power depends exponentially on the
temperature and that a �rst-order linear approximation can be used to ob-
tain a fairly accurate model of the temperature-dependency in the normal
operating temperature range of modern ICs [56]. Therefore, in this chapter,
we describe the temperature dependency of the static power by means of a
linear approximation as

P(T) = φ ·T +ψ (10.5)

� 107 �

10.1. SYSTEM MODEL

where φ is a diagonal matrix with constant coe�cients, and ψ a vector with
constant coe�cients. Therefore, we can express the jth component of P as
Pj(T) = φjj · Tj + ψj . We only distinguish between an 'active' and an 'idle'
mode of the processing components and denote the power of component j in
the 'active' mode as P aj and the corresponding power in the 'idle' mode as

P ij . Due to the fact that only the coe�cient ψ depends on the mode of the
processing component, we characterize the power of the processing modes as

P aj (T) = φjj · Tj + ψaj (10.6)

and

P ij (T) = φjj · Tj + ψij . (10.7)

Lemma 4. Given a thermal model according to (10.4) and (10.5). The
model de�nes a linear and time-invariant system and can be described by its
state-space representation

dT

dt
= A ·T + B · u (10.8)

where A and B are constant matrices and u = [u1, u2, . . . , um]′ is a time-
dependent input vector.

Proof. The state-space representation of a linear system [83] is de�ned as

dx

dt
= A(t) · x + B(t) · u (10.9)

where x = [x1, x2, . . . , xk]
′ is the state vector and u = [u1, u2, . . . , um]′ the

input vector. Furthermore, the system is said to be time-invariant, if both
the matrices A and B are constant, that is, they are independent of the
time t [83].

Rewriting (10.4) with (10.5) yields

dT

dt
= −C−1 · (G + S− φ) ·T + C−1 · (ψ + S ·Tamb) (10.10)

and by equating the coe�cients, we �nd

A = −C−1 · (G + S− φ)

B = C−1

x = T

u = ψ + S ·Tamb.

(10.11)

Obviously, both the matrices A and B only consist of matrices with constant
coe�cients, which concludes our proof.

� 108 �

10.1. SYSTEM MODEL

The following corollaries describe several properties of the matrices used in
the state-space representation of the thermal model.

Corollary 5. Suppose that a thermal model is given according to (10.8).
Then the matrix B de�ned by (10.11) is non-negative.

Corollary 6. Suppose that a thermal model is given according to (10.8).
Then the matrix

A = −C−1 · (G + S− φ) (10.12)

de�ned by (10.11) is essentially non-negative.

Proof. First note that S and φ are diagonal matrices and G is a non-positive
matrix whose diagonal elements are 0. Therefore, − (G + S− φ) is an es-
sentially non-negative matrix. The proof concludes from the facts that C
is a diagonal matrix with positive elements, and the coe�cients of an es-
sentially non-negative matrix do not change their algebraic sign after the
multiplication with a positive diagonal matrix.

Note that, for peak temperature analysis, we implicitly assume that the
thermal model is BIBO-stable1.

10.1.2 Computational Model

Targeting distributed multi-processor systems, we assume that the compu-
tational model of every processor is independent of each other, but all pro-
cessors stick to the same rules. In the following, we derive the computational
model of our multi-processor system from the computational model of single
processors. Furthermore, in this thesis, we consider general event arrivals
modeled by arrival curves from network and real-time calculus [82, 84].

The computational model of a single processor follows the model described
in [15]. For completeness, we will summarize its core statements in the
following. While queuing all uncompleted events, a component is assumed
to processes at most t − s time units in a time interval [s, t). The only
restriction towards the processing component is work-conserving, that is, if
there is at least one event in the ready queue, the processing component has
to process it. We call a system work-conserving if all its components are
work-conserving.

1BIBO-stability requires that every impulse response of the system is absolute inte-
grable, and therefore ∫ ∞

−∞
|h(t)| d t <∞. (10.13)

� 109 �

10.1. SYSTEM MODEL

In the time interval [s, t), events with a total workload of R(s, t) time units
arrive. The arrival curve α upper bounds the cumulative workload, where

R(s, t) ≤ α(t− s) ∀s < t (10.14)

with α(0) = 0. Note that the arrival curve is sub-additive [82], if it satis�es

α(x) + α(y) ≥ α(x+ y), ∀x, y ≥ 0. (10.15)

Suppose that several independent workload functions R(k) are bounded in-
dividually by arrival curves α(k). For the case that the workload functions
are concurrently processed in a single component, the accumulated workload
can be bounded as follows [15]:

R(s, t) ≤
∑
∀k

α(k)(t− s) = α(t− s). (10.16)

The accumulated computing time Q describes the time a component is
spending to compute the incoming workload of R(s, t) time units. Therefore,
for work-conserving scheduling algorithms, the accumulated computing time
Q(s, t) of the component in the time interval [s, t) can be expressed by

Q(s, t) = inf
s≤u≤t

{(t− u) +R(s, u)} (10.17)

provided that there is no bu�ered workload in the ready queue at time s.
Using the upper bound of the cumulative workload R as de�ned in (10.14),
the accumulated computing time Q(t−∆, t) can be upper bounded by γ(∆)
for intervals with length ∆:

Q(t−∆, t) ≤ γ(∆) = inf
0≤λ≤∆

{(∆− λ) + α(λ)} . (10.18)

For any �xed s with s < t, the accumulated computing time Q(s, t) is mono-
tonically increasing and has either slope 1 or 0. The mode function S(t)
determines the operating mode of the processing component and can be
expressed by

S(t) =
dQ(s, t)

dt
∈ {0, 1}. (10.19)

Therefore, the processing component is in 'active' mode if S(t) = 1 and in
'idle' mode if S(t) = 0.

Suppose that we totally have n components, and every component j receives
in a time interval [s, t) a cumulative workload trace ofRj(s, t), the cumulative
workload trace of a multi-processor system is de�ned by

R(s, t) =

 R1(s, t)
...

Rn(s, t)

 (10.20)

� 110 �

10.2. THERMAL ANALYSIS

with Rj(s, t) ≤ αj(t − s) for all s < t and 1 ≤ j ≤ n. Similarly, we de�ne
the accumulated computing time function Q of a multi-processor system by

Q(t−∆, t) =

 Q1(t−∆, t)
...

Qn(t−∆, t)

 (10.21)

where Qj is the accumulated computing time function of component j and
can be expressed by

Qj(t−∆, t) ≤ γj(∆) = inf
0≤λ≤∆

{(∆− λ) + αj(λ)} . (10.22)

In the following, we implicitly assume that the schedulability test for real-
time systems has been passed, the curve α is sub-additive, and no thermal
management is applied to reduce the temperature.

10.1.3 Problem Statement

The remainder of this chapter addresses the question of determining the
worst-case peak temperature of a multi-processor streaming application.
Therefore, the problem can be formulated as follows:

Given a work-conserving system that is characterized by a stable
thermal model, the aim is to determine the worst-case peak tem-
perature T∗ for any cumulative workload R as de�ned in (10.20).

10.2 Thermal Analysis

In order to calculate an upper bound of the peak temperature T ∗j of com-
ponent j, we �rst reduce the problem to determine an upper bound of the
temperature if all except one power source are eliminated. Consequently,
we provide an optimization problem, that constructs the accumulated com-
puting time function Q∗(0,∆) that leads to the maximum temperature T ∗j .
Finally, we summarize various statements, which result from the general
optimization problem.

10.2.1 Temperature Superposition

The output of a linear system is the sum of two independent system re-
sponses, namely the zero-input response and the zero-state response. The
zero-input response of a linear system characterizes the initial conditions, and

� 111 �

10.2. THERMAL ANALYSIS

the zero-state response is the output of the system if the initial conditions
are neglected. Suppose that the system starts at time t0, the temperature
vector at time t can be expressed as

T(t) = Tzero-input(t) + Tzero-state(t). (10.23)

Therefore, the worst-case computing time, that is, the computing time that
leads to the highest temperature at a time τ , is independent of the initial
temperature. Consequently, in a �rst step, we assume that the initial condi-
tions are neglected and the system starts to work at time t0 = 0. However,
we will not present the indices and implicitly assume that T denotes the
zero-state response.

Suppose that the considered system is a multi-processor with totally n pro-
cessing components. Without loss of generality, in the following, we deter-
mine the worst-case peak temperature of component i. As a �rst prerequisite,
we reduce the problem of determining the worst-case peak temperature of
component i to n simpler problems where we have zero input at all except
one components.

Lemma 7. Given a stable thermal model according to (10.8). Suppose that
the computational model of every processor is independent of each other
and T ∗i,j(τ) is the worst-case peak temperature of component i at time τ if
component j is the only component that has an input unequal zero, that is,
u = [0, . . . , 0, uj , 0, . . . , 0]′. Then, the worst-case peak temperature of compo-
nent i at time τ is

T ∗i (τ) =
∑
∀j
T ∗i,j(τ). (10.24)

Proof. The superposition principle states that the output response of a sys-
tem to a sum of inputs is the sum of the responses to the individual inputs.
As it is valid for every linear system [85], we can divide the input u of our
system as follows:

u = ψ + S ·Tamb = u(1) + . . .+ u(n) (10.25)

where

u(k) = [0, . . . , 0, ψk + skk · Tamb, 0, . . . , 0]′. (10.26)

From the superposition principle follows that the temperature T(t) at time
t can be written as

T(t) = Tu(1)
(t) + Tu(2)

(t) + . . .+ Tu(n)
(t) (10.27)

� 112 �

10.2. THERMAL ANALYSIS

with Tu(k)
(t) the response of the system to input u(k). Then, the worst-case

peak temperature at time τ of component i can be expressed by

T ∗i (τ) = max
u∈U

(Ti(τ))

= max
u∈U

(
Tu(1)

i (τ) + Tu(2)

i (τ) + . . .+ Tu(n)

i (τ)
)

= max
u(1)∈U(1)

(
Tu(1)

i (τ)
)

+ max
u(2)∈U(2)

(
Tu(2)

i (τ)
)

+ . . .

+ max
u(n)∈U(n)

(
Tu(n)

i (τ)
)

=
∑
∀j
T ∗i,j(τ)

(10.28)

where U is the set of all possible inputs u and U(k) is the set of all possible
inputs of input u(k). The second step follows from the fact that all inputs
u(k) are independent of each other.

Remark 8. In case that the computational model of every processor is not
independent of each other, the worst-case peak temperature of component i
at time τ is upper bounded by

T ∗i (τ) ≤
∑
∀j
T ∗i,j(τ). (10.29)

10.2.2 Worst-Case Computing Time

Motivated by Lemma 7, we calculate the worst-case peak temperature T ∗i,j
of component i for the input u(j) = [0, . . . , 0, ψj + sjj · Tamb, 0, . . . , 0]′. From
Lemma 4 we know, that the considered thermal model is a linear time-
invariant system. Suppose that y(t) is the output, x(t) the input and h(t)
the impulse response2 of the system. Then the zero-state output of the

2Suppose that the thermal model is de�ned by (10.8), the matrix of all impulse re-
sponses is given by

h(t) = L−1 [(s · I−A)−1 ·B
]

(10.30)

where L−1 denotes the inverse Laplace transformation. Another point of view of the
impulse response is to consider the Single-Input and Multiple-Output (SIMO) system,
whose state space model is ẋ = A · x + b · u. Then the impulse response is the solution
of the following homogeneous di�erential equation system:

ẋ = A · b, x(0) = b. (10.31)

Therefore, the solution of (10.31), that is, the matrix of impulse responses can be expressed
by

h(t) = eA·t ·B. (10.32)

� 113 �

10.2. THERMAL ANALYSIS

system is described by

y(t) = x(t) ∗ h(t). (10.33)

Therefore, the temperature Ti,j of component i is given as

Ti,j(t) = u
(j)
j (t) ∗ hij(t) (10.34)

where u
(j)
j is the jth component of u(j) and hij(t) is the impulse response

of the jth input to the ith output of the system. Note that, for notation

simplicity, we will not present the indices in the following, that is, u ≡ u(j)
j ,

h(t) ≡ hij(t) and T (t) ≡ Ti,j(t). In addition, we name the input by ua if the
processing component is in 'active' mode, and by ui if it is in 'idle' mode.
Throughout this chapter, we will implicitly assume that ua ≥ ui.

Theorem 9. Suppose that T (t) is the temperature at time instant t for
an arbitrary feasible workload trace that is bounded by the arrival curve
α. Furthermore, the accumulated computing time function Q∗(0,∆) for all
0 ≤ ∆ ≤ τ leads to temperature T ∗(τ) at time τ and its mode function

S∗(∆) =
dQ(0,∆)

d∆
∈ {0, 1} (10.35)

maximizes the function O(S, τ) de�ned as

O(S, τ) =

∫ τ

0
S(ξ) · h(τ − ξ) dξ. (10.36)

Then T ∗(τ) is an upper bound on the highest temperature at time τ , that is,
T ∗(τ) ≥ T (τ).

Proof. As the mode function S(t) is 1 if the system is 'active' and 0 if the
system is 'idle', we �nd

u(t) = S(t) · ua + (1− S(t)) · ui. (10.37)

� 114 �

10.2. THERMAL ANALYSIS

Rewriting (10.34), we get:

T (t) = u(t) ∗ h(t)

=

∫ ∞
−∞

u(ξ) · h(t− ξ) dξ

=

∫ ∞
−∞

(
S(ξ) · ua + (1− S(ξ)) · ui

)
· h(t− ξ) dξ

=

∫ ∞
−∞

(
ui + (ua − ui) · S(ξ)

)
· h(t− ξ) dξ

=

∫ ∞
−∞

h(t− ξ) · ui dξ +

∫ ∞
−∞

S(ξ) · (ua − ui) · h(t− ξ) dξ

= ui ·
∫ ∞

0
h(t− ξ) dξ + (ua − ui) ·

∫ ∞
0
S(ξ) · h(t− ξ) dξ

= ui ·
∫ t

0
h(t− ξ) dξ + (ua − ui) ·

∫ t

0
S(ξ) · h(t− ξ) dξ︸ ︷︷ ︸

O(S,t)

.

(10.38)

In the second last equation we used the assumption that the system is turned
on at t = 0, and in the last equation the fact that the thermal model rep-
resents, by construction, a causal system3. Obviously, the maximization of
O(S, t) leads to a maximization of the temperature T (t) and we can reach
the conclusion.

In the following, we use various properties of our state-space representation
to characterize and approximate the impulse response.

Lemma 10. Given a stable thermal model according to (10.8). Suppose that
A is irreducible and hij(t) is the impulse response of the jth input to the ith
output, then:

� The impulse response is always greater than 0, that is

hij(t) ≥ 0 ∀t ≥ 0. (10.39)

� The impulse response can be approximated as a non-negative function
with one local maxima, namely at t = 0 if i = j, or at t > 0 if i 6= j.

Proof. The �rst item directly follows from Lemma 4 in [86] that states that
et·Q is positive for all t > 0 if and only if Q is essentially non-negative and
irreducible. We know from Corollary 6 that A is non-negative and therefore,

3A system is causal if and only if for any pair of input signals u1(t) and u2(t) with
u1(t) = u2(t) for all t ≤ t0, the corresponding outputs satisfy T1(t) = T2(t), ∀t ≤ t0. For
a linear time-invariant system, the condition is equivalent to h(t) = 0,∀t < 0.

� 115 �

10.2. THERMAL ANALYSIS

1

23

R12R13

R23

R11

R22R33

C1

C2C3

IIN

 v
1

 v
2

 v
3

Figure 10.1: RC circuit to support the sketch proof of Lemma 10.

φ(t) = et·A is positive. As the set of impulse responses is the multiplication
of φ(t) with B, which is by Corollary 5 a non-negative matrix, we can reach
the conclusion.

Only a sketch proof based on the duality of the heat transfer and an RC
circuit is provided for the second item. To approximate the impulse response
from input j to output i, we remove all current sources in the network except
the one that is directly connected to node j. Instead of the impulse response,
we �rst consider the step response and conclude from the properties of the
step response to the properties of the impulse response. The step response
of a system is the output when its input is a Heaviside step function. The
well known duality between the step response a(t) and the impulse response
h(t) of a system is given by

a(t) =

∫ t

−∞
h(τ) dτ ⇔ h(t) =

da(t)

dt
. (10.40)

Therefore, an in�ection point of the step response corresponds to an ex-
tremum of the impulse response and vice versa. For the proof, we consider
the RC circuit outlined in Fig. 10.1, that models a thermal system with three
components. The names of the resistances, capacitances, and voltages are
denoted in the �gure, and the current is named after the component that it
�ows through. Without loss of generality, we assume that the current source
is connected to node 1, and its signal is a Heaviside step function. After
an in�nite amount of time, the electric potential of every node reaches its
steady-state, which is, in a stable system, a �nite value. From the thermal
perspective, we are only interested in the temporal behavior of the electric
potential of the nodes 1, 2, and 3 with respect to the ground, that is, the
voltages v1, v2 and v3, respectively.

� 116 �

10.2. THERMAL ANALYSIS

At �rst, we note that none of these voltages overshoots its steady-state value
as the impulse response is always greater than 0, that is, h(t) ≥ 0, and
consequently, the step response only increases, but never decreases. At time
t = 0−, all voltages are 0, and, at time t = 0+, the total amount of current
IIN can only �ow through the capacitor C1. Therefore, the voltage v1 starts
to increase according to

iC1 = C1 ·
dv1(t)

dt
(10.41)

and approaches steady-state. On the other hand, the voltages v2 and v3

start to increase at a slow rate as the resistors R12 and R13, respectively,
delay their increase. As v1 approaches steady-state, its increase �attens.
Simultaneously, the voltages v2 and v3 can increase faster until they �atten
towards steady-state. Another in�ection point in the transient temperature
behavior of the voltages v1 and v2 requires that the current iR23 would change
its direction. However, as both the voltages v2 and v3 have to increase
monotonically, and approach steady-state, the current iR23 would change
its direction at the earliest when both voltages have almost reached steady-
state. Therefore, we can neglect the additional in�ection points of v2 and
v3, which legitimates our approximations.

Note that, in the following, we implicitly assume that the impulse response
h(t) behaves according to Lemma 10 and denote the time where h(τ − t)
reaches its maximum value with tm, that is, tm satis�es the following ex-
pressions:

dh(τ − t)
dt

∣∣∣∣
t=tm

= 0 and
d2h(τ − t)

dt2

∣∣∣∣
t=tm

< 0. (10.42)

Next we will proof that shifting an 'active' processing mode closer to tm will
always increase the temperature at time τ .

Lemma 11. We consider two mode functions S(t) and S(t) de�ned for t ∈
[0, τ). For given δ > 0, σ ≥ 0, σ + 2δ < tm, the two mode functions di�er as
follows:

� S(t) = 1 for all t ∈ [σ, σ + δ) ('active mode'),

� S(t) = 0 for all t ∈ [σ + δ, σ + 2δ) ('idle mode'), and

� S(t) = 1− S(t) for all t ∈ [σ, σ + 2δ).

Then the temperature, denoted as T (τ) at time τ for mode function S(t) is
not less than the temperature, denoted as T (τ) at time τ for mode function
S(t):

T (τ) ≥ T (τ). (10.43)

� 117 �

10.2. THERMAL ANALYSIS

Proof. According to Lemma 10, h(τ − t) monotonically increases in the in-
terval [0, tm). By using the result of (10.38), we can express the di�erence
of the temperatures T (τ) and T (τ) by

T (τ)− T (τ) = u(t) ∗ h(t)− u(t) ∗ h(t)

= ui ·
∫ t

0
h(t− ξ) dξ + (ua − ui) ·O(S, τ)

− ui ·
∫ t

0
h(t− ξ) dξ + (ua − ui) ·O(S, τ)

= (ua − ui) ·
(
O
(
S, τ

)
−O (S, τ)

)
(10.44)

where u(t) is the input resulting from mode function S(t) and u(t) the input
resulting from mode function S(t). As the mode functions satis�es S(t) =
S(t) for all t ∈ [0, σ) and t ∈ [σ + 2δ, τ), we �nd

O
(
S, τ

)
−O (S, τ) =

∫ τ

0
S(ξ) · h(τ − ξ) dξ −

∫ τ

0
S(ξ) · h(τ − ξ) dξ

=

∫ σ+2δ

σ
S(ξ) · h(τ − ξ) dξ −

∫ σ+2δ

σ
S(ξ) · h(τ − ξ) dξ

=

∫ σ+2δ

σ+δ
S(ξ) · h(τ − ξ) dξ −

∫ σ+δ

σ
S(ξ) · h(τ − ξ) dξ

=

∫ σ+2δ

σ+δ
h(τ − ξ) dξ −

∫ σ+δ

σ
h(τ − ξ) dξ.

(10.45)

As h(τ − t) monotonically increases from 0 to tm, we �nally get

O
(
S, τ

)
−O (S, τ) ≥ 0. (10.46)

Corollary 12. We consider two mode functions S(t) and S(t) de�ned for
t ∈ [0, τ). For given δ > 0, σ ≥ tm, σ+ 2δ < τ , the two mode functions di�er
as follows:

� S(t) = 1 for all t ∈ [σ, σ + δ) ('active mode'),

� S(t) = 0 for all t ∈ [σ + δ, σ + 2δ) ('idle mode'), and

� S(t) = 1− S(t) for all t ∈ [σ, σ + 2δ).

Then the temperature, denoted as T (τ) at time τ for mode function S(t) is
not less than the temperature, denoted as T (τ) at time τ for mode function
S(t):

T (τ) ≥ T (τ). (10.47)

� 118 �

10.2. THERMAL ANALYSIS

Lemma 13. For any given time instance τ , we consider two accumulated
computing time functions Q, resulting from mode function S(t), and Q, re-
sulting from mode function S(t), with

Q(τ −∆, τ) ≥ Q(τ −∆, τ) (10.48)

for all 0 ≤ ∆ ≤ τ and

S(t) = S(t) (10.49)

for all tm < t ≤ τ . Then, the temperature T (τ) at time τ for mode function
S(t) is not less than the temperature T (τ) at time τ for mode function S(t).

Proof. First note that condition (10.48) is equivalent to

Q(tm −∆, tm) ≥ Q(tm −∆, tm) (10.50)

as S(t) = S(t) for all tm < t ≤ τ , and therefore, because of (10.19), the
condition can be translated equivalently to∫ tm

tm−∆
S(t) dt ≥

∫ tm

tm−∆
S(t) dt. (10.51)

Then, the proof follows from Lemma 2 of [15] by using Lemma 11 and re-
placing τ with tm.

Corollary 14. For any given time instance τ , we consider two accumulated
computing time functions Q, resulting from mode function S(t), and Q, re-
sulting from mode function S(t), with

Q(0,∆) ≥ Q(0,∆) (10.52)

for all 0 ≤ ∆ ≤ τ and

S(t) = S(t) (10.53)

for all 0 ≤ t < tm. Then, the temperature T (τ) at time τ for mode function
S(t) is not less than the temperature T (τ) at time τ for mode function S(t).

10.2.3 The Initial Temperature

So far, we assumed that the initial temperature of the system can be ne-
glected and we justi�ed this assumption by the fact that the worst-case
computing time is independent of the initial temperature. However, the
calculation of a transient upper bound of the temperature requires the con-
sideration of the initial temperature. In the following, we show that the

� 119 �

10.2. THERMAL ANALYSIS

initial temperature has no in�uence on the highest-temperature at time τ
whenever T(0) ≤ (T∞)i, where (T∞)i is the steady-state temperature of
the 'idle' mode.

We know that the output of a linear system results from two di�erent causes,
namely the zero-input response and the zero-state response. The zero-state
response is the inverse Laplace transformation of the transfer function mul-
tiplied by the Laplace transformation of the input. However, as the input
u is assumed to be zero, the zero-input response of a linear system can be
calculated by solving the di�erential equation

dT(t)

dt
= A ·T(t) (10.54)

and a closed-form solution to the above di�erential equation yields

Tzero-input(t) = eA·t ·T(t0). (10.55)

Therefore, without neglecting the initial conditions, the temperature vector
of a system can be expressed by

T(t) = Tzero-input(t) + Tzero-state(t)

= eA·t ·T(t0) + L−1 (H(s) ·U(s))
(10.56)

where H(s) is the Laplace transformation of the impulse response and U(s)
the Laplace transformation of the input.

Theorem 15. Suppose that the accumulated computing time function
Q∗(0,∆) for all 0 ≤ ∆ ≤ τ de�ned by Theorem 9 leads to temperature T ∗(τ).
If, in addition, T(0) ≤ (T∞)i holds for the initial temperature vector, then
for any feasible workload trace we have T ∗(τ) ≥ T (t) for all 0 ≤ t ≤ τ .

Proof. From the de�nition of the steady-state it follows that applying the
'idle' power as input to the system does not change its temperature as long
as the initial temperature of the system is the steady-state temperature of its
'idle' mode. From Lemma 10, we know that the impulse response hij(t) ≥ 0
for all t > 0 and i, j, and therefore, from (10.38), it follows that the zero-
state response caused by any accumulated computing time function Q is
never smaller then the zero-state response of a system that only runs in 'idle'
mode. From T(0) ≤ (T∞)i follows that temperatures which are caused by
Q satisfy T(t) ≥ T(0) for all times 0 ≤ t ≤ τ . This holds in particular also
for T ∗, that is, T ∗(t) ≥ T ∗(0) for all times 0 ≤ t ≤ τ .

Assume for contradiction that T (σ) > T ∗(τ) for σ ≤ τ . We know from
Theorem 9 that T (σ) is maximized if Q maximizes the optimization function
O(S, σ) de�ned in (10.36). However, by the linearity of the system, the
mode function S(t − (τ − σ) results in T (τ) = T (σ) for T(0) = (T∞)i and

� 120 �

10.3. PERIOD-JITTER-DELAY MODEL

T (τ) > T (σ) for T(0) < (T∞)i. Consequently, the fact that T (σ) > T ∗(τ)
would require that Tk(0) > T ∗k (τ−σ) for certain k ∈ [1, n]. As T ∗(t) ≥ T ∗(0)
for all times 0 ≤ t ≤ τ , this holds in particular for the time t = τ − σ, and
therefore, T ∗(τ − σ) ≥ T ∗(0). Having the same initial conditions for both
scenarios, that is, T (0) = T ∗(0), we �nd T (0) ≤ T ∗(τ − σ), which is a
contradiction.

10.3 Period-Jitter-Delay Model

Obviously, there exists no general solution for the optimization problem de-
scribed in Theorem 9 without using exhaustive search. As every implemen-
tation of S(t) on the right side of tm, that is, for t > tm, directly in�uences its
implementation on the left side of tm, that is, for t < tm, and vinca versa, no
worst-case computing time function can be determined a priori. However, to
illustrate the importance of the optimization algorithm, we restrict ourselves
to event streams described by a simpli�ed period-jitter-delay model. At �rst,
we create a concrete algorithm that constructs the accumulated computing
time Q∗(0,∆) for all 0 ≤ ∆ ≤ τ , that leads to a tight upper bound on the
highest temperature τ . Afterwards, we determine the corresponding feasible
workload trace R∗ that leads to the worst-case computing time function Q∗.

10.3.1 Upper Bounded Period-Jitter-Delay Model

De�nition 16. Suppose that the cumulative workload trace of an event
stream is upper bounded by an arrival curve α(∆) described by the period-
jitter-delay model [87] and denote the upper bound of the accumulated com-
puting time function of a work-conserving processing element by γ(∆). An
event stream is described by the upper bounded period-jitter-delay model,
if its arrival curve αu(∆) is de�ned so that all active intervals of the corre-
sponding accumulated computing time function γu(∆) have the same length,
all idle intervals of γu(∆) have the same length, and γu(∆) ≥ γ(∆). The
only exception is the �rst active interval, that might be longer than all other
active intervals.

The di�erence between the period-jitter-delay model described in [87] and
the upper bounded period-jitter-delay model is also illustrated in Fig. 10.2.
In the remaining of this section, we assume that all event streams are de-
scribed by the upper bounded period-jitter-delay model, and, for noti�cation
simplicity, we will not present the index u in the following. Furthermore, we
denote the length of the �rst active interval, also called burst, by b, the length
of the active intervals by ∆A, and the length of the idle intervals by ∆I .

� 121 �

10.3. PERIOD-JITTER-DELAY MODEL

α(Δ)

γ(Δ)

time interval Δ [ms]

n
u

m
b

er
 o

f
ev

en
ts

 [
1

]

5 10 15 200
0

2

4

6

8

(a) Event stream following the original
period-jitter-delay model.

αu(Δ)

γu(Δ)

α(Δ)

time interval Δ [ms]

n
u

m
b

er
 o

f
ev

en
ts

 [
1

]

5 10 15 200
0

2

4

6

8
b ΔI ΔA

(b) Event stream following the upper
bounded period-jitter-delay model.

Figure 10.2: Arrival curve α and the upper bound on the accumulated com-
puting time γ(∆) for the period-jitter-delay model as described in [87], and
the upper bounded period-jitter-delay model to illustrate the di�erence be-
tween these models.

10.3.2 Worst-Case Computing Time

Lemma 17. Suppose that the event stream is described by the period-jitter-
delay model from De�nition 16 and Q∗(0,∆) for all 0 ≤ ∆ ≤ τ leads to an
upper bound on the highest temperature T ∗(τ) at time τ . Then, the following
statements hold:

� The processing component is at least b −∆A time units active in one
block, that is, S(t) = 1 for all tl ≤ t ≤ tr with tr − tl = b−∆A.

� Suppose that the time when h(τ − t) has its maximum value is denoted
by tm. Then tm is always between tl and tr, that is, tl ≤ tm ≤ tr.

Proof. Suppose that the accumulated computing time function Q(0,∆) for
all 0 ≤ ∆ ≤ τ leads to temperature T (τ) at time τ and the accumulated
computing time function Q(0,∆) leads to a higher temperature T (τ). We
will proof this lemma by showing that every Q, whose processing component
does not ful�ll both conditions, can be transformed into Q with T (τ) ≥ T (τ),
that ful�lls both conditions. In the following, we will stepwise transform Q
into Q without violating (10.18), and in each iteration the temperature will
not decrease because of Lemma 13 and Corollary 14.

Suppose that S(t) is the mode function of Q(s, t) and S(t) the mode function
of Q(s, t). First note that if

γ(∆)−Q(t−∆, t) ≥ ∆x (10.57)

� 122 �

10.3. PERIOD-JITTER-DELAY MODEL

for all 0 ≤ ∆ ≤ t and 0 ≤ t ≤ τ , we can perform the transformation

Snew =

S(t+ ∆x) 0 ≤ t ≤ tm −∆x

1 tm −∆x < t ≤ tm
S(t) tm < t ≤ τ

(10.58)

or

Snew =

S(t) 0 ≤ t ≤ tm
1 tm < t ≤ tm + ∆x

S(t−∆x) tm + ∆x < t ≤ τ
(10.59)

to obtain a mode function Snew that leads to a higher temperature than
mode function S. By Lemma 13 and Corollary 14, respectively, we know
that both of these transformations do not reduce the temperature at time
τ . Furthermore, (10.18) is not violated as ∆x is selected in (10.57) as the
maximum amount of time units that can be added without violating γ(∆).
In the following, we assume that the accumulated computing time function
Q(0,∆) is tight, that is, ∆x = 0.

Now, we will stepwise transform S(t) into S(t) by considering the accu-
mulated workload Rp that is upper bounded by an upper arrival curve αp,
where

Rp(s, t) ≤ αp(t− s) ∀s < t (10.60)

with αp(0) = 0. αp is described by a periodic event stream with the same
period as α, that is, the arrival curve leading to γ, but without any jitter.
For a work-conserving schedule, the corresponding accumulated computing
time function Qp(s, t) is upper bounded on the accumulated computing time
ω(∆) for intervals with length ∆, that is

Qp(t−∆, t) ≤ ω(∆) = inf
0≤γ≤∆

{(∆− λ) + αp(λ)} . (10.61)

Note that γ is connected with ω as follows:

γ(∆ + b−∆A)− ω(∆) = b−∆A (10.62)

for all 0 ≤ ∆ ≤ τ − b + ∆A. In order to simplify the proof technicalities,
we suppose discrete time, that is, S(t) and S(t) may change values only at
multiples of δ and are constant for t ∈ [kδ, (k + 1)δ) for all k ≥ 0 and let us
de�ne tm = kmδ. We split up the mode function S(t) in two parts Sl(t) and
Sr(t) with S(t) = Sl(t) + Sr(t) and Sl(t) = 0 for all t /∈ [0 ≤ t ≤ tm] and
Sr(t) = 0 for all t /∈ (tm < t ≤ τ]. Now, we execute the following algorithm:

� 123 �

10.3. PERIOD-JITTER-DELAY MODEL

1. Determine the smallest 1 ≤ k1 ≤ km such that S(k1δ) violates ω(∆)
when ignoring S(t) for t > k1δ, that is, there exists a ∆ > 0 such that
Q(k1δ−∆, k1δ) > ω(∆). If there is no such k1, then Sl(t) = Sl(t) and
the algorithm stops.

2. Determine the smallest k2 with k1 < k2 ≤ km such that Sl(k2δ) = 0.
If such a k2 exists, then change Sl(k1δ) from 1 to 0 and Sl(k2δ) from
0 to 1. Otherwise, the algorithm stops.

With the exception of the iteration where the algorithm stops, the tem-
perature T (τ) increases in every iteration according to Lemma 11. From
(10.62) follows, that one can switch at most b−∆A time units in ω(∆) from
inactive to active without violating γ(∆), however, the actual positions of
the time units is irrelevant. Therefore, as the algorithm only changes the
positions of these excessive active time units, it never violates (10.18). A
similar algorithm can be performed on the right side of tm and by (10.62),
there exists a tl ≤ tm and a tr ≥ tm so that tr − tl = b − ∆A, and S(t) is
always 'active' in this interval.

Lemma 18. Suppose that the processing component is continuously active
according to Lemma 17 and S(t) is the mode function of an accumulated
computing time function Q(0,∆) for all 0 ≤ ∆ ≤ τ . S(t) is divided into
two parts Sl(t) and Sr(t) with S(t) = Sl(t) + Sr(t) and Sl(t) = 0 for all
t /∈ [0 ≤ t ≤ tm] and Sr(t) = 0 for all t /∈ (tm < t ≤ τ]. Suppose that Sr(t) is
selected to maximize the temperature at time τ . Then, the implementation of
Sl(t) is only restricted by the positions of the active and idle time intervals
in [tr, tr + ∆I + ∆A), and vice versa.

Proof. Without loss of generality, in the following, we will proof the state-
ment for a given Sr(t). As tr−tl = b−∆A, the processing component can be
at most ∆A time units active in [tr, tr + ∆I + ∆A) without violating γ(∆).
Now, we will stepwise construct Sl(t) in consideration of Sr(t).

At �rst, we show that the total amount of active time units of Sr(t) in the
interval [tr, tr + ∆I + ∆A) has no in�uence on Sl(t). However, this follows
directly from the fact that Sl(t) cannot have more than ∆A active time units
in [tl − ∆I − ∆A, tl] and tr − tl = b − ∆A. Now, we will show that Sl(t)
only depends on the implementation of Sr(t) in [tr, tr + ∆I + ∆A). Suppose
that in the time interval [tr, tr + ∆I + ∆A), Sr(t) is a �rst active at tr,1
and is a last active at tr,2. Then, without violating γ(∆), the latest time
Sl(t) can be active before tl is tr,2 − b − ∆I , and cannot be active more
than ∆A between [tr,1 − b − ∆I , tr,2 − b − ∆I), and consequently between
[tr,1 − b− 2 ·∆I , tr,2 − b−∆I). Figure 10.3 summarizes the most important
ideas. To not violate the upper bound of the accumulated computing time,
Sr(t) must not have an active trace earlier than tr,1 + ∆A+ ∆I . However, as

� 124 �

10.3. PERIOD-JITTER-DELAY MODEL

tm

 b - ΔA
 b + ΔI

 ΔA + ΔI

tr,1 tr,2

time t

tl tr

Figure 10.3: Processing time of a component that illustrates the proof of
Lemma 18.

the distance to tr,1 is at least ∆A+ ∆I , it has no in�uence on Sl(t) anymore,
and we can conclude the proof.

Theorem 19. Suppose that the event arrival follows the upper bounded
period-jitter-delay model from De�nition 16. When the scheduler is work-
conserving, the following statements hold:

� Suppose that the accumulated computing time function Q∗(0,∆) calcu-
lated by Algorithm 10.1 leads to temperature T ∗(τ) at time τ . Then
T ∗ is an upper bound on the highest temperature at time τ , that is,
T ∗(τ) ≥ T (τ).

� If, in addition, T(0) ≤ (T∞)i holds for the initial temperature vector,
then for any feasible workload trace we have T ∗(τ) ≥ T (t) for all 0 ≤
t ≤ τ .

Proof. At �rst, we show that Q∗(0,∆) constructed by Algorithm 10.1 sat-
is�es (10.18). Note that, by construction, Q∗(0,∆) does not violate (10.18)
on the right side of tr, that is, for t > tr, as there are at most ∆A active
time units in every ∆A + ∆I interval. Consequently, on the right side of
tr − b + ∆A, (10.18) is not violated, as well. Next, suppose that V is a
possible distribution of ∆A in [tr, tr + ∆A + ∆I]. Whenever V is copied to
[tl −∆A −∆I , tl], there is always at most b time units active in b+ ∆I time
units, as tr − tl = b−∆A. As there are no more than ∆A active time units
in every ∆A + ∆I interval on the left side of tr − b + ∆A, the �rst item is
proven.

Now, let us prove that Q∗(0,∆) actually lead to an upper bound on the
worst-case peak temperature. From Lemma 17 follows that the processing
component has to be active at least b−∆A time units, and tm has to be in-
cluded in this interval. Lemma 13 and Corollary 14 state that the processing
component should be active at most around tm and �nally, Lemma 18 shows
that the mode function can be split in two parts Sl and Sr and de�nes the
connection between Sl and Sr. By construction, our algorithm ful�lls the
condition from Lemma 17. Lemma 13 and Corollary 14 are ful�lled as the
same pattern is repeated on both sides of tm, and the pattern has ∆A active

� 125 �

10.3. PERIOD-JITTER-DELAY MODEL

Algorithm 10.1: Calculation of the accumulated computing time function
Q∗(0,∆) for all 0 ≤ ∆ ≤ τ that leads to the worst-case peak temperature at
time τ under the conditions stated in Theorem 19.

1: h(t− τ) = 0 for all τ < 0 and τ > t
2: M = 0
3: for all tr in [tm, tm + b−∆A] do
4: for all distributions V of ∆A in [tr, tr + ∆A + ∆I] do
5: set S active in [tr − b+ ∆A, tr)
6: set S active in V , starting at tr and periodically repeated until τ

with period ∆I + ∆A

7: set S active in V , starting at tr − b+ ∆A and periodically repeated
until 0 with period ∆I + ∆A

8: M = (S ∗ h)(t) =
∫ t

0S(τ) · h(t− τ) dτ
9: if M > M∗ then
10: M∗ = M
11: S∗ = S
12: end if
13: end for
14: end for
15: Q∗(0,∆) =

∫ ∆
0 S∗(τ) dτ

time units per ∆A + ∆I time units. Only two parameters are left over: the
position of the active interval around tm and the actual distribution of idle
and active intervals inside the pattern. Therefore, the worst-case computing
time function can be calculated by performing an exhaustive search over
these two parameters.

Finally, note that the second item of the theorem is a direct consequence of
Theorem 15.

10.3.3 Worst-Case Accumulated Workload

Theorem 19 only provides an upper bound T ∗(τ) on the worst-case tem-
perature, however, there might be no workload trace that actually leads to
the critical accumulated computing time Q∗(0,∆). However, in the follow-
ing, we will show that R∗(0,∆) = Q∗(0,∆) actually results in the critical
accumulated computing time.

Theorem 20. Suppose that the accumulated computing time function
Q∗(0,∆) is de�ned as in Theorem 19. Then the worst-case continuous work-
load function R∗(0,∆) = Q∗(0,∆) for all 0 ≤ ∆ ≤ τ

� leads to the accumulated computing time Q∗(0,∆),

� 126 �

10.4. SUMMARY

� complies to the arrival curve α,

� leads to the highest possible temperature T ∗(τ) ≥ T (t) for all 0 ≤
t ≤ τ for any feasible workload trace with the same initial temperature
T∗(0) = T(0) ≤ (T∞)i.

Proof. Similar to [15], we �rst have to proof that

Q∗(0,∆) = inf
0≤u≤∆

{(∆− u) +Q∗(0, u)} (10.63)

as R∗(0,∆) = Q∗(0,∆). Obviously, there exists a u′ such that (∆ − u′) +
Q∗(0, u′) = (∆− u′) +Q∗(0,∆), namely u′ = ∆. Therefore, we only have to
show that

(∆− u) +Q∗(0, u) ≥ Q∗(0,∆) (10.64)

for all 0 ≤ u ≤ ∆. However, as this condition is equivalent to

(∆− u) ≥ Q∗(0,∆)−Q∗(0, u) = Q∗(u,∆) (10.65)

and as the accumulated processing time in interval [u,∆) can not exceed the
available time ∆− u, it concludes the proof of the �rst item.

For the second item, we have to show that R∗(x, y) ≤ α(y − x). At �rst,
we note that the condition R∗(0,∆) = Q∗(0,∆) is equivalent to R∗(x, y) =
Q∗(x, y), and therefore, from Theorem 19, R∗(x, y) ≤ γ(y − x). As γ(∆) =
inf0≤λ≤∆ {(∆− λ) + α(λ)} ≤ α(∆), we have R∗(x, y) ≤ α(y − x).

The third item is a direct consequence of Theorem 19. First, we see that
R∗ leads to the accumulated computing time function Q∗ and secondly, Q∗

leads to the highest temperature T ∗(τ) ≥ T (t) according to Theorem 19.

10.4 Summary

Calculating the worst-case peak temperature is a crucial task in the design
of a multi-processor streaming application when real-time constraints have
to be guaranteed. In this chapter, we have extended the approach of [15] to
calculate the worst-case peak temperature of a single-node system to work-
conserving multi-processor systems. In order to enable the speci�cation of
non-determinism in the task arrivals, the accumulated workload arriving of
every component is separately characterized by an arrival curve

The presented approach includes the following steps for calculating the worst-
case peak temperature of component i. First, the problem is reduced to
calculating the maximum temperature of component i given that only com-
ponent j is active and all other components have been removed. The worst-
case temperature of component i is then the sum of all individual maximum

� 127 �

10.4. SUMMARY

temperatures. Afterwards, an optimization problem is presented whose solu-
tion is the accumulated computing time function that lead to the maximum
temperature of component i given that only component j is active.

A concrete implementation of the optimization problem for event streams
described by an upper bounded period-jitter-delay model is illustrated. As
all arrival curves can be approximated by a periodic event model with jit-
ter [88], this algorithm enables the computation of an upper bound of the
maximum temperature of an arbitrary event stream that can be bounded
by an arrival curve. However, as the algorithm still includes an exhaustive
search, it is usually not feasible for fast temperature analysis and approxi-
mation algorithms are required to calculate the worst-case peak temperature
of a multi-processor streaming application. Therefore, in the next chapter,
we propose and evaluate two approximation algorithms, which tremendously
reduce the time to calculate an upper bound on the maximum temperature.

� 128 �

11
Experimental Results

In the last chapter, a framework to determine the worst-case peak temper-
ature of multi-processor streaming applications has been proposed. Now, a
prototype implementation of the framework is applied to three case studies
to demonstrate the viability of the proposed approach. In the �rst case
study, the maximum temperature of hundred randomly generated workload
traces that comply to an arrival curve is compared with its tight worst-case
peak temperature. As the calculation of a tight upper bound is very com-
puting intensive, two approximation algorithms are discussed and evaluated
in the second case study. Finally, in the third case study, a picture-in-picture
application is used to illustrate the advantages of the framework to design
real-time systems with timing and peak temperature guarantees.

The chapter is organized as follows: The experimental setup of the �rst two
case studies is described in Section 11.1. Afterwards, in Section 11.2, the
mentioned case studies are carried out and its results are discussed. Finally,
a summary concludes the chapter.

11.1 Experimental Setup

In the following, the computational and the thermal model to carry out the
�rst two case studies are introduced.

Computational Model. In this evaluation, we consider two di�erent
multi-processor streaming applications that are executed on a virtual plat-
form of four processing elements. The computation load of every processing

� 129 �

11.1. EXPERIMENTAL SETUP

element is modeled as an independent event stream that follows the upper
bounded period-jitter-delay model introduced in Section 10.3. The execution
demand, the length of the period, and the length of the jitter are selected
to satisfy the requirements of the upper bounded period-jitter-delay model.
The actual parameters of both applications are outlined in Table 11.1.

Table 11.1: Parameters of the �rst and second example application that is
used in this section.

Comp. 1 Comp. 2 Comp. 3 Comp. 4

A
p
p
.
1 Period p 40 ms 44 ms 24 ms 36 ms

Jitter j 20 ms 22 ms 48 ms 36 ms
Min. inter-arrival a 1 ms 1 ms 1 ms 1 ms
Execution demand d 20 ms 22 ms 12 ms 18 ms

A
p
p
.
2 Period p 24 ms 36 ms 32 ms 44 ms

Jitter j 12 ms 36 ms 16 ms 66 ms
Min. inter-arrival a 1 ms 1 ms 1 ms 1 ms
Execution demand d 12 ms 18 ms 16 ms 22 ms

Thermal Model. Unless stated otherwise, a virtual platform of four nodes
is used in all evaluations. The thermal and power consumption parameters
are outlined in Table 11.2. The parameters for the power consumption are
borrowed from [15], and the thermal parameters were set in a way that the
steady-state temperatures are inside the normal operating temperature range
of modern ICs.

Table 11.2: Power and thermal parameters of the simulated system.

Parameter Symbol Value

Thermal conductance [W/K] gij −0.01 to −0.035
Thermal ground conductance [W/K] sjj 0.65 to 0.75
Thermal capacitance [J/K] cjj 0.03 to 0.06
Ambient temperature [K] T0 300
Slope of power [W/K] φjj 0.1
Constant power in active mode [W] ψaj −11

Constant power in idle mode [W] ψij −25

� 130 �

11.2. PEAK TEMPERATURE ANALYSIS

(a) Processing Component 1 (b) Processing Component 2

(c) Processing Component 3 (d) Processing Component 4

Figure 11.1: Transient temperature simulation for measuring the worst-case
peak temperature of the �rst example application. The randomly generated
workload traces are colored gray and the thermal critical instance is colored
red.

11.2 Peak Temperature Analysis

The viability of the proposed framework is analyzed in three case studies.
After comparing the tight worst-case peak temperature of an arrival curve
with hundred randomly generated workload traces that comply to the same
workload curve, two approximation algorithms for the period-jitter-delay
model are discussed and evaluated. Finally, in the last case study, the impact
of this framework on the design of real-time systems is illustrated by means
of a picture-in-picture application.

11.2.1 Comparison with Randomly Generated Workload
Traces

The worst-case peak temperature of both applications is �rst compared with
the highest temperature of hundred randomly generated workload traces.
In Fig. 11.1, the result of the transient temperature simulation is reported
for the �rst example application. The observation time τ of the worst-case

� 131 �

11.2. PEAK TEMPERATURE ANALYSIS

Table 11.3: The peak temperature, the maximum observed temperature of
all random traces, and the average maximum temperature of all randomly
generated workload traces for the �rst and second example application.

Comp. 1 Comp. 2 Comp. 3 Comp. 4

A
p
p
.
1 Peak Temp. 361.95 K 368.13 K 347.89 K 357.98 K

Max. Temp. Random 360.04 K 366.42 K 344.90 K 355.18 K
Avg. Temp. Random 359.65 K 365.98 K 344.68 K 354.95 K

A
p
p
.
2 Peak Temp. 360.39 K 369.19 K 344.81 K 359.98 K

Max. Temp. Random 359.31 K 366.10 K 343.35 K 355.46 K
Avg. Temp. Random 358.99 K 365.72 K 342.79 K 355.22 K

peak temperature is set to one second and we separately analyze the peak
temperature of every component. Therefore, there is one graph for every
processing component, which compares 100 randomly generated workload
traces that comply to the arrival curves with the thermal critical instance.
The thermal critical instance is the worst-case workload that results from
Theorem 20. Note that every processing component requires a di�erent set of
workload traces to obtain its worst-case peak temperature. A minimal time
interval of two milliseconds has been used for the generation of the candidate
patterns in the exhaustive search of Algorithm 10.1. All simulations start
from the steady-state temperature of the idle mode.

The randomly generated workload traces keep the system constantly at a
high temperature, however, all traces under-estimate the worst-case peak
temperature. The workload trace that leads to the worst-case peak tem-
perature at time τ = 1 s �rst warms up the system with periodic arrivals.
Around the time, where the corresponding impulse response achieves its
maximum value, it heats up the system with burst arrivals and jitters. The
peak temperature, the maximum observed temperature of all random traces,
and the average maximum temperature of all random traces are summarized
in Table 11.3 for both example applications.

11.2.2 Approximation Methods

As the calculation of the tight bound is very expensive in terms of exe-
cution time, we investigate two approximation algorithms to calculate an
upper bound on the maximum temperature in the second evaluation sce-
nario. Obviously, we are only interested in algorithms, that over-estimate
the worst-case peak temperature of a system. In the following, we present
two approximation algorithms and compare them to the tight upper bound
of the peak temperature calculated by means of Theorem 20.

� 132 �

11.2. PEAK TEMPERATURE ANALYSIS

Algorithm 11.1: Approximation 1:
Computation of the accumulated computing time function Q∗A1

(0,∆) for all
0 ≤ ∆ ≤ τ that leads to an upper bound on the maximum temperature at
time τ under the conditions stated in Theorem 19. The resulting temperature
is not less than the worst-case peak temperature calculated by means of
Theorem 19.

1: h(t− τ) = 0 for all τ < 0 and τ > t
2: M = 0
3: for all tr in [tm, tm + b−∆A] do
4: Set S active in [tr − b+ ∆A, tr)
5: Set S active in [tr, tr + ∆A) and idle in [tr + ∆A, tr + ∆A + ∆I), and

repeat this pattern from tr to τ
6: Set S active in [tr − b, tr − b + ∆A) and idle in [tr − b − ∆I , tr − b),

and repeat this pattern from tr − b+ ∆A to 0
7: M = (S ∗ h)(t) =

∫ t
0S(τ) · h(t− τ) dτ

8: if M > M∗ then
9: M∗ = M
10: S∗ = S
11: end if
12: end for
13: Q∗A1

(0,∆) =
∫ ∆

0 S∗(τ) dτ

The core idea of Approximation 1 is to eliminate the exhaustive search over
the set of all possible patterns. Therefore, it uses the worst-case pattern with
respect to the temperature on both sides of tm, that is, the time where h(τ−t)
is maximized. The computation of the accumulated computing time function
Q∗A1

(0,∆) for all 0 ≤ ∆ ≤ τ that leads to an upper bound on the maximum
temperature at time τ is sketched in Algorithm 11.1. Approximation 2,
that is sketched in Algorithm 11.2, di�ers from the �rst one by setting the
processing component active for the length of a burst on both sides of tm.
Therefore, it completely eliminates the need of exhaustive search. Figure 11.2
sketches the construction of the accumulated computing time function of
Approximation 1 and Approximation 2.

By using the same setup as in the previous evaluation, we compare the
worst-case peak temperature calculated by means of Theorem 20 with the
maximum temperature calculated by both approximation algorithms. Again,
we observe the maximum temperature at time τ = 1 s. Table 11.4 summa-
rizes the results for both example applications. The di�erence between the
maximum temperatures calculated by the approximation algorithms and the
worst-case peak temperatures is very low, however, the following points need
to be considered to interpret the results in detail:

� 133 �

11.2. PEAK TEMPERATURE ANALYSIS

� The power source that has the most in�uence on the temperature of
a node is the one that is connected to this node. However, as the
corresponding mirrored impulse response has its maximum at time τ ,
both approximation algorithms calculate the tight upper bound on the
maximum temperature.

� In both example applications, the period and jitter of the arrival curves
are selected rather small compared to the characteristic time constants
of the thermal model. Therefore, the in�uence of an additional burst
is almost negligible.

Algorithm 11.2: Approximation 2:
Computation of the accumulated computing time function Q∗A2

(0,∆) for all
0 ≤ ∆ ≤ τ that leads to an upper bound on the maximum temperature at
time τ under the conditions stated in Theorem 19. The resulting temperature
is not less than the temperature calculated by means of Algorithm 11.1.

1: h(t− τ) = 0 for all τ < 0 and τ > t
2: M = 0
3: Set S active in [tm, tm + b−∆A)
4: Set S active in [tm + b −∆A, tm + b) and idle in [tm + b, tm + b + ∆I),

and repeat this pattern from tm + b−∆A to τ
5: Set S active in [tm − b+ ∆A, tm)
6: Set S active in [tm − b, tm − b + ∆A) and idle in [tm − b −∆I , tm − b),

and repeat this pattern from tm − b+ ∆A to 0
7: Q∗A2

(0,∆) =
∫ ∆

0 S(τ) dτ

tm

 b - ΔA ΔI

time t

 ΔA ΔI ΔA ΔA ΔA

(a) Approximation 1

tm

 b ΔI

time t

 ΔA ΔI b

(b) Approximation 2

Figure 11.2: Sketch of the active and inactive intervals of a processing com-
ponent as calculated by Algorithm 11.1 and Algorithm 11.2, respectively.
The length of the burst is denoted by b, the length of an active interval by
∆A and the length of an inactive interval by ∆I .

� 134 �

11.2. PEAK TEMPERATURE ANALYSIS

Table 11.4: Comparison of the tight worst-case peak temperature with the
maximum temperature calculated by means of Approximation 1 and Ap-
proximation 2 for the �rst and second example application.

Comp.
1

Comp.
2

Comp.
3

Comp.
4

A
p
p
.
1 Worst-Case Peak T 361.95 K 368.13 K 347.89 K 357.98 K

Max. T Approx. 1 362.06 K 368.26 K 347.96 K 358.07 K
Max. T Approx. 2 362.19 K 368.43 K 348.06 K 358.21 K

A
p
p
.
2 Worst-Case Peak Temp. 360.39 K 369.19 K 344.81 K 359.98 K

Max. Temp. Approx. 1 360.49 K 369.29 K 344.88 K 360.07 K
Max. Temp. Approx. 2 360.66 K 369.47 K 344.98 K 360.18 K

Consequently, it can be concluded that both approximation algorithms calcu-
late very accurate estimations of the maximum temperature by a tremendous
reduction of the evaluation time.

11.2.3 Picture-In-Picture Application

Motivated by the fact that Approximation 1 and Approximation 2 enable
fast evaluation of the worst-case peak temperature, we use the proposed
approaches to analyze the temperature characteristics of a picture-in-picture
application that is mapped onto an architecture of three processing compo-
nents. A detailed description of the application and the architecture is given
in [89], and we only summarize the salient features regarding the temperature
analysis in the following.

The picture-in-picture application concurrently decodes two MPEG-2 video
streams [63]. The decoding of the video stream takes place in four subsequent
actors, that is, the Variable Length Decoding (VLD), the Inverse Quanti-
zation (IQ), the Inverse Discrete Cosine Transformation (IDCT), and the
Motion Compensation (MC) tasks. Figure 11.3 shows the picture-in-picture
application including the considered mapping and architecture. Both of the
incoming streams are assumed to have the same resolution and to arrive at
the system at a constant bit rate. The architecture consists of three process-
ing components, that are running at di�erent frequencies. PE1 is running
at 1.3 GHz, PE2 is running at 3 GHz, and PE3 is running at 1.25 GHz. The
input streams and service curves correspond to the ones described in [89].

The thermal parameters shown in Table 11.2 are still valid, but we adjust
the power consumption of the processing components to their operational
frequency according to (3.7). We assume that the power value ψaj presented
in Table 11.2 is valid for an operational frequency of 3 GHz, and that the

� 135 �

11.2. PEAK TEMPERATURE ANALYSIS

PE1

PE3

PE2

VLD/
IQ

IDCT/
MC

IDCT/
MC

VLD/
IQ

In
p

u
t

In
te

rf
ac

e

O
u

tp
u

t
In

te
rf

ac
e

αHR

αLR

αPE2, HR

αPE2, LR

Figure 11.3: Sketch of the picture-in-picture application that decodes two
MPEG-2 video streams in parallel. Only the components, which are relevant
for the thermal evolution are outlined.

supply voltage is constant. Therefore, we get ψa1 = −18.93 W, ψa2 = −11 W,
and ψa3 = −19.16 mW for the constant power in the active mode.

In order to use the presented approximation algorithms to calculate an upper
bound on the worst-case peak temperature of the system, the arrival curves
have to be approximated by such that are described by the upper bounded
period-jitter-delay model introduced in Section 10.3. Figure 11.4 illustrates
the required steps for that approximation based on the arrival curve of pro-

Figure 11.4: Illustration of the steps that are required to approximate a
general arrival curve by one that is described by the upper bounded period-
jitter-delay model. The arrival curve of processing component 2 serves as
example.

� 136 �

11.2. PEAK TEMPERATURE ANALYSIS

(a) Processing Component 1 (b) Processing Component 2

(c) Processing Component 3

Figure 11.5: Transient temperature simulation for measuring the worst-case
peak temperature of the picture-in-picture application. The randomly gen-
erated workload traces are colored gray and the thermal critical instances
are colored red.

cessing component PE2. The accumulated input stream of processing com-
ponent PE2 is bounded by the arrival curve αPE2,o = αPE2,LR + αPE2,HR.
However, as the arrival curve has time continuous event arrivals, it is �rst
approximated by an arrival curve αPE2,a that has discrete event arrivals.
Afterwards, the approach proposed in [88] is used to approximate αPE2,a by
an arrival curve that is described by a period event model with jitter and we
denote the new arrival curve by αPE2,pjd. Finally, the arrival curve αPE2,pjd

is approximated by the upper bounded period-jitter-delay model and the
resulting arrival curve is denoted as αPE2,ubpjd.

The worst-case peak temperature is measured at time τ = 1 s and Fig. 11.5
presents the result of the transient temperature simulation for the picture-
in-picture application in the interval [0 s, 1 s]. The thermal critical instance,
that is, the worst-case workload trace, is compared with 40 randomly gen-
erated workload traces that comply to the arrival curve αPE2 . All traces
start from the steady-state temperature of its 'idle' mode and the thermal
critical instance is calculated by Approximation 1. The randomly generated
workload traces underestimate the worst-case peak temperature on average
by almost one Kelvin. Note that the maximum temperature of the worst-

� 137 �

11.3. SUMMARY

Table 11.5: The peak temperature, the maximum observed temperature of
all random traces, and the average maximum temperature of all random
traces of the transient temperature simulation of Fig. 11.5.

Comp. 1 Comp. 2 Comp. 3

Peak Temp. 349.08 K 368.93 K 340.25 K
Max. Temp. Rand. Traces 347.26 K 368.67 K 339.45 K
Avg. Temp. Rand. Traces 347.23 K 368.66 K 339.41 K

case peak temperature is not any more a tight worst-case peak tempera-
ture as the actual arrival curves have been upper bounded and the thermal
critical instance has been calculated by means of an approximation algo-
rithm. Table 11.5 summarizes the peak temperatures of the traces shown in
Fig. 11.5. As the worst-case peak temperature of processing component 2 is
much higher than the one of the other processing components, the workload
of processing component 2 leads to a hot spot, and the application designer
might try another mapping with a lower worst-case peak temperature.

11.3 Summary

In this chapter, the necessity to determine the worst-case peak temperature
of a streaming application is illustrated in three case studies. The scenario
used in the �rst two case studies includes a virtual platform of four nodes, and
the event streams of every processing component are modeled as independent
arrival curves. The comparison of hundred randomly generated workload
traces with the thermal critical instance illustrates that thermal simulation
is not suited for determining safe bounds for hard real-time systems.

As exhaustive search is infeasible to compare the thermal characteristics of
hundreds of design alternatives, we presented two approximation algorithms
that overestimate the worst-case peak temperature. The evaluation shows
that both methods provide an accurate approximation of the worst-case peak
temperature, and therefore, are feasible alternatives for measuring the max-
imum temperature of a multi-processor streaming application in an early
design stage. Motivated by these results, the worst-case peak temperature
of a realistic case study involving a picture-in-picture application is per-
formed. It illustrates that the proposed analytic approach is a cornerstone
to design real-time systems that have to guarantee both thermal constraints
and real-time deadlines.

� 138 �

12
Analytic Thermal Analysis:

Conclusion and Outlook

12.1 Conclusion

Exceeding the worst-case peak temperature can have drastic impacts on the
reliability of a system. Therefore, the identi�cation of the worst-case peak
temperature is a crucial task in the design of multi-processor applications for
embedded real-time systems in order to guarantee that real-time constraints
are met. However, as thermal simulation methods only cover a fraction of all
possible system behaviors, they cannot be used to determine hard bounds
on the temperature and novel analytic approaches are required.

The second part of this thesis discussed analytic worst-case methods to ob-
tain the maximum temperature of a many-core system. To this end, the
approach presented in [15] to calculate the worst-case peak temperature of a
single-node system has been extended to multi-processor systems. The novel
framework calculates a tight upper bound on the worst-case peak tempera-
ture of a many-core system for given arrival curves under work-conserving
real-time scheduling algorithms. By using the superposition principle, the
problem is reduced to determine the maximum temperature of a component
given that only one processing component is active and all other compo-
nents have zero power dissipation. The worst-case peak temperature of a
component is the sum of all individual maximum temperatures. Then, the
accumulated computing time function that leads to the maximum temper-
ature, can be determined by solving an optimization problem involving the
impulse response and a single side condition.

� 139 �

12.2. OUTLOOK

The optimization problem is solved for event streams described by the period-
jitter-delay model and its implementation is used to compare the proposed
framework with randomly generated workload traces. However, as the solu-
tion is too expensive in terms of evaluation time, two approximation algo-
rithms are proposed and evaluated. Both of them tremendously reduce the
evaluation time by providing an accurate approximation of the worst-case
peak temperature. The impact of the proposed framework on the design of
multi-processor real-time systems is fundamental as it gives guarantees on
the worst-case temperature of the system, which in turn could avoid the use
of dynamic thermal management techniques.

12.2 Outlook

Obviously, the framework to determine the worst-case peak temperature is
still in its �edgling stages and there is a huge amount of interesting topics
for future research.

From the analytical point of view, it is required to determine conditions
on the thermal model, which legitimate our assumptions on the impulse re-
sponse. Afterwards, e�cient approximation methods are required that cover
a much wider class of event streams than only period-jitter-delay models. As
the thermal model of a typical multi-processor platform includes more than
hundred nodes, model reduction is required to reduce the computational
overhead in calculating the worst-case peak temperature. Another interest-
ing extension of the framework would be to support more than two power
modes. Finally, the task of automatically generating MPA models for the
thermal analysis should be investigated in order to integrate this framework
into the design space exploration of a multi-processor streaming application.

� 140 �

13
Conclusion

Recently, research studies have shown that mobile devices will replace per-
sonal computers by 2014 [90]. However, the current generation of processors
for mobile devices is not yet able to deal with the requirements of future
high performance applications [91] and a new generation of processors for
mobile devices becomes mandatory. Current trends include the design of
mobile processors as heterogeneous or homogeneous MPSoCs. However, the
increase in performance imposes a major rise in power density, which in turn
has a high impact on the reliability of the system. Consequently, it becomes
infeasible to guarantee real-time constraints. This master thesis proposed a
set of novel techniques to evaluate the thermal characteristics of a many-core
embedded system in a very early design stage. More precisely, the proposed
techniques include an approach for automated calibration of abstract ther-
mal evaluation models, methods for simulating the transient temperature
evolution of a system described by its software synthesis speci�cations, and
an analytic framework to compute the tight worst-case peak temperature of
a many-core system.

The selection of a thermal evaluation method for the comparison of design
alternatives of a multi-processor application is always a tradeo� between ac-
curacy and evaluation speed. Figure 13.1 illustrates this tradeo� visually by
means of the methods derived during this master thesis. In particularly, one
can draw the following conclusions regarding the design �ow of an embedded
real-time system:

The low-level thermal evaluation tool chain is obviously the slowest evalu-
ation method, but provides very high accuracy. It has the advantage that

� 141 �

Evaluation
Speed

Accuracy

FastSlow

High Low

Low-Level Thermal
Evaluation Tool Chain

System-Level
Thermal Emulator

Analytic Worst-Case Peak
Temperature Framework

Figure 13.1: Tradeo� between accuracy and evaluation speed for the thermal
evaluation.

no model calibration is required and that the setup of the tool chain is
straightforward. It is mainly used for the support of more abstract models
during their calibration and for the veri�cation of the �nal design in a late
stage of the design process.

The System Level Thermal Emulator (SLTE) uses timing and thermal pa-
rameters that are collected in advance to improve the evaluation speed. Its
area of application is an earlier stage of the design process, where several
design alternatives are compared in detail. As SLTE relies on model cal-
ibration, it is only faster than the low-level thermal evaluation tool chain
when more than one design alternatives are evaluated. In comparison with
the current state-of-the-art methods for thermal evaluation, namely FPGA
emulation platforms, SLTE achieves similar speed-ups and accuracies, but is
much more �exible and cheaper. Its drawbacks include the evaluation speed
that decreases with the problem, application and architecture complexity. In
comparison with other hardware/software thermal evaluation approaches, it
is limited to streaming applications and requires a detailed model calibra-
tion to provide accurate results. Although the model calibration is fully
automated, it is still time consuming and increases the overall evaluation
time in the design space exploration.

As thermal simulation methods only cover a fraction of all possible system
behaviors, they cannot be used to determine hard bounds on the temperature
as required by hard real-time systems. The third thermal evaluation method
derived in this thesis tackles this problem by analytically calculating the
worst-case peak temperature of a many-core system. In addition to cover
all possible system behaviors, such analytic methods have the advantage
of a very high evaluation speed. The proposed framework enables system
designers to compare a huge number of design alternatives already in an
early design stage. Therefore, the impact of the proposed method on the
design of multi-processors is fundamental as it is the �rst framework that
gives guarantees on the worst-case peak temperature of a many-core sys-
tem. However, before the framework becomes applicable to a wide range
of application scenarios, the following limitations have to be addressed: The
current framework has a rather limited modeling scope over simulation based
evaluation methods. E�ects caused by the OS, that is, context or process

� 142 �

invocation overhead, are rather hard to implement in an analytic evaluation
model, but might have considerable impact on its accuracy. Moreover, the
current analytical model only covers two power modes, however, the power
dissipation of a real platform often covers a whole range.

This master thesis proposed various techniques to evaluate the temperature
behavior of a many-core system that is described by its high-level system
speci�cation. We have shown that every method targets another stage in
the design process of a multi-processor application and highlighted the im-
portance of an accurate calibration of the underlying models. Therefore,
future research has to answer the question of how to obtain accurate power
and temperature models, in particularly of real platforms where detailed
information about the underlying architecture is often missing.

� 143 �

A
Details of Experimental Results

A.1 Transient Thermal Behavior

In this section, additional information about the experimental settings, and
supplementary results for the applications presented in Chapter 7 as well as
for an FFT and an IIR �lter application are listed.

A.1.1 Mapping Speci�cations

Tables A.1 to A.5 show the mapping speci�cations that are used for the
experiments in Chapter 7. The mapping is noted as a pair �binding/priority�.
The identity number of the processor is used to specify the binding and an
unsigned integer is used to specify the priority in which lower numerical
values refer to higher priorities.

A.1.2 Details of the Presented Experiments

This subsection shows additional details of the experiments presented in
Chapter 7. In Figs. A.1 and A.2, the transient temperature behavior of the
second and forth candidate mapping of the evaluation of the matrix multipli-
cation application in Table 7.6 is plotted, respectively. Similarly, in Figs. A.3
and A.4, the transient temperature behavior of the second candidate map-
ping of the MJPEG decoder in Table 7.8 is plotted and in Figs. A.5 and A.6,
the transient temperature of the forth candidate mapping is plotted.

� 144 �

A.1. TRANSIENT THERMAL BEHAVIOR

Table A.1: Mappings used in the evaluation of di�erent chain lengths of the
producer-consumer application (Table 7.3).

P
ro
d
u
ce
r

C
on
su
m
er

W
or
ke
r
1

W
or
ke
r
2

W
or
ke
r
3

W
or
ke
r
4

W
or
ke
r
5

W
or
ke
r
6

W
or
ke
r
7

W
or
ke
r
8

1 WP 0/1 2/1 1/1 - - - - - - -
2 WPs 0/1 2/1 1/1 1/2 - - - - - -
3 WPs 0/1 0/2 1/1 2/1 1/2 - - - - -
4 WPs 0/1 0/2 1/1 2/1 1/2 2/2 - - - -
5 WPs 0/1 0/2 1/1 2/1 1/2 2/2 1/3 - - -
6 WPs 0/1 0/2 1/1 2/1 1/2 2/2 1/3 2/3 - -
7 WPs 0/1 0/2 1/1 2/1 1/2 2/2 1/3 2/3 1/4 -
8 WPs 0/1 0/2 1/1 2/1 1/2 2/2 1/3 2/3 1/4 2/4

Table A.2: Mappings used in the evaluation of di�erent mappings of the
producer-consumer application (Table 7.4).

P
ro
d
u
ce
r

C
on
su
m
er

W
or
ke
r
1

W
or
ke
r
2

W
or
ke
r
3

Mapping 1 0/1 0/2 1/1 2/1 1/2
Mapping 2 0/1 0/2 1/1 1/2 2/1
Mapping 3 0/1 2/2 0/2 1/1 2/1
Mapping 4 0/1 2/1 0/2 1/1 1/2
Mapping 5 0/1 2/1 1/1 1/2 1/3
Mapping 6 0/1 2/1 1/3 1/2 1/1
Mapping 7 0/2 0/1 1/2 2/1 1/1

� 145 �

A.1. TRANSIENT THERMAL BEHAVIOR

Table A.3: Mappings used in the evaluation of di�erent mappings of the
matrix multiplication application (Table 7.6).

P
ro
d
u
ce
r

C
on
su
m
er

M
u
lt
0/
0/
0

M
u
lt
0/
0/
1

M
u
lt
0/
1/
0

M
u
lt
0/
1/
1

M
u
lt
1/
0/
0

M
u
lt
1/
0/
1

M
u
lt
1/
1/
0

M
u
lt
1/
1/
1

Mapping 1 0/1 0/2 1/1 1/2 1/3 2/2 1/4 2/3 2/1 2/4
Mapping 2 0/1 2/1 0/2 0/3 1/1 1/3 1/2 1/4 2/2 2/3
Mapping 3 0/1 1/1 2/1 2/2 2/3 2/6 2/4 2/7 2/5 2/8
Mapping 4 0/2 0/1 1/4 1/3 1/2 2/2 1/1 2/3 2/4 2/1
Mapping 5 0/3 1/2 0/1 1/3 1/4 0/2 2/1 2/2 2/3 1/1
Mapping 6 0/3 1/3 0/1 0/2 1/2 1/1 2/1 2/2 2/3 2/4
Mapping 7 0/2 0/3 1/1 1/2 1/3 1/4 2/1 2/3 2/2 0/1

Table A.4: Mappings used in the evaluation of di�erent mappings of the
MJPEG decoder application when decoding one frame per time (Table 7.7).

S
p
li
ts
tr
ea
m

S
p
li
tf
ra
m
e

D
ec
o
d
e

M
er
ge
fr
am

e

M
er
ge
st
re
am

Mapping 1 0/1 1/1 2/1 1/2 0/2
Mapping 2 0/2 1/2 2/1 1/1 0/1
Mapping 3 0/1 1/1 0/3 2/1 0/2
Mapping 4 0/3 1/1 0/1 2/1 0/2

Table A.5: Mappings used in the evaluation of di�erent mappings of the
MJPEG decoder application when decoding two frames in parallel (Ta-
ble 7.8).

S
p
li
ts
tr
ea
m

S
p
li
tf
ra
m
e
0

D
ec
o
d
e
0

M
er
ge
fr
am

e
0

S
p
li
tf
ra
m
e
1

D
ec
o
d
e
1

M
er
ge
fr
am

e
1

M
er
ge
st
re
am

Mapping 1 0/1 1/1 2/1 3/1 1/2 2/2 3/2 0/2
Mapping 2 0/2 1/2 2/2 3/2 1/1 2/1 3/1 0/1
Mapping 3 0/1 0/2 1/1 2/1 1/2 2/2 3/1 3/2
Mapping 4 0/1 1/1 2/1 3/1 3/2 1/2 2/2 0/2

� 146 �

A.1. TRANSIENT THERMAL BEHAVIOR

(a) Tile 0, Core (b) Tile 0, Data Cache.

(c) Tile 1, Core (d) Tile 1, Data Cache

(e) Tile 2, Core (f) Tile 2, Data Cache

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure A.1: Matrix Multiplication, Mapping II:
Temperature evolution of three tiles of the MPARM virtual platform when
the matrix multiplication application is executed. For each tile, both the core
and data cache is outlined. The application has been simulated with SLTE
using three di�erent power values, that is, the average, maximum average,
and peak power consumption.

� 147 �

A.1. TRANSIENT THERMAL BEHAVIOR

(a) Tile 0, Core (b) Tile 0, Data Cache

(c) Tile 1, Core (d) Tile 1, Data Cache

(e) Tile 2, Core (f) Tile 2, Data Cache

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure A.2: Matrix Multiplication, Mapping IV:
Temperature evolution of three tiles of the MPARM virtual platform when
the matrix multiplication application is executed. For each tile, both the core
and data cache is outlined. The application has been simulated with SLTE
using three di�erent power values, that is, the average, maximum average,
and peak power consumption.

� 148 �

A.1. TRANSIENT THERMAL BEHAVIOR

(a) Tile 0, Core (b) Tile 1, Core

(c) Tile 0, Data Cache (d) Tile 1, Data Cache

(e) Tile 0, Scratchpad (f) Tile 1, Scratchpad

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure A.3: MJPEG Decoder, Mapping II, Tile 1 & 2:
Temperature evolution of two tiles of the MPARM virtual platform when
the MJPEG decoder application is executed. Three components, namely the
core, data cache and scratchpad, are outlined for each tile. The application
has been simulated with SLTE using three di�erent power values, that is,
the average, maximum average, and peak power consumption.

� 149 �

A.1. TRANSIENT THERMAL BEHAVIOR

(a) Tile 2, Core (b) Tile 3, Core

(c) Tile 2, Data Cache (d) Tile 3, Data Cache

(e) Tile 2, Scratchpad (f) Tile 3, Scratchpad

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure A.4: MJPEG Decoder, Mapping II, Tile 3 & 4:
Temperature evolution of two tiles of the MPARM virtual platform when
the MJPEG decoder application is executed. Three components, namely the
core, data cache and scratchpad, are outlined for each tile. The application
has been simulated with SLTE using three di�erent power values, that is,
the average, maximum average, and peak power consumption.

� 150 �

A.1. TRANSIENT THERMAL BEHAVIOR

(a) Tile 0, Core (b) Tile 1, Core

(c) Tile 0, Data Cache (d) Tile 1, Data Cache

(e) Tile 0, Scratchpad (f) Tile 1, Scratchpad

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure A.5: MJPEG Decoder, Mapping IV, Tile 1 & 2:
Temperature evolution of two tiles of the MPARM virtual platform when
the MJPEG decoder application is executed. Three components, namely the
core, data cache and scratchpad, are outlined for each tile. The application
has been simulated with SLTE using three di�erent power values, that is,
the average, maximum average, and peak power consumption.

� 151 �

A.1. TRANSIENT THERMAL BEHAVIOR

(a) Tile 2, Core (b) Tile 3, Core

(c) Tile 2, Data Cache (d) Tile 3, Data Cache

(e) Tile 2, Scratchpad (f) Tile 3, Scratchpad

SLTE: Peak SLTE: Max. Average SLTE: Average Low-Level Simulation

Figure A.6: MJPEG Decoder, Mapping IV, Tile 3 & 4:
Temperature evolution of two tiles of the MPARM virtual platform when
the MJPEG decoder application is executed. Three components, namely the
core, data cache and scratchpad, are outlined for each tile. The application
has been simulated with SLTE using three di�erent power values, that is,
the average, maximum average, and peak power consumption.

� 152 �

A.1. TRANSIENT THERMAL BEHAVIOR

A.1.3 Additional Experiments

In the following, supplementary results for an IIR �lter and an FFT appli-
cation are listed. The reader is referred to [92] for a detailed description of
both applications.

In�nite Impulse Response Filter. The evaluation of four candidate
mappings of a �rst order IIR �lter application is considered next. The �rst
order IIR �lter can be described by its state equation as

y[n] = x[n] + c · y[n− 1] (A.1)

where x denotes the sequences of input samples, y the sequence of output
samples, and c a constant. The results of the evaluation are reported in
Table A.6 and the mapping speci�cations are shown in Table A.7.

Table A.6: In�nite Impulse Response Filter, Di�erent Mappings:
Pessimism, execution times and speed-ups of the IIR �lter application where
four di�erent mappings are compared. The application is mapped onto a
distributed architecture of two tiles and the mapping that is used to perform
the model calibration is marked with a star.

Pessimism Execution Time

Average Min Max Platform SLTE Speed-up
Mapping 1∗ 0.0038 0.0002 0.0121 3.75 s 2.58 s 2197
Mapping 2 0.0030 0.0001 0.0086 3.75 s 2.51 s 2285
Mapping 3 0.0071 0.0054 0.0102 5.25 s 2.50 s 2726
Mapping 4 0.0087 0.0077 0.0126 4.94 s 2.32 s 2769

Table A.7: Mappings used in the evaluation of di�erent mappings of the �rst
order IIR �lter application (Table A.6).

P
ro
d
u
ce
r

F
il
te
r

C
on
su
m
er

Mapping 1 1/2 0/1 1/1
Mapping 2 1/1 0/1 1/2
Mapping 3 0/1 0/2 1/1
Mapping 4 0/1 1/1 1/2

� 153 �

A.1. TRANSIENT THERMAL BEHAVIOR

Fast Fourier Transform. In the last evaluation of this master thesis,
a distributed implementation of a 2-point FFT application is considered.
The results of the evaluation are reported in Table A.8 and the mapping
speci�cations are shown in Table A.9.

Table A.8: Fast Fourier Transform, Di�erent Mappings:
Pessimism, execution times and speed-ups of the FFT application where
four di�erent mappings are compared. The application is mapped onto a
distributed architecture of three tiles and the mapping that is used to perform
the model calibration is marked with a star.

Pessimism Execution Time

Average Min Max Platform SLTE Speedup
Mapping 1∗ 0.0056 0.0037 0.0062 1.71 s 3.88 s 751
Mapping 2 0.0063 0.0041 0.0100 3.01 s 2.10 s 2030
Mapping 3 0.0068 0.0049 0.0116 3.01 s 1.97 s 2165
Mapping 4 0.0068 0.0052 0.0082 1.82 s 8.11 s 379

Table A.9: Mappings used in the evaluation of di�erent mappings of the
FFT application (Table A.8).

G
en
er
at
or

C
on
su
m
er

F
F
T
2_

0_
0

F
F
T
2_

0_
1

F
F
T
2_

1_
0

F
F
T
2_

1_
1

Mapping 1 0/2 1/1 0/1 1/2 2/2 2/1
Mapping 2 0/1 0/2 1/1 1/2 2/1 2/2
Mapping 3 0/2 0/1 1/2 1/1 2/2 2/1
Mapping 4 0/1 1/2 0/2 1/1 2/1 2/2

� 154 �

B
Presentation Slides

1/30/2011 1Lars Schor / Computer Engineering Group / ETH Zurich

“… The current generation of mobile processors is not

designed to deal with this tidal wave of high performance

use cases…

NVIDIA Tegra is the world’s most

advanced mobile processor

built from the ground up as a

heterogeneous multi-core

SoC (System-On-a-Chip)

architecture…”

NVIDIA: “The Benefits of Multiple CPU Cores in Mobile Devices”, 2010

� 155 �

Thermal Simulation and Analysis Methods

for Many-Core Platforms

Student: Lars Schor

Advisors: Dr. Iuliana Bacivarov, Dr. Hoeseok Yang

Professor: Prof. Dr. Lothar Thiele

Thermal Issues of Many-Core Platforms

1/30/2011 3Lars Schor / Computer Engineering Group / ETH Zurich

Introduction
 Context

• Related Work

• Thermal Model

Loh: 3D-Stacked Memory Architectures for Multi-Core Processors, 2008

AnalysisSimulation

� 156 �

Problem Description

1/30/2011 4Lars Schor / Computer Engineering Group / ETH Zurich

 System-level thermal

evaluation

 Model calibration

 Thermal evaluation

• Simulation

• Analysis

 Evaluation of the methods

Introduction
 Context

• Related Work

• Thermal Model

Contributions

System

Specification

0 0.5 1 1.5 2 2.5
300

302

304

306

Time [s]

T
e
m

p
e
ra

tu
re

 [
K

]

AnalysisSimulation

Outline

 Automated model

calibration

 Abstract Model

 Evaluation

 System model

 Thermal optimization

problem

 Period-jitter-delay model

 Related work

 Thermal model

1/30/2011 5Lars Schor / Computer Engineering Group / ETH Zurich

System-Level

Thermal Simulation

Introduction

Worst-Case Peak

Temperature Analysis

Introduction
• Context

• Related Work

• Thermal Model

AnalysisSimulation

� 157 �

Virtual Platform

Related Work

D. Atienza et al.: HW-SW Emulation Framework for Temperature-Aware

Design in MPSoCs, ACM T. Design Automation of El. Sys., 2007

+ Very fast evaluation

- Necessity of additional hardware (expensive…)

1/30/2011 6Lars Schor / Computer Engineering Group / ETH Zurich

FPGA Emulation

A. Bartolini et al.: A Virtual Platform Environment for Exploring Power,

Thermal and Reliability Management Control Strategies in High-

Performance Multicores, GLSVLSI, 2010

+ Evaluating and testing power and thermal management solutions

- Restricted to specific platform

- Evaluation speed

Introduction
• Context

 Related Work

• Thermal Model

AnalysisSimulation

Thermal Model

1/30/2011 7Lars Schor / Computer Engineering Group / ETH Zurich

1
G12

S22
S11 C22C11

2

I1 I2

v
1

v
2

Heat Flow El. Network

Power Current

Temperature Voltage

Duality Electrical Network Mathematical Description

Introduction
• Context

• Related Work

 Thermal Model

C: Thermal capacitance matrix

G: Thermal conductance matrix

S: Thermal ground conductance

matrix

P: Power dissipation vector

T: Temperature vector

Tamb: Ambient temperature vector

AnalysisSimulation

� 158 �

Compositional Temperature Evaluation

1/30/2011 8Lars Schor / Computer Engineering Group / ETH Zurich

Computing: Δt = 20ms, ΔP = 25mW

Reading: Δt = 45ms, ΔP = 32mW

Computing: Δt = 80ms, ΔP = 38mW

Writing: Δt = 60ms, ΔP = 34mW

Computing: Δt = 120ms, ΔP = 41mW

1 int fire () {

2 float i;

3 float j;

4

5 read (PORT_IN, &i);
6

7 j = i*i;

8 j += 2;
9

10 write (PORT_OUT, &j);

11

12 printf(“Wrote: %f\n, j);

13 return 0;

14 }

Introduction
• Model Calibration

• Model

• Evaluation

Thermal / Timing

Parameters

AnalysisSimulation

Analyze hundreds of design alternatives very quickly!

Thermal Evaluation Tool Chain

1/30/2011 9Lars Schor / Computer Engineering Group / ETH Zurich

Synthesis Tool

Low-Level

Simulator

Thermal Simulator

Application Architecture

Mapping

Black-Box

0 0.5 1 1.5 2 2.5
300

302

304

306

Time [s]

T
e
m

p
e
ra

tu
re

 [
K

]

Introduction
 Model Calibration

• Model

• Evaluation

System

Specification

AnalysisSimulation

� 159 �

Tool Chain: Simulation

1/30/2011 10Lars Schor / Computer Engineering Group / ETH Zurich

Multiprocessor ARM (MPARM)

global_time, core_0, iCache_0, dCache_0,...

20000.00000, 8.66479, 6.92371, 1.85577,...

40000.00000, 8.67978, 6.70634, 1.55680,...

60000.00000, 8.65809, 6.52792, 1.80335,...

80000.00000, 5.71639, 3.30558, 1.76069,...Time in ns P(t) in mW

Introduction
 Model Calibration

• Model

• Evaluation

Synthesis Tool

Thermal Simulator

System

Specification
ARM Processor 0

ARM 7 Core

Cache

Bus

Shared Memory

Scratchpad M
em

o
ry

ARM Processor 1

ARM 7 Core

CacheScratchpad M
em

o
ry

Low-Level

Simulator

AnalysisSimulation

Thermal Analysis Model

“HotSpot”

Tool Chain: Thermal Analysis

1/30/2011 11Lars Schor / Computer Engineering Group / ETH Zurich

Thermal Simulator

Temperature-Dependent Static Power

0 0.5 1 1.5 2 2.5
300

302

304

306

Time [s]

T
e
m

p
e
ra

tu
re

 [
K

]

Introduction
 Model Calibration

• Model

• Evaluation

Synthesis Tool

Low-Level

Simulator

Thermal Simulator

System

Specification

Solving
DES

AnalysisSimulation

� 160 �

Automated Model Calibration

1/30/2011 12Lars Schor / Computer Engineering Group / ETH Zurich

Timing

Parameters

Thermal

Parameters

Execution times

Application structure

Introduction
 Model Calibration

• Model

• Evaluation

Synthesis Tool

Low-Level

Simulator

Thermal Simulator

System

Specification

Power consumption

Thermal properties:

• Conductivity matrix

• Capacitance matrix

AnalysisSimulation

System-Level Thermal Emulation

1/30/2011 13Lars Schor / Computer Engineering Group / ETH Zurich

1. P(t) = P = const, 0 ≤ t ≤ Δt

2. Δt = const

3. Temperature of interest: T(Δt)

Calculate E, F once during DSE

Power

Annotation

Scheduling

Creation

Time Tile 1 Tile 2

5ms
s1,p2

s1,p110ms

15ms Idle

20ms
s2,p2 s1,p3

25ms

Time Tile 1 Tile 2

5ms
26mW

29mW10ms

15ms 5mW

20ms
32mW 23mW

25ms

Power Model Thermal Model

Introduction
• Model Calibration

 Model

• Evaluation

AnalysisSimulation

� 161 �

Evaluation: Matrix Multiplication

1/30/2011 14Lars Schor / Computer Engineering Group / ETH Zurich

P

Tile 0

C

M
N/N/1

Bus

Tile 1 Tile 2

M
N/N/2

M
N/N/N

M
1/1/N

M
1/1/1

M
1/1/2

A11, B11

A12, B21 A1N, BN1

Out Out

C11

AN1, B1N

AN2, B2N
ANN, BNN

CNN

Out Out

Introduction
• Model Calibration

• Model

 Evaluation

AnalysisSimulation

0 0.5 1 1.5 2 2.5
300

302

304

306

Time [s]

T
e
m

p
e
ra

tu
re

 [
K

]

System-Level Thermal Evaluation

Low-Level Simulation

Evaluation: Matrix Multiplication

1/30/2011 15Lars Schor / Computer Engineering Group / ETH Zurich

Introduction
• Model Calibration

• Model

 Evaluation

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7

D
if
fe

re
n
c
e
 [

%
]

Mapping

2000

2200

2400

2600

2800

1 2 3 4 5 6 7

S
p
e
e
d
u
p
 [

1
]

Mapping

AnalysisSimulation

� 162 �

Worst-Case Peak Temperature

1/30/2011 16Lars Schor / Computer Engineering Group / ETH Zurich

Worst-case peak

temperature of

many-core system?

Problem Related Work

Rai et al.: “Worst-Case Temperature

Analysis for Real-Time Systems”,

DATE, 2011

• Worst-case peak temperature

of single-node system

• Extension to multi-processor

system unanswered

Challenge

Introduction
• Model

• Optimization

• PJD / Evaluation

Delayed!

AnalysisSimulation

 State space: Temperature dependency:

 Two modes:

• Active:

• Idle:

Power Model

Thermal Model: Revisited

1/30/2011 17Lars Schor / Computer Engineering Group / ETH Zurich

Thermal Model

Introduction
 Model

• Optimization

• PJD / Evaluation

AnalysisSimulation

� 163 �

Computational Model

1/30/2011 18Lars Schor / Computer Engineering Group / ETH Zurich

Work conserving

schedule:
 Cumulative workload:

In [s, t), tasks with acc.

workload of R(s,t)

 Arrival curve:

Workload Arrival Model Computation Model

time interval Δ [ms] / time t [ms]

n
u

m
b

er
 o

f
ev

en
ts

 [
1

]

5 10 15 200
0

2

4

6

8

R(t)
α(Δ)

time interval Δ [ms] / time t [ms]

n
u

m
b

er
 o

f
ev

en
ts

 [
1

]

5 10 15 200
0

2

4

6

8

C(0,t)
γ(Δ)

Idle Active

Introduction
 Model

• Optimization

• PJD / Evaluation

AnalysisSimulation

Reduction to One Input - One Output Relation

1/30/2011 19Lars Schor / Computer Engineering Group / ETH Zurich

Independent Workload Dependent Workload

Introduction
• Model

 Optimization

• PJD / Evaluation

AnalysisSimulation

� 164 �

Maximize

Subject to

Thermal Optimization Problem

1/30/2011 20Lars Schor / Computer Engineering Group / ETH Zurich

Mode Function

Optimization Problem

Introduction
• Model

 Optimization

• PJD / Evaluation

Impulse
Response

Time t [s]
τ 0Im

p
u

ls
e

R
es

p
o

n
se

 h
(τ

-t
)

AnalysisSimulation

Maximize

Subject to

Thermal Optimization Problem

1/30/2011 21Lars Schor / Computer Engineering Group / ETH Zurich

Mode Function

Optimization Problem

Introduction
• Model

 Optimization

• PJD / Evaluation

Time t [s]
τ 0Im

p
u

ls
e

R
es

p
o

n
se

 h
(τ

-t
)

AnalysisSimulation

� 165 �

Period-Jitter-Delay Model

1/30/2011 22Lars Schor / Computer Engineering Group / ETH Zurich

Computational Model

Introduction
• Model

• Optimization

 PJD / Evaluation

time interval Δ [ms]

n
u

m
b

er
 o

f
ev

en
ts

 [
1

]

3 6 9 120
0

3

6

9

12

15 18 21 24 27 30

15

α(Δ)
γ(Δ)

ΔA ΔIb

AnalysisSimulation

Period-Jitter-Delay Model

1/30/2011 23Lars Schor / Computer Engineering Group / ETH Zurich

Exact Solution

Introduction
• Model

• Optimization

 PJD / Evaluation

b - ΔA ΔA + ΔI

t

Same Pattern!

Exhaustive search:

• Position of the first block?

• Pattern?

Max of h(τ-t)

AnalysisSimulation

� 166 �

Period-Jitter-Delay Model

1/30/2011 24Lars Schor / Computer Engineering Group / ETH Zurich

Approximation 1

Introduction
• Model

• Optimization

 PJD / Evaluation

b - ΔA ΔI

t

ΔAΔAΔI

b - ΔA ΔI

t

ΔAΔAΔI

Approximation 2

b - ΔA

AnalysisSimulation

Evaluation: Setup

1/30/2011 25Lars Schor / Computer Engineering Group / ETH Zurich

Introduction
• Model

• Optimization

 PJD / Evaluation

AnalysisSimulation

Processing

Component 1

Processing

Component 2

Processing

Component 3

Processing

Component 4

Period p 40ms 44ms 24ms 36ms

Jitter j 20ms 22ms 48ms 36ms

Min. inter-arrival a 1ms 1ms 1ms 1ms

Execution demand d 20ms 22ms 12ms 18ms

� 167 �

Evaluation: Result

1/30/2011 26Lars Schor / Computer Engineering Group / ETH Zurich

Random Trace Approximation

Introduction
• Model

• Optimization

 PJD / Evaluation

345

355

365

1 2 3 4
T
e
m

p
e
ra

tu
re

 [
K

]

Node

Tight Upper Bound

Approximation 1

Approximation 2

AnalysisSimulation

0 200 400 600 800 1000
340

345

350

355

360

365

Time [ms]

T
e
m

p
e
ra

tu
re

 [
K

]

Conclusion

1/30/2011 27Lars Schor / Computer Engineering Group / ETH Zurich

Introduction

DOL MPARM HotSpotSpec.

Worst-Case Peak Temperature Analysis

Time t [s]
τ 0

Im
p

u
ls

e
R

es
p

o
n

se
 h

(τ
-t

)

System-Level Thermal Simulation

0 200 400 600 800 1000
340

345

350

355

360

365

Time [ms]

T
e
m

p
e
ra

tu
re

 [
K

]

Time Tile 1

5ms s1,p2

10ms Idle

Time Tile 1

5ms 26mW

10ms 5mW

AnalysisSimulation

� 168 �

C
List of Symbols

T Architecture speci�cation.

A Application speci�cation.

b = (b1; . . . ; b|V |) Binding.

ψ Calibration data.

Q Set of channels.

q ∈ Q Channel.

c Component.

I Set of instructions.

i ∈ I Instruction.

(b, s) Mapping speci�cation.

P Power.

P{v} Priority of v.

V Set of processes.

v ∈ V Process.

s Scheduling.

Sp Set of segments of process p.

si,p ∈ Sp Segment i of process p.

sc Shared component.

S System speci�cation.

T Temperature.

� 169 �

Γ Set of tiles.

γ ∈ Γ Tile.

t Time.

Θ Set of timetables.

θ ∈ Θ Timetable.

T(·) Type of.

� 170 �

D
Acronyms

ACET Average Case Execution Time.
AMBA Advanced Microcontroller Bus Architecture.

BCET Best Case Execution Time.

DMA Direct Memory Access.
DOL Distributed Operation Layer.
DRAM Dynamic Random Access Memory.
DVFS Dynamic Voltage and Frequency Scaling.

FFT Fast Fourier Transform.
FIFO First-In First-Out.
FPGA Field Programmable Gate Array.

IC Integrated Circuit.
IDCT Inverse Discrete Cosine Transformation.
IIR In�nite Impulse Response.
IQ Inverse Quantization.
ISS Instruction-Set-Simulator.

KPN Kahn Process Network.

MC Motion Compensation.
MJPEG Motion JPEG.

� 171 �

Acronyms

MPA Modular Performance Analysis.
MPARM Multiprocessor ARM.
MPSoC Multiprocessor System-on-Chip.
MTJ Matrix-Toolkits-Java.

NoC Network-on-a-Chip.

OS Operating System.

RTEMS Real-Time Executive for Multiprocessor Sys-
tems.

SCC Single-chip Cloud Computer.
SDF Synchronous Data�ow.
SIMO Single-Input and Multiple-Output.
SLTE System Level Thermal Emulator.
SoC System On Chip.
SWARM Software ARM.
SymTA/S Symbolic Timing Analysis for Systems.

VLD Variable Length Decoding.

WCET Worst Case Execution Time.

� 172 �

Bibliography

[1] C. R. Johns and D. A. Brokenshire, �Introduction to the Cell Broad-
band Engine Architecture,� IBM J. of Research and Dev., vol. 51,
no. 5, pp. 503�519, Sep. 2007.

[2] �Single-Chip Cloud Computer,� Dec. 2010. [Online]. Available:
http://techresearch.intel.com/ProjectDetails.aspx?Id=1

[3] I. Bacivarov, W. Haid, K. Huang, and L. Thiele, �Methods and Tools for
Mapping Process Networks onto Multi-Processor Systems-On-Chip,�
in Handbook of Signal Processing Systems, S. S. Bhattacharyya, E. F.
Deprettere, R. Leupers, and J. Takala, Eds. Springer, Oct. 2010, pp.
1007�1040.

[4] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, �Mapping Applications
to Tiled Multiprocessor Embedded Systems,� in Proc. Int'l Conf. on
Application of Concurrency to System Design (ACSD), Jul. 2007, pp.
29�40.

[5] S. Chakraborty, S. Kunzli, and L. Thiele, �A General Framework for
Analysing System Properties in Platform-Based Embedded System
Designs,� in Proc. Design, Automation and Test in Europe (DATE),
2003, pp. 190�195.

[6] C. Silvano, W. Fornaciari, S. C. Reghizzi, G. Agosta, G. Palermo,
V. Zaccaria, P. Bellasi, F. Castro, S. Corbetta, A. D. Biagio, E. Speziale,
M. Tartara, D. Siorpaes, H. Hubert, B. Stabernack, J. Brandenburg,
M. Palkovic, P. Raghavan, C. Ykman-Couvreur, A. Bartzas, S. Xydis,
D. Soudris, T. Kempf, G. Ascheid, R. Leupers, H. Meyr, J. Ansari,
P. Mahonen, and B. Vanthournout, �2PARMA: Parallel Paradigms and
Run-Time Management Techniques for Many-Core Architectures,� in
Proc. IEEE Annual Symposium on VLSI (ISVLSI), 2010, pp. 494�499.

[7] T. Sporer, M. Beckinger, A. Franck, I. Bacivarov, W. Haid, K. Huang,
L. Thiele, P. S. Paolucci, P. Bazzana, P. Vicini, J. Ceng, S. Kraemer, and
R. Leupers, �SHAPES � A Scalable Parallel HW/SW Architecture
Applied to Wave Field Synthesis,� in Proc. Int'l Audio Engineering
Society (AES) Conf., Sep. 2007, pp. 175�187.

[8] B. Kienhuis, E. Deprettere, K. Vissers, and P. Van Der Wolf, �An
Approach for Quantitative Analysis of Application-Speci�c Data�ow

� 173 �

http://techresearch.intel.com/ProjectDetails.aspx?Id=1

BIBLIOGRAPHY

Architectures,� in Proc. IEEE Int'l Conf. on Application-Speci�c Sys-
tems, Architectures and Processors, 1997, pp. 338�349.

[9] G. Kahn, �The Semantics of a Simple Language for Parallel Program-
ming,� in Proc. of the IFIP Congress, vol. 74, 1974, pp. 471�475.

[10] K. Huang, W. Haid, I. Bacivarov, and L. Thiele, �Coupling MPARM
with DOL,� ETH Zürich, TIK Report 314, Sep. 2009.

[11] S. Künzli, �E�cient Design Space Exploration for Embedded Systems,�
Ph.D. dissertation, ETH Zurich, 2006.

[12] H. Yang and S. Ha, �Pipelined Data Parallel Task Mapping/Scheduling
Technique for MPSoC,� in Proc. Design, Automation and Test in
Europe (DATE), 2009, pp. 69�74.

[13] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,
�MPARM: Exploring the Multi-Processor SoC Design Space with
SystemC,� J. VLSI Signal. Proces., vol. 41, no. 2, pp. 169�182, Sep.
2005.

[14] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. Stan, �HotSpot: A Compact Thermal Modeling Methodology
for Early-Stage VLSI Design,� IEEE T. VLSI Sys., vol. 14, no. 5, pp.
501�513, May 2006.

[15] D. Rai, H. Yang, I. Bacivarov, J.-J. Chen, and L. Thiele, �Worst-
Case Temperature Analysis for Real-Time Systems,� in Proc. Design,
Automation and Test in Europe (DATE), Mar. 2011.

[16] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker,
R. Henia, R. Racu, R. Ernst, and M. González Harbour, �In�uence
of Di�erent Abstractions on the Performance Analysis of Distributed
Hard Real-Time Systems,� Design Automation for Embedded Systems,
vol. 13, pp. 27�49, 2009.

[17] M. Sridhar, A. Raj, A. Vincenzi, M. Ruggiero, T. Brunschwiler,
and D. Atienza Alonso, �3D-ICE: Fast Compact Transient Thermal
Modeling For 3D-ICs with Inter-tier Liquid Cooling,� in Proc. Int'l
Conf. on Computer-Aided Design (ICCAD), 2010, pp. 463�470.

[18] K. Puttaswamy and G. H. Loh, �Thermal Analysis of a 3D Die-Stacked
High-Performance Microprocessor,� in Proc. Great Lakes Symposium
on VLSI (GLSVLSI), 2006, pp. 19�24.

[19] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. P. Boyd, and
G. De Micheli, �Temperature-Aware Processor Frequency Assign-
ment for MPSoCs Using Convex Optimization,� in Proc. IEEE/ACM
Int'l Conf. on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2007, pp. 111�116.

� 174 �

BIBLIOGRAPHY

[20] J. Donald and M. Martonosi, �Techniques for Multicore Thermal
Management: Classi�cation and New Exploration,� in Proc. Annual
Int'l Symposium on Computer Architecture (ISCA), 2006, pp. 78�88.

[21] A. K. Coskun, T. S. Rosing, and K. Whisnant, �Temperature Aware
Task Scheduling in MPSoCs,� in Proc. Design, Automation and Test
in Europe (DATE), 2007, pp. 1659�1664.

[22] A. K. Coskun, J. L. Ayala, D. Atienza, T. Simunic, and Y. Leblebici,
�Dynamic Thermal Management in 3D Multicore Architectures,�
in Proc. Design, Automation and Test in Europe (DATE), 2009, pp.
1410�1415.

[23] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin, �Dynamic
Thermal Management Through Task Scheduling,� in Proc. IEEE
Int'l Symposium on Performance Analysis of Systems and Software
(ISPASS), 2008, pp. 191�201.

[24] M. Sabry, J. Ayala, and D. Atienza, �Thermal-Aware Compilation
for System-on-Chip Processing Architectures,� in Proc. Great Lakes
Symposium on VLSI (GLSVLSI), 2010, pp. 221�226.

[25] T. Chantem, R. P. Dick, and X. S. Hu, �Temperature-Aware Scheduling
and Assignment for Hard Real-Time Applications on MPSoCs,� in Proc.
Design, Automation and Test in Europe (DATE), 2008, pp. 288�293.

[26] Y. Xie and W.-l. Hung, �Temperature-Aware Task Allocation and
Scheduling for Embedded Multiprocessor Systems-on-Chip (MPSoC)
Design,� J. VLSI Signal. Proces., vol. 45, no. 3, pp. 177�189, Dec. 2006.

[27] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin, �Thermal-Aware Task Allocation and Scheduling for Embedded
Systems,� in Proc. Design, Automation and Test in Europe (DATE),
vol. 2, 2005, pp. 898�899.

[28] A. Pimentel, �The Artemis Workbench for System-Level Performance
Evaluation of Embedded Systems,� Int'l J. Embedded Systems, vol. 3,
no. 3, pp. 181�196, 2008.

[29] W. Haid, M. Keller, K. Huang, I. Bacivarov, and L. Thiele, �Generation
and Calibration of Compositional Performance Analysis Models for
Multi-Processor Systems,� in Proc. Int'l Conf. on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS), Jul. 2009,
pp. 92�99.

[30] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Springer, 2002.

[31] M. Loghi, M. Poncino, and L. Benini, �Cycle-Accurate Power Analysis
for Multiprocessor Systems-on-a-Chip,� in Proc. Great Lakes Sympo-
sium on VLSI (GLSVLSI), 2004, pp. 406�410.

� 175 �

BIBLIOGRAPHY

[32] D. Brooks, V. Tiwari, and M. Martonosi, �Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,� in Proc.
Annual Int'l Symposium on Computer Architecture (ISCA), vol. 28,
no. 2, 2000, pp. 83�94.

[33] N. Eisley, V. Soteriou, and L. Peh, �High-Level Power Analysis for
Multi-Core Chips,� in Proc. Int'l Conf. on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), 2006, pp. 389�400.

[34] Y. Nakamura, K. Hosokawa, I. Kuroda, K. Yoshikawa, and
T. Yoshimura, �A Fast Hardware/Software Co-Veri�cation Method
for System-on-a-Chip by Using a C/C++ Simulator and FPGA Em-
ulator with Shared Register Communication,� in Proc. Annual Design
Automation Conf. (DAC), 2004, pp. 299�304.

[35] D. Atienza, P. Del Valle, G. Paci, F. Poletti, L. Benini, G. Micheli,
J. Mendias, and R. Hermida, �HW-SW Emulation Framework for
Temperature-Aware Design in MPSoCs,� ACM T. Design Automation
of Electronic Systems, vol. 12, no. 3, pp. 1�26, 2007.

[36] C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo, �Energy-E�cient
Real-Time Task Scheduling with Temperature-Dependent Leakage,� in
Proc. Design, Automation and Test in Europe (DATE), Mar. 2010, pp.
9�14.

[37] W. Huang, K. Skadron, R. Gurumurthi, R. J. Ribando, and M. R. Stan,
�Di�erentiating the Roles of IR Measurement and Simulation for Power
and Temperature-Aware Design,� in Proc. IEEE Int'l Symposium on
Performance Analysis of Systems and Software (ISPASS), Apr. 2009.

[38] M. Girault and D. Petit, �Identi�cation Methods In Nonlinear Heat
Conduction. Part I: Model Reduction,� Int'l J. Heat and Mass Trans-
fer, vol. 48, no. 1, pp. 105�118, 2005.

[39] A. Augustin, T. Hauck, B. Maj, J. Czernohorsky, E. Rudnyi, and J. Ko-
rvink, �Model Reduction for Power Electronics Systems with Multiple
Heat Sources,� in Proc. Int'l Workshop on Thermal investigations of
ICs (THERMINIC), 2006, pp. 113�117.

[40] Y. Han, I. Koren, and C. Krishna, �Temptor: A Lightweight Runtime
Temperature Monitoring Tool Using Performance Counters,� in Proc.
Workshop on Temperature-Aware Computer Systems (TACS), 2006.

[41] A. Bartolini, M. Cacciari, A. Tilli, L. Benini, and M. Gries, �A Virtual
Platform Environment for Exploring Power, Thermal and Reliability
Management Control Strategies in High-Performance Multicores,� in
Proc. Great Lakes Symposium on VLSI (GLSVLSI), 2010, pp. 311�
316.

� 176 �

BIBLIOGRAPHY

[42] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, �Simics: A Full
System Simulation Platform,� Computer, vol. 35, no. 2, pp. 50�58,
2002.

[43] P. Garcia del Valle and D. Atienza, �Emulation-Based Transient
Thermal Modeling of 2D/3D Systems-on-Chip with Active Cooling,�
Microelectronics J., vol. 41, no. 10, pp. 1�9, 2010.

[44] X. Zhu and S. Malik, �Using a Communication Architecture Speci-
�cation in an Application-Driven Retargetable Prototyping Platform
for Multiprocessing,� in Proc. Design, Automation and Test in Europe
(DATE), vol. 2, 2004, pp. 1244�1249.

[45] N. S. Kim, T. Austin, T. Mudge, and D. Grunwald, �Challenges For
Architectural Level Power Modeling,� in Power Aware Computing, ser.
Computer Science, R. Graybill and R. Melhem, Eds. Plenum Pub
Corp, 2002, pp. 317�337.

[46] D. Gelernter and N. Carriero, �Coordination Languages and Their
Signi�cance,� Commun. ACM, vol. 35, pp. 97�107, Feb. 1992.

[47] M. Dales, �SWARM - Software ARM,� Feb. 2003. [Online]. Available:
http://www.cl.cam.ac.uk/~mwd24/phd/swarm.html

[48] �RTEMS Operating System,� Jul. 2010. [Online]. Available:
http://www.rtems.com/

[49] M. Caldari, A. Bona, V. Zaccaria, and R. Zafalon, �High-Level Power
Characterization of the AMBA Bus Interconnect,� Synopsys User
Group, Tech. Rep., 2004.

[50] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, �Temperature-Aware Microarchitecture: Modeling and
Implementation,� ACM T. Arch. and Code Opt., vol. 1, no. 1, pp.
94�125, 2004.

[51] A. Krum, �Thermal Management,� in The CRC Handbook of Thermal
Engineering, F. Kreith, Ed. CRC Press, 2000, pp. 1�92.

[52] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu,
M. J. Irwin, M. Kandemir, and V. Narayanan, �Leakage Current:
Moore's Law Meets Static Power,� Computer, vol. 36, no. 12, pp.
68�75, 2003.

[53] F. Fallah and M. Pedram, �Standby and Active Leakage Current Control
and Minimization in CMOS VLSI Circuits,� IEICE T. Electron., no. 4,
pp. 509�519, 2005.

[54] C. Hu, �BSIM3,� Mar. 2009. [Online]. Available: http:
//www-device.eecs.berkeley.edu/~bsim3/bsim_ent.html

� 177 �

http://www.cl.cam.ac.uk/~mwd24/phd/swarm.html
http://www.rtems.com/
http://www-device.eecs.berkeley.edu/~bsim3/bsim_ent.html
http://www-device.eecs.berkeley.edu/~bsim3/bsim_ent.html

BIBLIOGRAPHY

[55] S. Heo, K. Barr, and K. Asanovi¢, �Reducing Power Density Through
Activity Migration,� in Proc. Int'l Symposium on Low Power Electron-
ics and Design (ISLPED), 2003, pp. 217�222.

[56] Y. Liu, R. P. Dick, L. Shang, and H. Yang, �Accurate Temperature-
Dependent Integrated Circuit Leakage Power Estimation is Easy,�
in Proc. Design, Automation and Test in Europe (DATE), 2007, pp.
1526�1531.

[57] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
�HotLeakage: A Temperature-Aware Model of Subthreshold and Gate
Leakage for Architects,� Univ. of Virginia, Dept. of Computer Science,
Tech. Rep., Mar. 2003.

[58] K. Sankaranarayanan, �Thermal Modeling and Management of Mi-
croprocessors,� Ph.D. dissertation, School of Engineering and Applied
Science, University of Virginia, May 2009.

[59] International Technology Roadmap for Semiconductors: Process Inte-
gration, Devices, and Structures, SIAI, 2001. [Online]. Available:
http://www.itrs.net/Links/2001ITRS/Home.htm

[60] Y. Cheng and C. Hu, MOSFET Modeling and Bsim3 User's Guide.
Kluwer Academic Publishers, 1999.

[61] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
�System Level Performance Analysis - The SymTA/S Approach,� IEEE
Proc. Comp. and Digital Techniques, vol. 152, no. 2, pp. 148�166, 2005.

[62] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, �System Ar-
chitecture Evaluation Using Modular Performance Analysis: A Case
Study,� Int'l J. Software Tools for Technology Transfer, vol. 8, no. 6,
pp. 649�667, 2006.

[63] B. Haskell, A. Puri, and A. Netravali, Digital Video: An Introduction
to MPEG-2, ser. Digital Multimedia Standards. Kluwer Academic
Publishers, 1997.

[64] K. Huang, I. Bacivarov, J. Liu, and W. Haid, �A Modular Fast
Simulation Framework for Stream-Oriented MPSoC,� in IEEE Int'l
Symposium on Industrial Embedded Systems (SIES), 2009, pp. 74�81.

[65] J. Castrillon, R. Velasquez, A. Stulova, W. Sheng, J. Ceng, R. Leupers,
G. Ascheid, and H. Meyr, �Trace-Based KPN Composability Analysis
for Mapping Simultaneous Applications to MPSoC Platforms,� in Proc.
Design, Automation and Test in Europe (DATE), 2010, pp. 753�758.

[66] T. Isshiki, D. Li, H. Kunieda, T. Isomura, and K. Satou, �Trace-Driven
Workload Simulation Method for Multiprocessor System-On-Chips,� in
Proc. Annual Design Automation Conf. (DAC), 2009, pp. 232�237.

� 178 �

http://www.itrs.net/Links/2001ITRS/Home.htm

BIBLIOGRAPHY

[67] C. Lee, S. Kim, and S. Ha, �A Systematic Design Space Exploration
of MPSoC Based on Synchronous Data Flow Speci�cation,� J. Signal.
Process. Sys., vol. 58, pp. 193�213, 2010.

[68] H. Yang, S. Kim, and S. Ha, �An MILP-Based Performance Anal-
ysis Technique for Non-Preemptive Multitasking MPSoC,� IEEE T.
Comput. Aid. D., vol. 29, no. 10, pp. 1600�1613, 2010.

[69] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, �Temperature-Aware Microarchitecture,� in Proc. Int'l
Symposium on Computer Architecture (ISCA), Jun. 2003, pp. 2�13.

[70] S. Zhang and K. Chatha, �Approximation Algorithm for the
Temperature-Aware Scheduling Problem,� in Proc. Int'l Conf. on
Computer-Aided Design (ICCAD), Nov. 2007, pp. 281�288.

[71] S. Ha�zovic and O. Paul, �Temperature-Dependent Thermal Conduc-
tivities of CMOS Layers by Micromachined Thermal Van Der Pauw
Test Structures,� Sensors and Actuators A: Physical, vol. 97�98, pp.
246�252, 2002.

[72] W. Haid, �Design and Performance Analysis of Multiprocessor Stream-
ing Applications,� Ph.D. dissertation, ETH Zurich, Oct. 2010.

[73] E. Lee and D. Messerschmitt, �Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing,� IEEE T. Comput.,
vol. 36, no. 1, pp. 24�35, 1987.

[74] ��, �Synchronous Data Flow,� Proc. IEEE, vol. 75, no. 9, pp.
1235�1245, 1987.

[75] A. H. Ghamarian, M. C. W. Geilen, T. Basten, and S. Stuijk,
�Parametric Throughput Analysis of Synchronous Data Flow Graphs,�
in Proc. Design, Automation and Test in Europe (DATE), 2008, pp.
116�121.

[76] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V.
Gheorghita, and S. Stuijk, �A Scenario-Aware Data Flow Model for
Combined Long-Run Average and Worst-Case Performance Analysis,�
in Proc. ACM/IEEE Int'l Conf. on Formal Methods and Models for
Co-Design (MEMOCODE), 2006, pp. 185�194.

[77] C. Brake, �Power Management In Portable ARM Based Systems,�
Accelent Systems, Tech. Rep., 2001.

[78] D. Tarjan, S. Thoziyoor, and N. Jouppi, �CACTI 4.0,� HP Laboratories
Palo-Alto, Tech. Rep. HPL-2006-86, 2006.

[79] S. Velusamy, W. Huang, J. Lach, M. Stan, and K. Skadron, �Monitoring
Temperature in FPGA based SoCs,� in Proc. Int'l Conf. on Computer
Design, 2005, pp. 634�640.

� 179 �

BIBLIOGRAPHY

[80] G. K. Wallace, �The JPEG Still Picture Compression Standard,� IEEE
T. Consum. Electr., vol. 38, no. 1, 1992.

[81] J. T. Hsu and L. Vu-Quoc, �A Rational Formulation of Thermal
Circuit Models for Electrothermal Simulation � Part II: Model Re-
duction Techniques,� IEEE T. Circ. and Sys. I: Fund. Theory and
Applications, vol. 43, no. 9, pp. 733�744, 1996.

[82] L. Thiele, S. Chakraborty, and M. Naedele, �Real-Time Calculus for
Scheduling Hard Real-Time Systems,� in Proc. IEEE Int'l Symposium
on Circuits and Systems (ISCAS), vol. 4, 2000, pp. 101�104.

[83] B. Friedland, Control Systems Design: An Introduction to State-Space
Methods. Dover, 2005.

[84] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of De-
terministic Queuing Systems for the Internet, ser. Lecture Notes In
Computer Science. Springer, 2001, vol. 2050.

[85] N. Nise, Control Systems Engineering, 4th ed. John Wiley & Sons,
2004.

[86] G. Birkho� and R. S. Varga, �Reactor Criticality and Nonnegative
Matrices,� J. Soc. Ind. Appl. Math., vol. 6, no. 4, pp. 354�377, 1958.

[87] E. Wandeler, A. Maxiaguine, and L. Thiele, �Performance Analysis of
Greedy Shapers in Real-Time Systems,� in Proc. Design, Automation
and Test in Europe (DATE), 2006, pp. 444�449.

[88] S. Künzli, A. Hamann, R. Ernst, and L. Thiele, �Combined Approach
to System Level Performance Analysis of Embedded Systems,� in Proc.
IEEE/ACM Int'l Conf. on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2007, pp. 63�68.

[89] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wandeler,
�Interface-Based Rate Analysis of Embedded Systems,� in Proc. Int'l
Real-Time Systems Symposium (RTSS), Dec. 2006, pp. 25�34.

[90] J. Cutts, �A Computer in Every Pocket, 4G in Every Town,� in
5 Technology Trends to Watch. Consumer Electronics Association
(CEA), 2010.

[91] The Bene�ts of Multiple CPU Cores in Mobile Devices, NVIDIA,
2010, Whitepaper.

[92] W. Haid, K. Huang, and S. Künzli, �DOL: Application Examples,� Jul.
2008, revision 1069.

� 180 �

	Introduction
	Motivation
	Context
	Contributions
	Outline

	I Thermal Simulation
	Thermal Simulation: An Introduction
	Overview
	Related Work

	Thermal Evaluation Tool Chain
	Overview and System Specification
	From Execution to Power Traces
	From Power Traces to Temperature Traces
	Summary

	System-Level Thermal Emulation
	Overview
	Abstract Power Evaluation Models
	Temperature Evaluation
	Summary

	Automated Model Calibration
	Model Parameters and their Sources
	Extracting Timing Parameters
	Extracting Thermal Parameters
	Summary

	System-Level Thermal Simulation in DOL
	Automated Model Calibration
	Calculating the Temporal Power Consumption
	System-Level Thermal Simulation in DOL
	Summary

	Experimental Results
	Experimental Setup
	Applications
	Discussion
	Summary

	Thermal Simulation: Conclusion and Outlook
	Conclusion
	Outlook

	II Analytic Thermal Analysis
	Analytic Thermal Analysis: An Introduction
	Overview
	Related Work

	Worst-Case Peak Temperature of a Many-Core System
	System Model
	Thermal Analysis
	Period-Jitter-Delay Model
	Summary

	Experimental Results
	Experimental Setup
	Peak Temperature Analysis
	Summary

	Analytic Thermal Analysis: Conclusion and Outlook
	Conclusion
	Outlook

	Conclusion
	Details of Experimental Results
	Transient Thermal Behavior

	Presentation Slides
	Symbols
	Acronyms

