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Abstract

There has been a considerable research in building many real-time multimedia, signal processing
applications running concurrently on an MPSoC based embedded systems without application
control. To handle the complexity of multiple co-existing and co-executing applications on an
embedded multi-core platform (EURETILE) with determinism or in a controller manner, a new
framework based on hardware/software co-design is required.

The work done in this thesis defines the specification of multiple applications (specifically designed
for a MPSoC platform) as an input to the new framework called Distributed Application Layer
(built over Distributed Operation Layer). Along with user-defined application specification, the
DAL framework is designed to accept a Finite State Machine (FSM). The user defined FSM is used
to control the run-time behavior of co-executing applications based on some external event trigger
(adding run-time determinism). An important aspect of the framework is to support an optimal
FSM state based mapping of the applications. The new framework is incorporates migration of
tasks with varying mapping configuration during state transition. The DAL framework is also
designed to provide fault tolerance at application level using double redundancy (duplication of
applications) static fault tolerance measure.

To get mapping configurations for application processes on to actual hardware, the DAL frame-
work analyzes the system behavior based on functional simulation. The thesis work also included
the extension to the distributed functional simulation used in the DOL framework to quantify
multiple application behavior using FSM and statically generated external event trigger.

The functional simulation based on SystemC, show promising results in terms of concurrent
multiple application behavior based in FSM. The functional simulation shows promising results
in terms of scalability (more number of applications). Addition of mapping behavior on to dis-
tributed server not only accelerates the overall system simulation but also assists in the emulating
a MPSoC behavior. The library used to support the distributed simulations based on SystemC is
particularly suited to distribute functional and untimed or approximate-timed transaction level
modeling (TLM) simulations. No modifications have been made to the simulation kernel.
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1
Introduction

1.1 Motivation

In recent times, there has been a considerable surge and push towards building real-time multi-
media, signal processing and embedded systems over a MPSoC (multi-processor system-on-chip)
architecture (both homogeneous and heterogeneous architecture based on requirement and cost).
The multi-processor architecture is preferred over single-processor architecture because of higher
performance gain at lower energy consumption and lower heat dissipation.

On the down side, the development and analysis of an application implemented for a MPSoC is
difficult. One of the main challenges for software development for MPSoC platform is to keep
all core and hardware accelerators busy to achieve maximum throughput. Basically, this can
be achieved by mapping the different processes of an application to the different cores. This
also assists in achieving a load-balanced system. This approach, static in nature, is limited
to applications where information about the process and the corresponding resource demand
is known at compile-time (without any deviation). However in recent times, there has been a
need for a system that would facilitate dynamic behavior of applications. These applications
may be active or inactive during the normal execution of the system. Further, the processes
can have aperiodic non-uniform execution behavior and can still demand for resources (memory
or processors/hardware accelerators or bus). This would result in leading to an unpredictable
hardware utilization which may even lead to non-uniform workload distribution at a given time.

Due to scope of real-time applications in the real world, the system is required to support recovery
from hardware or software faults to avoid system reboot or replacement or objective loss; hence
dynamic in nature.

1.2 Contributions

This theme of the project is to extend an existing MPSoC design-flow called Distributed Operation
Layer (DOL) [1, 2] toward the Distributed Application Layer (DAL) to introduce dynamism.
The overall goal is segmented into three tasks.

The goal of the first task is to define a specification environment for supporting dynamic control
and concurrent execution of multiple applications. The application specification used in DOL
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CHAPTER 1. INTRODUCTION

is modified to capture the proposed dynamic characteristics. In addition to this, a co-ordinated
structure for applications is defined to support dynamic properties.

The scope of first task also include the method to define the multiple mapping options for co-
existing and co-executing applications tasks distributed on the hardware. The DAL proposes
FSM state based application mapping and switching between mapping configurations at run-
time. This is termed as task remapping/migration. In DAL, the dynamic mapping can be tested
at system-level using abstract hardware platform and at functional-level (application functionality
level).

The second task defines structure to handle system faults and implement the fault-tolerant beha-
vior for applications and processors using re-mapping and redundancy/back-up mechanism. This
is one of the requirements of the DAL Framework. At system-level, fault-tolerance is achieved via
re-mapping. When a fault is detected in the system (e.g., faulty processor), back-up processes is
activated to prevent the system from stalling.

The third task generate a functional simulation environment with the above two DAL require-
ments. A distributed SystemC simulation was creates to emulate the MPSoC behavior. The
application tasks are mapped onto these SystemC applications and executed concurrently using
FSM and statically generated events.

1.3 Related Work

The need for specification, analysis and synthesis of high performance signal processing and
streaming multimedia applications is of utmost importance for MPSoC based architecture. The
representation of applications using Process Networks and Data Flow Models is the most obvious
choice. A wide variety of Data Flow models/system support advanced analysis techniques in
addition to automatic synthesis for applications. The Data Flow Systems like Synchronous Data
Flow (SDF) [3] and extensions to SDF, such as cyclo-static dataflow [4], support such properties.
The SDF and its variants can also be used to expresses as static Data Flow Model; the order of
firing of a task is known at compile-time or deterministic. On the other side, the dynamic Data
Flow Systems like Kahn Process Networks (KPNs) [5], expresses applications with unknown
schedule; the firing order is not known at compile-time hence non-deterministic. Many of the
existing run-time environments for generating high performance parallel application over MPSoC
commonly use simulation frameworks [1, 6, 7, 8, 9, 10, 11].

The analysis of streaming-based real-time embedded applications on MPSoC is getting more
focused on run-time existence of multiple applications on the MPSoC cores. The analysis of
Multiple applications on an MPSoC have be described in [12, 13, 14, 15, 11]. The most common
approach followed in either of the above works is to include dynamic arbitration like admission
control [13] or admission manager [15] or run-time implementation of Heavy function [11] to start
an application. There is no inclusion of application control based on event.

The demand to combine the properties of non-deterministic application behavior and event-based
communication has lead to modification/extensions to existing pure Data Flow Models [16, 17].
The author of Probe [16] extends the data flow model to probe channels for data packets. This
modification assist in higher expressiveness of the data flow model at the cost of violation of
determinacy property. On the other hand, the designers of Y-API [17] introduced a select clause
on top of existing KPN clause (blocking read and non-blocking write) [5]. The Application
programmer needs to select the channel during communication phase. This adds determinism to
the existing model as the user programmer has an idea of order of firing of processes/task. In
Ptolemy [18], a framework is defined to fuse data flow model of computation with event-based
model of computation. This adds a great amount of synchronization overhead (at implementation
level). The FunState [19] defines a model with functions driven by state machines; data flow
independent control flow. The *charts [20] was one of the initials works describing a separate
hierarchical finite state machine control model and data flow models.
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1.4. OUTLINE

The approach in [21] focuses on reconfiguration as a particular kind of event handling (control
flow). They define quiescent points in the execution where reconfiguration is allowed. They also
propose the use of FIFO channels for events or parameters communication and to divide input
ports in streaming input ports and parameter input ports. The work is primarily focused on
analysis and ability to schedule reconfigurable SDF graphs.

The approach defined in [22] use a FSM per actor to model control on an actor. Inclusion of
FSM per actor would be ideal if the application comprises of single process instead of a process
network. Addition of FSM per actor/process would be redundant if the application control is
considered at system-level. The authors also try to abstract multiple channels for efficiency and
easy of synthesis.

In Reactive Process Networks [23], KPNs [5] are used a data flow model unlike SDF in [21].
In RPNs, a unified model is used to represent data-oriented data flow and control-oriented data
flow. In the paper, the authors defines this model and a set of formal operational semantics
allowing description of an application at different abstract levels of computation. The model also
incorporates the possibility of dynamically changing the structure of the Process Networks as
opposed to reconfiguration with altered parameters [21]. This model is used as a basis for this
master thesis.

The concept of State based Task Migration (optimal mapping) adopted in this work has not been
discussed in the available literature∗. Conceptually, Task Migration on MPSoC is discussed in
[24, 25, 26]. In [26], the authors discuss the task migration over heterogeneous MPSoC cores
using relationship across instruction sets (core-specific). This approach is more general and would
not scale across varying hardware platforms. The concept of Task Migration referred to in [25],
is basically due to on-line movement of process/task to other core due to processor/core overload.
Various type of general Task Migration strategies is discussed in [24].

Different class of reliability models mentioned in the paper [27] highlight various fault tolerance
model that are incorporated in digital systems. The static reliability models in this paper aptly
describe the redundant processor model with higher performance gain at higher silicon cost.

1.4 Outline

The remaining part of this work is distributed over six chapters (excluding the current chapter).
The Chapter 2 defines the Framework used for the successful completion of the thesis. It briefly
describes the DOL Framework [28] and its key features. The chapter also describes the libraries
used to setup distributed functional simulation environment. This chapter also highlights the
theme of EURETILE [29] and DAL Framework.

The Chapter 3 describes in detail the first requirement of DAL middle-ware. The chapter high-
lights the concept behind dynamism and corresponding implementation details. It also describes
the methodology used for supporting task remapping/migration for multiple co-existing mapping
strategies.

The feature of system-level and application-level fault tolerance is described in Chapter 4. This
chapter also includes the implementation details incorporated for fault tolerant mechanism.

The implementation aspects of SystemC based simulator is mentioned in Chapter 5. The imple-
mentation aspects described in this chapter is valid for DAL hdsd visitor and can be incorporated
to other visitors as well. The implementation details included in this chapter facilitate the DAL
code-generation phase and run-time/dynamic behavior of applications. It also includes the visitor
specific constrains encountered during implementation phase.

The experimental setup created to test the DAL requirements is illustrated in Chapter 6 along
with results. The chapter begins by describing simple application scenario and then proceeds to

∗The time frame mentioned here refer to the time since the beginning of this thesis work.
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complex scenarios with higher number of application tasks. The chapter concludes with some
performance statistics gathered during the experimentation phase.

The report ends with a chapter 7 on conclusion of work done and possible future works to extend
or reuse the implementation details.
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2
Framework

2.1 Overview

This chapter deals with the details of underlying models or frameworks used for the development
of the dynamic multiple application model for a MPSoC platform.

2.2 Distributed Operation Layer

The Distributed Operation Layer (DOL) is a design flow for model-driven development [30]
of multiprocessor streaming applications and has been developed at the Computer Engineering
Group at ETH Zürich. This platform is developed in the context of a European Framework
Programme 6 research project called Scalable Software/Hardware Architecture Platform for Em-
bedded Systems (SHAPES) [31].

2.2.1 SHAPES

The Shapes project dealt with the hardware-software co-design of a tiled multiprocessor. Ex-
ploiting the raw performance of the SHAPES multiprocessor architecture without resorting to
time-consuming device-level programming was the main challenge from a software perspective.
The proposed heterogeneous tiles consist of various cores, for instance a RISC processor, a very
long instruction word (VLIW) DSP, a distributed network processor and on-tile memories and
peripherals [31]. In addition to performance, scalability was also one of the most important as-
pect of SHAPES project. In other words, an application should be portable on different SHAPES
hardware architecture (with minor tweaks); it should be possible to map an application onto a
given architecture with varying number of tiles. Table 2.1 shows the SHAPES target for the
range of scalability [32].

The tiled architecture approach is advantageous in terms of performance and efficiency, however it
is difficult for an application to fully utilize its capabilities. For instance, there may be long delays
between tiles due to spacial location, overloaded communication resources or the application
design due to lower degree of parallelism. In all these cases, the architectural resources are
under-utilized. Therefore the system software should ensure that the applications are executed
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CHAPTER 2. FRAMEWORK

efficiently on the SHAPES hardware, with minimal application programmer effort. The two key
points taken into consideration for handling this requirement are mentioned below:

• As the architecture is intrinsically designed to be highly parallel, the application should
also exhibit highly parallel properties. The application programmer must be able to fully
expose the algorithm parallelism to the SHAPES platform. Hence, the conventional way
of designing an application cannot be adopted. The information about the algorithmic
structure must be preserved by the SHAPES system software even if the application is
explicitly written to exposes the parallelism.

• The system software must be fully aware of important architectural parameters and resource
constraints like bandwidth, computing capabilities and latencies [32].

Table 2.1: SHAPES Target Architecture and Range of Scalability.

Number of Tiles Scope of application
<10 tiles low-end for mass market applications
<200 tiles classic digital signal processing systems

(e.g. radar, medical equipment)
>200 tiles high-end systems requiring massive

numerical computation

2.2.2 SHAPES DOL

The Distributed Operation Layer is a part of the SHAPES system software environment. This
middle-ware is designed to assist the application programmer using the SHAPES platform to find
an efficient mapping of the application onto the underlying hardware. This includes mapping of
application tasks onto computation resources, as well as the mapping of communication links
onto communication resources. To ensure efficient utilization of the parallel hardware resources,
the application programmer should follow a set of rules and use a predefined set of interfaces
and a strict programming model. In accordance to the DOL programming model, Section 2.2.3,
an application may consist of several processes/tasks interconnected with FIFO channels; built
as a process network. There is no existence of shared memory between processes/tasks, hence
inter-process/task communication is done using FIFO channels.

For instance, consider a specific algorithm implementation on the SHAPES platform. The applic-
ation programmer first creates an algorithm to extract the task-level parallelism using the pro-
cesses P1 . . .Pn , and the network N describing inter-process/task connectivity. The programmer
explicitly exposes parallelism to the DOL. The exposed parallelism is used for obtaining optimal
mapping configuration/strategy. As the extraction of parallelism is done by the programmer, an
in-depth knowledge of the application domain is required.

The DOL Framework facilitates creation of run-time environment (termed as visitor in DOL
Framework) for process networks located on the same or on different processors. The following
run-time environments are supported for the different multiprocessors:

• Atmel Diopsis 940: For SHAPES, a custom multiprocessor Operating System was developed
for the Atmel Diopsis 940 called DNA-OS.

• MPARM: For the execution of real-time applications MPARM [33, 34] is used. It provides
support for the RTEMS [35] Operating System [36]. The RTEMS OS provides a full-
fledged preemptive scheduler and message queues. The application process networks are
implemented on top of it [37].
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• Cell Broadband Engine: A run-time environment for process networks is also supported
for Cell Broadband Engine architecture. For lower run-time overhead and memory usage,
the run-time environment is based on a lightweight protothread [38] implementation and
windowed FIFO implementation [39].

2.2.3 The Programming Model

The SHAPES programming model is similar to the Y-API programming interface [40], Figure
2.1, with an adoption of an extension of the Kahn Process Network model [5]. The Kahn
Process Network is a model for parallel computation, where a program consist of a number
of processes/tasks, connected by FIFO channels. Each process is a usual sequential program
extended with a communication interface consisting of two functions: the wait(U) function,
which performs a blocking read access to the specific channel U , and the send I onW statement,
which writes the variable I to the channel W. While the wait function blocks the process until
enough data is available on the channel, nothing can prevent a process from sending data over
a channel. The processes therefore communicate via infinitely large FIFO queues. The Kahn
Process Network has two important properties, namely:

• The processes/tasks of a KPN are monotonic. In other words, only partial information
about the input is needed to compute a partial output i.e. the future input is relevant only
for future output. This is an important property as it allows parallelism - a process/task
can start computing before all of its input values have arrived [5].

• The Kahn Process Network is determinate. This means that the same input history always
produces exactly the same output, independent of the scheduling.

Performance Analysis

Analysis Model and Implementation

Mapping Specification

(XML)

Process Network 

Specification

(XML)

Architectural Specification

(XML)

Figure 2.1: Y-chart approach for designing multiprocessors and multiprocessor software for
SHAPES platform.
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The SHAPES/DOL API has a set of basic communication primitives namely, DOL_write() and
DOL_read(), but differs from the Kahn Process Network model in the following way:

• As infinitely large FIFO channels are not realizable, every channel is instantiated with a
maximum buffer size. This causes the DOL_write() function to stall the calling process/task
if the FIFO queue is full.

• The Kahn Process Network model does not permit to test if the channel U is empty, before
invoking wait(U) as it can be restrictive in some cases and may cause inefficiency. To avoid
this, the SHAPES/DOL API provides two additional functions allowing a read/write test,
namely DOL_rtest() and DOL_wtest().

• To terminate the simulation gracefully, the function DOL_detach() permits the process/task
to remove itself from the pool of active processes. The simulation ends as soon as all
processes are detached (no active processes/tasks).

The inter-process/task communication is facilitated using a list of communication primitives,
Table 2.2. Before invoking a blocking read function, a call to the read testing function can be
used to check whether the preceding process/task has produced the required amount of data.
This allows the process/task with more than one input port to select a port to read at run-time.
However, the application programmer has to decide whether the testing functions are actually
required by processes/tasks. Avoiding the two testing functions would result in a predetermined
order of port accesses, hence facilitating a simple process structure and reduction in commu-
nication overhead. This would also conform to Kahn Process Network properties mentioned
above.

Table 2.2: The DOL Communication Interfaces.

Communication Interface
DOL_read(port, buffer, length, process)
Reads length bytes from port and stores the obtained data in buffer.
If less than length bytes are available, the calling process is blocked.
DOL_write(port, buffer, length, process)
Writes length bytes from buffer to port.
If the FIFO connected to port has less than length bytes of free space,
the calling process is blocked.
DOL_rtest(port, length, process)
Checks whether length bytes can be read from port.
DOL_wtest(port, length, process)
Checks whether length bytes can be written to port.
DOL_detach(process)
Detaches the process and prevents the scheduler from
firing the process again.

2.3 SystemC and SystemC Distributed

2.3.1 SystemC

The SystemC [41] is a system design language that has evolved in response to a pervasive need
for a language that improves overall productivity of electronic system designers. SystemC offers
higher productivity gains by letting engineers design both the hardware and software components
together, as these components would exist on the final system, but at a high level of abstraction.
This higher level of abstraction exposes the intricacies and interactions of the entire system.
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Thus it enables a better system design trade-offs, better and earlier verification, and over all
productivity gains through reuse of early system models as executable specifications (Figure 2.2).
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Figure 2.2: Comparison of SystemC with respect to other languages [42].

As the primary goals of SystemC is to enable system level modeling i.e. modeling of systems
above the RTL level of abstraction, including systems implemented in software or hardware or
a combination of the two. One of the challenges in providing a system level design language is
that there is a wide range of design models of computation, design abstraction levels, and design
methodologies used in system design. To address these challenges in SystemC, a small modeling
foundation has been added to the language. On top of this language foundation, more specific
models of computation, design libraries, modeling guidelines, and design methodologies can be
added as per system design requirements.

Strictly speaking, SystemC is not a language, but a class library defined on top of a well estab-
lished language, C++. The SystemC is coupled with the SystemC Verification Library to provide
many of the characteristics relevant to system design and modeling tasks in a single language that
are missing or scattered among the other languages. Additionally, SystemC provides a common
language for software and hardware.

The SystemC enables design and verification of systems on different levels of abstraction, thereby
supporting development of complex systems. The components can be defined based on specific-
ation and the inter-component interaction can be analyzed in an early design phase independent
of the target system.

The full SystemC Library specification can be obtained in IEEE Standard 1666 [44]. The SystemC
library implementation is provided by the Open SystemC Initiative (OSCI) [45]. The main com-
ponents in SystemC used for modeling a system are processes and channels. A process describes
functionality and allows parallel computation. processes are executed without interruption until
it yields the control to the simulation kernel by returning or waiting for an event. This can
be termed as co-operative or non-preemptive multitasking. The OSCI SystemC is designed to
execute only one process at any time even if the hardware supports execution of concurrent pro-
cesses; resulting in under-utilization of computational resources on modern computing systems.
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Figure 2.3: The SystemC Scheduler [43].

The channels connect two processes and allow exchange of data (Primitive SystemC channels do
not encapsulate any processes. Hierarchical channels can be composed of processes and primitive
channels and can therefore be more complex). Additionally, SystemC library provides a rich set
of predefined channels and custom channels can be defined on top of them or from primitive
types.

The SystemC simulation is based on events (sc_event). The execution of processes depend on
the occurrence of events it is sensitive to. The SystemC Kernel maintains a set different event
queues and a set of runnable processes. The Figure 2.3 shows the scheduling behavior of the
SystemC simulation.

Using the programming model for SHAPES DOL as in Figure 2.1, the functional simulation using
SystemC primitives requires the following steps, resulting in the structure shown in Figure 2.4:

• Parse the XML file to determine the topology of the process network.

• Create the directory structure for proper code organization.

• Create a main file for bootstrapping the process network:

– Create a SC_THREAD that initialized all the actor/task init().

– For each actor/task, create a SC_THREAD that repeatedly calls the fire() routine
depending upon the value of the _detach flag.

– Instantiate FIFO channels and bind each port in actor/task to its corresponding FIFO
channels (based in SystemC primitive interface).

• Create a Makefile to facilitate the build process of the functional simulation.

• Execute the binary.
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actor1_wrapper.cpp

sc_thread()
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`
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fire()

actor2_wrapper.cpp

sc_thread()

sc_port
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Figure 2.4: Structure of the functional simulation of a process network in DOL based on the
SystemC library (uni-processor model).

2.3.2 SystemC Distributed

The SystemC has been designed for single host simulation only. The library does not provide a
means to distribute the SystemC simulations. The SystemC Distribution (SCD) [46, 43] library is
one of the novel techniques of supporting the geographical distribution of SystemC simulations.
It is based on OSCI SystemC 2.2.0 [45]. An arbitrary number of Linux systems (predefined)
connected by a network can be used to share the simulation workload. This arrangement can
be termed as geographical distribution of SystemC simulations. This is particularly important
as modern computation systems contain either multiple CPU cores or a distributed computation
environment. This library is designed using the standard SystemC kernel. This technique is well
suited for distributed functional and approximated-timed Transaction Level Modeling (TLM)
simulations.

The idea of SCD is the execution of the simulation kernels in term of delta cycle. This can be
modeled by calling sc_start(SC_ZERO_TIME) repeatedly. After every delta cycle, the simula-
tion jumps back to the main function, i.e. sc_main(), where communication and synchronization
take place. The communication across distributed simulations is setups using standard TCP-IP
connection. A basic synchronization model is adopted to manage and control the simulation
activity at a global scope, for instance, advancing the simulation time or terminating the simula-
tion. The communication model is designed to be synchronization independent. This ensures that
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the simulation can be continued independently and in a non-blocking fashion even if no data has
arrived or if the remote simulator is unable to accept data. In other words, the communication
model and the synchronization model are completely independent from the SystemC simulation.
The simulation proceeds only when control jumps to sc_start(timeval) and it is independent of
the existence of events. The progress of the simulation is controlled by obtaining the pending
event for current delta cycle and future time value for the simulation context.

During a distributed simulation, a simulator might be paused or reactivated based on the data
availability from a remote simulator. This model is built using a Control State Machine with
simulation states as mentioned below:

• busy - The simulator has events at the current simulation time and is simulating.

• idle - The simulator currently has no events and it is waiting for the simulation time to
advance.

• done - The simulator has no events at all and is waiting for the simulation to be terminated.

master

slave 1wrapper 1

slave 2wrapper 2

slave nwrapper n

Figure 2.5: Local State of connected Slaves stored in Master in the SystemC Distributed Library
[43].

To manage the coherence in global simulation state, a Master-Slave approach is adopted. A
Master simulator is connected to all the Slave simulator in the simulation environment. Each
Slave simulator informs the Master about its local simulation state. The Master collects these
information and advances the simulation time or terminates the simulation depending upon the
global simulation state, Figure 2.6 and Figure 2.7. As the communication in the distributed
simulation environment is built on top of TCP-IP connection using POSIX Sockets [47, 48],
the time taken for data transfer across the simulation core is jittered and much higher than local
shared memory based communication as native SystemC. This can lead to inaccurate perspective
of the Slaves local state with respect to Master at run-time. Thus, this centralized simulation is
governed by the State Machines and Master maintains a local copy of the Slave state as shown
in Figure 2.5.

The Figure 2.6 and Figure 2.7 show the Master and Slave Control State Machines using state
charts, respectively. TheMaster and Slave controllers in the SCD library behave in a similar fash-
ion with an exception that the Slave simulator always informs the Master about state transitions
and its local state. Some of the main states are briefly explained below:

• init : All controllers start in the init state.

• idle : The local state makes a transition to idle state when there are no event in the current
event queue but is expected to receive an event in future.
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Figure 2.6: State Chart for Master in the SystemC Distributed Library [46].
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Figure 2.7: State Chart for Slaves in the SystemC Distributed Library [46].
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• busy : The local state becomes busy, once the connection between a Slave and the Master
controller is established; the TCP-IP connection using socket return true for accept() phase.
The Master Simulator waits for all the connection to be in established phase before making
a transition to busy state.

• time: Transition to time is triggered if none of the Slaves are in busy state. If all Slaves
acknowledge the time request, the Master determines the time of the next event. It sends a
message to all the Slaves to inform them about the advancement in the simulation time. All
simulators are moved to the time state. As soon as the simulation time has been advanced
as per the Master message, the local state of the Slaves are changes to busy.

• fail : In case of error during simulation, the respective Slave changes its local state to fail
state. In case of error in the Master simulation, the Master sends a fail message to all
Slaves and changes its local state to fail.

• failed : Once the Slave sends the fail message to the Master, it moves to failed state.
Whereas the Master moves to failed state once it has sent fail message to all the connected
Slaves.

• terminated : A simulator make a transition to terminated state and simulation terminates,
if its control state machine leaves the active super state in case of error/failure or fail or
term_recv message. As soon as all Slave and the Master are in done state, the Master will
send a termination request, ( term_req) to all Slaves. In case either of the connected Slaves
respond with non-acknowledgement, term_nack, all Slaves will be messaged to abort of the
termination process (Figure 2.8). On the contrary, if all the connected Slaves acknowledge
the term_req sent by Master, the Master terminates.

master slave1 slave2

busy

done

data
done

term_req
term_req

term_ack
term_nack

term_nack
busy

short delay

Figure 2.8: SystemC Distributed Library termination request handling.

Using the programming model for SHAPES DOL as in Figure 2.1, the functional simulation
using SystemC Distributed Library requires the following steps, resulting in the structure shown
in Figure 2.9:

• Parse the XML file to determine the topology of the process network.

• Parse the Architecture XML file to determine the Architecture specification of the under-
lying hardware (System IP address and port number).
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Figure 2.9: Structure of the functional simulation of a Process Network in DOL based on the
SystemC Distributed Library for one binary (distributed computational model).

• Parse the Mapping XML file to determine the actor/task mapping information.

• Create the directory structure for proper code organization.

• Create a main file for bootstrapping the process network per processor (derived from Ar-
chitectural specification):

– Create a SC_THREAD that initializes all the actor/task init().

– For each actor/task, create a SC_THREAD that repeatedly calls the fire() routine
depending upon the state of the detach flag.

– Instantiate FIFO channels (both local and remote) and bind each port in actor/task
to its corresponding FIFO channels (based in SystemC primitive interface and SCD
Library).

• Create a Makefile to facilitate the build process of the functional simulation for all the
SystemC Applications.
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• Distribute the binaries based on IP Address and execute the binaries in parallel.

Please refer to Appendex A.1 for more information.

2.4 Distributed Application Layer

The Distributed Application Layer (DAL) is a middle-ware design for model-driven development
[30] of multiprocessor streaming applications on tiled architecture and a stacked architecture.
It is being developed at the Computer Engineering Group at ETH Zürich in the context of a
European Framework Programme 7 Research Project called EURETILE [29].

2.4.1 EURETILE

The EUropean REference TILed architecture Experiment (EURETILE) project aims at invest-
igating and implementing a brain-inspired model with a system architecture of massively parallel
tiled computer architectures and the corresponding programming paradigm. The target archi-
tecture is a fault-tolerant many-tile hardware platform, equipped with a many-tile simulator. A
set of software processes (hardware mapped) are generated by the holistic software/middleware
tool-chain using a combination of analytic and bio-inspired methods. An elementary tile is a
multi-processor, which includes a Distributed Network Processor (for inter-tile communication),
a floating-point VLIW processor (for numerical intensive computations), and a RISC processor
(for control, user interface and sequential computations). The EURETILE project also invest-
igates and implements the innovations for equipping the existing elementary hardware tile with
high-bandwidth, low-latency brain-like inter-tile communication.

2.4.2 EURETILE DAL

The Distributed Application Layer is a middle-ware like the existing SHAPES DOL Middle-
ware with additional features. The goal of the thesis is extend the DOL middleware with DAL
middle-ware requirements like:

• Many co-executing and co-existing applications.

• Run-time control of application execution based in system or user-defined events.

• Fault tolerant system.

2.4.3 The Programming Model

The DAL programming model is derived from the Y-API programming interface [40], (can also
be termed as Ψ-API programming interface) Figure 2.10, with an extension of the Kahn Process
Network at heart for computational model [5], similar to SHAPES programming model Section
2.2.3. The inter-process/task communication primitives remains the same as SHAPES/DOL
middle-ware, Table 2.2. A major extension lies in the mapping specification. In DAL middle-
ware, the mapping file is computed using the specifications mentioned below:

• Process Network Specification.

• Finite State Machine Specification.

• Architectural Specification.

Refer to Chapter 3, Chapter 4 and Chapter 5 for more details information on DAL middle-ware
and for visitor specific implementation.
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Figure 2.10: Ψ-chart (Modified Y-chart) approach for designing multiprocessors and multipro-
cessor software for EURETILE platform.
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3
Dynamic Systems

3.1 Overview

This chapter contains the key concept involved in the creation and designing the DAL middle-
ware for EURETILE architecture and generic applications structure pertaining to it. The section
in this chapter describe the concept of dynamic system. This includes the specification of multiple
DAL applications, a controller mechanism for managing dynamic behavior of co-executing applic-
ations. This chapter also describes the task remapping/migration feature of DAL middle-ware.

3.2 Problem Definition

The problem definition are listed below:

• Specification of multiple applications.

• Run-time control specification for multiple applications.

• Task migration or remapping based on current FSM state of the system.

3.3 Multiple Applications

As described in previous Section, the main goal of this work to define a model that implements a
real world scenario of applications. In other words, at any given time frame any given application
can be spawned, killed, paused or restarted based on a given user or system event. This is one
of the key ideas behind the creation of DOL/DAL middleware for EURETILE [29]. As the
time frame specifying the liveliness of an application is not known at the compile time, a low-cost
low-overhead control based mechanism has to be devised to handle the application control trigger.

This section deals with the specification of multiple applications. As a given application is
composed of multiple processes, each individual process pertaining to a given application is
uniquely identified by an application prefix (Figure 3.1). The same constraint is applicable to the
software channels, connection labels and input-output ports. A brief illustration of this is shown
in Appendix A.2.
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Figure 3.1: Pictorial view of Multiple KPN Applications with FSM (without Start and Finish
State) describing Application behavior.

As per DOL software-flow, Figure 3.3, post-parsing the processNetwork.xml file, a database con-
taining all application information is created and respectively populated with parsed information.
As the input to this design flow is governed by the input processNetwork.xml, the user in DAL
middle-ware needs to aggregate all the selected application specification into a single processNet-
work.xml file. The Figure 3.4 shows the software flow followed in DAL middle-ware with an extra
step to parse the FSM.xml file. The Lisiting A.2.1 shows a simple example of two application
specifications in a single processNetwork.xml file. The applications shown are two simple model
of producer-actor-consumer. Each task is uniquely identified, Appendix A.3.

Consider for instance, a DAL user has to design a system with N number of applications. The
process network for the entire set-up can be defined using Equation 3.1. The term PNu signifies
the user-defined processNetwork.xml.

PNu =

N∑
i=1

PNi (3.1)

An application instance can be defined using the element PNi. The element PNi can be defined
as a tuple of tasks, connections and channels as seen in Equation 3.2.
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PN1.xml PN2.xml PN3.xml

PN.xml

Figure 3.2: Pictorial view of Multiple PN Applications Merged to Single processNetwork.xml.

PNi = [Ti, Coni, Chi],∀i ∈ N (3.2)

Ti = {T ji : ∀i ∈ N ,∀j ∈ αi} (3.3)

Coni = {Conji : ∀i ∈ N ,∀j ∈ βi} (3.4)

Chi = {Chji : ∀i ∈ N ,∀j ∈ γi} (3.5)

The set of tasks Ti described by the user-defined application PNi can be described using the
Equation 3.3. Each task T ji is identified using a task_id, a set of input-output port and the user
generated file containing the specific functions or routines, source_code (in processNetwork.xml
a task is termed as a process). The element Coni is an aggregation of connections definition
between a channel and a task, Equation 3.4. The third element Chi of the tuple PNi as defined
in Equation 3.5 is a collection of channel informations. The term αi defines the number of tasks,
βi is the number of connections and γi is the number of software channels defined for a given
instance of application PNi. Each connection Conji and channel Chji is defined as a Vector
quantity. Each of these elements are defined based the direction of data flow (hence defined using
an origin and a target). All these informations are derived after parsing the processNetwork.xml
supplied by DAL user. The user defining the file processNetwork.xml should uniquely identify
each application set using an App_Prefix and the each element in the superset of Ti, Coni
and Chi should be uniquely identifiable (refer to Appendix A.3 for nomenclature and naming
conventions).
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Figure 3.3: DOL data parsing and processing design flow.

3.4 Application Control

As mentioned in this Chapter, the current system should be redesigned to accommodate a sub-
stantial number of applications (as opposed to single application on SHAPES DOL platform), a
control logic is required to manage the applications PNi and its respective tasks sets Ti(Equation
3.3). As shown in Figure 3.6, a layer approach is adopted to realize the requirement specification.

The run-time behavior of the DAL applications in general can be termed as behavioral dynamics.
This idea can be further explained using the following properties:

• Dynamic Control Specification: The DAL user defines and specifies the applications dy-
namics in the form of a Finite State Machine (FSM).

• Dynamic Application Controller: The layer of DAL middle-ware manages the application
based on the Dynamic Control Specification.

3.4.1 Dynamic Control Specification

The application selection for EURETILE platform is decided by the platform user. Along with
the processNetwork.xml file and the corresponding source code files for all individual tasks, the
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user also specifies a FSM describing the run-time behavior of the applications as a FSM.xml. The
Figure 3.7 describes a generic FSM that can be provided by the EURETILE/DAL user.

FSM = [S0, Sfinal, State,→, Act] (3.6)

In general, any given FSM can be described using the tuple in Equation 3.6. The element S0

denotes the start state of the system. Sfinal defines a collection of final or termination states of
the system. All the state describing the liveliness of applications including the S0 and Sfinal is
an element of State set, Equation 3.7. The→ defines the list of transition and Act is a collection
of action.

State = {Statel : l ∈ NState,∀{S0, Sfinal} ∈ State} (3.7)

Statel = [StateIdl, T ransitionl] (3.8)

The system transition from one state to another is triggered by an event or a collection of events.
Hence each state is contains a list of transitions, namely Tranistionl and a unique state identifier,
State_Idl (Equation 3.8).
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Figure 3.4: DAL data parsing and processing design flow.
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Start

State1 State2

State3

Finish

Figure 3.5: A sample FSM for DAL Applications.

Transitionl ={[Event_Idl, P rl, Actionml ]

: Actionml = [App_Prefixml , DAL_Action
m
l ]

: ∀m ∈ {NAction
Transitionl

}}
(3.9)

Table 3.1: Event Description (Figure 3.1)

Event Description
Ev1 Active Internet Connection
Ev2 Activate Music Player
Ev3 Activate Application A1
Ev4 Activate System Maintenance
Ev5 Activate Video
Ev6 Activate 3D acceleration

A given transition Transitionl can be defined by using a tuple of elements namely, an event
identifier Event_Idl or a list of event for trigger , a static priority value Prl for ordering the
Tranistionl in a given Statel, and a list of action Actionml to be taken for successful transition
(Table 3.1 and Table 3.2). The generic element Actionml has been specifically defined to adapt to
DAL requirements. An action definition consist of an application identifier called as App_Prefix
and application activity mode called as DAL_Action. The DAL_Action can be either of the
following activity modes:

• START: An application is initialized and started (application is activated, local data (task-
specific) initialized).
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Figure 3.6: Control Plane and Date plane bifurcation of DAL middle-ware.

Table 3.2: Transition-Event Relationship with Actions (Figure 3.1)

Transition Event Action
Tr1 Ev1 ‖ Ev3 START Internet Connection,

START A1
Tr2 Ev2 START Music Player, PAUSE A1,

PAUSE Internet Connection
Tr3 Ev1 ‖ Ev3 ‖ Ev2 RESUME Internet Connection,

RESUME A1
Tr4 Ev4 START System Maintenance,

STOP Internet Connection,
STOP A1, STOP Music Player

Tr5 Ev5 ‖ Ev2 START Video, START Music Player
Tr6 Ev6 ‖ Ev5 ‖ Ev2 STOP Video, STOP Music Player

START 3D acceleration, START Video,
START Music Player
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Figure 3.7: FSM for two DAL application with Process Network specification and State-based
Application liveliness.

• STOP: An application has finished its tasks and stopped (application is deactivated, local
data (task-specific) is cleared).

• PAUSE: An application has paused but is still active (application (task-specific) local data
is maintained/preserved).

• RESUME: An application has resumed from the pause phase (application (task-specific)
executes with preserved local data).

3.4.2 Dynamic Application Controller

A Control-Plane in Figure 3.6 inputs the Finite State Machine (Section 3.4.1) and implements
the dynamic behavior. The Control Mechanism can be implemented in following ways:

• Centralized Control: The Centralized Control paradigm is based on the creation of a intelli-
gent master controller on theMasterprocessor and a non-intelligent slave controller running
on Slaveprocessor. The role of the master controller is to manage every dynamic decision
of the system, namely, detect dynamisms, initiate task migration or fail-over-takeover de-
cision according to the FSM status and processor (µP) status, and dispatch requests to the
respective slave controllers. The main advantage of the Centralized Control approach is
ease of implementation. The master controller maintains a system-level database required
for dynamic control. It processes Ev from EventList based on the global system state and
builds the control message and transmits to respective Slaveprocessor. The slave controller
receives the control message and calls DAL_Action for the listed tasks in the control mes-
sage. This enable a simple logic at the slave controller level of the control hierarchy. On
the downside, the master controller is the root of all control decision and depending on size
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and complexity of input specification (process network, FSM, Architecture and mapping),
the algorithmic complexity (with respect to space and time) of dynamism-handling routine
increase considerably.

• Distributed Control: The Distributed Control approach is built on the hypothesis that each
processor in the system is autonomous and shares global system-level management inform-
ation. There is still a existence of non-intelligent master controller with an intelligent slave
controller. The master controller collects system-wide events and broadcasts events and
control messages (send from a slave controller) to all the slave controllers. Each slave con-
troller manage and maintains dynamism related decision data and control at local processor
level. The slave controllers need to synchronize the dynamism-related database amongst
themselves to seamlessly handle the events and take a coherent control decisions like task
migration or fail-over-takeover decision according to the FSM status and processor status.
The main advantage of this model is that all the slave controllers exhibits similar behavior,
hence advantageous at code-generation level. It also ensures ease of management when the
architecture scales to higher degree. On the contrary, there are several disadvantages to
this policy. The bus connectivity would be a major bottle-neck due to broadcast messages
from master controller and synchronization of databases across slave controllers for data
coherence.

• Hybrid Control: The proper design of trade-off adaption from both Centralized and Dis-
tributed Control approach can lead to Hybrid Control system. This paradigm relies on the
brain-inspired hierarchical control, namely clusters of processors Figure 3.8. The Hybrid
Control uses the concept of Centralized Control at the First Level of hierarchy i.e. at inter-
cluster control and the Distributed Control within a cluster i.e. for intra-cluster control.
This Control model has most of the advantages of both the both the Centralized and
Distributed Control with relatively minor drawbacks.

Master

Slave_0 Slave_2

Slave_1

Slave Controller (Cluster)

Master Controller

Inter-Cluster Control

Intra-Cluster Control

Cluster Boundry

Figure 3.8: Control Hierarchy for Cluster MPSoC.

The adaption of either Centralized or Hybrid Control would be justifiable in DAL context. If
the architecture scale to higher magnitude (Table 2.1), it would be logical to migrate to Hybrid
Control instead of Centralized control for faster system response time and ease of management.

In either of the Centralized or Hybrid Control model implementation, the master controller and
the slave controllers have to be implemented as execution threads or as processes. Hence a
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CtrlprocessNetwok.xml has to be defined depending on the architecture of the system (Appendix
A.2). Mathematically, the controller process network can be defined as Equation 3.10, where
Ctrl_PNMaster describes themaster controller process network, a generic slave controller process
network is described as Ctrl_PNSlave

j and J is the number of Slaveprocessor.

PNctrl =

J∑
j=1

Ctrl_PNSlave
j + Ctrl_PNMaster (3.10)

Ctrl_PNMaster = [Ctrl_TMaster, Ctrl_ConMaster, Ctrl_ChMaster] (3.11)

Ctrl_PNSlave
j =[Ctrl_TSlavej , Ctrl_ConSlavej , Ctrl_ChSlavej ]

∀j ∈ J
(3.12)

Ev_Idλ ∈ EventList,∀λ ∈ NEventList (3.13)

T S ={[Ev_Idα, SCβ , SNβ , S0, Sfinal]

: ∀{SCβ , SNβ , S0, Sfinal} ∈ State,
∀Ev_Idα ∈ EventList,∀α ∈ NEvent_Id,
∀β ∈ NState}

(3.14)

The event identifier Ev_Idλ triggering the state-transition from one State to another is managed
by the master controller task in either Centralized or Hybrid Control Model. The current list of
event identifier is maintained in the EventList, Equation 3.13. The Transition System T S is the
methodology followed by the master controller or/and slave controller for making a successful
state-transition. The T S is defined in Equation 3.14 with elements as event identifier Ev_Idα,
current state and next state of the system (SCβ , S

N
β ) and the start state and finish state of the

system (S0, Sfinal).

3.5 Task Remapping/Migration

The Figure 3.10 depicts the run-time behavioral dynamisms of the DAL application using the
user-defined FSM. Using statistical performance analysis methods and DSE a series of FSM
state-dependent optimal mapping strategies can be proposed. In other words, for efficient re-
source utilization within constraints and system bounds, each intermediate Stateα of the FSM
(∀Stateα /∈ {S0, Sfinal}) can be described with a distinct mapping strategy. Consider the beha-
vioral dynamics of the system in-terms of liveliness of applications based in controller messages,
Figure 3.9.

Each application liveliness node can be uniquely described by a set of states with an optimal
mapping strategies/solutions that can vary from one FSM state to another or from one operation
mode to another (Figure 3.9 one optimal mapping strategy).

Consider for instance, a static optimal mapping for an application. It can be described as uniform
distribution based on number of tasks on given processors (here consider J = 3; in general
K � N ), Table 3.3. This application task distribution requires existence of some selected tasks
(consider K task have multiple existence) on more than more processorβ (∀β ∈ J ). As each
application task should be uniquely identifiable (Appendix A.3), the replication of tasks has to
be addressed with a different task identifier T k, also termed as migrated task ; this feature is
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Figure 3.9: Behavioral Dynamics for Single Application distributed over two Processors.

Table 3.3: Application Task Mapping Strategies (J = 3/K = 12).

Mapping Strategies Task Distribution
Optimal [4, 4, 4]
Stateα [3, 3, 6]

Temperature Aware [7, 1, 4]
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Figure 3.10: Finite State Machine for Applications (N = 2) and State specific Optimal Mapping.

called as task migration/remapping. Similar methodology is adopted for defining the migrated
connections, Conk and the migrated channels, Chk (∀k ∈ K).

Traditionally, static mapping for a single application (DOL scope), mapping optimization was
based on objectives like timing-behavior, hardware cost, bandwidth, or load balancing. But in
dynamic system of DAL, the reconfiguration/migration cost is described in terms of migration
time and migrated resource utilization has to be considered. These decisions can be computed
both statically, using performance analysis and DSE, and dynamically at run-time, based on
current system utilization. An ideal methodology would be to compute this configuration static-
ally, since the number of applications N is statically known along with its liveliness information
for any given system State. On the upside, the statically computed task migration happens
in a seamless manner without any run-time system analysis overhead as against run-time task
migration decision making. On the downside, run-time task migration reconfiguration decision is
not possible in the statics approach.

T = {Ti ∪ T k : ∀i ∈ N ,∀k ∈ αK} (3.15)

Con = {Coni ∪ Conk : ∀i ∈ N ,∀k ∈ βK} (3.16)

Ch = {Chi ∪ Chk : ∀i ∈ N ,∀k ∈ γK} (3.17)

In nutshell, the elements Tk, Conk and Chk describe the set of migrated tasks, migrated con-
nections and migrated channel respectively derived from it original user-defined specifications
(∀k ∈ αK, βK and γK respectively). The aggregate collection of application tasks with State-
based task migration, T , can be described as a super set of original tasks Ti and migrated tasks
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T k; using Equation 3.15. In a similar manner, the entire collection of application connections,
Con, is a super set of original connections Coni and migrated connection Conk ; using Equation
3.16 and the Software channels, Ch is a super set of original channels Chi and migrated channel
Chk; using Equation 3.16.

3.6 Implementation

This section deals with the implementation aspect of building up the the DAL database with
correct information for visitor based code generation.

3.6.1 Multiple Applications

Multiple applications are defined in an application scenario. Each application is defined as per
the nomenclature A.3. A preprocessing module can be created to generate the file to suit this
nomenclature. In the current implementation, the generation of a process network file (in xml
format) is constructed by hand.

3.6.2 Finite State Machine

The DAL middle-ware is built on top of DOL framwork, hence the requirement for application
control based on FSM needs to be integrated to the model. A new simple FSM schema (fsm.xsd)
is designed for reading and processing the dynamic application behavior model.

Algorithm 3.1 FSM.xml File Parsing.
Require: SAX Parser Library; Stack Library
Ensure: fsm_path 6= NULL and fsm_path is valid
Create Stack element _stack
Create XML Parsing element _xml2fsm
Clear _stack
Parse (fsm_path) and Process Entities
_fsm← Pop (_stack)

A parse is required for parsing the XML file and store the FSM entity (Figure 3.11) into the
DAL database . The Algorithm 3.1 describes in detail the mode of parsing and storing the
information into the DAL database. The parsing is build on SAX parser [49] and JDOM [50]
libraries provided for Java Development Environment. (The FSM XML parsing algorithm was
adaption from model in [51, 52]).

The Algorithm 3.2 (for storing the details of root xml schema entity - FSM) and 3.3 (for parsing
the State information) is called whenever the parsing Algorithm 3.1 encounters an element FSM
and State in the FSM.xml. The Algorithm 3.3 creates a new data structure for element State
and updates the respective data elements. Once the XML parser encounters the end tag of
the element State, it pops the content to stack and the added State data structure to the FSM
StateList. Similar approach is followed for parsing and storing the entries of other FSM related
elements namely Transition and Action.

3.6.3 Mapping Modifications

As discussed in above section, a given application task can be mapped to multiple processors. This
is referred to as migrated tasks. To support this feature, the existing DOL mapping schema has to
be modified. The binding information containing the processName/taskName and processorName
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Figure 3.11: DAL entity relationship model.
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has to be coupled with active FSM state or a list of active FSM states (ComputationalBinding
entity in Figure 3.11). For a DAL application, it is mandatory to specify the content of the
sub-entity State in binding element. In case of controller tasks, the above constraint is not valid.
Refer to Listing 3.1 for a sample example with multiple Active FSM states for a given DAL
application - APP1. A software routine 3.4 is added it original Map Parser to collect the state
information and append to the binding instance of all ComputationalBinding entities.

1 <!-- APP1 -->
2 <binding name="APP1_generator" xsi:type="computation" state="

State1_State4_State6_State9_State10">
3 <process name="APP1_generator" />
4 <processor name="sim1" />
5 </binding >
6 <binding name="APP1_consumer" xsi:type="computation" state="

State1_State4_State6_State9_State10">
7 <process name="APP1_consumer" />
8 <processor name="sim2" />
9 </binding >

10 <binding name="APP1_square" xsi:type="computation" state="
State1_State4_State6_State9_State10">

11 <process name="APP1_square" />
12 <processor name="sim2" />
13 </binding >
14 </mapping >

Listing 3.1: Mapping information for Application Tasks with multiple Active States.

Algorithm 3.2 Process root FSM information.

procedure ProcessFSMInfo(attributes)
. Begin processing the FSM Tag

name← attribute.getV alue(name) . Extract FSM sub-entities
description← attribute.getV alue(description)
startstate← attribute.getV alue(startstate)
Create _fsm(name) . Store FSM sub-entities
fsm.Description← description
fsm.Startstates← startstate
Return _fsm . updated FSM data structure

end procedure

procedure ProcessFSMInfo(_stack)
. End processing the FSM tag

Pop (_stack)
end procedure

Algorithm 3.3 Process FSM State information
Ensure: attributes 6= NULL
procedure ProcessStateInfo(attributes)

. Start of State Tag
name← attribute.getV alue(name)
if name 6= NULL then

Create state(name)
end if

end procedure

procedure processStateInfo(_stack)
. End of State tag

state_tmp← Pop(_stack)
fsm← Peek(_stack)
Add state_tmp to fsm

end procedure
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Algorithm 3.4 Update State information for Binding Element

procedure UpdateStateInfo(attributes)
. Begin processing the state Tag

state_name← attribute.getV alue(state)
. Extract state sub-entity from mapping.xml

binding.state← state_name
. Store state sub-entity

end procedure

3.6.4 Support for Multiple Input/Output Channel Port interfacing in
SystemC

One of the design properties of SystemC standard [44] is the static nature of programming. The
SystemC application designer should know the connection information about the sc_module and
sc_interface at design time. Hence the ports defined in the sc_module and the ports defined in
the sc_interface has to be statically mapped.

This design constraint need to be taken into account while designing a source sc_module that
is connected to multiple destination (SIMO type) sc_module via different sc_interface, but at
any given time frame the data transmission is active on a single sc_interface only; controlled by
some signal. The Figure 3.12 shows the pictorial model of this behavior. This model is required
to support the two basic DAL requirements:

• Run-time FSM state-based optimal mapping modes using task migration.

• Run-time Fault Tolerance Support using Task Cloning 4.2.
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(b) Placement of Multiplexer and De-multiplexer.

Figure 3.12: Addition of Multiplexer and De-multiplexer.

A simple and scalable method is to attach software blocks called as multiplexers at the input port

— 34 —



3.6. IMPLEMENTATION

and de-multiplexers at the output port of the sc_module. The Listing 3.2 shows the structure of
multiplexer and a de-multiplexer.

1 struct _Mux_in_APP1_ <actor >
2 {
3 sc_port <read_if > MUX_INPORT_State1_State4;
4 sc_port <read_if > MUX_INPORT_State6_State10;
5 sc_port <write_if > MUX_OUTPORT;
6 char select_sig_mux [40];
7 };
8
9 struct _Demux_out_APP1_ <actor >

10 {
11 sc_port <read_if > DEMUX_INPORT;
12 sc_port <write_if > DEMUX_OUTPORT_State1_State4;
13 sc_port <write_if > DEMUX_OUTPORT_State6_State10;
14 char select_sig_demux [40];
15 };

Listing 3.2: Multiplexer and De-multiplexers of in and out ports for APP1_<actor>

Addition of multiplexer and de-multiplexer at port enables the use of multiple sc_port per
sc_module. This also ensures that the KPN blocks like the split tasks and the merge tasks
can be easily adapted to run-time DAL requirements. The limitation of this model is that all the
instance of a task/process have either a multiplexer or a de-multiplexer or both should behave in
a similar way. This clause should be considered during the performance analysis and DSE for a
given process network along with FSM and architecture.

Each instance of multiplexer and de-multiplexer has a select signal namely select_sig_mux and
select_sig_demux, that is used by the process/task at run-time to decide which port to be select
for DOL_read() or DOL_write(). At run-time the master controller sends relevant informa-
tion about the application-task-port specific Mux select or Demux select signal (for Centralized
Control/Hybrid Control model only). In this work, Centralized Control Model is adopted.

3.6.5 Database Update for Remapped/Migrated Processes

This section provides the details in terms of algorithmic approach adopted for updating the
DAL/DOL database for code generation process for a given visitor. The process of database
update is governed by the addition ofmigrated tasks. The information aboutmigrated task/process
is added to the DAL/DOL database in two stages.

• In the first phase, the binding information is obtained from the _map data structure. The
process.name information in the bindingList is searched for information like Migrate∗. In
Algorithm 3.5, the first procedure (ObtainNewTaskInfo()) is used for obtaining a list of
processName from the ComputationalBindingList. Whenever a processName satisfies the
previous condition (with keyword Migrate) and the processName matches closest to any
process.name in the processNetwork (original) (Figure 3.11), a new local copy (non-linked)
of the process instance (e.g. tmp_Process) is created and the name entity is modified with
processName.

tmp_Process.name← processName

The process instance tmp_Process is added to processNetwork.ProcessList if the entity
is not present in the list (using the UpdateGlobalProcessList() in Algorithm 3.5). For

∗The search methodology for finding the a sample_text as a substring in main_text is by parsing and com-
paring the main_text for sample_text. This process is used in the Algorithms (3.5, 3.7, etc) and the expression
used is:

sample_text 3 main_text

The functions present in C/C++ and Java library for similar functionality are strstr() and String.contains(sub-
string), respectively.
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Algorithm 3.5 Updating Computational Binding Information for Migrated task/process

procedure ObtainNewTaskInfo(_map)
. Obtain Task from the Computational Binding List

local_pList← _map.pn.processList . A local copy
local_cBindList← _map.compBindList
Create append_pList
i← 1
j ← 1
repeat

t_bPName← local_cBindList[i].Name
if (t_bPName 3 Migrate) then

repeat
_PName← local_pList[j].Name
if _PName 3 t_bPName then

if _PName 6= t_bPName then
Create new_p = local_pList[j]
new_p.Name = t_bPName
Append new_p to appened_pList

end if
end if
increment j

until j 6 TN . TN = local_pList.length
end if
increment i

until i 6 BN . BN = local_cBindList.length
end procedure

procedure UpdateGlobalProcessList(append_pList)
. Append Processes to Global List

_procList← _map.pn.processList . Local copy for Update
i← 1
repeat

t_Proc← append_pList[i]
if t_Proc /∈ _procList then

Append t_Proc to _procList
end if
increment i

until i 6 NL . NL = append_procList.length
_map.pn.processList← _procList . Updated

end procedure

efficiency, the addition of new elements to the ProcessList is done just once after all the
tmp_Process have been added to a vector of processes.

• In the second phase of process update, the structural elements like the port information is
updated. This update is done when the new connection and channel information are created
and added to the ConnectionList and ChannelList respectively. In the following Sections,
the procedural call to UpdateProcessContents() (Algorithm 3.6) is made whenever a new
connection is added to ConnectionList and ChannelList.
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Algorithm 3.6 Updating the elements in new Process instance
Require: A _processIns instance to be updated
procedure UpdateProcessContents(_processor, _portList)

. Update Process sub-entities
_processIns.Processor ← _processor
_processIns.portList← _portList

end procedure

Table 3.4: Migrate Connection and Channel Types (Example)

Type Origin Process Channel Target Process
(Origin Connection) (Target Connection)

1 A/A_Migrate C1_Migrate B_Migrate/B
(AC1_Migrate) (C1B_Migrate)

3.6.6 Database Update for Remapped/Migrated Connections

This section provides the algorithmic approach for creating and updating the DAL/DOL database
with additional migrated connections.

The interface information of the process port to a channel port is stored in data structure called
connection. The instances of connection is broadly classified as:

• Origin Connection: The origin resource is a process and target resource is a channel. Hence
at database level, the following information is stored:

– connection_ins.origin_resource.type← NULL

– connection_ins.target_resource.type← FIFO

• Target Connection: The origin resource is a channel and target resource is a process. The
following information stored is at the connection instance level in the database.

– connection_ins.origin_resource.type← FIFO

– connection_ins.target_resource.type← NULL

The Table 3.4, shows the sample connections to be created and appended to the Connection-
List in case of FSM state-based process/task migration. The Algorithm 3.7 is used to create a
list/vector of migrated connections required for connecting the migrated process port and migrated
channel port and vice-versa. A list/vector of unconnected processes is obtained from the DOL
function _checkProcessConnection(_map). This list is termed as new_ResourceList (the
process entity is inherited from resource entity). The contents of new_ResourceList containing
Migrate is serially compared (for existence of sub-string) to either origin or target resource
name (Process.name) of the existing connection instances in the ConnectionList to entries in
new_ResourceList. Upon success, a local copy (non-linked), l_con, of connection instance
(_conList[j] : ∃ j ∈ processNetwork.ConnectionList.length()) is created. The element modi-
fication and update at resource level is dependent on the connection type. The elements that
need to be updated include the origin and target resource (here either process or channel). If the
process is to be updated, the PeerResource of the appropriate port is also updated to l_con. If
the channel entity is to be updated, the origin process and target process are accordingly updated.
At channel-port level, the PeerResource pertaining to migrated connection (closest resemblance
in name entity) is updated to l_con. Post resource updates, the l_con is added to the vector of
new connections, append_conList. The procedural call UpdateGlobalConnectionList() (Algorithm
3.8)reads through the append_conList and updates the global ConnectionList
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Algorithm 3.7 Update Connection Information for Migrated tasks

procedure NewConnectionInfo(_map, new_ResourceList)
. Obtain new Connection information for Migrated Resources

_conList← _map.pn.connectionList . A local copy
_mResList← new_ResourceList
Create append_conList
i← 1
j ← 1
repeat

t_RName← _mResList[i].Name
repeat

org ← _conList[j].org.Name
trg ← _conList[j].trg.Name
if (org 3 t_RName) ‖ (trg 3 t_RName) then

l_con← _conList[j]
Update l_con
if trg ≡ FIFO then

Update <Process> l_con.org
Update <Channel> l_con.trg

else
Update <Channel> l_con.org
Update <Process> l_con.trg

end if
Append l_con to append_conList

end if
increment j

until j 6 ConN . ConN = _conList.length
increment i

until i 6 mResN . mResN = _mResList.length
end procedure

Algorithm 3.8 Add New Connections to ConnectionList

procedure UpdateGlobalConnectionList(append_conList)
. Append Connections to Global List

_conList← _map.pn.connectionList . Local copy for Update
i← 1
repeat

t_Con← append_conList[i]
if t_Con /∈ _conList then

Append t_Con to _conList
end if
increment i

until i 6 NC . NC = append_conList.length
_map.pn.connectionList← _conList

. Global ConnectionList Updated
end procedure

3.6.7 Database Update for Remapped/Migrated Channels

This section provides the algorithmic approach for creating and updating the DAL/DOL database
with additional migrated channels).

Addition of new tasks/processes require new channel connectivity either with the existing pro-
cesses or with new processes. In the this implementation, the addition of new channels to the
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Algorithm 3.9 Collect New Channel Elements (Table 3.4)

Require: append_chList
procedure NewChannelCreationFrom(_map,_channel,mode, type)

. Create a new Channel due to Migration Resources
Create new_channel :: new_channel ≡ _channel
chName← _channel.Name
if mode ≡ Migrate then

new_channel.Name← chName_Migrate
If required Update <Process> new_channel.Origin
If required Update <Process> new_channel.Target
Update new_channel.portList

end if
Append new_channel to append_chList

end procedure

procedure UpdateGlobalChannelList(append_chList)
. Append Channels to Global List

_chList← _map.pn.channelList . Local copy for Update
i← 1
repeat

t_Ch← append_chList[i]
if t_Ch /∈ _chList then

Append t_Ch to _chList
end if
increment i

until i 6 NF . NF = append_chList.length
_map.pn.channelList← _chList . Global ChannelList Updated

end procedure

ChannelList is performed during new connection creation and updates.

The Algorithm 3.9 describes the creation of new channel based in _map information and existing
_channel entity. The algorithm describing creation of new channels is governed by mode and
type. This is done for optimization. The input quantity mode is used to distinguish the creation of
channel for task migration. During task migration mode of channel creation, a copy of _channel
is created called a new_channel with the channel name as _channel.Name_Migrate. If the
destination process is migrated/remapped to some other processor/tile, the process information
of the target process is extracted from the ProcessList and added to the _channel.Target. The
same is valid for origin process as well. The input and output ports are updated with new
connection information. Once all the updates are done in the new_channel element, it is added
to the global ChannelList (procedure UpdateGlobalChannelList()).

Updates to either origin or target or both resources is performed based on the mode and
type of channel creation. The entries in Table 3.4 is used to decide which resource/resources
need to updated with new entries. The same principle is applied when port entries in the
new_channel.PortList are updated. The type of channel created to support process remap-
ping/migration is specified in Table 3.4. Either the source or destination or both can be migrated.
The Channel.portList is accordingly updated with new connection information and process in-
formation. After all successful updates, the channel are added to the global ChannelList. In
principle, this operation is done after every successful new channel creation.
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Algorithm 3.10 Update Port Multiplexer Information

procedure UpdatePortMultiplexerData(_map)
. Update the Mux information for Process Ports

_ChIter ← _map.pn.ChannelList
_Ch← _map.pn.ChannelList
i← 1
j ← 1
repeat

tmpCh← _ChIter[i]
tmpChN ← tmpCh.Name
tmpChBn← tmpCh.Basename
tmpOrgP ← _ChIter[i].Origin.Name
tmpTrgP ← _ChIter[i].Target.Name
repeat

tCh← _Ch[j]
tChN ← tCh.Name
tChBn← tCh.Basename
if tChN 6= tmpChN && tChBn == tmpChBn then

tOrgP ← _Ch[j].Origin.Name
tTrgP ← _Ch[j].Target.Name
if tT rgP.Name == tmpTrgP.Name then

k ← 1
tPort← tT rgP.PortList
repeat

tPrtRes← tPort[k].Resource
if tPort[k].isInPort&& tPrtRes ≡ tT rgP then

Add∗ tmpOrgP to tPort[k].MuxProcess
Add∗ tmpCh.Name to tPort[k].MuxCh
Add∗ tmpOrgP (State) to tPort[k].MuxState
increment∗ tPortList[k].InMuxCnt
Add tOrgP to tPort[k].MuxProcess
Add tCh.Name to tPort[k].MuxCh
Add tOrgP (State) to tPort[k].MuxState
increment tPortList[k].InMuxCnt

end if
increment k

until k < PortListN
end if

end if
increment j

until j < tChN
increment i

until i < tChIterN
end procedure

3.6.8 Database Update for Process Port Mux/Demux blocks

The value of Mux/Demux count is used to determine if a multiplexer or a de-multiplexer block
is required at the input or output port level. The default value of Mux/Demux count is zero,
which signifies that neither a multiplexer nor a de-multiplexer is required. On the other hand,
if more than one destination process is connected to given process. In addition to mux/demux
count, the port also contains a list of process names, Active FSM states and channel names for
assisting in code generation phase for different DAL visitors. In this work, the code generation
phase is explained for the distributed SystemC visitor called hdsd (in Section 5).
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The updated to port data structure (port structure in Figure 3.11, element in bold are the
newly added element in DOL/DAL with respect to legacy DOL) with respect to multiplexer and
de-multiplexer related information is explained in two phases. The first phase explains the multi-
plexer related data updates while the second phase deals with de-multiplexer related information.
For simplicity the procedures related to multiplexer and de-multiplexer updates are separately†
defined as UpdatePortMultiplexerData() and UpdatePortDemultiplexerData() respectively.

The Algorithm 3.10 is used to update the multiplexer related information of the input port entry in
PortList element (Figure 3.11) of a process entity. The Algorithm with time complexity of O(n2)
loops on the processNetwork.ChannelList and queries mapping table to obtain the information
related to the given Port.Mux entities. In the algorithm, the two channels (tmpCh and tCh)
are compared and a channel is selected such that the Channel.Basename for both the channels
are same but the Name entry is different. Once the channel is selected (_Ch[j]), the origin
and target resource name is extracted namely tOrgP and tT rgP . The extracted target resource
name is compared to channel target resource (from outer-loop namely, _ChIter[i].Target.Name)
for equivalence. If processes name are identical, the PortList for the extracted target resource
(process) is obtained and for every input port the element resource (Port.Resource) is extracted
(tPrtRes). The target resource of the selected channel is again compared with the input port
resource. If equivalent, the element related to multiplexer has to be updated with new values.
As mentioned before, the initial value of the counter is zero and hence the first update is a
special update (shown as Add∗ in the Algorithm) followed by normal updates (shown as Add
in the Algorithm). In the special update (only called once), the data obtained from the outer
loop is also added namely origin process (tmpOrgP ), channel (tmpCh[i]) and Active state of
origin process is added to the port database. The Active FSM states of a process is obtained
by querying the ComputationalBindingList entity in _map data structure with process name.
During normal updates, the data obtained from inner repeat loop is used for update. The entries
added to the port sub-entities are origin process (tOrgP ), channel (tCh) and Active FSM states,
each corresponding to the information obtained the ChannelList (_Ch).

The Algorithm 3.11 is used to update the de-multiplexer information of the output port element
(Figure 3.11) of a process entity. The basic software-flow of this procedure is same with small
change in comparison value and update values. The entries in ChannelList namely _ChIter and
_Ch are compared (same as in multiplexer Updates). Once the channel is selected (_Ch[j]), the
origin resource name is extracted namely tOrgP . The extracted origin resource name is compared
to channel origin resource (from outer-loop namely, _ChIter[i].Origin.Name) for equivalence.
If processes name are same, the PortList for the extracted origin process resource is obtained
and for every output port the sub-element resource (Port.Resource) is extracted (tPrtRes).
The extracted origin resource of the channel (_Ch[j]) is again compared to the output port
resource. If equivalent, the port element related to de-multiplexer is ready to be updated with
new values. The representation of first update as a special update and normal updates follows
the same principle (special update as Add∗ and normal update as Add in the Algorithm). In
the special update (only called once), the data obtained from the outer loop is also added namely
target process (tmpTrgP ), channel (tmpCh[i]) and Active state of target process is added to
respective sub-entities of the port database. In normal updates, the entries like target process
(tT rgP ), channel (tCh) and Active FSM states correspond to the information obtained from the
ChannelList (_Ch[j]) and are added to the respective sub-entities.

†Due to Algorithm representation and comprehensibility in report, the actual implementation code was broken
down into two distinct algorithms.
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Algorithm 3.11 Update Port De-multiplexer Information

procedure UpdatePortDemultiplexerData(_map)
. Update the Demux information for Process Ports

_ChIter ← _map.pn.ChannelList
_Ch← _map.pn.ChannelList
i← 1
j ← 1
repeat

tmpCh← _ChIter[i]
tmpChN ← tmpCh.Name
tmpChBn← tmpCh.Basename
tmpOrgP ← _ChIter[i].Origin.Name
tmpTrgP ← _ChIter[i].Target.Name
repeat

tCh← _Ch[j]
tChN ← tCh.Name
tChBn← tCh.Basename
if tChN 6= tmpChN && tChBn == tmpChBn then

tOrgP ← _Ch[j].Origin.Name
tTrgP ← _Ch[j].Target.Name
if tOrgP.Name == tmpOrgP.Name then

k ← 1
tPort← tOrgP.PortList
repeat

tPrtRes← tPort[k].Resource
if tPort[k].isOutPort&& tPrtRes ≡ tT rgP then

Add∗ tmpTrgP to tPort[k].DemuxProcess
Add∗ tmpCh.Name to tPort[k].DemuxCh
Add∗ tmpTrgP (State) to tPort[k].DemuxState
increment∗ tPortList[k].OutDemuxCnt
Add tT rgP to tPort[k].DemuxProcess
Add tCh.Name to tPort[k].DemuxCh
Add tT rgP (State) to tPort[k].DemuxState
increment tPortList[k].OutDemuxCnt

end if
increment k

until k < PortListN
end if

end if
increment j

until j < tChN
increment i

until i < tChIterN
end procedure
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4
Fault Tolerance

4.1 Overview

This chapter contains the key concept involved in the creation and designing a fault tolerant
system using the DAL middle-ware for EURETILE architecture and for generic applications
executing on it. The section in this chapter describes the inclusion of fault tolerance concept on
to dynamic application behavior.

4.2 Problem Definition

The problem definition is listed below:

• Fault tolerance at application level to prevent system from stalling in case of errors and
faults.

4.3 Fault Definition and Recovery

The initial work in developing DAL framework is focused towards detecting faults like non-
responsive processor core. This can happen at run-time due to transistor level faults like soft-
errors. The scope of this work is limited to recover the system from a non-responsive processor.
The work does not include the implementation and use of detect faults mechanism for MPSoC.

The fault recovery can be achieved using either of the two fault tolerance mechanisms:

• Static Fault Tolerance: This is a proactive mechanism. The application processes, channels
and connections are replicated based on some predefined fault tolerance scenarios (Figure
4.1). New connections and channels are created to connect the original processes and
duplicated processes (referred to as clones) and vice versa. In the event of fault, the
master controller activates the clone processes by redirecting the control message on to
the appropriate controller slave (Figure 4.2). This mechanism provides faster recovery from
fault. The overall mean-time to recover is minimal. This mechanism can be adopted for
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system critical applications. The Figure 4.1 and Figure 4.2 depict the the static fault
tolerance setup and recovery mechanism in case of faulty processor. More details about
static fault tolerance is explained later in the chapter.

• Dynamic Fault Tolerance: This is a reactive mechanism. The remapping of processes,
channels and connections are initiated as a recovery mechanism after the fault has been
identified and isolated. The Figure 4.3 shows a general method adopted for supporting
dynamic fault tolerance. The fault recovery in case of dynamic fault tolerance is shown in
Figure 4.4.

Other semi-dynamic mechanism can be derived using the above basic fault tolerance mechanism.

Clone
CTRL_SLAVE_1

Clone
CTRL_SLAVE_0

Inter-connect

Processor-2Processor-1Processor-0

CTRL_MASTER CTRL_SLAVE_0 CTRL_SLAVE_1

CloneProcessor-1 CloneProcessor-2

Figure 4.1: Static fault tolerance setup during code generation and initialization.

Clone
CTRL_SLAVE_1

Clone
CTRL_SLAVE_0

Inter-connect

Processor-2Processor-1Processor-0

CTRL_MASTER CTRL_SLAVE_0 CTRL_SLAVE_1

CloneProcessor-1 CloneProcessor-2

Figure 4.2: Recovery in static fault tolerance setup on the event of faulty processor.
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Inter-connect

Processor-2Processor-1

Clone

Processor-1

Clone

Processor-2

Figure 4.3: Dynamic fault tolerance initial setup.

Inter-connect

Processor-2Processor-1

Processor-3 Processor-4

Figure 4.4: Recovery in system with dynamic fault tolerance support.
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4.4 Fault Tolerance in DAL

Designing highly reliable and fault tolerant system would required processor and task redundan-
cies such that mean time to recovery (MTTR) from a failure is kept as small as possible. One of
the additional design requirement of the DAL middle-ware is to adapt the system to faults and
remap the application behavior. This is termed as remapping strategy in context to DAL Middle-
ware. Statically, it would be impossible and impractical to explore all possibilities related to fault
and derive an optimal mapping solution to recover the system from the fault. A low overhead,
fast on-line fault recovery strategy would be an optimal solution to this. The remapping strategies
can be broadly classified into three categories namely Figure 4.5:

Fault Detection and Isolation

Performance Analysis Remapping Scenarios

Remapping ConfigurationPerformance Data

Empty Processor/Tile

(Scope -> Intra-Cluster) 

Empty Processor/Tile

(Scope -> System Wide) 

Empty Processor/Tile

(Scope -> System Wide) 

Fault Detection Routine

Remapping Strategies for Fault ToleranceRemapping Strategies for Fault Tolerance

Semi-Dynamic RemappingSemi-Dynamic Remapping

Static RemappingStatic Remapping

Dynamic RemappingDynamic Remapping

IntraClusterAvalability()

CommCostAnalysis()

TaskScheduleUpdates()

Remap 

Possibility

Remap 

Possibility

ProcessorAvailibilitySearch()

ResouceUtilization()

CommCostAnalysis()

TimlinessAnalysis()

TaskScheduleUpdates()

No Run-time Analysis
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Figure 4.5: Graphical representation of Fault Tolerance Strategies using Flow Charts.

• Static Remapping Strategy: The policy can be adopted for system that execute highly
critical applications and it is required to keep the value of MTTR as low as possible. There
system should support seamless control from the fault processor to non-active processor.
This policy can be adopted on system that have redundant processors for highly critical
system applications (preferably for all the slave processors). The hardware architecture
design and task mapping should be devised such that the communication cost in term
of packet trip time should be approximately identical to the non-faulty case; for instance
adopting identical and symmetrical design for clusters. The basic idea is to create cloned
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application tasks on clone processor, similar to original application tasks on the original
processors. Initially, the original application tasks mapped to original processor are activ-
ated, whereas the clone tasks on the clone processor are rendered inactive. The master
controller maintains a table, Active_Processor, of active processors along with its corres-
ponding clone processor information. The master controller also maintains a real-time
database/table, Channel_Process_Port, of information pertaining to channels connected
to origin process/task to target process/task. At run-time, the master controller queries the
Active_Processor Table and Channel_Process_Port Table and decides the content of the
control message and active destination slave processor. This solution provides a responsive
low overhead fault-tolerant model of the system at the cost of higher architectural cost,
cloned processor, and under-utilized system.

• Semi-Dynamic Remapping Strategy: Statically remapping entire processor/cluster would
considerably increase the architecture cost of an under-utilized system. Instead of mapping
all the application tasks, only the tasks pertaining to the faulty processor/tile (depending
upon the fault type) can be mapped on to the under-utilized processor/tile or a idle pro-
cessor/tile (preferably within same clusters). If the system is grouped into clusters, the
Cluster Level controller queries the intra-cluster information and computes the remapping
options of the tasks stalled due to faulty processor/tile. If the Local Cluster controller finds
an option it remaps the task T̂l to the available processors/tiles. On the contrary, if the
Local Cluster controller fails to find any valid remapping option, it sends control message
to the master controller with the list of stalled tasks to initiate inter-cluster remapping
processing. The inter-cluster remapping can possibly lead to increase in the packet trip
time. Hence this strategy provides flexibility at the cost of decrease in system efficiency.

• Dynamic Remapping Strategy: In a Dynamic remapping strategy, the task T̂l computa-
tional remapping and the channel Ĉhl remapping related to communication is decided at
global level based on lasted processor/tile performance and resource utilization. As the
decision is made at the global level, the time required for run-time decision is considerably
higher. This would also result in increase of the communication step-up time and data
communication time (due to geometric positioning of the application tasks). The DAL
applications are stopped and restarted during the failover-takeover phase. This model of
remapping strategy offers higher flexibility at the cost of much higher run-time decision
computation time, communication set-up time and communication time.

P̂N i = [T̂i, Ĉoni, Ĉhi],∀i ∈ N (4.1)

PN = {PNi ∪ P̂Ni : ∀i ∈ N} (4.2)

T = {Ti ∪ T̂i ∪ T k : ∀i ∈ N ,∀k ∈ αK} (4.3)

Con = {Coni ∪ Ĉoni ∪ Conk : ∀i ∈ N ,∀k ∈ βK} (4.4)

Ch = {Chi ∪ Ĉhi ∪ Chk : ∀i ∈ N ,∀k ∈ γK} (4.5)

In case of first model Statical Remapping Strategy, the entire application task instance is replicated
(clones) on to its corresponding clone slave processors. The Equation 4.1 describes the cloned
application process network, P̂N i,∀i ∈ N , information. The elements T̂i, Ĉoni and Ĉhi describe
the cloned application tasks, cloned connections and cloned channels respectively. The aggregate
collection of application tasks, T , can be described as a super set of original tasks Ti, migrated
tasks T k and cloned tasks T̂i; using Equation 4.3. In a similar manner, the entire collection of
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application connections, Con, is a super set of original connections Coni, migrated connection
Conk and cloned connections Ĉoni; using Equation 4.4 and the Software channels, Ch is a super
set of original channels Chi, migrated channels Chk and cloned channels Ĉhi; using Equation
4.5. At process network level, the resultant PN is union of original process network PNi and
cloned process network P̂Ni (Equation 4.2).

T = {Ti ∪ T̂l ∪ T k : ∀i ∈ N ,∀l ∈ α̂fail,∀k ∈ αK} (4.6)

Con = {Coni ∪ Ĉonl ∪ Conk : ∀i ∈ N ,∀l ∈ β̂fail,∀k ∈ βK} (4.7)

Ch = {Chi ∪ Ĉhl ∪ Chk : ∀i ∈ N ,∀l ∈ γ̂fail,∀k ∈ γK} (4.8)

In case of Semi-dynamic and Dynamic Remapping Strategy, a small subset of the entire application
tasks instance is replicated on to its corresponding slave processors decided by the on-line system
wide information and scheduling analysis. The elements T̂l, Ĉonl and Ĉhl describe the cloned
application tasks, cloned connections and cloned channels respectively (∀l ∈ α̂fail and α̂final � N
, i.e. the number of faulty tasks). The aggregate collection of application tasks for Semi-dynamic
and Dynamic Remapping Strategies, T , can be described as a super set of original tasks Ti,
migrated tasks T k and Cloned tasks T̂l; using Equation 4.6. In a similar manner, the entire
collection of application connections, Con, is a super set of original connections Coni, migrated
connection Conk and Cloned connections Ĉonl; using Equation 4.7 and the Software channels,
Ch is a super set of original channels Chi, migrated channels Chk and cloned channels Ĉhl;
using Equation 4.8.

4.5 Controller Clones

The concept of fault tolerance can be extended to slave controller tasks residing on processors des-
ignated as clone processors. The master controller decides to send control packets of appropriate
slave based on some static control information. In addition to increase in run-time complexity,
the system has a single point of failure; the entire system stalls if the master controller fails
(without fault tolerance at master controller level). Adding a fault tolerant master controller
would incorporate system-level database synchronization between master controller and M̂aster
controller (clone); even higher algorithmic complexity.

The Equation 3.11 and Equation 3.12 describes in details the elements Ctrl_PNMaster and
Ctrl_PNSlave

j in term of its respective controller tasks (Ctrl_TMaster / Ctrl_TSlavej ), the
connections defined between the controller task (Ctrl_ConMaster / Ctrl_ConSlavej ) and the
software channels connecting the ports of the controller tasks (Ctrl_ChMaster / Ctrl_ChSlavej ).

̂Ctrl_PN
Slave

j =[Ĉtrl_T
Slave

j , ̂Ctrl_Con
Slave

j , ̂Ctrl_Ch
Slave

j ]

∀j ∈ Jclone,Jclone = J
(4.9)

One of the aspect of Fault Tolerant DAL middle-ware is that it requires the cloning of application
task on its respective cloned processors. The slave process network controller residing on the

cloned processor is termed as ̂Ctrl_PN
Slave

j and the cloned slave controller task is pointed by
widehatCtrl_TSlavej . The cloned slave process network controller, Equation 4.9, is defined in the
similar fashion as the slave process network controllers (Equation 3.12).
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Algorithm 4.1 Updating Computational Binding Information for cloned task/process

procedure ObtainNewTaskInfo(_map)
. Obtain Task from the Computational Binding List

local_pList← _map.pn.processList . A local copy
local_cBindList← _map.compBindList
Create append_pList
i← 1
j ← 1
repeat

t_bPName← local_cBindList[i].Name
if (t_bPName 3 Clone) then

repeat
_PName← local_pList[j].Name
if _PName 3 t_bPName then

if _PName 6= t_bPName then
Create new_p = local_pList[j]
new_p.Name = t_bPName
Append new_p to appened_pList

end if
end if
increment j

until j 6 TN . TN = local_pList.length
end if
increment i

until i 6 BN . BN = local_cBindList.length
end procedure

procedure UpdateGlobalProcessList(append_pList)
. Append Processes to Global List

_procList← _map.pn.processList . Local copy for Update
i← 1
repeat

t_Proc← append_pList[i]
if t_Proc /∈ _procList then

Append t_Proc to _procList
end if
increment i

until i 6 NL . NL = append_procList.length
_map.pn.processList← _procList . Updated

end procedure

4.6 Implementation

This section deals with different aspects of DAL database update of visitor based code generation
and execution.

4.6.1 Database Update for Cloned Processes

This section provides the details in terms of algorithmic approach adopted for updating the
DAL/DOL database for code generation process of a given visitor. The method of database
update is governed by the addition of cloned tasks/processes to the process network database.
The information about cloned task/process is added to the DAL/DOL database in two stages.
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Algorithm 4.2 Updating the elements in new Process instance
Require: A _processIns instance to be updated
procedure UpdateProcessContents(_processor, _portList)

. Update Process sub-entities
_processIns.Processor ← _processor
_processIns.portList← _portList

end procedure

• In the first phase, the binding information is obtained from the _map data structure. The
Process.Name information in the bindingList is searched for sub-string like Clone. In
Algorithm 4.1, the first procedure (ObtainNewTaskInfo()) is used for obtaining a list of
ProcessName from the ComputationalBindingList. Whenever a ProcessName satisfies the
previous condition (with keyword Clone) and the ProcessName matches closest to any
Process.name in the ProcessNetwork (original) (Figure 3.11), a new local copy (non-linked)
of the Process instance (e.g. tmp_Process) is created and the name entity is modified with
ProcessName.

tmp_Process.name← ProcessName

The process instance tmp_Process is added to processNetwork.ProcessList if the entity
is not present in the list (using the UpdateGlobalProcessList() in Algorithm 4.1). For
efficiency, the addition of new elements to the ProcessList is done just once after all the
tmp_Process have been added to a Vector of processes.

• In the second phase of process updates, the structural elements like the port information is
updated. This update is done when the new connection and channel information are created
and added to the ConnectionList and ChannelList respectively. In the following Sections,
the procedural call to UpdateProcessContents() [Algorithm 4.2] is made whenever a new
connection is added to ConnectionList and ChannelList.

4.6.2 Database Update for Clone Connections

The binding information of the process port to a channel port is stored in data structure called
connection. The instances of connection is broadly classified to

• Origin Connection: The origin resource is a process and target resource is a channel. Hence
at database level, the following information is stored:

– connection_ins.origin_resource.type← NULL

– connection_ins.target_resource.type← FIFO

• Target Connection: The origin resource is a channel and target resource is a process. The
following information stored is at the connection instance level in the database.

– connection_ins.origin_resource.type← FIFO

– connection_ins.target_resource.type← NULL

Unlike the connection types in task remapping/migration, the cloning specification supports six
types of connections. An example of all possible connections related to cloning is shown in Table
4.1. This information is the basis for addition of new connection entries to the ConnectionList.

For simplicity, the new connection entry creation is bifurcated into two different proced-
ures namely CloneOrgConnectionInfo() (Algorithm 4.4) and CloneTrgConnectionInfo() (Al-
gorithm 4.5). The former is used for generating new origin connections and latter is used for
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Algorithm 4.3 Add New Connections to ConnectionList

procedure UpdateGlobalConnectionList(append_conList)
. Append Connections to Global List

_conList← _map.pn.connectionList . Local copy for Update
i← 1
repeat

t_Con← append_conList[i]
if t_Con /∈ _conList then

Append t_Con to _conList
end if
increment i

until i 6 NC . NC = append_conList.length
_map.pn.connectionList← _conList

. Global ConnectionList Updated
end procedure

Table 4.1: Clone Connection and Channel Types

Type Origin Process Channel Target Process
(Origin Connection) (Target Connection)

1 A tmp_C1 Clone_B
(tmp_AC1) (tmp_C1B)

2 Clone_A tmp_Clone_C1 B
(tmp_Clone_AC1) (tmp_Clone_C1B)

3. Clone_A Clone_C1 Clone_B
(Clone_AC1) (Clone_C1B)

generating new target connections for supporting static fault tolerance mechanism in DAL Frame-
work.

As mentioned, the Procedure CloneOrgConnectionInfo() handles the new connection creation
for clone processes and clone channels. Like the Procedure NewConnectionInfo() (Algorithm
3.7), the Algorithm 4.4 take _map and new_ResourceList as the input data to generate new
connections. Unlike the Algorithm 3.7, the Algorithm 4.4 considers only the origin resource Name
for finding the occurrence of sub-string of the org (entity:Connection.Origin.Name) in t_cName
(entity: new_ResourceList[i].Name; ∀i ∈ new_ResourceList.length()). On successful match of
sub-string, a new local copy of new_con,(non-linked) copy of connection instance (_conList[j] ;
∀j ∈ _map.pn.ConnectionList.length()) is created. As the connection type for cloned process
has three categories, Table 4.1, three new connections will be added to the ConnectionList. A
brief description of New connections is mentioned below:

• Origin Connection Type-1: A new connection is created namely, with a Connection.Name
as tmp_<OriginConnection.Name>. The entity BaseName would remain the same∗. As
the origin resource in connection entity is of type process, the contents of origin entity
is retained; only the output port information containing the PeerResource (i.e. _con-
List[j].portList.port[l].PeerResource ≡ _conList[j]) is updated to new_con. The target
resource, of type channel, is newly created, namely tmp_<ChannelName> (Algorithm
4.6). The target process entities in channel have to be updated to process with Name
Clone_<Process.Name>. Additionally, the PeerResource entity for the output port should
be modified to new_con. After all these updates, the new_con is added to the ap-
pend_conList.

∗As seen in the Figure 2.9, an application process (C code with process-specific routines like initialize(), fire(),
etc) is wrapped inside a process wrapper in SystemC Distributed application code. The process wrapper is built
over the BaseName to avoid memory overhead for instances of process with different ProcessName but with same
functionalities.
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Algorithm 4.4 Update Origin Connections for Clone tasks(Table 4.1)

procedure CloneOrgConnectionInfo(_map, new_ResourceList)
. Obtain new Connection information for Clone Resources

_conList← _map.pn.connectionList
_cResList← new_ResourceList
Create append_conList
i← 1
j ← 1
repeat

t_cName← _cResList[i].Name
repeat

org ← _conList[j].org.Name
if org 3 t_cName then

Create new_con← _conList[j]
. Type 1: Connection ≡ tmp_ < con_name

. Type 2: Connection ≡ tmp_Clone_ < con_name
. Type 3: Connection ≡ Clone_ < con_name

Create <Process> ≡ new_con.org_p
. Type 1: New Process ≡< proc_name >

. Type 2: New Process ≡ Clone_ < proc_name >

. Type 3: New Process ≡ Clone_ < proc_name >
Create <Channel> ≡ new_con.trg_ch

. Type 1: New Channel ≡ tmp_ < ch_name >
. Keep OriginProc; Update TargetProc

. Type 2: New Channel ≡ tmp_Clone_ < ch_name >
. Update OriginProc; Keep TargetProc

. Type 3: New Channel ≡ Clone_ < ch_name >
. Update OriginProc; Update TargetProc

new_con.org ← new_con_org_p
new_con.trg ← new_con_trg_ch
Append new_con to append_conList

end if
increment j

until j 6 ConN . ConN = _conList.length
increment i

until i 6 cResN . cResN = _cResList.length
end procedure

• Origin Connection Type-2: Herein for clone processes, a new local instance of con-
nection is created with a Connection.Name as tmp_Clone_<OriginConnection.Name>.
As in Type 1, the entity BaseName is unaltered. Unlike the Type-1, the origin re-
source in connection entity (of type process) is updated to process with Process.Name
as Clone_<OriginProcess.Name>. The resource in output port entity is updated to
new process (with Process.Name ≡ Clone_<OriginProcess.Name>). The PeerResource
in the output port entity (i.e. _conList[j].portList.port[l].PeerResource ≡ _conList[j]) is
also updated to new_con. A new instance of target resource of connection new_con (of
type channel) is created with Channel.Name as tmp_Clone_<ChannelName> (Algorithm
4.6). The origin process entities in channel has to be updated to process with name
Clone_<OriginProcess.Name>. Additionally, the PeerResource entity for the input port
is modified to new_con. Post the resource entry updates, the new_con is added to the
append_conList.

• Origin Connection Type-3: As in other types of source connections, in case of clones a new
local connection instance with a Connection.Name as Clone_<OriginConnection.Name>
is created. The BaseName entity is kept unaltered for optimization. The origin re-
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Algorithm 4.5 Update Target Connections for Clone Tasks(Table 4.1)

procedure CloneTrgConnectionInfo(_map, new_ResourceList)
. Obtain new Connection information for Clone Resources

_conList← _map.pn.connectionList
_cResList← new_ResourceList
Create append_conList
i← 1
j ← 1
repeat

t_cName← _cResList[i].Name
repeat

trg ← _conList[j].trg.Name
if trg 3 t_cName then

Create new_con← _conList[j]
. Type 1: Connection ≡ tmp_ < con_name

. Type 2: Connection ≡ tmp_Clone_ < con_name
. Type 3: Connection ≡ Clone_ < con_name

Create <Channel> ≡ new_con.org_ch
. Type 1: New Channel ≡ tmp_ < ch_name >

. Keep OriginProc; Update TargetProc
. Type 2: New Channel ≡ tmp_Clone_ < ch_name >

. Update OriginProc; Keep TargetProc
. Type 3: New Channel ≡ Clone_ < ch_name >

. Update OriginProc; Update TargetProc
Create <Process> ≡ new_con.trg_p

. Type 1: New Process ≡< proc_name >
. Type 2: New Process ≡ Clone_ < proc_name >
. Type 3: New Process ≡ Clone_ < proc_name >

new_con.org ← new_con_org_ch
new_con.trg ← new_con_trg_p
Append new_con to append_conList

end if
increment j

until j 6 ConN . ConN = _conList.length
increment i

until i 6 cResN . cResN = _cResList.length
end procedure

source in connection entity (of type process) is updated to process with Process.Name
as Clone_<OriginProcess.Name>. The resource entity in output port entity is up-
dated to process with Process.Name ≡ Clone_<OriginProcess.Name>. In addition
to resource entry update, the PeerResource in the output port entity(i.e. _con-
List[j].portList.port[l].PeerResource ≡ _conList[j]) is also updated to new_con. A new
instance of target resource of connection new_con (of type channel) is created with Chan-
nel.Name as Clone_<ChannelName> (Algorithm 4.6). The origin and target process en-
tities in channel is updated to processes with Name Clone_<OriginProcess.Name> and
Clone_<TargetProcess.Name> respectively. Additionally, the PeerResource entity for the
input port and output port is modified to new_con. After all these updates, the connection
instance, new_con is added to the append_conList.

After all the source connection updates and addition of new connection entires to the ap-
pend_ConList, the routine (Algorithm 4.3) is called for appending the entries to global Con-
nectionList.
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The Procedure CloneTrgConnectionInfo() handles the new connection creation for clone chan-
nels and clone process. This Algorithm 4.5 requires details of _map and new_ResourceList
for generating new connection instances. As this Algorithm is specifically created for target
connections, only the element with the target resource name is used for searching the con-
nection instances such that the trg (entity:Connection.Origin.Name) is contained in t_cName
(new_ResourceList[i].Name; ∀i ∈ new_ResourceList.length()) (refer to Algorithm 4.5). On
successful sub-string match, like source connection, a new local new_con (non-linked) copy of
connection instance (_conList[j] ; ∀j ∈ _map.pn.ConnectionList.length()) is created. As in-
dicated in Table 4.1, three new connections will be added to the ConnectionList. The brief
description of new connections is mentioned below:

• Target Connection Type-1: A new connection with a Connection.Name as
tmp_<TargetConnection.Name> is created. The BaseName entity information remains
unmodified. The origin resource in connection entity is of type channel. If the channel
with channel.Name as tmp_<ChannelName> does not exist in the ChannelList, a local
copy of the channel entity is created. The contents of origin process is retained whereas the
target process is updated to process with process name as Clone_<TargetProcess.Name>.
The port information is accordingly updated. In the target connection type, the target
resource is a process. A target resource is updated to process with process name as
Clone_<TargetProcess.Name>. Like source connection updates, the connection instance,
new_con is added to the append_conList.

• Target Connection Type-2: For the target connection type-2, a new local instance of con-
nection is created with a Connection.Name as tmp_Clone_<TargetConnection.Name>.
The origin resource in connection entity (of type channel) is updated to channel,
tmp_Clone_<ChannelName>. If this channel is already created, the content of origin
resource is replaced with the channel, else a new channel is created. The origin and target
resource is updated along with port informations. The target resource of the connection
new_con is left unaltered with an exception. The PeerResource needs to be updated with
new_con information for connection input port. Since the new_con is to be appended to
ConnectionList, it is added to a list of new connections, the append_conList.

• Target Connection Type-3: As in other types of target connections, for the type-3 connec-
tion for scenario with clones, a new local connection instance with a Connection.Name as
Clone_<TargetConnection.Name> is created. The BaseName entity is kept unaltered
for optimization. The target resource in connection entity (of type process) is up-
dated with process information containing Process.Name as Clone_<TagetProcess.Name>.
The resource entity in input port entity is updated to process with Process.Name ≡
Clone_<TargetProcess.Name>. In addition to resource entry update, the PeerResource
in the input port entity(i.e. _conList[j].portList.port[l].PeerResource ≡ _conList[j]) is
also updated to new_con. A new instance of origin resource of connection new_con
(of type channel) is created with channel Name as Clone_<ChannelName> (Algorithm
4.6). The origin and target process entities in channel is updated to processes with Name
Clone_<OriginProcess.Name> and Clone_<TargetProcess.Name> respectively. Addition-
ally, the PeerResource entity for the input port and output port is modified to new_con.
The connection instance, new_con is then added to the append_conList.

After all the target connection updates and addition of new connection entires to the ap-
pend_ConList, the routine (Algorithm 4.3) is called for appending the entries to global Con-
nectionList.

4.6.3 Database Update for Clone Channels

Addition of new tasks/processes require new channel connectivity either with the existing pro-
cesses or with new processes. In the this implementation, the addition of new channels to the
ChannelList is performed during new connection creation and updates.
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Algorithm 4.6 Collect New Channel Elements (Table 4.1)

Require: append_chList
procedure NewChannelCreationFrom(_map,_channel,mode, type)

. Create a new Channel due to Migration or Clone Resources
Create new_channel :: new_channel ≡ _channel
chName← _channel.Name
if mode ≡ Clone then . chName may also contain Migrate

if type ≡ Type 1 then
new_channel.Name← tmp_chName
OR
new_channel.Name← tmp_chName_Migrate
Update <Process> new_channel.Target

else if type ≡ Type 2 then
new_channel.Name← tmp_Clone_chName
OR
new_channel.Name← tmp_Clone_chName_Migrate
Update <Process> new_channel.Origin

else . type ≡ Type 3
new_channel.Name← Clone_chName
OR
new_channel.Name← Clone_chName_Migrate
Update <Process> new_channel.Origin
Update <Process> new_channel.Target

end if
Update new_channel.portList

end if
Append new_channel to append_chList

end procedure

procedure UpdateGlobalChannelList(append_chList)
. Append Channels to Global List

_chList← _map.pn.channelList . Local copy for Update
i← 1
repeat

t_Ch← append_chList[i]
if t_Ch /∈ _chList then

Append t_Ch to _chList
end if
increment i

until i 6 NF . NF = append_chList.length
_map.pn.channelList← _chList . Global ChannelList Updated

end procedure

The Algorithm 4.6 describes the creation of new channel based in _map information and the
_channel using mode and type (for optimization). The input quantity mode is used to distinguish
between the creation of channel for task migration and task cloning. The element type is used
to differentiate the three types of channels required for task cloning. During task migration
mode of channel creation, the a copy of _channel is created called a new_channel with the
channel name as _channel.Name_Migrated. If the destination process is migrated (Section 3.5)
to some other processor/tile, the process information of the target process is extracted from
the ProcessList and added to the _channel.Target. The same is valid for origin process as
well. The input and output ports are updated with new connection information. Once all the
updates are done in the new_channel element, it is added to the global ChannelList (procedure
UpdateGlobalChannelList()).
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The creation of new channel for task cloning also follows a similar procedure with few added
steps (like Algorithm 3.9). Updates to either origin or target or both resources is performed
based on the mode and type of channel creation. The entries in Table 4.1 is used to decide as
to which resource/resources need to updated with new entries. The same principle is applied
when port entries in the new_channel.PortList are updated. If the channel to be created is
of type 1, the channel is named as tmp_<ChannelName> and the target resource is modified.
For type 2 channel creation, the new_channel is named as tmp_Clone_<ChannelName> and
the origin resource is modified. In case of type 3, both the origin and target are clone process
and hence the corresponding entries in the new_channel is updated. The channel is named as
Clone_<ChannelName>. The Channel.portList is accordingly for all three types updated with
new connection information and process information. After all successful updates, the channel are
added to the global ChannelList in process network data structure. In principle, this operation
is done after every successful new channel creation. The benefit of this method is the uniform
creation algorithm for either clone migrated channels or only clone channels. On the other hand,
the recurrent updates to ChannelList with new channel information is run-time overhead during
database creation.

4.6.4 Database Update for Process Port Mux/Demux blocks

The value of Mux/Demux count is used to determine if a multiplexer or a de-multiplexer is
required at the input or output port level. The default value of Mux/Demux Count is kept as
zero as mentioned in section 3.6.8. The updates to the port based Mux/Demux blocks namely,
the count value, process names, channel names and FSM state names can be achieved using the
Algorithm 3.10. For more details on the algorithmic description, refer to Section 3.6.8.
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Simulator

This chapter uses the database created and updated using algorithms mentioned in previous
Chapters 3,4 to create a simulation environment. This chapter describes in detail the imple-
mentation aspects of the concepts pertaining to DAL requirements for a given visitor, Figure 3.4.
This chapter describes the usage of updated the DAL/DOL database with migrated and cloned
information to implement the automated code generation mechanism for a visitor∗. The scope
of automated code generation for visitor in this work is limited to hdsd - (hardware dependent
software distributed). The hdsd is built using SystemC Distributed library, Section 2.3. For easy
of comprehension refer to the data entity relationship model of DAL/DOL middle-ware, Figure
3.11.

5.1 DAL Visitor Overview

The DAL/DOL middle-ware is used to generate a range of output executables on a variety of
platforms like MPARM [33], Cell Broadband Engine [4], etc. The software work-flow for DAL
is shown in Figure 3.4. The Figure 5.1 describes the relational work-flow for the hdsd visitor.

The visitor for distributed SystemC simulation i.e. hdsd, is governed by the information present
in mapping _map, process network specification _pn, architectural specification _arch and FSM-
related database _fsm. The steps involved in code generation is as follows:

• The hdsd directory creation as per User-defined input.

• For compilation process, a Makefile is generated.

• The creation of architectural specific SystemC application.

• Process wrapper creation (header and cpp file).

• Creation of linux script file for distribution of SystemC executable.

• Creation of controller wrapper code for all SystemC Distributed executables.

The subsection mentioned below contains the major changes made to the SystemC application
code (specific to DAL middle-ware).
∗In this chapter the term task and process is used inter-changeably. Conceptually, these terms refer to the

computational/processing element in a Kahn Process Network.
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DAL VISITOR

DAL MAP VISITOR DAL PN VISITORDAL FSM VISITOR
DAL ARCHITECTURE 

VISITOR

HdsdModuleArchVisitor

HdsdModuleSlaveArchVisitor HdsdMakefileVisitor

HdsdVisitor

HdsdModuleVisitor

HdsdScriotVisitor

HdsdCtrlVisitor

HdsdCtrlProcessVisitor

HdsdProcessVisitor

HdsdModulePNVisitor

Figure 5.1: DAL Visitor work-flow for SystemC Distributed (hdsd visitor).

5.2 Master Controller

The addition of application control to the SystemC application code is one of the major design
code changes. The controller design followed in this work is the Centralized Control Model
(Section 3.4.2).

Header File for Master controller

The header file for master controller contains all the class based information required for sending
the control messages to slave controllers. The header file begin with the class definition of a master
control wrapper. It includes all the port (sc_port) declarations. The master controller contains
the initialize() and fire() functions. It also contains master thread control flag namely _detach
which is used to activate the execution of the master control functionality using fire() routine.
Since the master has full control over the execution of the system, it sends control messages using
the protocol (sub-section 5.4) to slave controllers. The master control wrapper also includes a
set of functions for control message creation (per application), sending and receiving. To support
run-time task switching between the clone tasks over cloned processor, the master controller has
a series of functions to generate the application task-specific control signals. These functions are
specific to the hdsd based implementation. These functions described in Table 5.1 contains a list
of functions that are used to query the Static Table (refer to sub-section 5.3 for more information)
entries in master controller to generate the control signal.

In addition to the query functions, the master controller statically generates (based on code
generation) a list of task requiring select signals. Each individual task is obtained from the list
and functions in Table 5.1 are called for querying. This task is done using functions defined in
Table 5.2

The master controller wrapper also contains the declaration of DAL Action functions pertaining
to applications defined in the process network†.

†The function defined are not task specific but based on Application Prefix. The Application Prefixes are
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Table 5.1: Master Control Query Functions specific to fault tolerance.

Control functions specific to fault tolerance
int getActiveProcessorIndex(char ∗ str)
Looks up the ActiveProcessorTable based in str and return the index.
char ∗ getActiveProcessorName(char ∗ str)
Looks up the ActiveProcessorTable based in str and return the
processor name.
void queryForMuxTask(char ∗ stateInfo, char ∗ sourceProcessor,
char ∗ host_processor, char ∗ task, char ∗ result)

Content matching query to ApplicationChannelList for Mux based on State
stateInfo of the system, sourceProcessor name, host_processor name and
Application Task (task). The result stored task name with a valid signal.
void queryForDemuxTask(char ∗ stateInfo, char ∗ targetProcessor,
char ∗ host_processor, char ∗ task, char ∗ result)

Content matching query to ApplicationChannelList for Demux based on State
stateInfo of the system, targetProcessor name, host_processor name and
Application Task (task). The result stored task name with a valid signal.

Table 5.2: Master Control Functions to generate queries relevant to Tasks and processors.

Query generator control functions
handlerForMuxTaskList(char ∗ stateInfo, char ∗ sourceProcessor,
char ∗ host_processor, char ∗ taskList, char ∗ result)

Handles the Mux select signal generation for a List of Task taskList
handlerForDemuxTaskList(char ∗ stateInfo, char ∗ targetProcessor,
char ∗ host_processor, char ∗ taskList, char ∗ result)

Handles the Demux select signal generation for a List of Task taskList
handlerForSourceProcessorList(char ∗ stateInfo, char ∗ sourceProcessorList,
char ∗ host_processor, char ∗ taskList, char ∗ result, char ∗muxCloneInfo)

Handler for managing the Mux signal value result and taskList for a list of
task distributed over the source processors sourceProcessorList.
handlerForTargetProcessorList(char ∗ stateInfo, char ∗ targetProcessorList,
char ∗ host_processor, char ∗ taskList, char ∗ result, char ∗ demuxCloneInfo)

Handler for managing the Demux signal value result and taskList for a list of
task distributed over the target processors targetProcessorList.
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CPP File for Master Controller

The cpp file for master controller contains all the functional behavior of class functions and
helper functions for control. Due to the inclusion of DOL wrapper functions like initialize() and
fire() routines, the master controller is treated as a SystemC thread that can be attached to
the event scheduler just like an ordinary application task. Based on SystemC scheduling and
time-quanta allocated to the master controller, the fire() module in wrapper instance is called.
The fire routine is built over the FSM description of State Transition Action model. Based on
State-Transitions and corresponding Actions List, the master controller fire calls corresponding
DAL Action routines namely the following DAL_Action START.

• DAL_ACTION_[App_Prefix]_START : This function calls for initialization of all applic-
ation process-specific variables and resets the _detach flag. In other words, when this
START action is called for an application, the execution begins from scratch.

• DAL_ACTION_[App_Prefix]_STOP : When STOP action is called for an application in
FSM, the master controller instructs all the slave to call finish() routine for application
task. This resets the local data of application task.

• DAL_ACTION_[App_Prefix]_PAUSE : If a user programmer wants to preserve the local
state of the application (all processes in the application) and then reuse the data in future,
PAUSE action can be used. This sets the activity flag _detach.

• DAL_ACTION_[App_Prefix]_RESUME : The RESUME action can be used to resume
the application execution from the last paused state.

These application specific DAL Action functions are created based on the FSM action specific-
ation. If a user avoids the usage of PAUSE and RESUME functions in the FSM specification,
these functions are not created during code-generation phase. During the code-generation phase,
the hdsd-based visitor function provides values for computing visitor-specific protocol fields. The
master controller uses the functions mentioned in Table 5.2 with these statically generated in-
formation coupled with run-time data (subsection 5.3) to generate the control message fields
like multiplexer task Informations at run-time. Before sending the control message, the master
controller checks for the Active destination slave controller (example in Table 5.3) and obtains
the port information from Processor Port Table (example Table 5.4). Refer to sub-section 5.3 for
more details on the Tables.

Just like an application task wrapper, the master controller also has a local implementation of
DOL_read() and DOL_write() function (same as in DOL middle-ware). On the other hand, the
master controller have null definition of other DAL functions like finish, save, etc.

The Figure 5.2 provides a flow diagram of the master controller fire() routine. In the figure there
are multiple blocks named as application control Functions. These block correspond to functions
enlisted above.

5.3 Run-time Table for Application Control

The master controller statically creates look-up tables for creating control decisions at run-time
for fault-tolerance simulations. The main look-up tables created are mentioned below:

• ActiveProcessorTable: This table contains a list of entries corresponding to slave processor
name along with clones in an indexed fashion. Each processor name is accompanied by it
activity flag. The activity flag is governed by the relation 5.1 such that at any given time
only one of slaves is active.

active_flag ∧ clone_active_flag (5.1)

derived from the order for occurrence of App_Prefix in the FSM state-transition-action database.
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Figure 5.2: Master controller work-flow for HDSD visitor.

Table 5.3: Active Processor Table

Index Processor Flag
Original Clone Original Clone

0 sim1 sim1_clone TRUE FALSE
1 sim2 sim2_clone TRUE FALSE
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• MasterProcessorPortTable: The master processor port table consist of an array of port
information and its connectivity details to the corresponding slave controlled processor.

• ApplicationChannelTable: The channel name and the connected application tasks is stat-
ically stored in the Table called ApplicationChannelTable/ApplicationChannelList. The
table is structured in two parts. The first part contains information about to origin process
and second part deals with target process. The origin process contains process name, pro-
cessor Name, Active State for the given process name and a flag. The flag in either origin
and target process Information points to the existence of clone processor towards the target
and origin side respectively.

Table 5.4: Master Processor Port Table

Index Processor Port Pointer
Input Output

0 sim1 port_IN port_OUT
1 sim2 port_IN port_OUT
2 sim1_clone port_IN port_OUT
3 sim2_clone port_IN port_OUT

The example of ActiveProcessorTable (Table 5.3), MasterPortList (Table 5.4) and Application-
ChannelTable‡ (Table 5.5) list the entries statically populated to the corresponding tables at
compile time. The table contents correspond to the application scenario shown in Appendix
A.2.1.

5.4 Control Message

The control message carries information pertaining to application control. This message is either
created by the master or slave controllers. The slave controller creates control messages to
acknowledge the control message received from the master. The acknowledgement message sent
to master after the slave controller has processed the control message. On the other hand, the
master controller creates the Message with control informations like DAL_Action, Application
Prefix and other informations (implementation-specific) required for controlling the application
at run-time. The master controller uses the DAL database to compute and populate the fields
in the control message. The generic mandatory fields in control message are:

• Flag: Numerical Value to denote the DAL Action.

– START ⇔ 0x1000

– STOP ⇔ 0x0100

– PAUSE ⇔ 0x0010

– RESUME ⇔ 0x0001
‡Due to representation constrains, the names shown in the Table have been shortened. The actual names are

shown below. The symbol ⇒ is used to associate an acronym to the actual full name.

• A1 ⇒ APP1 and A2 ⇒ APP2.

• gen ⇒ generator.

• sq ⇒ square.

• con ⇒ consumer.

• St ⇒ State.

• 0 ⇒ boolean FALSE.

• 1 ⇒ boolean TRUE.
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• Application Prefix : String value pointing to the application for which the Control message
is constructed.

Based in the Control Mode and Visitor, the control message may vary in structure and fields.
For Centralized Control and Visitor as distributed SystemC (hdsd), the control message contains
additional fields. These fields may or may not be required for other Visitor implementations.

• Current State: It contains the current State of the entire System. It is represented as
Current_State in the packet.

• Next State: It is represented as Next_State and denotes the next transited State of the
system.

• Multiplexer Clone Information: This field contains the string information required
for constructing the multiplexer select signal for application task; represented as
Mux_Clone_Info.

• De-multiplexer Clone Information: The protocol field Demux_Clone_Info contain the
element required to construct the de-multiplexer select signal.

• Multiplexer Task List: The element Mux_Task_List lists all the application task for
which the field Mux_Clone_Info is required for multiplexer signal.

• De-multiplexer Task List: It contains the name of application tasks for which the
Demux_Clone_Info is used to compute. This is used to generate de-multiplexer select
signal. In the control message this field is referred to as Demux_Task_List.

5.5 Slave Controller

The slave controller is constructed as an application task. The only exception is that, the slave
wrapper has an additional class function, ack(), along with initialize() and fire() routines. The
slave controller receives the control message from the master controller. The received message
is shared with the SystemC application scope (scd_sim<number>.cpp). The received (shared)
message is processed in the SystemC application scope. The individual message fields are parsed.
Based on the parsed fields activity flags pertaining to the application tasks are updated. The parse
fields from the message is also used to compute the select signal and assigned to the respective
application task port-based multiplexer/de-multiplexer at run-time. The slave controller sends
an acknowledgement message to the master controller after it has processed all the fields of the
control message (function: control_msg_handler()). The master controller processes the next
event/transition_id after it has successfully received the acknowledgement message from the slave
controller.

In nutshell, the slave controller is just a dummy thread running on slave processors that receives
the Control message from master and dispatches application task signals in the local processor
scope.

5.6 Application Task Wrapper

The application task wrapper class is constructed with the Basename as process in a process
network. If a process is replicated using iterator keyword in processNetwork.xml file, only one
process wrapper is constructed; since the Basename is the same for all iterated processes. A
list of port-based multiplexer and de-multiplexer is constructed to support both State-based
task Migration and task Cloning for fault tolerance. A reference to these multiplexers and de-
multiplexers are added to the task/process wrapper. The code-generator also add a series of task
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functions. These functions are mentioned below. Amongst these, the functions setDetached and
unsetDetached are used to control the activity of application tasks.

• initialize(): The SystemC application calls this routine to initialize all the initial values.
Once initialized the task is ready for execution.

• fire(): The fire routine act as a function encapsulating the application task (C code)
implementation of fire routine. The application task contain the computational and com-
municational aspect of a task. Based on application design there can be any combination
of computation and communication.

• setDetached(): This function is used to control the task flag _detach. It disables the
execution of the application task.

• isDetached(): The function isDetached is used to check state of the task flag _detach (set
or reset).

• unsetDetached(): The task instance can call this function to reset the task flag. After the
flag is reset, the task can begin execution.

• finish(): The wrapper can clean-up the memory space occupied by the application task
by calling the finish routine. The wrapper can reset all the process wrapper information.
This function is called in response to the occurrence of STOP in DAL_Action.

• save(): This function is used store the application task context.

• restore(): During task Migration, the transition can be invisible to application programmer
because the context of the process can be stored to a memory and later replaced with the
existing context.

The application task wrapper also contains a local definition of DOL_read() and DOL_write().
These functions have additional operation unlike the functional definition in DOL Framework. As
mentioned earlier, the application task wrapper has a reference to the port based multiplexers and
de-multiplexers. The data received from the either channels is read by the multiplexer first and
then written back to the application task scope. This is done using a special function that reads
data from a given the input multiplexer port using a multiplexer Select signal and write the data to
output port of the multiplexer. The output port of the multiplexer is connected to the application
wrapper. To distinguish between the multiple input/output port in a wrapper scope, the task
wrapper maintains a list of ports (reference to ports). The DOL_read/DOL_write functions
uses the port reference from this list of ports to call the read and write function for the multiplexer
and de-multiplexer for a given port. This is required because the DOL_read/DOL_write with
port information is called in application task scope (C code). This information is not known in
the wrapper scope.

5.7 SystemC Application

The SystemC application begin with a class definition of sc_application; inheriting the features of
SystemC module class (sc_module). The sc_application encapsulates the following information
for normal execution.

• Local instance of all multiplexer and de-multiplexer pertaining to application task in Sys-
temC application scope.

• Global definition of select signal for each instance of multiplexer and de-multiplexer.

• Local instance of application task wrappers.
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• SystemC event associated to each application task instance.

• Local and remote FIFO channels.

• Temporary local FIFO channels (with prefix tmp_ch) for connecting multiplexer and de-
multiplexer to the application task wrapper port.

The sc_application constructor creates and initializes all the instance of FIFOs and allocates
appropriate size (based on specification in processNetwork.xml). Post the initialization phase of
FIFO and task wrapper instances, the binding information between the channel port and task
Mux/De-mux port and vice-versa are defined. The port binding information can be defined for
either of the following categories:

• Binding between task wrapper to channel and vice versa (non-cloned and non-migrated).

• Binding between task wrapper to temporary channel (tmp_ch) and vice versa (cloned
and/or migrated).

• Binding between multiplexer/de-multiplexer and channel and vice versa (non-cloned and
non-migrated).

• Binding between multiplexer/de-multiplexer and channel and vice versa (cloned and/or
migrated).

• Binding between multiplexer/de-multiplexer and temporary channel and vice versa (cloned
and/or migrated).

As explained in previous section, each wrapper instance contain pointers to port-based
multiplexers/de-multiplexers. These pointers are initialized to its respective instance of
multiplexer/de-multiplexer instance within the scope of sc_application. The select signal is com-
puted and assigned to corresponding multiplexer/de-multiplexer instance at run-time. These val-
ues are then used in the task wrapper scope during functional calls to DOL_read/DOL_write,
Figure 5.3.

In addition to the application task specific instance creation and initialization, the sc_application
initiated creation and initialization for controller slave residing in the local scope. For each
application task instance created in the scope, the sc_application creates a SystemC thread
(SC_THREAD). Within the scope of sc_application, two special SystemC threads are also cre-
ated. The first thread is named thread_init. This thread is called only once and is used to call the
initialize function for all application task wrappers. The second thread is the scheduler thread
(thread_sched). The scheduler thread processes the Event List and schedules the task/process
wrapper threads.

The slave controller thread when scheduled calls the fire() routine to receive the control message
from the master controller. The slave controller thread calls a routine, control_msg_handler,
(defined in the scope of sc_application) to parse the protocol fields and process the control
message. The slave controller thread takes appropriate actions (described below) based in the
message fields. All these actions are governed by the

• Enable/disable a task by setting/unsetting the value of _detach flag.

• Construction of select signal using next state of the system and/or multiplexer/de-
multiplexer clone information for task-specific multiplexer and/or de-multiplexer.

• Appropriate task wrapper (extracted from MuxTaskList/DemuxTaskList) function calls
based on DAL_Action.

• Addition/removal of SystemC events (task-specific) to the EventList and notifying the
scheduler thread based on DAL_Action.
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Figure 5.3: Modified DOL_read() and DOL_write() functions for DAL hdsd-visitor implement-
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The Figure 5.4 shows the abstract level flow diagram of a SystemC application with a slave
controller receiving a message from master controller.

The master controller resides also within the scope of sc_application (file scd_sim0.cpp in this
implementation). The process wrapper instance creation/initialization, FIFO channel creation
and port binding are performed in the same way as other sc_applications. But unlike others, this
sc_application does not encapsulate any thread corresponding to an application task/process
wrapper. The encapsulated threads are described below:

• thread_init: The function of this thread is to call the initialize routine of the master
controller wrapper.

• thread_sched: This thread is responsible for the scheduling the thread_CTRL_Master
based in events present in the Event List.

• thread_CTRL_Master: This master controller thread calls the fire routine of the master
controller wrapper.
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Experimental Result

This chapter deals with the case scenarios and experiments performed for a variety of specification.
The chapter is broadly classified in two section. The first section deals with simple process
networks like producer-actor-consumer. The next section deals with the complex process networks
in addition to inclusion of simple process networks.

6.1 Simple Applications

The reason behind a simple application scenario is to observe the DAL framework behavior in
detail. This can be used as a basis to include complex and real-world application in the example
scenarios. The simple application scenarios are shown in the Table 6.1. The Table contains a
set of application scenarios. The statistics shown in Table 6.1 contain information about the
processes, channel and connections for application scenarios without State-based task migration.

Table 6.1: Simple Process Networks for DAL middle-ware

Sl. No. App_Prefix Processes/Tasks Channels Connections

1

APP1
Generator C1 g-ch; ch-s
Square C2 s-ch; ch-c

Consumer

APP2
Generator C1 g-ch; ch-s
Square2 C2 s-ch; ch-c
Consumer

In case of application information with FSM state-base remapping/migration, the details are
shown in Table 6.2. The user can specify a wide range of mapping specification with FSM
state-based task migration. The example shown here is the case scenario with all the processes
of application APP1 is mapped with different configuration or migrated to a different processor
based on FSM state. The mapping file generated (either manual creation or based in performance
analysis and DSE), can have various variants of task migrations. The experiment was carried
out for a large sub-set of the cases. The result shown here is the worst case scenario in which
all the processes in an application are migrated to different cores based in active states of the
application.

The Figure 6.1 shows the variation in the FSM state-transition processing time for the example

— 69 —



CHAPTER 6. EXPERIMENTAL RESULT

Table 6.2: Simple Process Networks for DAL middle-ware with Migrated Tasks

Sl. No. App_Prefix Processes/Tasks Channels Connections

1

APP1

Generator C1 g-ch; ch-s
Square C2 s-ch; ch-c

Consumer C1_Mig g-ch_Mig; ch-s_Mig
Generator_Mig

APP2

Generator C1 g-ch; ch-s
Square2 C2 s-ch; ch-c
Consumer C1_Mig g-ch_Mig; ch-s_Mig

Square2_Mig C2_Mig s-ch_Mig; ch-c_Mig

scenarios in Table 6.1 and from Table 6.2. The dashed horizontal lines in the plot correspond to
the average transition time of each example scenarios.

6.2 Complex Applications

This section enlists a combination of complex applications like FFT based application, application
with layers of Filters, MPEG-2 decoder and NoC Simulator along with simple application as
mentioned in Section 6.1.

Table 6.3: Scenario and corresponding Application Name

Example Application Name
1 Producer-Square-Consumer; Producer-Multiplier-Consumer
2 Producer-Square-Consumer; Producer-Multiplier-Consumer;

NoC Simulator
3 Producer-Square-Consumer; Producer-Multiplier-Consumer;

FFT
4 Producer-Square-Consumer; Producer-Multiplier-Consumer;

FFT; Filter Application
5 Producer-Square-Consumer; Producer-Multiplier-Consumer;

FFT; Filter Application; MPEG
6 Producer-Square-Consumer; Producer-Multiplier-Consumer;

FFT; Filter Application; MPEG; NoC Simulator

The Table 6.4 lists the process name, connections and channels specified in the process network
file. Using this information, the DAL database is created and updated with information related
to cloned and migrated Task. The data shown in Table 6.5 contains all the numerical values of the
processes, channels and connections created for successful simulations. The statistics mentioned
in the Table does not contain the information about the local FIFO channels created to bind the
multiplexer or de-multiplexer to the process wrapper. The application names are mentioned in
Table 6.3. These applications are adopted from DOL Framework and examples associated with
DOL. The details of the application can be obtained from [53, 54]. The details of semantics used
for defining the XML files related to process network, architecture and mapping can be obtained
from the report [55].

6.3 FSM State Transition Time

The FSM state transition time is the time taken by the system to process a set of action pertaining
to a system transition from current FSM state to next FSM state. The transition time tTr can
be mathematically computed using Equation 6.1.
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Table 6.4: Complex Process Networks for DAL middle-ware

Sl. No. App_Prefix Process Channel Connection

1

APP1

Generator C1 g-ch; ch-s
Square C2 s-ch; ch-c

Consumer

APP2

Generator C1 g-ch; ch-s
Square2 C2 s-ch; ch-c
Consumer

APP3

Generator ipCh_0 ip_Con_0; L1Con_A_0
ipCh_1 ip_Con_1; L1Con_A_1

fft2_0_0 ipCh_2 ip_Con_2; L1Con_B_0
ipCh_3 ip_Con_3; L1Con_B_1

fft2_0_1 opCh_0 op_Con_0; lastLCon_A_0
opCh_1 op_Con_1; lastLCon_A_1

fft2_1_0 opCh_2 op_Con_2; lastLCon_B_0
opCh_3 op_Con_3; lastLCon_B_1

fft2_1_1 bCh_0_0 LkCon_A_1_0; FFTCon_A_0_0
bCh_0_1 LkCon_B_1_0; FFTCon_A_0_1

Consumer bCh_0_2 LkCon_A_1_1; FFTCon_B_0_0
bCh_0_3 LkCon_B_1_1; FFTCon_B_0_1

2

APP1

Generator C1 g-ch; ch-s
Square C2 s-ch; ch-c

Consumer

APP2

Generator C1 g-ch; ch-s
Square2 C2 s-ch; ch-c
Consumer

APP3

Generator ipCh_0 ip_Con_0; L1Con_A_0
ipCh_1 ip_Con_1; L1Con_A_1

fft2_0_0 ipCh_2 ip_Con_2; L1Con_B_0
ipCh_3 ip_Con_3; L1Con_B_1

fft2_0_1 opCh_0 op_Con_0; lastLCon_A_0
opCh_1 op_Con_1; lastLCon_A_1

fft2_1_0 opCh_2 op_Con_2; lastLCon_B_0
opCh_3 op_Con_3; lastLCon_B_1

fft2_1_1 bCh_0_0 LkCon_A_1_0; FFTCon_A_0_0
bCh_0_1 LkCon_B_1_0; FFTCon_A_0_1

Consumer bCh_0_2 LkCon_A_1_1; FFTCon_B_0_0
bCh_0_3 LkCon_B_1_1; FFTCon_B_0_1

APP4

ipCh ipCon; fConIn
Producer opCh opCon; fConOut
filter_0 fChA_0 fOutA_InA1_0; fOutA_InA2_0
filter_1 fChA_1 fOutA_InA1_1; fOutA_InA2_1
filter_2 fChB_0 fOutB_InB1_0; fOutB_InB2_0

Consumer fChB_1 fOutB_InB1_1; fOutB_InB2_1
fChB_1 sConA1; sConA2

Table 6.5: Application Scenarios and related Statistics

Example States Processes Channels Connections Processors Binding
1 5 21 32 64 5 21
2 8 59 120 240 5 59
3 8 33 84 168 5 33
4 12 41 108 216 5 41
5 16 53 124 248 5 53
6 16 97 220 440 5 97
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tTr =

ActN∑
i=1

[tPktActi + tPktSndRcvi + tPktparsei + tPkthandlingi ]

+

ActN∑
i=1

[t̂Acki + t̂AckSndRcvi + t̂Ackprocessi ]

(6.1)

In the Equation 6.1, the value is computed for each instance of FSM action as specified in the
FSM specification. Once the transition identifier is obtained from the list of events, the master
controller calls an appropriated DAL_Action_[Application Prefix]_[Action]() and constructs a
control packet. The time take to construct a control packet is tPktActi

. This packet is sent to the
slave controller using DOL_write(). The packet is received by the slave controller. The packet
travel time is referred to by tpktSndRcvi

. The packet is then parsed in the SystemC scope and
appropriate action is taken based in the packet content (tPkthandling).

The slave controller sends a acknowledgement message to the controller. The slave controller
constructs a control message in t̂Acki . The flight time of the acknowledgement message is denoted
by t̂AckSndRcvi

. On reception, the master controller handles the Acknowledgement message (t̂Ackprocessi)
and proceeds to the next event processing.

Other than the above mentioned factors, the Transition time is also governed by

• The CPU load of the host system/sever on which the simulation is running.

• The status of cache/main memory of the host system/sever also plays a major role. As
the memory overhead pertaining to each the application process wrapper is quite high, the
control action taken at processor/simulator level might lead to cache miss or page fault.
This increase the value of tPkthandlingi

considerably.

• The FSM state transition time is also governed by the granularity of application. If the
application is fine grained, there are more number of process with lesser computation, hence
more time is consumed in creating the control packet, parsing it and processing it. This
is evident in Example3 and Example7 in Figure 6.1. The NoC simulator is a fine grained
KPN application and hence the transition time peaks higher and average is much higher
than other examples (Figure 6.1 and Table 6.6).

Table 6.6: Average Event Processing Time

Example Number Average State Transition Time
(seconds)

1 0.0066230
2 0.0074230
3 0.0064343
4 0.0052199
5 0.0052314
6 0.0105790

6.4 FIFO Performance

In DAL the data flow, as seen in Figure 5.3, from the DAL_write() to DAL_read() is changed
considerably with respect to DOL. The end-to-end packet flight time has increased due to run-
time DAL checks, port and channel selection procedures (here the end-to-end flight time refer to
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the duration of time taken by source process to write data using DAL_write() and the destination
process to read the data using DAL_read()).

The Table 6.7 shows the average FIFO performance (end-to-end FIFO performance time) of DOL
and DAL Framework for both local FIFO and remote FIFO (supported by SCD). As observed,
the local FIFO access take four times more in DAL than in DOL Framework. This is due to
inclusion of multiplexer and de-multiplexer and related processing time.

Table 6.7: Local and Remote FIFO Performance (Average)

FIFO Type DOL DAL
Local FIFO 1.2 µsec 5 µsec
Remote FIFO 300 µsec 450 µsec

The average flight/travel time of a packet over a remote FIFO is approximately half times the
value as observed in DOL Framework. The values shown here is the average of the mean value
obtained in different conditions. These value may change based on the simulation set-up (like
the compile time optimizations) and underlying OS and Hardware configuration. In general the
value of packet fight time for remote FIFO is governed by following factors:

• Network load.

• System/server load on the network interface.

• Size of data written and read by the application process.

• Presence of right page in the main memory.
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7
Conclusion and Future Works

7.1 Conclusion

This master thesis proposed the specification and implementation of dynamism with respect to
multiple co-existing and co-executing applications using a Distributed Application Layer frame-
work for a MPSoC platform namely EURETILE. The initial work started with the creation of a
application scenarios i.e. collection of multiple application created with KPN model of compu-
tation. The application scenario creation is initiated and managed by the the user programmer.
The user programmer also specifies the run-time behavior of the application using a series of
events and a finite state machine to express the application dynamism using control APIs like
START, STOP, PAUSE or RESUME.

All these specifications are expressed in the XML format and parsed by the DAL framework. The
DAL framework also adds a list of controller tasks namely master controller and slave controller
to implement event drive application control using the user defined FSM specification. As the
framework is specifically designed for a MPSoC platform, a manually generated mapping file is
used to geographically distributed application processes onto the different processors∗. The DAL
framework support state based mapping of applications. This feature is provided such that the
presence of multiple applications and event driven system behavior should not be compromised
with system performance. The DAL framework also introduced the concept of application based
fault tolerance. To incorporate all these specification-related changes, the data-model of the DOL
was extended with new fields and elements.

The final simulation environment was developed on top of SystemC with a added library to
support distributed execution of SystemC applications (SystemC distributed library). At the code
generation level, the selection of static remapping and double redundancy based fault tolerance
was governed by the limitation in SystemC standard and implementation. The SystemC standard
does not allow dynamic mapping of a sc_interface like a FIFO channel to a sc_port. Due to this,
the channels and processes were duplicated. At run-time, the selection of an appropriate channel
for sending and receiving data was managed by the addition of multiplexer and demultiplexer
block and a controller generated select signal. Addition of these blocks or layers increase the
overall simulation processing time.

∗The term processor is used in this thesis work is in accordance to the architectural specification schema used
in the framework. The schema supports the concept of specifying a processor as a functional simulation NETSIM
and used IP address and port address of the server
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In term of event driven simulation, the master controller maintained the current state of the
system. Based on some external event (manually fed to the master controller using a series of
event names), the master initiates the state transition. The master initiates creation of control
messages for a given application and sends to all the slave controllers residing on the processor
with at least one mapped process related to that application. The master controller waits for
an acknowledgement from the slave controller. The slave receives the message and calls the
application process wrapper functions and creates an appropriate select signal for multiplexer
and demultiplexer. After processing the packet, the slave controller creates and sends a ac-
knowledgement packet to the master controller. The system current state information is then
updated.

In the case of emulated fault scenario, the master controller uses the statically generated DAL
data model and make control decision on which processor or which application processes to active.
All these changes were tested with many applications and varying combination of application (ap-
plication scenario) at the functional simulation level. Addition of modules to support dynamism
has lead to changes in the FIFO accesses like channel selection based in select signal has altered
the performance time with respect to DOL framework. Both at local and remote FIFO level, the
average FIFO performance has increased. The increase in performance time can be justified with
the addition of run-time control of applications and fault tolerance support.

At execution level, in comparisons to the sequential implementation, the KPN based implement-
ation showed considerable speedups. This is subjected to the fact that the computation time is
greater than communicational time. In other words, the higher simulation speed-up can also be
selected by careful selection of application granularity. Nevertheless, if the computation time is
lesser than communication time, considerable amount of data is buffered at the network interface
level. As the SCD library do not provide a synchronized remote FIFO implementation, the
principle of context saving for task remapping could not be supported.

An important remark is that the framework does not address the task of creating a process net-
work out of a sequential application. This remains the task of the software engineer. improvement
This step is very important because if the load of the application is not well shared among all
processes, only a small speed-up can be achieved compared to the sequential application.

7.2 Future Works

There are several possibilities to improve and extend the current implementation. To begin with
addition of new applications to the execution framework like GSM encoding and decoding, mp3
decoding, etc for better real-world simulation even at functional level. Due to varying application
needs, the system performance can be better estimated and analyzed.

The inclusion of synchronized remote FIFO to this functional simulation platform could be done
to prevent the unnecessary buffering of data at the network interface level due to varying compu-
tational requirements of application processes. This could possibly be achieved by the incorpor-
ation of an acknowledge mechanism at the socket layer for every data packet that is forwarded
or received using read and write functions. In addition to this, each FIFO created in SystemC
should be mapped separately to a new port number. This would prevent race condition due
to multiple access as well. The addition of synchronized FIFO would also assist in the context
saving process as well. Since the origin process cannot write more data to the FIFO channel,
there is no buffering at the interface level and hence, the context of channel can be save without
any inconsistent behavior. Using this, periodic check-pointing for process context and FIFO can
be supported along with context-based task remapping.

There is still scope of optimization in some piece of implementation. This could be taken into
consideration if the code base is used as a basis for generating new run-time environments.

Due to SystemC standard limitation, the functional simulation can also be achieved by developing
a distributed simulation using Posix thread and MPI [56, 57]. This set-up could also be used
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directly over the multi-core platform from Intel i.e. Intel SCC [58]. The use of Posix thread
increases the overall simulation time due to heavy kernel processing during context switching at
thread level. On the other hand, if a similar platform is built on a real-time OS like RT Linux
or FreeRTOS, the DAL programmer can better exploit the resources like scheduling. Moreover,
the memory footprint of the final binaries will be much smaller.

The future works might also include the generation of event for State change by few selected
applications. These application can be tagged as privilege and list of event names can be provided
to privileged applications. These application can send an event to controller task or can directly
add it to a shared on-line list of events.
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A
Appendix

A.1 DOL Specification

This appendix lists a detailed DOL specification of the simple multiprocessor streaming applica-
tion shown in Fig. A.1 and the results of various design steps.

Connectivity Channel

Simulator-2 Simulator-nSimulator-1

Gen1 Sq Con1

Figure A.1: A simple Process Network and its mapping onto SCD using DOL Framework.

A.1.1 Application and System Specification

This section lists the XML specifications of the process network, the architecture, and the map-
ping of the system depicted in Fig. A.1. In addition, the C source code of an actor is shown as
well as two possibilities to visualize these specifications.

Process Network Specification

The Listing A.1 contains the a simple Process Network Specification of an application containing
a Producer, a Consumer and an Actor as a Square. The Specification shown in the Listing is in
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XML format. This acts as an input to DOL Framework.
1 <?xml version="1.0" encoding="UTF -8"?>
2 <processnetwork
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/PROCESSNETWORK"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http://www.tik.ee.ethz.ch/~ shapes/schema/PROCESSNETWORK
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/processnetwork.xsd"
7 name="producer_comsumer">
8
9 <!-- Processes -->

10 <process name="generator">
11 <port type="output" name="out"/>
12 <source type="c" location="generator.c"/>
13 </process >
14 <process name="consumer">
15 <port type="input" name="in"/>
16 <source type="c" location="consumer.c"/>
17 </process >
18 <process name="square">
19 <port type="input" name="in"/>
20 <port type="output" name="out"/>
21 <source type="c" location="square.c"/>
22 </process >
23
24 <!-- Software Channels -->
25 <sw_channel type="fifo" size="10" name="C1">
26 <port type="input" name="in"/>
27 <port type="output" name="out"/>
28 </sw_channel >
29 <sw_channel type="fifo" size="10" name="C2">
30 <port type="input" name="in"/>
31 <port type="output" name="out"/>
32 </sw_channel >
33
34 <!-- Connections -->
35 <connection name="g-c">
36 <origin name="generator"> <port name="out"/> </origin >
37 <target name="C1"> <port name="in"/> </target >
38 </connection >
39 <connection name="c-c">
40 <origin name="C2"> <port name="out"/> </origin >
41 <target name="consumer"> <port name="in"/> </target >
42 </connection >
43 <connection name="s-c">
44 <origin name="square"> <port name="out"/> </origin >
45 <target name="C2"> <port name="in"/> </target >
46 </connection >
47 <connection name="c-s">
48 <origin name="C1"> <port name="out"/> </origin >
49 <target name="square"> <port name="in"/> </target >
50 </connection >
51 </processnetwork >

Listing A.1: Process Network file specifies the structure of an application. The file includes the
process names, software channels and connection informations.

Architectural Specification

The Listing A.2 contains the an Architectural Specification of the SCD simulator. The sim1
acts like a Master and initiates all the Socket based connection with the Slaves (in SCD scope).
The Architectural Specification is also is in XML format. This acts as the second input to DOL
Framework. This is not created by the user.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <architecture
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/ARCHITECTURE"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http://www.tik.ee.ethz.ch/~ shapes/schema/
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/architecture.xsd"
7 name="architecture">
8
9 <processor name="sim1" type="NETSIM">

10 <configuration name="address" value="127.0.0.1" />
11 <configuration name="port" value="5877" />
12 <configuration name="master" value="true" />
13 </processor >
14 <processor name="sim2" type="NETSIM">
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15 <configuration name="address" value="127.0.0.1" />
16 <configuration name="port" value="5878" />
17 </processor >
18 <processor name="sim3" type="NETSIM">
19 <configuration name="address" value="127.0.0.1" />
20 <configuration name="port" value="5879" />
21 </processor >
22 <processor name="sim4" type="NETSIM">
23 <configuration name="address" value="127.0.0.1" />
24 <configuration name="port" value="5880" />
25 </processor >
26 <processor name="sim5" type="NETSIM">
27 <configuration name="address" value="127.0.0.1" />
28 <configuration name="port" value="5881" />
29 </processor >
30 </architecture >

Listing A.2: Architecture file specifies the structure of underlying hardware. The architecture
file mentioned here is specific to SystemC Distributed function simulation.

Mapping Specification

The Listing A.3 contains the Mapping Specification of Application Processes onto SCD simulator.
The Mapping file is generated using Y-chart approach (Section 2.2.3). The Mapping Specification
is also constructed using DOL Framework in XML format (uniformity in expressing the system
characteristics).

1 <?xml version="1.0" encoding="UTF -8"?>
2 <mapping
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/MAPPING"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http: //www.tik.ee.ethz.ch/~ shapes/schema/MAPPING
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/mapping.xsd"
7 name="producer_comsumer_mapping">
8
9 <binding name="generator" xsi:type="computation">

10 <process name="generator" />
11 <processor name="sim1" />
12 </binding >
13 <binding name="consumer" xsi:type="computation">
14 <process name="consumer" />
15 <processor name="sim2" />
16 </binding >
17 <binding name="square" xsi:type="computation">
18 <process name="square" />
19 <processor name="sim2" />
20 </binding >
21 </mapping >

Listing A.3: Mapping file specifies the mapping of resources onto a given hardware component.

A.2 DAL Specification

This appendix lists a detailed multi-processor applications specification with regards to DOL
adaption to EURETILE specification as DAL (as mentioned in Section 2.4. The Fig A.2 shows
a simple real world scenario with two active applications on the hardware.

A.2.1 Scenario based Applications and System Specification

This section lists the XML specifications of the FSM , the process network, the architecture
(including a master controller processor), and the mapping of the system depicted in Fig. A.2.
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Connectivity Channel

Simulator-2 Simulator-nSimulator-1

Gen1 Sq Con1 Gen2 Mult Con2

Simulator-0
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Figure A.2: Simple Application Process Networks and its mapping onto SCD using DAL Frame-
work.

Process Network Specification

The Listing A.4 contains the a Process Network Specification of a scenario consisting of two
Applications. The Applications are of the structure a Producer, a Consumer and connected
by an Actor in between. The Specification shown in the Listing is generated after merging the
Process Network of two Applications namely APP1 and APP2. The merged XML file is one of
the four input to DAL Framework.

During execution, the merged Application Process Network is merged with Control Process Net-
work (Section A.4).

1 <?xml version="1.0" encoding="UTF -8"?>
2 <processnetwork
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/PROCESSNETWORK"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http://www.tik.ee.ethz.ch/~ shapes/schema/PROCESSNETWORK
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/processnetwork.xsd" name="ex1">
7
8 <!-- APPICATION 1 -->
9 <!-- processes -->

10 <process name="APP1_generator">
11 <port type="output" name="out"/>
12 <source type="c" location="generator.c"/>
13 </process >
14 <process name="APP1_consumer">
15 <port type="input" name="in"/>
16 <source type="c" location="consumer.c"/>
17 </process >
18 <process name="APP1_square">
19 <port type="input" name="in"/>
20 <port type="output" name="out"/>
21 <source type="c" location="square.c"/>
22 </process >
23
24 <!-- sw_channels -->
25 <sw_channel type="fifo" size="10" name="APP1_C1">
26 <port type="input" name="in"/>
27 <port type="output" name="out"/>
28 </sw_channel >
29 <sw_channel type="fifo" size="10" name="APP1_C2">
30 <port type="input" name="in"/>
31 <port type="output" name="out"/>
32 </sw_channel >
33
34 <!-- connections -->
35 <connection name="APP1_g -c">
36 <origin name="APP1_generator"> <port name="out"/> </origin >
37 <target name="APP1_C1"> <port name="in"/> </target >
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38 </connection >
39 <connection name="APP1_c -c">
40 <origin name="APP1_C2"> <port name="out"/> </origin >
41 <target name="APP1_consumer"> <port name="in"/> </target >
42 </connection >
43 <connection name="APP1_s -c">
44 <origin name="APP1_square"> <port name="out"/> </origin >
45 <target name="APP1_C2"> <port name="in"/> </target >
46 </connection >
47 <connection name="APP1_c -s">
48 <origin name="APP1_C1"> <port name="out"/> </origin >
49 <target name="APP1_square"> <port name="in"/> </target >
50 </connection >
51
52 <!-- APPLICATION 2 -->
53 <!-- processes -->
54 <process name="APP2_generator">
55 <port type="output" name="out"/>
56 <source type="c" location="generator2.c"/>
57 </process >
58 <process name="APP2_consumer">
59 <port type="input" name="in"/>
60 <source type="c" location="consumer2.c"/>
61 </process >
62 <process name="APP2_multiplier">
63 <port type="input" name="in"/>
64 <port type="output" name="out"/>
65 <source type="c" location="multiplier2.c"/>
66 </process >
67
68 <!-- sw_channels -->
69 <sw_channel type="fifo" size="10" name="APP2_C1">
70 <port type="input" name="in"/>
71 <port type="output" name="out"/>
72 </sw_channel >
73 <sw_channel type="fifo" size="10" name="APP2_C2">
74 <port type="input" name="in"/>
75 <port type="output" name="out"/>
76 </sw_channel >
77
78 <!-- connections -->
79 <connection name="APP2_g -c">
80 <origin name="APP2_generator"> <port name="out"/> </origin >
81 <target name="APP2_C1"> <port name="in"/> </target >
82 </connection >
83 <connection name="APP2_c -c">
84 <origin name="APP2_C2"> <port name="out"/> </origin >
85 <target name="APP2_consumer"> <port name="in"/> </target >
86 </connection >
87 <connection name="APP2_s -c">
88 <origin name="APP2_multiplier"> <port name="out"/> </origin >
89 <target name="APP2_C2"> <port name="in"/> </target >
90 </connection >
91 <connection name="APP2_c -s">
92 <origin name="APP2_C1"> <port name="out"/> </origin >
93 <target name="APP2_multiplier"> <port name="in"/> </target >
94 </connection >
95 </processnetwork >

Listing A.4: Process Network file specifies the structure of two distinct applications. The file
includes the application specific process names, software channels and connection informations.

Controller Process Specification

The Listing A.5 specifies the controller processes expressed in the XML format. This pre-created
and user need not hand compile this data. Each name tag of controller process, controller channels
and connections follow the nomenclature.

1 <process name="CTRL_Master" basename="CTRL_Master">
2 <port name="in_0" type="input"/>
3 <port name="out_0" type="output"/>
4 <port name="in_1" type="input"/>
5 <port name="out_1" type="output"/>
6 <source location="ctrl_master.c" type="c"/>
7 </process >
8
9 <process name="CTRL_Slave_0" basename="CTRL_Slave_0">

10 <port name="in" type="input"/>

— 85 —



APPENDIX A. APPENDIX

11 <port name="out" type="output"/>
12 <source location="" type="c"/>
13 </process >
14 <process name="CTRL_Slave_1" basename="CTRL_Slave_1">
15 <port name="in" type="input"/>
16 <port name="out" type="output"/>
17 <source location="" type="c"/>
18 </process >
19
20 <sw_channel name="CTRL_Master_Slave_0_0" type="fifo" size="2056">
21 <port name="in" type="input"/>
22 <port name="out" type="output"/>
23 </sw_channel >
24 <sw_channel name="CTRL_Master_Slave_0_1" type="fifo" size="2056">
25 <port name="in" type="input"/>
26 <port name="out" type="output"/>
27 </sw_channel >
28 <sw_channel name="CTRL_Master_Slave_1_0" type="fifo" size="2056">
29 <port name="in" type="input"/>
30 <port name="out" type="output"/>
31 </sw_channel >
32 <sw_channel name="CTRL_Master_Slave_1_1" type="fifo" size="2056">
33 <port name="in" type="input"/>
34 <port name="out" type="output"/>
35 </sw_channel >
36
37 <!-- Master Connections Start -->
38 <connection name="CTRL_Min_0">
39 <origin name="CTRL_Master_Slave_0_0">
40 <port name="out"/>
41 </origin >
42 <target name="CTRL_Master">
43 <port name="in_0"/>
44 </target >
45 </connection >
46 <connection name="CTRL_Mout_0">
47 <origin name="CTRL_Master">
48 <port name="out_0"/>
49 </origin >
50 <target name="CTRL_Master_Slave_0_1">
51 <port name="in"/>
52 </target >
53 </connection >
54 <connection name="CTRL_Min_1">
55 <origin name="CTRL_Master_Slave_1_0">
56 <port name="out"/>
57 </origin >
58 <target name="CTRL_Master">
59 <port name="in_1"/>
60 </target >
61 </connection >
62 <connection name="CTRL_Mout_1">
63 <origin name="CTRL_Master">
64 <port name="out_1"/>
65 </origin >
66 <target name="CTRL_Master_Slave_1_1">
67 <port name="in"/>
68 </target >
69 </connection >
70 <!-- Master Connections End -->
71
72 <!-- Slave Connections Start -->
73 <connection name="CTRL_S_0_in">
74 <origin name="CTRL_Master_Slave_0_1">
75 <port name="out"/>
76 </origin >
77 <target name="CTRL_Slave_0">
78 <port name="in"/>
79 </target >
80 </connection >
81 <connection name="CTRL_S_0_out">
82 <origin name="CTRL_Slave_0">
83 <port name="out"/>
84 </origin >
85 <target name="CTRL_Master_Slave_0_0">
86 <port name="in"/>
87 </target >
88 </connection >
89 <connection name="CTRL_S_1_in">
90 <origin name="CTRL_Master_Slave_1_1">
91 <port name="out"/>
92 </origin >
93 <target name="CTRL_Slave_1">
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94 <port name="in"/>
95 </target >
96 </connection >
97 <connection name="CTRL_S_1_out">
98 <origin name="CTRL_Slave_1">
99 <port name="out"/>

100 </origin >
101 <target name="CTRL_Master_Slave_1_0">
102 <port name="in"/>
103 </target >
104 </connection >
105 <!-- Slave Connections End -->

Listing A.5: Controller process specification file. This file is appended to application xml file.

Finite State Machine Specification

The Listing A.6 specifies the Finite State Machine behavior of the Applications for a given set of
events stream/transition identifier.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <fsm
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/FSM"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http: //www.tik.ee.ethz.ch/~ shapes/schema/FSM
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/fsm.xsd"
7 name="fsm" description="fsm_example1"
8 startstate="Start" currentstate="Start">
9

10 <!-- End States -->
11 <endstate name="Finish"/>
12
13 <!-- States -->
14 <state name="Start">
15 <transition name="tr_start_1" id="tr_start_1" priority="1" newstate="State1" >
16 <action appprefix="APP1" dalaction="START"/> </transition >
17 <transition name="tr_start_2" id="tr_start_2" priority="1" newstate="State2" >
18 <action appprefix="APP2" dalaction="START"/> </transition >
19 </state >
20 <state name="State1">
21 <transition name="tr_state1_1" id="tr_state1_1" priority="1" newstate="State2" >
22 <action appprefix="APP1" dalaction="PAUSE"/>
23 <action appprefix="APP2" dalaction="START"/> </transition >
24 <transition name="tr_state1_2" id="tr_state1_2" priority="1" newstate="State3" >
25 <action appprefix="APP2" dalaction="RESUME"/> </transition >
26 </state >
27 <state name="State2">
28 <transition name="tr_state2_1" id="tr_state2_1" priority="1" newstate="State1" >
29 <action appprefix="APP2" dalaction="PAUSE"/>
30 <action appprefix="APP1" dalaction="START"/> </transition >
31 <transition name="tr_state2_2" id="tr_state2_2" priority="1" newstate="State3" >
32 <action appprefix="APP1" dalaction="RESUME"/> </transition >
33 </state >
34 <state name="State3">
35 <transition name="tr_state3_1" id="tr_state3_1" priority="1" newstate="Finish" >
36 <action appprefix="APP2" dalaction="STOP"/>
37 <action appprefix="APP1" dalaction="STOP"/> </transition >
38 </state >
39 <state name="Finish"> </state>
40 </fsm>

Listing A.6: FSM file specifies the scenario based activity of the applications residing on the
underlying hardware. State transition is triggered by event (one-to-one mapping between events
and transitions).

Mapping Specification

The Listing A.7 contains the Mapping Specification of each Application Processes onto series of
SCD simulators. The Mapping file is generated using ψ-chart approach (Section 2.4.3). During
DAL Framework execution, the Application Mapping Specification is appended with Control
Application Mapping information (Listing A.8). This step is invisible to DAL user.
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1 <?xml version="1.0" encoding="UTF -8"?>
2 <mapping
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/MAPPING"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http://www.tik.ee.ethz.ch/~ shapes/schema/MAPPING
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/mapping.xsd" name="ex_mapping">
7
8 <binding name="APP1_generator" xsi:type="computation" state="State1_State3">
9 <process name="APP1_generator" />

10 <processor name="sim1" />
11 </binding >
12 <binding name="APP1_consumer" xsi:type="computation" state="State1_State3">
13 <process name="APP1_consumer" />
14 <processor name="sim2" />
15 </binding >
16 <binding name="APP1_square" xsi:type="computation" state="State1_State3">
17 <process name="APP1_square" />
18 <processor name="sim2" />
19 </binding >
20
21 <binding name="APP2_consumer" xsi:type="computation" state="State2_State3">
22 <process name="APP2_consumer" />
23 <processor name="sim1" />
24 </binding >
25 <binding name="APP2_generator" xsi:type="computation" state="State2_State3">
26 <process name="APP2_generator" />
27 <processor name="sim2" />
28 </binding >
29 <binding name="APP2_multiplier" xsi:type="computation" state="State2_State3">
30 <process name="APP2_multiplier" />
31 <processor name="sim3" />
32 </binding >
33 </mapping >

Listing A.7: DAL Mapping file for Application tasks along with the Processor and active State
information.

Controller Specification

As the Master and Slave Controllers are also treated as Application Process in DAL Framework,
there exist a Controller Process Network and a Controller Mapping Specification. These Specific-
ation can be created once statically then reused by the DAL user without the prior knowledge.
The Listing A.8 contains the mapping information of the Controller Application.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <mapping
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/MAPPING"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http://www.tik.ee.ethz.ch/~ shapes/schema/MAPPING
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/mapping.xsd" name="ctrl_mapping">
7
8 <!-- Master Controller in sim0 -->
9 <binding name="CTRL_Master" xsi:type="computation">

10 <process name="CTRL_Master" />
11 <processor name="sim0" />
12 </binding >
13
14 <!-- Slave process named as CTRL_slave_1 -->
15 <binding name="CTRL_Slave_0" xsi:type="computation">
16 <process name="CTRL_Slave_0" />
17 <processor name="sim1"/>
18 </binding >
19 <binding name="CTRL_Slave_1" xsi:type="computation">
20 <process name="CTRL_Slave_1" />
21 <processor name="sim2"/>
22 </binding >
23 <binding name="CTRL_Slave_2" xsi:type="computation">
24 <process name="CTRL_Slave_2" />
25 <processor name="sim3"/>
26 </binding >
27 <binding name="CTRL_Slave_3" xsi:type="computation">
28 <process name="CTRL_Slave_3" />
29 <processor name="sim4"/>
30 </binding >
31 <binding name="CTRL_Slave_4" xsi:type="computation">
32 <process name="CTRL_Slave_4" />
33 <processor name="sim5"/>
34 </binding >
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35 </mapping >

Listing A.8: DAL Mapping file for Controllers.

Mapping Specification with State-based Task Migration

A major change in the Mapping Specification in DAL Framework is that an Application Process
can be mapped to multiple processor based on mapping optimality. Due to this, each instance of
the Application Process with more than one occurrence is identified uniquely. The first mapped
instance of an Application can be termed as original process mapping. Forthcoming instance of
the application process can be termed as Migrated processes. The Application Process Name
and Binding Name can be appended with a string Migrated[number]. The Listing A.9 provides a
simple example of Mapping Specification for State based Task Migration.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <mapping
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/MAPPING"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http: //www.tik.ee.ethz.ch/~ shapes/schema/MAPPING
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/mapping.xsd" name="dal_mapping">
7
8 <binding name="APP1_generator" xsi:type="computation" state="State1">
9 <process name="APP1_generator" />

10 <processor name="sim1" />
11 </binding >
12 <binding name="APP1_consumer" xsi:type="computation" state="State1_State3">
13 <process name="APP1_consumer" />
14 <processor name="sim2" />
15 </binding >
16 <binding name="APP1_square" xsi:type="computation" state="State1_State3">
17 <process name="APP1_square" />
18 <processor name="sim2" />
19 </binding >
20
21 <binding name="APP2_consumer" xsi:type="computation" state="State2_State3">
22 <process name="APP2_consumer" />
23 <processor name="sim1" />
24 </binding >
25 <binding name="APP2_generator" xsi:type="computation" state="State2_State3">
26 <process name="APP2_generator" />
27 <processor name="sim2" />
28 </binding >
29 <binding name="APP2_multiplier" xsi:type="computation" state="State2_State3">
30 <process name="APP2_multiplier" />
31 <processor name="sim3" />
32 </binding >
33
34 <binding name="APP1_generator_Migrate0" xsi:type="computation" state="State3">
35 <process name="APP1_generator_Migrate0" />
36 <processor name="sim3" />
37 </binding >
38 </mapping >

Listing A.9: DAL Mapping file defining active State of an application task along with the
Processor. Based in optimal state based mapping criteria, a migrated task can exist on different
cores

A.3 DAL Naming Convention/Nomenclature

This subsection highlights the naming convention followed for database update and code gener-
ation for the DAL middle-ware visitor hdsd.

As the DAL is required to support and control execution of multiple application at run-time,
each application should be uniquely identified with an Application Prefix. The Application prefix
being a string should be kept small. The naming convention followed in this work in context to
Application Prefix is APP[number]. For instance, the example scenarios shown in Table 6.1
contain a column for Application Prefix.
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FSM Specification

The nomenclature followed for FSM is illustrated below:

• State name should not have any special character like underscore. The preferred State
name would be similar to State1, i.e. a string appended with a number or just a unique
string. The string should only be composed of alphabets.

• The finite state machine should begin with a Start state and end with a Finish state.

• The appprefix in Action should contain the Application prefix as per the naming convention
mentioned before.

• The DAL action specified should be either of these:

– START

– STOP

– PAUSE

– RESUME.

• All the alphabets in string assigned to dalaction should be capitalized.

Process Network Specification

The structure of Process Network in DAL is same as DOL to allow interoperability. However,
few non-required fields have been added to support DAL features on specific visitor. In addition
to these elements, the following naming convention is followed for DAL middle-ware.

• The Process Name and Basename should always be prefixed with a Application Prefix.

• The Name and Basename corresponding to Channels and Connections should also be pre-
fixed with the Application Prefix.

Architecture Specification

• A Processor can be defined as a string followed by a number.

• In this implementation, the Processor sim0 is assigned as Master (Section 2.3.2).

• Other Processors sim[number] specified in Architecture are Slaves (in SCD terms Section
2.3.2 and Figure 2.5). The value of number can be any positive integer greater than zero.

• The Clone Slave Processors are specified using sim[number]_clone.

Mapping Specification

The structure of Mapping Specification in DAL contains addition information on top of Map
structure as in DOL. The new fields are optional and hence supports interoperability with DOL
Framework.

• The computational binding information should be contains name string with an Application
Prefix.

• The computational binding includes Active State information of the Process. Multiple
active state name should be separated by special character underscore. For instance,
State1_State3_State4.
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• The process/task with multiple copies due to State-based Task Migration should be suffixed
with the string _Migrate[number]. The number denoted the number of times the task can
be migrated. If there is only one migrated task, the number can be omitted from the suffix.
The same goes with the binding name as well.

• The clone process/task created to support fault tolerance requirements should be created
with name prefixed with a string Clone[number]_.

• In case of both Clone and Task Migration, the process name should be illustrated as
Clone[number1]_[App_Prefix]_[Process Name]_Migrate[number2].

• If iteration is used to define multiple copies of a process, the task migration for such process
(base process) is only possible if all the iterations are migrated.

Controller Specification

• The value assigned to Name for Controller Process (either Master or Slave), Channel and
Connection should always be begin with CTRL_.

• The master Controller is assigned a name CTRL_Master. The Slaves are identified by
CTRL_Slave_[number]. The range of value of number is from zero to any higher positive
integer value.

New Channel/Connection Specification

The following clauses are applicable to Channel ch connecting a source process and a destination
process. The con1, con2 specify the Connections between source process to channel and channel
to destination process respectively.

• The channel and connections are named as tmp_ch, tmp_con1 and tmp_con2 respectively,
if destination process is a clone of the original process.

• The channel and connections are named as tmp_Clone[number]_ch,
tmp_Clone[number]_con1 and tmp_Clone[number]_con2 respectively, if source process
is a clone of the original process.

• The channel and connections are named as Clone[number]_ch, Clone[number]_con1 and
Clone[number]_con2 respectively, if both source process and destination process are clones
of the original processes.

• The channel and connections are named as ch_Migrate[number], con1_Migrate[number]
and con2_Migrate[number] respectively, if either source process or destination process is
required to be migrated to a different processor.

• The channel is
named as tmp_ch_Migrate[number2] or tmp_Clone[number1]_ch_Migrate[number2] or
Clone[number1]_ch_Migrate[number2] the clone for a migrated process is also required (as
per map.xml). The same pattern is followed for naming the Connections in this case.

Multiplexer and De-multiplexer

• The Multiplexer is defined per port in the process wrapper. The naming convention followed
for multiplexer is Mux_[Input Port Name]_[Process Name]_wrapper.

• The naming convention for De-multiplexer followed in this implementation is De-
mux_[Output Port Name]_[Process Name]_wrapper.
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• The input Ports defined in the Multiplexer block are named as MUX_INPORT_[State
Name]. The output Port is expressed as MUX_OUTPORT. In case of fault tolerance
support, the Multiplexer block contain the input port for receiving data from clone source.
These ports are named as MUX_INPORT_Clone_[State Name].

• The De-multiplexer block includes a series of output Ports named as DE-
MUX_OUTPORT_[State Name]. The input Port receiving data from process wrapper
instance is expressed as DEMUX_INPORT. Like the Multiplexer block, the De-multiplexer
block also contains the output Ports for receiving data from clone sources. These ports are
addressed as DEMUX_OUTPORT_Clone_[State Name].

• Each Multiplexer and De-multiplexer is associated with a read-write function. These func-
tions are defined in the process
wrapper and are named as mux_read_write_[Input Port]_[Process Name]_wrapper() and
demux_read_write_[Output Port]_[Process Name]_wrapper() respectively.

• The connection
between the Multiplexer/De-multiplexer and Process Wrapper instance is handled by a
local FIFO named as tmp_ch_[mux/demux]_[PortName]_for_[ProcessName].

Control Message Creation

• The Flag field in control message denote the DAL Actions. In message it is decoded to
numeric value. The value 0x1000 signifies START. STOP is represented by 0x0100, PAUSE
by 0x0010 and RESUME by 0x0001.

• The control message contain fields like mux_task_name and demux_task_name to
store the list of task name for which select signal have be constructed at Slave
controller. The task names are concatenated to a single string; for instance
APP1_gen$APP1_act1$APP1_act5. Two task name are separated by a special character
$.

A.4 Execution Steps

This section deals with the steps followed for execution for a given scenarios.

Step 1:

• Select the applications to be added in the application scenario.

• Copy the source code of each application process in the source folder of the Ex-
ample/Example[number] directory.

Step 2:

• Create the Process Network for the each Application and specify using XML.

• Merge all Process Network manually or use the Merge functionality in DAL Framework to
merge these XML files into one. Note all the name should be unique especially the name
of Iterators and Variables.
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Step 3:

• Create the a file containing Architectural Specification as a XML file.

• Check the XML file to contains a processor as a designated Master.

Step 4:

• Create the a file containing Architectural Specification (remote simulators) as a XML file.

• Check the XML file to contains a processor as a designated Master.

Step 5:

• Create the a file containing Mapping Specification of Applications onto simulators in a
XML file.

• Create the XML file in accordance to the Application Specification (specially in accordance
to number of iterated processes or channels or connections). Refer to examples created for
assistance. The mapping file created in examples is referred to as map2.xml.

Step 6:

• Compile the DAL code. The current directory is the DALPATH.

– ant -f build.xml compile

• The previous version of compiled DAL code can be cleaned using the following command.

– ant -f build.xml clean

Step 7:

• Execute the Linux Shell script pre_compile_[Example Number].sh from the DALPATH.
Update the pathname used in the pre_compile_[Example Number].sh script before using
it.

• The shell script clears current pn.xml and map_2.xml and replaces it with file without
Controller Process Network Information and Mapping Information.

Step 8:

• Change the current working directory to cd ./build/bin/main

• Generate the source code of the remote simulators.

– ant -f runexample.xml -Dnumber=[Example Number]

• This step performs following steps:

– Merges the User-specified Process Network of Applications with Controller Process
Network.

– Merges the Application Process Mapping with Controller Process Mapping.
– Validates the specifications and generate DOT files to visualize the Mapping.
– Generates the source code of the Remote Simulators/Processors as per Process Net-

work, FSM, Architectural and Mapping Specification.
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Step 9:

• Change the current working directory using cd ./example[Example Number]/systemcd/src/.

• Compile the simulator code using Makefile. Execute make all on the console.

Step 10:

• Copy the simulator executable to a directory on its corresponding remote machine (as per
architecture.xml).

• Open a console on the remote machine and execute the simulator.

Step 11:

• In case recompilation is required for simulator code generation, start from Step 7 A.4.

• In case recompilation is required for DAL, start the execution phase from Step 6 A.4..
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On-line DAL Example

B.1 DAL Specification

This chapter lists a detailed DAL specification of the two simple KPN application shown in Fig.
B.1 mapped onto a 2-core MPSoC simulator.

B.1.1 Application and System Specification

This section lists the XML specifications of the FSM , process networks, architecture, and map-
ping for example scenario in Figure B.1.

FSM Specification

The Listing B.1 specifies the Finite State Machine behavior of the Applications for a given set of
events stream/transition identifier.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <fsm
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/FSM"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http: //www.tik.ee.ethz.ch/~ shapes/schema/FSM
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/fsm.xsd" name="fsm"
7 description="fsm_example1"
8 startstate="Start" currentstate="Start">
9

10 <!-- endstates -->
11 <endstate name="Finish"/>
12
13 <state name="Start">
14 <transition name="tr_start_1" nextstate="StateA" >
15 <event name="epsilon"/>
16 <action application="APP1" dal_action="START"/>
17 </transition >
18 </state >
19
20 <state name="StateA">
21 <transition name="tr_stateA_1" nextstate="StateB" >
22 <event name="e_a"/>
23 <action application="APP2" dal_action="START"/>
24 </transition >
25 </state >
26

— 95 —



APPENDIX B. ON-LINE DAL EXAMPLE

1 2
APP1APP1 1 2

APP1APP1

1 2
APP

2

APP
2

StateAStateA StateBStateB

Interconnect

sim2sim1

1

2

Interconnect

sim2sim1

1 2

1 2

1 2APP2APP2
1 2APP1APP1

FSMFSM

e_ae_a

e_be_b

ApplicationsApplications

Mapping(s)Mapping(s)

Start Finish

epsilonepsilon e_ce_c

Actions:
Start APP2

Actions:
Stop APP2

Actions:
Start APP1 Actions:

Stop APP1
Stop APP2

Figure B.1: Online version of DAL along with example specification.

— 96 —



B.1. DAL SPECIFICATION

27 <state name="StateB">
28 <transition name="tr_stateB_1" nextstate="StateA" >
29 <event name="e_b"/>
30 <action application="APP2" dal_action="STOP"/>
31 </transition >
32 <transition name="tr_stateB_2" nextstate="Finish" >
33 <event name="e_c" />
34 <action application="APP2" dal_action="STOP"/>
35 <action application="APP1" dal_action="STOP"/>
36 </transition >
37 </state >
38
39 <state name="Finish">
40 </state >
41 </fsm>

Listing B.1: FSM.xml.

Process Network Specification

The Listing B.2 contains the a simple process network specification of APP1.
1 <?xml version="1.0" encoding="UTF -8"?>
2 <processnetwork
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/PROCESSNETWORK"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http: //www.tik.ee.ethz.ch/~ shapes/schema/PROCESSNETWORK
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/processnetwork.xsd" name="APP1">
7
8 <!-- processes -->
9 <process name="1">

10 <port type="output" name="out"/>
11 <source type="c" location="generator.c"/>
12 </process >
13 <process name="2">
14 <port type="input" name="in"/>
15 <source type="c" location="consumer.c"/>
16 </process >
17
18 <!-- sw_channels -->
19 <sw_channel type="fifo" size="10" name="C1">
20 <port type="input" name="in"/>
21 <port type="output" name="out"/>
22 </sw_channel >
23
24 <!-- connections -->
25 <connection name="g-c">
26 <origin name="1">
27 <port name="out"/>
28 </origin >
29 <target name="C1">
30 <port name="in"/>
31 </target >
32 </connection >
33 <connection name="c-c">
34 <origin name="C1">
35 <port name="out"/>
36 </origin >
37 <target name="2">
38 <port name="in"/>
39 </target >
40 </connection >
41 </processnetwork >

Listing B.2: APP1.xml.

The Listing B.3 contains the a simple process network specification of APP2.
1 <?xml version="1.0" encoding="UTF -8"?>
2 <processnetwork
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/PROCESSNETWORK"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http: //www.tik.ee.ethz.ch/~ shapes/schema/PROCESSNETWORK
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/processnetwork.xsd" name="APP2">
7
8 <!-- processes -->
9 <process name="1">

10 <port type="output" name="out"/>
11 <source type="c" location="generator2.c"/>
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12 </process >
13 <process name="2">
14 <port type="input" name="in"/>
15 <source type="c" location="consumer2.c"/>
16 </process >
17
18 <!-- sw_channels -->
19 <sw_channel type="fifo" size="10" name="C1">
20 <port type="input" name="in"/>
21 <port type="output" name="out"/>
22 </sw_channel >
23
24 <!-- connections -->
25 <connection name="g-c">
26 <origin name="1">
27 <port name="out"/>
28 </origin >
29 <target name="C1">
30 <port name="in"/>
31 </target >
32 </connection >
33 <connection name="c-c">
34 <origin name="C1">
35 <port name="out"/>
36 </origin >
37 <target name="2">
38 <port name="in"/>
39 </target >
40 </connection >
41 </processnetwork >

Listing B.3: APP1.xml.

Architectural Specification

The Listing B.4 contains the an Architectural Specification of the SCD simulator.
1 <?xml version="1.0" encoding="UTF -8"?>
2 <architecture
3 xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/ARCHITECTURE"
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:schemaLocation="http://www.tik.ee.ethz.ch/~ shapes/schema/
6 http: //www.tik.ee.ethz.ch/~ shapes/schema/architecture.xsd"
7 name="architecture">
8
9 <processor name="sim1" type="NETSIM">

10 <configuration name="address" value="127.0.0.1" />
11 <configuration name="port" value="5877" />
12 <configuration name="master" value="true" />
13 </processor >
14 <processor name="sim2" type="NETSIM">
15 <configuration name="address" value="127.0.0.1" />
16 <configuration name="port" value="5878" />
17 </processor >
18 <processor name="sim3" type="NETSIM">
19 <configuration name="address" value="127.0.0.1" />
20 <configuration name="port" value="5879" />
21 </processor >
22 <processor name="sim4" type="NETSIM">
23 <configuration name="address" value="127.0.0.1" />
24 <configuration name="port" value="5880" />
25 </processor >
26 <processor name="sim5" type="NETSIM">
27 <configuration name="address" value="127.0.0.1" />
28 <configuration name="port" value="5881" />
29 </processor >
30 </architecture >

Listing B.4: Architecture specification

Mapping Specification

The Listing B.5 contains the Mapping Specification of Application Processes onto MPSoC archi-
tecture (SCD simulator).
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1 <?xml version="1.0" encoding="UTF -8"?>
2 <mapping xmlns="http://www.tik.ee.ethz.ch/~ shapes/schema/MAPPING"
3 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
4 xsi:schemaLocation="http: //www.tik.ee.ethz.ch/~ shapes/schema/MAPPING
5 http://www.tik.ee.ethz.ch/~ shapes/schema/mapping.xsd" name="example0_mapping">
6
7 <state name="StateA">
8 <binding name="APP1_1" xsi:type="computation">
9 <process name="APP1_1" />

10 <processor name="sim1" />
11 </binding >
12
13 <binding name="APP1_2" xsi:type="computation">
14 <process name="APP1_2" />
15 <processor name="sim1" />
16 </binding >
17 </state >
18
19 <state name="StateB">
20 <binding name="APP1_1" xsi:type="computation">
21 <process name="APP1_1" />
22 <processor name="sim1" />
23 </binding >
24 <binding name="APP1_2" xsi:type="computation">
25 <process name="APP1_2" />
26 <processor name="s \begin{subsubsection }{ Mapping Specification}im2" />
27 </binding >
28
29 <binding name="APP2_1" xsi:type="computation">
30 <process name="APP2_1" />
31 <processor name="sim1" />
32 </binding >
33 <binding name="APP2_2" xsi:type="computation">
34 <process name="APP2_2" />
35 <processor name="sim2" />
36 </binding >
37 </state >
38
39 </mapping >

Listing B.5: Mapping file

Events

The Listing B.6 contains the statically generated event stream for FSM state transition.
1 void dummy_event_gen(int index , char *event)
2 {
3 //char event [20];
4 switch(index)
5 {
6 case 10:
7 strcpy (event ,"epsilon");
8 break;
9 case 130:

10 strcpy (event , "e_a");
11 break;
12 case 250:
13 strcpy (event , "e_b");
14 break;
15 case 390:
16 strcpy (event , "e_a");
17 break;
18 case 490:
19 strcpy (event , "e_b");
20 break;
21 case 590:
22 strcpy (event , "e_a");
23 break;
24 case 690:
25 strcpy (event , "e_c");
26 break;
27 default:
28 event = 0x0;
29 break;
30 }
31 }

Listing B.6: Event stream
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The final tool chain for code generation and execution is shown in Figure B.2. For more details,
please refer to http://www.tik.ee.ethz.ch/ euretile/dal.html.

Merged.xml arch_locahost.xml fsm_app.xml map_2.xml

dal.helper.merge.PNMerge dal.helper.merge.PNMerge

dal.helper.flattener.XMLFlattener

Generator.java

flattened_pn.xml

dal.main.Main -D

dotty pn.dot

dotty

dal.main.Main -C

scd_sim<number>.cpp

make

pre-compile_<example number>.sh src/*; dol.properties; scd lib

representation SystemC binaries

APP1.xml APP2.xml . . . APPn.xml

Figure B.2: Tool chain for on-line version of DAL.
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OS Operating System
OSCI Open SystemC Initiative
RISC Reduced Instruction Set Computer
RTEMS Real-Time Executive for Multiprocessor Systems
SCD SystemC Distributed
SDF Synchronous Data Flow
SHAPES Scalable Software/Hardware Architecture Platform for Embedded Systems
SIMO Single In Multiple Out
SIMD Single-Instruction, Multiple-Data
VLIW Very Large Instruction Word
WCET Worst Case Execution Time
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