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Abstract

Delay Tolerant Networks (DTNs) are the class of networks designed to support communications

in a distributed infrastructure-less environment between a source and a destination where no end-

to-end connectivity might exist. Such networks mainly rely on the mobility of nodes for routing

where data is transferred in a store-carry-forward fashion between a source and a destination using

relays. Typical applications are sensor networks, interplanetary networks, communication between

rural areas, and user-to-user communication in harsh conditions where traditional protocols can

not perform. Whenever two nodes are in proximity (within radio range of one another), they

exchange information based on local knowledge to make forwarding decisions. In this context,

several routing protocols have been proposed to choose the best relays that would bring data closer

to the destination. In particular, Complex Network Analysis (CNA) based approaches propose

metrics that can be leveraged for such forwarding decisions. To date, DTN researchers have relied

heavily on simulations for the evaluation of such protocols, but no real-world deployment were

performed in practice. Therefore, we develop the �rst framework to implement, test and deploy

CNA based DTN routing on Android phones. In experiments we validate the framework and

compare CNA routing to other state-of-the-art social routing protocols.
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Chapter 1

Introduction

1.1 Communication Without Infrastructure

Wired and wireless networks have enabled a wide range of devices to be inter-connected over very

large distances. For example, it is possible today to connect from a cell phone to millions of

powerful servers around the world. As successful as these networks have been, they still cannot

reach everywhere. In fact, these networks rely on a set of assumptions that are not true in all

environments. One major assumption is the existence of end-to-end connectivity from source to

destination. This assumption can be easily violated due to mobility, power saving, or unreliable

networks. To this end, Delay Tolerant Networks (DTN) are the class of networks designed to

support communications in distributed infrastructure-less environments where no end- to-end con-

nectivity might exist.

.

Since the number of new and cheap wireless networking solutions has increased, opportunities

for networking in new situations have been created, and new applications that use the network

have emerged. With the existence of techniques such as WiFi ad-hoc, Bluetooth, and other radio

solutions , it has become possible to equip almost any device with wireless networking capabilities

[2]. Typical DTN applications are :

• Communication between villages or living in locations where no �xed infrastructure is avail-

able like in rural villages in India and other poor regions [5].

• Inter-planetary networks [6] which are designed to cope with the noise and delays incurred

by communication across astronomical distances.

• Accounting for occlusion of satellites and planned communication windows

• Military and disaster recovery operations, sensor networking and monitoring.

• Communication Censorship:

During the recent political uprising in Egypt, thousands of border gateway protocol routers

were shut down along with mobile services, which resulted in an almost total blackout of

communication and Internet access for citizens. The disruption of the country's mainstream

Internet and cellular networks has inspired Egyptians to seek out alternative communication

methods [1]. We believe DTN networking is a very promising candidate in similar situations.

1
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Figure 1.1: Egypt's SMS tra�c in January 2011[1]

In �gure 2.1 a snapshot of Egypt's SMS tra�c clearly shows a dramatic slowdown in the evening

of Jan. 27 that continued until at least 8 pm on Jan. 28 (as measured in universal or Greenwich

Mean Time). Two of Egypt's major operators, Mobinil and Vodafone, were fully blocked while

Etisalat seemed to be carrying a small amount of text message tra�c [1].

.

In all the scenarios exempli�ed above for a possible communication, messages have to be bu�ered

for a long time by intermediate nodes, and due to node mobility messages can be brought closer

to their destinations by exchanging data between them as nodes meet, in a store-carry-forward

fashion.

1.2 Routing Challenges

An important example of DTNs are the Pocket Switched Networks (PSN), networks constituted

by mobile devices carried around by human beings. People will be carrying around more and more

feature-rich mobile devices, giving more and more scope for networking applications. Although

mobility can help to provide some sort of connected paths between nodes when they come to

communication range, still this mobility is uncertain to happen. Therefore, It has also been

envisioned that knowledge of human movement patterns and proximity networks can be used to

solve di�erent problems that were already solved for connected networks. One of the very important

problems is routing a message from source to destination in such environment.

.

To overcome the uncertainty of future contact opportunities, many protocols are proposed to for-

ward parallel multiple copies of the same content across the whole network. From observations and

studies, node mobility and contact opportunities are not entirely random. Instead, human mobil-

ity is driven by intentions, social ties (e.g. friendship) that guide a node to a certain destination,

where the location dictates the path followed [3]. All these features lead to the existence of weak or

strong patterns. From this observation, several utility-based routing schemes tend to di�erentiate
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nodes that are more likely to deliver content or bring it closer to the destination. PRoPHET is one

of the widely accepted DTN routing protocols in this aspect. It makes routing decisions based on

delivery probability. Its calculations are based on a vector that has timestamps of last encounters,

that is updated on every node contact. Nodes not only update their contact history, they also

exchange it in order to have some transitive information. Basically, the idea behind PRoPHET

is that in a network people/nodes that met only a short while ago have a higher probability of

meeting again sooner than two nodes that haven`t met for a long time. Following this approach,

PRoPHET indirectly relies on social properties of human mobility, albeit not relying on any ex-

plicit social metrics such as node`s degree or its closeness to the destination in the network.

.

1.2.1 CNA Based Routing

Other proposed routing protocols rely on social metrics more explicitly. In particular, Complex

Network Analyisis (CNA) based protocols. Such protocols try to predict future contact oppor-

tunities, by using a complex network representation of who meets whom. In other words, past

observed contacts are aggregated to a social contact graph where strong or weak ties between

nodes are better re�ected. Based on this new contact graph, several recently proposed social rout-

ing protocols, SimBet [7] and BubbleRap [8], make explicit use of social metrics and algorithms in

order to assess the utility of a node to act as an intermediate relay/carrier for messages destined to

other destinations. The idea of both algorithms is that more �central� or �more connected� nodes

in the graph are chosen as carriers to relay content over di�erent communities, until a node that

shares many neighbors with the destination is reached [7].

.

It has been observed that social routing protocols can outperform other DTN routing schemes

which are not explicitly �social�. However, to the best of our knowledge, all studies in this scope

heavily depended only on simulations to evaluate the performance of such protocols, by utilizing

contact traces such as ETH [9] and MIT [10], and relying on synthetic mobility models. Nev-

ertheless, experimental testing allows for more realistic scenarios, uncovers practical software or

hardware issues and, in general constitutes an environment where behavior of participating entities

is unpredictable, unscheduled and involves a wide spectrum of parameters. To date, there is no

real framework deployed for evaluating the performance of DTN social routing protocols.
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1.3 Objectives and Contributions

Due to the lack of real testbeds for evaluating the proposed social routing protocols, and from our

belief that experimental testing of these protocols is crucial before deployment, the aim of this

thesis is to design, deploy and implement a testbed that provides researchers with a reliable and

�exible platform for testing and evaluating CNA based protocols in DTNs.

We choose Android as a platform for our implementation due to the development facilities and

the fast spread of Android OS worldwide. Then, we port the code to Nexus One devices which

communicate with WiFi Ad-hoc. Neighbor discovery, reliability, and synchronization mechanisms

are implemented to end up with a reliable social-aware Android testbed that is capable of evaluating

the performance of social routing protocols.

The starting point is based on the message �ow logic of PRoPHET protocol. Whenever two nodes

encounter each other, they exchange di�erent control messages (Hello, Dictionary, BundleO�er,

and BundleRequest) to eventually come to a forwarding decision of the data carried. As our aim is

to provide a social-aware platform, the contents and the functionalities of these control messages

are re-designed to perform social-based forwarding. We implement two methods for a node to

aggregate past observed contacts to a social contact graph, that re�ects the social structure of the

network. Based on this graph, SimBet algorithm is implemented to assess the utility of a node to

carry a message based on the centrality and the similarity metrics. They are de�ned as the number

of direct edges connected to a node, and the number of common neighbors with the destination,

respectively.

We run simulations to validate the design choices, and to make sure that nodes in contact

base their decision on the same network picture after aggregation, which is crucial for correct

forwarding decisions. Eventually we run several experiment to validate the testbed by comparing

the performance of three routing protocols with respect to di�erent performance measures.

This testbed is expected to bene�t those designing and evaluating social routing protocols for use

in human contact networks, aiming to maximize delivery ratio.

1.4 Thesis Outline

As the �rst step is understanding the characteristics of DTNs, chapter 2 is completely dedicated

towards describing the evolution of DTNs, the routing problem and prior work in the context of

testing and evaluating DTN protocols. Chapter 3 deals with the CNA-based routing including

two major techniques: Contacts aggregation, as well as the SimBet routing algorithm. In chapter

4, all implementation details about designing the testbed, messages exchange, aggregation and

routing algorithm are explained. The �fth chapter looks at simulations we run to validate design

choices. Additionally several experiments results are presented for the validation of the testbed.

This is achieved by evaluating the performance of SimBet relative to Epidemic routing and direct

transmission. The sixth chapter provides the conclusions from the work done along with possible

future work proposals.



Chapter 2

Literature Review

2.1 Mobile Ad-hoc Networks

MANETs are made of many mobile nodes, which moves independently of each other in the net-

work. Each node is equipped with short-range wireless communication capabilities through which

communication with all other nodes is possible. A much smaller radio range than the total area

covered by the nodes forces them often to act as relays in data dissemination. These situations

introduce challenges in establishing e�cient routes, with minimal overhead, with the existence of

frequent topology change caused by nodes' mobility.

MANETs have been well examined and several routing protocols were proposed for use in

these networks. There are pro-active protocols such as OLSR [11] and DSDV [12] which routinely

discover and maintain routes to all destinations, in addition to reactive protocols such as AODV

[13] and DSR [14], where routes are established on demand. These protocols however, are often

designed to work under the assumption that the overall network topology remains connected: if

a path to a destination is not existing or cannot be found at the time of message forwarding, the

message cannot be delivered and is dropped. Considering contacts between humans, the contact

graphs at any instant in time are sparse and may remain disconnected for long periods. Therefore

the end-to-end connected path assumption of MANET protocols no longer holds. Under these

conditions, the contact graphs form Intermittently Connected Networks [15].

2.2 Intermittently Connected Networks

One of the most basic requirements for traditional networking, which also holds for MANETs, is

that a fully connected path between entities must exist for communication to be possible. However

many scenarios are present where connectivity is intermittent, but where the possibility of com-

munication still is desirable. Delivery with traditional MANET routing would fail completely with

the existence of frequent network partitioning and long disconnection periods. In intermittently

connected networks to overcome this problem, nodes may store messages during disconnections

and opportunistically pass the message closer to destination whenever there is a possibility. This is

called Store-Carry-and-Forward routing [16] that shows the role of node mobility to bridge network

partitions/communities.

5
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Figure 2.1: Store and Forward : A message is passed from node A to node D through intermediate nodes

(Green node is the carrier) [2] .

In �gure 2.1, node A has a message (indicated by the node being green) destined to node D,

but a path between nodes A and D does not exist. As shown in sub�gures a)-d), the mobility of

the nodes allow the message to �rst be transferred to node B, then to node C, and �nally node C

moves within the proximity of node D and can deliver the message to its �nal destination.

The challenge in this case is to �nd the appropriate routing and storage strategies for tem-

porarily unreachable nodes. According to the behavior, the contact patterns that may occur when

several mobile nodes come into proximity, frequency and duration of node interactions, messages

may experience di�erent delay that reach hours before being delivered to their destinations. Con-

sequently, quality of service in this network is not possible to guarantee and this environment is

clearly not suited to the delivery of real-time information such as voice or video. Instead, it can be

appropriate to information that is tolerant of a certain delay [15]. Delay Tolerant Networks [17]

are intermittently connected networks which carry such type of tra�c.
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2.3 Routing In Delay Tolerant Networks

A fundamental issue in DTNs is how to e�ectively and e�ciently route information and to achieve

the natural objective which is to maximize the delivery ratio. In this section, several major classes

of DTN routing protocols are described.

2.3.1 Schedule-based Routing

This class deals with routing for a particular group of delay tolerant networking applications where

the future motion and contacts of nodes is well known in advance. If all nodes in the network move

along a prede�ned paths, the scheduled meetings can allow nodes to exchange information. These

schedule meeting times can be also exchanged by some signaling methods. An example studied by

[18] is the trajectories of buses through San Francisco and communication between a remote village

and a city. In the remote village scenario, communication may happen via a scheduled data courier,

telephone line (at limited times only during the night), or satellites passing on known trajectories

overhead for a short and calculable time. Knowing the times, duration, and bandwidth of these

links allows scheduling of messages for delivery between the village and the city. [19] presents

Minimum Estimated Expected Delay (MEED) protocol as an example of this class. It requires

no knowledge of the network structure or node movements in advance and instead uses previous

contacts as the basis to construct a graph considering all the scheduled contacts and assigns a

weight to every link. The link weight is a function of schedule time, queuing time and propagation

time. MEED maintains a full network state knowledge at every node in the network and thus

propagates each nodes local estimates to all others in the network and this must happen each time

the network state changes. With this knowledge of the full network state we can then choose which

messages to forward at each contact based on running a shortest path algorithm over the current

network state [15].

2.3.2 Probabilistic Routing

This class deals with routing strategies that forward messages probabilistically whenever the nodes

are in contact with each other. Here, there are no routing table maintained at any node and

next hop is not pre de�ned but randomly chosen. One of the earliest proposals for routing in

disconnected networks is Epidemic routing [19]. Epidemic routing supports the eventual delivery

of messages to arbitrary destinations with minimal assumptions regarding the underlying topol-

ogy and connectivity of the underlying network. In fact, only recurring pair-wise connectivity is

required to ensure eventual message delivery. It works as follows: Each message is disseminated or

�ooded across the entire network. When a host is carrying a message for some other host, it only

transfers a copy of that message to every other hosts it encounters. Each host maintains a bu�er

consisting of messages that it has originated as well as messages that it is bu�ering on behalf of

other hosts. Hosts usually exchange this bu�er information to decide which messages are not yet

existing at both of them. Then, eventually, both hosts carry the same messages. This protocol is

well-suited to networks where the contact pattern between nodes is unpredictable. But it is very

expensive in terms of the number of transmissions and bu�er space. In particular, this approach

can not easily scale as the number of messages in the network grows.

To overcome the e�ciency problems, di�erent optimizations have been proposed to improve the
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performance of Epidemic routing. On one hand, the number of replicas of a given message can be

restricted to a certain amount to reduce the resource usage costs. On the other hand, randomized

�ooding can be used to only transfer copies of messages with some probability p < 1 [20].

Another proposed scheme is the Spray-and-Wait routing protocol . Spraying in general is the

controlled replication of messages, usually in a random manner in a localized area of the network

around the source. By controlling the amount of replication we can then reduce the high cost of

epidemic �ooding. Control is achieved via a static parameter to the algorithms which indicates

a trade-o� between lower cost (less replication) and higher delivery ratio/lower latency (more

replication) [15]. Two approaches deduced from this scheme as described in [21]

• Source Spray-and-Wait

• Binary Spray-and-Wait

In the �rst approach, there are two phases: Spray phase in which for every message originating

at a source node, L message copies are initially spread and forwarded by the source to L distinct

�relays�. The second phase is the wait phase. In this phase, if the destination is not found in the

spraying phase, each of the L nodes carrying a message copy performs direct transmission (i.e. will

forward the message only to its destination).

In Binary Spray-and-Wait a �nite number of forwarding L tokens are initially created for each

message to represent the amount of replication. In the spraying phase, when we come into contact

with another node which does not already have a copy of the message, we replicate the message and

pass it on together with half of our forwarding tokens L/2. Untill we have reached the point with

only a single token. Then, when L = 1 a node can transfer the message only to the destination.

The number of tokens has been addressed as an interesting point of decision. If L is very small in a

very large network, the whole network will not be covered with only a small number of copies. As a

result, messages may not reach destinations far away from the source. If the tokens are with large

number in a small network, the performance is almost similar to the epidemic routing behavior.

Therefore, to overcome this problem, it is essential to have a good estimation of the number of

nodes in the network by means of network distributed estimation.

2.3.3 Utility-based Routing

Utility-based routing schemes takes advantages of various contact properties such as time of last

encounter between two nodes , frequency of past encounters, and mobility patterns to make better

forwarding decisions in comparison to scheduled or epidemic routing strategies. These fetched

properties are maintained and analyzed to assess the probability of a given node to get closer to

the destination.

Probabilistic Routing Protocol using History of Encounters and Transitivity PRoPHET protocol

[2] is a widely accepted DTN Utility-based routing scheme. It uses an algorithm that attempts

to exploit the non-randomness of real-world encounters by maintaining a set of probabilities for

successful delivery to known destinations in the DTN (delivery predictabilities) and replicating

messages during opportunistic encounters only if the node that does not have the message appears

to have a better chance of delivering it. PRoPHET basically operates like epidemic schemes at

the part when nodes in contact exchange a summary vector that contains all the messages infor-

mation carried by those nodes. Additionally, each node maintains a probability metric (delivery



2.3 Routing In Delay Tolerant Networks 9

predictability) P < 1 for every known destination. Upon receiving such summary vector this in-

formation is used to update the internal delivery predictability vector (probability values for all

destinations) as described below, and then the information in the summary vector is used to decide

the better carrier. If this node is a better carrier it will request the message from the other node.

P= Pold + (1− Pold)× Pinit

where Pinit is an initialization constant [0,1]

This metric is updated whenever two nodes encounter each other. This gives a meaning to a node

having a high delivery probability that this node is often encountered more than other nodes. It

may happen that a pair of nodes experience no meetings for a while. Then the delivery probability

must age, indicating they are less likely to carry messages for each other.

P = Ppld × γk

where γ is aging constant [0, 1] and k is number of time units elapsed since the last encounter

The delivery predictability also has a transitive property, that is based on the observation that if

node A frequently encounters node B, and node B frequently encounters node C, then node C

probably is a good node to forward messages destined for node A [2].

P(a,c) = P(a,c)old + 1− P(a,c)old × P(a,b)old × P(b,c) × β

where ,β is scaling constant [0, 1] that decides impact of transitivity .

Basically the idea of Prophet is that in a social network people/nodes that met only a short while

ago have a higher probability of meeting again sooner than two nodes that haven't met for a long

time. Considering this approach Prophet is indirectly a social protocol, albeit not relying on any

explicit social metrics.

By neglecting social metrics, Prophet is not exploiting the social information it collects, and there-

fore not able to make real �smart� decisions. There are some other schemes that assess the strength

of �social� ties between nodes. For example [22] uses contact frequency as an indication of the sim-

ilarity of mobility patterns , and [23] uses the time of the last encounter as a forwarding metric.

More recently, Complex Network Analysis (CNA) [24] has been proposed as a more powerful tool

to solve the problem of future contact prediction in DTNs. This is basically the scope of our work

and will be discussed in more details.

2.3.4 CNA-based Routing

CNA (Complex Network Analysis) is both old and new �eld of research. It is old, as it brought

together researchers from many areas including mathematics, physics, biology, computer science,

sociology, epidemiology, and others who study network structures since the early years of the 20th

century. It is new because it was found recently that many kinds of large networks from the world

wide web (WWW) network of web-pages to the network of co-authors of papers to networks of

molecules or genes have common behavior. The analysis consists of modeling and analysis of various

kinds of networks of entities which are somehow linked. For example biological (gene activating

each other), technical (inter-linked web pages, communicating routers), social (friendship or advice
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giving people, people writing joint papers), organizational (buying and selling relations), animals

(hunting each other), physical (interacting particles), etc [25].

The most notable behaviors of complex networks are the �small world�, �clustering� and �scale-

free�. Small world means that the average number of hops between any two nodes is very small.

The term appeared when Milgram conducted his famous experiment �Six-degree of separation� in

1976 which suggested that human society is a small world network type characterized by short

path lengths.

2.3.4.1 CNA metrics

CNA based routing protocols tend to aggregate past observed contacts to a social contact graph

where social ties that drive node mobility is well re�ected. This provides a predictive capacity

for future contact opportunities, which is bene�cial for forwarding decisions. Accordingly, social

routing protocols are proposed that make use of CNA metrics to asses the utility of a node to act

as a relay and bring the message closer to the destination. There are several CNA metrics that

have been used in forwarding by social routing schemes. Here we will give insight to two metrics

Similarity and Centrality.

Similarity :

One major observation in social networks is that people demonstrate periodic reappearances at

certain locations, which in turn brings connection among similar instances . Thus, people with

similar behavioral principle tie together . Therefore It is useful to exploit similarity in DTN and

utilitze this feature for e�cient message dissemination. Similarity is a property of social networks

that measures the how close two nodes are. For example if nodes A & B and B & C are neighbors,

then with high probability nodes A & C are also neighbors. In other words, it is more likely

that two nodes are friends if they have one or more friends in common. [26] addressees issues

related to mobile user similarity, its de�nition, analysis and modeling. Similarity of a node u to

an encountered node v can be denoted as :

sim(u, v) = |N(u) ∩N(v)| (2.1)

where N(u) is the set of neighbors of node u.

Centrality :

Centrality is an important notion in network analysis and is used to measure the degree to which

network structure contributes to the importance of a node in a network [27]. In terms of social

networks it determines the relative importance of a person within a social network. Or how a road

is well used in an urban network. This measure is generally dependent on the network structure.

The simplest centrality metric, degree centrality, measures the number of edges that connect a

node to other nodes in a network. A node having higher degree centrality holds more important

position in the network regarding the information exchange. On the other hands, nodes having

smaller degree centrality hold fewer neighbors and less involved in information dissemination in

the network. Degree centrality of a give node piis calculated as :
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CD(pi) =

N∑
k=1

a(pi, pk) (2.2)

where a(pi, pk) = 1if a direct link exists between pi and pk and i 6= k.

Over the years many more complex centrality metrics have been proposed and studied, including

α-centrality [28] , and betweenness centrality which measures the extent to which a node lies on

the path of information exchange linking other nodes. In other words it measure the extent to

which a node can in�uence, or control how much information �ows to other nodes in a network.

There are other several variants based on random walk [29], the most famous of which is Google

Page Rank [30].

Based on the described routing metrics two major social routing protocols have been proposed by

researchers. SimBet [7] and BubbleRap [8]. SimBet protocol derives the routing decision making use

of similarity and betweenness whereas BubbleRap uses the centrality metric to transfer messages to

bridging nodes then apply community detection algorithms to drop the message to its destination.

In 3.2, more details are presented.

2.4 Prior Work

Here we brie�y describe a few types of DTN applications and highlight prior work done in testing

DTN algorithms on various platforms, such as simulations, emulations and testbeds.

The most common approaches to research and evaluation of new DTN algorithms or the per-

formance of DTN routing in diverse networking applications are:

• Simulation and emulation

• Fixed Infrastructure testbeds

• Choreographed mobile tests

There are many studies that rely on simulations to evaluate the performance of DTN routing

schemes. We will focus on the one in [3] that provides promising tools to increase the performance

of social routing algorithms in DTN networks and on which this work is based. More details are

presented in chapter 3.

In [31] Emulab was used to test the DTN2 Reference Implementation under a variety of scenar-

ios. In that paper the DTN2 implementation was compared to Sendmail and FTP in its ability

to transfer data. Emulab provides a �exible platform to conduct repeatable experiments. Fixed

infrastructure testbeds such as DieselNet and [32]provide realism by using an actual DTN im-

plementation and real hardware. The DTN2 Reference Implementation, freely available through

the DTNRG, provides a common platform for these types of experiments. The last approach is

the choreographed mobile tests which also provide real mobile and wireless network conditions

and allow for the use of the DTN2 reference implementation and real hardware. A drawback of

choreographed mobile �eld tests is that they cannot be re-run arbitrarily, and even when they are

re-run, it is impossible to replicate the exact set of conditions each time. Some wireless testbeds

have been considered for DTN experimentation such as the Roomba MADNeT testbed [33].
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In [34] Haggle provides a search-based data dissemination framework for mobile opportunistic

communication environments, to easily share content directly between intermittently connected

mobile devices. MobiClique [35] is a social networking middleware implemented on Windows

Mobile smart phones, that form ad-hoc communications for social networking and social graph

based opportunistic communications. To the best of our knowledge, there are no testbeds deployed

for social routing protocols.



Chapter 3

CNA-Based Routing

In chapter 2 we reviewed the evolution and the importance of DTN applications, along with

the routing protocols proposed to solve the challenging problem of e�ciently delivering messages

to their destinations in disconnected networks. As mentioned in the previous chapter, social-

aware forwarding schemes have been proposed as powerful techniques to improve the delivery

performance of routing in DTNs. It has been observed that these schemes perform better if they

operate over a contact graph that better re�ects the underlying social structure which drives nodes

mobility. Therefore, in this work as we provide a testbed for evaluating DTN social-aware routing

protocols, we implement the aggregation techniques proposed by [3]. In this chapter we specify

the aggregation details, then two major schemes SimBet and BubbleRap that make use of CNA

metrics for forwarding decisions, are explained.

3.1 Aggregation To a Social Contact Graph

Finding a better carrier that is more likely to deliver the message to destination (future contact)

is the key for better routing performance in DTN. One promising way of predicting future contact

opportunities is to aggregate contacts seen in the past to a social graph and use metrics from

complex network analysis (e.g., centrality and similarity) to assess the utility of a node to carry the

message. This aggregation presents a compromise between the information about past observed

contacts lost during this mapping and the ability which complex network analysis obtains for

prediction in this context [3]. There are two di�erent ways to perform aggregation, time-based and

density-based.

3.1.1 Time Window Based Aggregation

Proposed algorithms such as [7] and [8] likely aggregate contacts using a time window. Two

approaches exist :

• Growing Time Window : In the original SimBet [7] for example, CNA metrics are calcu-

lated over a social graph, where an edge indicates at least one contact between two nodes at

any time in the past.

13
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T= 1 h T= 2 h

T= 72 h

Figure 3.1: Aggregated contacts for the ETH trace at di�erent time instants [3]

• Sliding Time Window : A �xed time window of a limited duration is used to aggregate

contacts and only contacts happened in this limited time duration are represented as edges

in the social graph. E.g. contacts in the last 6 hrs time window.

But time window aggregation is problematic since the graph gets more meshed over time. As a

result, heterogeneity of the nodes, with respect to the social network metrics is not re�ected after

long network lifetime [3]. For a very small time window (all the nodes have similar centrality

and similarity values since no enough contacts have occurred, and hence such metrics are not

properly de�ned. Similarly, for large time windows or over a long period of time, all the nodes

have encountered almost all other nodes. Consequently, they have again similar values of centrality

and similarity. In this case, the graph is very highly dense. To this end, it can be seen that time

window based aggregation can lead to forwarding decisions that deteriorate to random, which

a�ects the performance of social-aware routing [3]. Figure 3.1 illustrates this, using a real trace of

contacts collected at ETH. See [9] for more details about the contact trace.

3.1.2 Density Based Aggregation

The choice of how many contacts and which ones to include in the graph determines the quality

of the aggregated social graph. For the graph to be bene�cial in prediction, all edges included must

indicate �regular� contacts (whose past occurrence is predictive for a future occurrence ) but only

few �random� incidental ones. In this sense, there is an optimal density for the graph that results

in mostly regular nodes. If we order the contacts from time 0 to n as C0,n, then an aggregation

mapping f can be de�ned at time n as :
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f = C0,n → Gn(V,En).

where, Gn is the output social graph at time n, V is the set of all network nodes/vertices, En

subset of edges included in the graph at time n among the complete edge set E.

.

It has been proposed that a more useful and robust approach than time-based aggregation is

to choose the aggregation function such that the resulting social graph has a given density. This

density d of the aggregated graph Gn can be de�ned as the fraction of aggregated edges, |En|, over
all possible edges (i.e., all combinations) |E| = V.(V−1)

2

d(Gn) =
|En|
E

.

The social graph can for example operate at a certain density, say d(Gn) = 0.4 , this means the

�best� edges, according to some criterion (see below), such that Enwill have the desired cardinality

[3]. There are two methods of selecting the edges to �ll the social graph.

• Most Recent Contacts (MR) : Each edge in the graph is assigned a timestamp according to

the occurrence of the last contact. Here, we keep all the recent contacts which happened

after a pre-determined timestamp tthreshold.

• Most Frequent Contacts (MF) : Each occurrence of an edge is counted, i.e., whenever two

nodes encounter each other a counter is incremented to keep track of the frequency of contact.

Only those edges are included in the �nal graph Gn with a contact frequency at least equal

to Fthreshold.

The density at which a node operates its social graph can be chosen as a �xed value, or can be

assessed online (i.e., as new contacts arrive).

3.1.3 Online Aggregation Algorithm

[3] describes an online aggregation algorithm, that observes the aggregated social graph online

as new contacts arrive, and tries to select the density at which this graph has a structure that

best re�ects the social pattens that drive node mobility. It is regarded as a unsupervised learning

problem to distinguish regular neighbors from random neighbors, by their similarity values. Each

node will see a set of nodes to which it is high similar (i.e., many shared regular neighbors in the

group) and another set of nodes to which it is less similar (i.e., random neighbors). The algorithm

works as follows :

.

When a node encounters another, it logs its similarity value to this node. Out of the contacts

observed over time, it creates a histogram of similarity values. It was observed that using a 2-means

algorithm to produce two distinguishable clusters, one for similar regular nodes and one for similar

random nodes, and relying only on cluster center distance, might draw deceiving conclusions. This

is due to the fact that two clear cluster centers at low and high densities are di�cult to observe,
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since in both cases nodes have similar similarities close to 0 (no similarity) and 1 (all nodes similar),

respectively.

Therefore, one approach is used to assess how distinguishable the two clusters are. It performs

spectral analysis of a pre-processed similarity matrix by measuring the study of the matrix' algebraic

connectivity [36].

.

3.1.3.1 Spectral Analysis :

Supposing that node u has collected a set of n contacts ci (i = 1....n) during a time period (according

to MR or MF). Node u uses these contacts to build its view of the social graph. Each contact

ci observed is assigned a real number si to measure the normalized similarity between u and the

encountered node v :

si =
|N(u) ∩N(v)

min{|N(u)|, |N(v)|}

(si ∈ [0, 1])

Where N(x) is the set of neighbors of node x in the aggregated social graph.

As a result, each node obtains a vector of n real-valued elements in [0, 1] indicating the similarity

values collected so far. The values in this vector cluster in high and small values, as the right number

of contacts has been observed. To measure the algebraic connectivity, the vector s is converted

into an n× n a�nity matrix W .

W = {wij}

wij = exp(− ||si−sj ||
2

2σ2 ) ,

if i 6= j , and wij = 1, with σ ∈ [0, 1] (threshold value).

Then the Laplacian of W is calculated as

L = I −D− 1
2 ×W ×D− 1

2 ,

Where I is the identity matrix and D is the diagonal matrix whose (i,i)-element dii =
∑
j wij

(i.e., is the degree of vertex i on the matrix W). The spectral clustering then performs eigenvalue

decomposition of the Laplacian L to identify k strongly connected components in W with few

weak links between them, by projecting the n points into the eigenspace of L consisting of L`s

�rst K eigenvectors. Matrix perturbation theory [37] suggests that if the clusters are compact or

identi�able, the eigenvalues corresponding to these clusters will still be small. Thus, the algorithm

used seeks to locally minimize the second eigenvalue λ2 of the Laplacian (known as Algebraic

Connectivity) of the similarity vector s observed over time [3].

To summarize the online aggregation algorithm :

• The idea is to �nd the density at which the Algebraic Connectivity of observed similarity

values is minimal

• These similarity values are calculated, using the aggregated social graph at di�erent densities.
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• Use the vector of similarities to decide the gradient of the Algebraic Connectivity, hence adapt

the density of operation accordingly towards the optimum

3.2 SimBet Routing

In this section we present SimBet routing [7] as the �rst routing protocol directly relying on

social metrics and the one implemented in this work. It uses a forwarding algorithm based on be-

tweenness centrality and similarity as described in the last chapter (2.3.4.1). The algorithm is not

based on assumptions of global knowledge or pre-de�ned node mobility and forwarding decisions

are based solely on local calculations. And this is how it works :

On every contact, a contact history vector is mutually updated with the history vector of the

encountered node. Then, SimBet nodes calculate two CNA/social-based metrics, similarity and

betweenness to formulate the routing decision.

Similarity is individually calculated by considering the number of common nodes between the node

and the destinations encountered in the past. This makes a reasonable estimation of how the two

nodes are socially close.

simt(d) = |Nt ∩Nx|

with Nx =contact history vector of node x.

Betweenness is calculated the same way as described before as the number of nodes the speci�ed

node has already met. See equation 2.2.

For the comparison, both values are normalized as follows.

SimUtilt(d) =
Simt(d)

Simt(d) + Sime(d)
(3.1)

with Simx(y) = similarity of node x to node y and t=This node ; e = Encountered node.

BetUtilt(d) =
Bett(d)

Bett(d) +Bete(d)
(3.2)

with Betx =Betweenness of node x.

Then the SimBetUtilt(d) is given by combining the normalized relative weights of the attributes

given by:

SimBetUtilt(d) = α× SimUtilt(d) + β ×BetUtilt(d) (3.3)

where α and β are tuning parameters. Those parameters allow for the adjustment of the relative

importance of the two utility values and α + β = 1. In our implementation, we set α = 0.5 and

β = 0.5 as in [3].
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Forwarding decision are made based on the comparison of the two SimBetUtil values, which

indicates which is a better carrier of each message.

if(SimBetUtilt(d) < SimBetUtile(d) (3.4)

Then the message is forwarded to node e (the encountered node).



Chapter 4

Implementation

Unlike a simulation tool, a testbed allows for more realistic scenarios, uncovers practical software

or hardware problems and, in general constitutes an environment where behavior of participating

entities is unpredictable, unscheduled and involves a wide spectrum of parameters. Therefore, the

scope of this chapter is to provide a detailed insight in the development and implementation of

a Delay Tolerant Networking (DTN) testbed speci�cally designed to evaluate the performance of

social-aware routing protocols. Here we provide detailed information about its architecture and

the implementation details.

4.1 Android OS

Building an extensible design and choosing the appropriate platform for the testbed is essential.

We choose Android OS as the main platform for our testbed. This is because our aim is to provide

a simple application on mobile devices that can be easily carried by individuals during experiments.

.

Android is an Operating System (OS) created by Google to run on any small electronic devices such

as cellphones, e-books, Media Internet Devices (MID), netbooks, Internet tablets, and many others

devices in the future. Any phone manufacturer can use Android without expensive license fee from

Google. Because it is Open, manufacturers can modify Android without restriction, allowing it

to �t the device they are making - total freedom. This creates a big incentive for any device

manufacturers to adopt Android. The ability to run tens of thousands of apps is another big

incentive [4].

4.1.1 Development on Android

There are many advantages to developing applications for Google's Android Mobile Operating

System. The most prominent of these, is Android's open-source nature. With the right software

development tools (see Appendix), Android developers can do whatever they want with the OS.

This is not common to other smartphone platforms.

It is expected that Android Market will at some point o�er more applications for download and/or

purchase than Apple's App Store, as the latter's growth has been slowing down the late, while the

Android application store's growth rate has is steadily increasing. Figure 4.1 shows the growth

di�erence between Android Apps and Apple Apps.

19
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Android app developers use the classic open source Linux OS. This means all of its source code is

transparent and available to any developer who wants to modify it or see how it works. Anyone

who installs Linux on a machine can change any of the �les that control the way the operating

system works. It provides the possibility to modify these �les in order to use system resources for

a new application. Thus, the future of the Android platform looks bright for Android application

developers who love to have access to everything.

.

Figure 4.1: 2011 Smarphone Platforms for Apps [4]

Our testbed application is implemented in Qt/C++ [38] on Nexus One phones, and we use Java

Native Interface (JNI) [39] to get it running on Android. See appendix for more details.

Figure 4.2: Nexus One Phones used
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4.2 Testbed Architecture Overview

In order for our DTN testbed to accurately test and evaluate DTN social routing protocols, di�erent

requirements and functionalities are provided:

• Concurrent ad hoc communication between nodes

• Easy con�guration of nodes parameters

• Flexibility to incorporate di�erent social routing protocols and forwarding mechanisms

Fig 4.3 illustrates the main DTN testbed components and their interconnections. Graphical User

Interface (GUI) and Node Con�guration (NC) compose the administrative part of the testbed.

Listener and Broadcast Sender along with Ad hoc shell script compose the connection part. The

most important part is the Social Routing Agent where messages exchange, aggregation and social

metrics calculation take place and which make our testbed social-aware. The last component is

the Performance Statistics that captures the performance measures of the routing protocol being

tested. All implementation details of these components are described in the following sections.

Figure 4.3: Social Routing Testbed Architecture

4.3 Data Structures

Each node is uniquely identi�ed by a 32-bit integer and an IP address. This identity is assigned at

the time of node creation, and can be set from the con�guration �les and the network shell script

(see appendix). A node maintains a database where it stores all data of routing and communica-

tion relevant information. Figure 4.4 shows some data structures used in the implementation (See

Appendix for more details).

A list of neighbors is used, that contains structures of type nodeinformation. The structure is
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struct nodeInformation
{

int nodeid ;
int contactFlag ; // 0 == d i r e c t l y connected ; 1 = i n d i r e c t l y connected ; 2 = 3 hops away
QDateTime timeStamp ; // time o f meeting
QMap<QDateTime ,
QMap <int , int> Encounters ; // Al l edges ( nodeid i s one v e r t i x ) with t h e i r timestamps

}

Struct Bundle
{

int msgID ;
int s im i l a r i t y ; // s im i l a r i t y va lue
int betweenness ; // c e n t r a l i t y va lue
QString Data ; // Data o f the message
int sourceID ; // bundle source ID
int des t ina t i on ID ; // bundle d e s t i na t i on ID
QString c r ea t i on t ime ; // bundle genera t ion time s t r i n g
int rout ing ; // to s p e c i f i y the rou t ing scheme
int hopcount ; // to t rack o f the hopcount o f a bundle

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
// I d e n t i f i e r s f o r d i f f e r e n t message types
#define MSG_HELLO 1
#define MSG_DICTIONARY 2
#define MSG_BUNDLEOFFER 3
#define MSG_BUNDLEOFFERREPLY 4
#define MSG_BUNDLES 5
#define DICT_ACK 6
#define Bundle_Ack ; 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QList <nodeInformation> n e i g h b o r l i s t ;
QMap <int , QList <nodeInformation> > m_strongest ; // (Graph) l i s t o f ne ighbors a f t e r aggrega t ion
QMap <int ,QMap <int , int> > Similar ityMap ;
QList <int> Act iveNeibors ;

Figure 4.4: Some Data structures obtained by a Node

composed of members of di�erent types: NodeId, ContactFlag, TimeofContact, and an Encoun-

tersMap that has all links this neighbor created in previous encounters. Moreover, each node has

a list of bundles (messages) carried, as structures of type Bundle. A bundle is de�ned as single

protocol data unit containing the control data and application payload across the nodes in the

DTN network (see RFC 5050 [40]). The �elds of a Bundle structure in our implementation are:

Bundle_Id, Data, Similarity_value, Centrality_Value, Source_Id, Destination_Id, Creationtime,

Hopcount and some routing �ags. And they are created for marking each bundle`s identity, data,

social metrics values, its source and destination nodes, its hop count and the time of its creation.

Additionally, there are lists of active nodes that are currently in contact, most recent and most

frequent neighbors that are mainly maintained for neighbor discovery and routing decisions. Other

lists of timers are also used for reliability mechanisms.

For communication, each node sends/receives di�erent messages as we will describe later in sub-

section 4.5.3. Messages are assigned unique identi�ers, along with di�erent bundle headers that we

use, in order to e�ciently perform coding and decoding of information exchanged between nodes.

A common Header is used for all types of messages to identify the source and destination nodes

currently at contact.
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4.4 Administrative Part

A Graphical User Interface (GUI) is designed to display all information exchanged between nodes,

debug and log messages. Additionally, con�guration �les are designed for the testbed application

to allow �exible con�gurations for each mobile device. On initialization, each node reads its Ip

address, all routing protocol coe�cients, and di�erent reliability and timers speci�cations. The

format of the the con�guration �les is shown in the appendix. Figure 4.5 shows a snapshot of the

application GUI.

Figure 4.5: Social-aware DTN testbed Graphical User Interface

4.5 Connection Part

4.5.1 Ad hoc Communication

There are three options to enable ad hoc communication between devices: Bluetooth, Infrastructure

mode and WiFi ad-hoc. Bluetooth is not the ideal choice for ad-hoc networking due to various

limitations including its slow operation and lack of broadcasting function. Moreover, the limitations

in discoverability which at maximum stays for �ve minutes (in Android), thus devices need peering

before they can communicate with each other. Another problem is the short communication range

and the limited number of peers that are allowed to communicate in parallel.

The second option is the (Opportunistic WiFi) Infrastructure mode [41], where some nodes act

as servers and the clients can connect to them. But this leads to scenarios where nodes are

in communication range with each other but they are unable to communicate, since they are

connected to di�erent servers.

Due to the mentioned problems , we chose the third option which is WiFi ad hoc. Although

it does not have any of the mentioned problems with respect to peering, communication range or

the number of parallel communication nodes within proximity, the challenge is that WiFi ad hoc

is not enabled in Android stock phones.

Therefore we had to root the devices and install speci�c network drivers to get it enabled. A

shell script is implemented to create the ad hoc network or connect to it automatically when the

application starts at each node. Details about rooting Android phones, enabling WiFi ad hoc and

the WiFi ad hoc sell script are provided in the Appendix.
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4.5.2 Neighbor Discovery Mechanism

A neighbor discovery mechanism is implemented for each node to detect all other nodes within

its proximity. This is done by continuously broadcasting beacons ( Hello messages ) every speci�c

interval. Each Hello message contains identity, address and beacon interval used by the sender

node. Upon reception of a Hello message, the following can happen :

• The source node is in the list maintained for the active neighbors. In this case a node updates

time and beacon interval.

• Source node is not in the list of active neighbors. Here a node adds the sender node to the

list of active neighbors and record the time and beacon interval.

If a Hello message is not received from an active node within a time period of Num_accepted_losses

* Beacon_Interval (used by source node), a node directly assumes that the source node is no longer

active then its entry is removed from the active list. At the time a peer disconnects, the current

node records the disconnection time to keep track of encounters and contacts duration. Beacon

intervals and the number of accepted losses can be de�ned from the con�guration �les.

Based on many trials, it should be considered not to choose a very short interval for the time

period after which a node is regarded as disconnected, because if the WiFi link is being lost and

restored, many of the recorded encounters are actually re-connections in this case. This exaggerates

the number of human contacts and distorts the real mobility behavior. This issue has also been

reported by PRoPHET [2] designers and developers. More details of the content of Hello messages

are presented later.

4.5.3 Messages Exchange

Since PRoPHET is a widely accepted DTN routing protocol and conforms to DTN bundle pro-

tocol speci�cation, it has been used as the base of the way we implement the �ow of messages

exchange between nodes. Whenever two nodes encounter each other, they exchange a series of

control messages before the actual message transfer. These control messages are used to determine

which bundles to forward to the encountered node based on the di�erent routing schemes used by

the testbed. Figure 4.6 explains the interaction and messages exchanged between two nodes in

contact. It consists of three main control phases Neighbor Discovery Phase, Dictionary Phase and

Bundle O�er. At each of these stages there are di�erent messages that are essential for exchanging

information about past encounters and converging to a routing decision that eventually leads to a

message transfer. Here we describe with each message.
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Figure 4.6: Interaction between two nodes in proximity

4.5.3.1 Hello

The whole procedure of Hello is clari�ed in �gure 4.7. When two nodes encounter each other, the

�rst message they exchange is a Hello message indicating their existence, as explained previously

in the neighbor discovery. On getting a Hello message, a node decodes the message to extract the

sender node Id an IP address. Each node then adds that peer node to its neighbor list and updates

the time and frequency of their contact. The peer node is marked as a direct contact. Additionally,

each node maintains a list of links as shown previously, where it stores all past observed links with

their timestamps.

Hello 
received

To get sender node Id  
and IP  address Decode

Old timer 
running ?

Timer of last hello
 from sender 

No yes

In neighbor list ?
No

Add to 
neighbor

list

Label as 
direct

contact

Update 
contact/link

time 

Update 
edge

frequency

yes

 last hello
> 20 sec ?

yes

No

Update 
contact/link

time 

Stable Hello 
count/rate ?

Start new timer

Stop old timer

My Id < Peer
Id ?

Send 
Dictionary

yes
yes

Times out ?

Sender 
disconnected

reconnected yes

Figure 4.7: Hello �owchart

For example when A receives a Hello message from B, A stores A-B in the list of links. During



4.5 Connection Part 26

the contact duration, the link time stamp is updated with the periodic Hello messages received,

but the frequency is only updated on encounter basis. If the node has already encountered the

peer then each node will just update the time and the frequency of contact and link. As long as

two nodes make sure of the stability of the contact, in this implementation by receiving 5 hello

messages with a certain rate, the node with the smaller Id initiates a Dictionary message. This

choice is considered for synchronization as we will show later in 4.5.4.

4.5.3.2 Dictionary

After a node detects all active peers in its proximity, nodes exchange information about past ob-

served contacts to perform di�erent steps before applying the social routing algorithm. Each node

sends a message known as Dictionary to its neighbors. A Dictionary message contains information

of all past observed encounters which a node has seen. It includes a block of structures that has a

list of encountered nodes, time stamps of the links created and their frequency of occurrence. On

receiving a Dictionary message a node goes through all the nodes in the message and add them

in its own neighbor list but as Indirect contact which means that the node has not met them yet

directly. After updating the neighbor list a node performs two basic functions.

The �rst one is the Aggregation to a social contact graph with a certain density (See chapter 3).

This means that only the top links are included by this node to form its network picture. Each

node maintains a map of all the past observed links, then the links are sorted and di�erent lists are

maintained based on the applied �lters to �ll the contact graph (Most Recent) or (Most Frequent).

If the density is chosen to be 10 % , then the number of included links from the chosen lists is :

Num = 0.1× N × (N − 1)

2

Where N is the total number of neighbors this node has, and the term multiplied by 0.1 indicates

all possible link combinations between nodes in the neighbor list. After this step, a node now has

a contact graph of the best (MR or MF) observed links in the past. Then, based on this new

graph, a node estimates its importance in the aggregated social graph by calculating the social

metrics. If SimBet is used as a routing algorithm Similarity and Centrality metrics are calculated.

For calculating the centrality we take the number of direct contacts which a node is having. For

similarity, we check how close the node is to all other nodes in the contact graph, by calculating the

number of common neighbors. The results are stored in a map of similarity values with the form

<node id, similarity value> . All bundles carried by this node have a destination node id. If this

id exists in similarity values map, the corresponding similarity value is assigned to the similarity

�ag of the bundle. To summarize in the following steps are performed upon the reception of a

Dictionary :

.

a. Update the neighbor list with the information received from the encountered node

b. Mark them as indirect contacts

c. Perform Aggregation and apply MR of MF �lters

d. Calculate social metrics and assign values to the bundles carried

More details about the Dictionary stage is illustrated in 4.5.4.
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4.5.3.3 Bundle O�er

After both nodes in contact make sure they are done with the Dictionary stage. Each node tells the

peer about the bundles it carries along with the calculated similarity and centrality coe�cients.

We send the information in a di�erent control message known as BundleO�er message. Upon

receiving information from the peer node about the bundles it carries, a node has to apply the

social routing algorithm to decide upon the best carrier for the bundles o�ered. In case SimBet

algorithm is used, utilities are calculated for each o�ered bundle as described in equations 3.1,

3.2,3.3, and3.4. Then a node checks who is having higher value of SimBet coe�cient to be the

eventual carrier of the bundle. If it is found that a bundle o�ered by the peer is best carried by

this node, the node will append that bundle to a list called RequestList which is sent to the peer

in the next control message.

4.5.3.4 Bundles Request

A node will send the RequestList to the peer with the bundles it thinks it is a better carrier for them.

The message is called BundlesRequest. On receiving the requestList from a neighbor, node will

transfer those bundles to the neighbor in the next control message. A node can remove the bundles

after transfer, if it is sure that they are successfully received by the peer. A reliability mechanism

is implemented for this purpose. Each node waits for a bundle acknowledgement after sending

the bundles to the peer. If not received for 3 seconds (con�guration �les), a node retransmits the

bundles. We operate our testbed to have 3 retransmissions, then the peer is considered inactive.

Multiple copies of a bundle can stay in the network if the goal is to perform information �ooding.

This can be con�gured di�erently for each bundle form the con�guration �les.

4.5.3.5 Bundles

The �nal transfer between peers in a contact duration is when they exchange the bundles. Upon

reception of a bundle, a node can either delete the bundle or keep a copy to forward to other

potential carriers.

4.5.4 Dictionary Issues

The Dictionary stage is a key part of our work, where di�erent operations are performed that

makes the testbed social-aware. As brie�y mentioned in subsection 4.5.3.2, nodes at this stage

exchange information about their past encounters to perform two (social) functions before con-

verging to a forwarding decision. In order to have a correct decision, and due to the local view

maintained by each node about the contact history, not only both nodes should have the same

network picture/graph before arguing about the best carrier of any bundle, but they also should

not process any further communication step before con�rming the reliability of the information

exchange in this dictionary phase. When we talk about the same network picture, it means the

same number of links/edges with the exact same time stamps at both peers. Scenarios where two

nodes are in contact, perform the forwarding decision on a di�erent network picture may lead to

situations in which both nodes think they are better carriers for a bundle at the same time, and

pass the message back and forth.

In the following, three important issues are considered in this context :



4.5 Connection Part 28

4.5.4.1 Information Included in the Dictionary Message

Two crucial decisions were taken at the very �rst design steps: How/which locally collected infor-

mation is stored at node`s memory about the past encounters, and what kind of information a node

should include in the Dictionary message.

To build the network view at each node, it is considered that a node should have a clear view

of its direct and indirect node connections, besides how other indirect nodes are connected to each

other. This is useful in calculating social metrics like Similarity that needs more than one hop

information about indirect neighbors. Thus; It is �exible to change the number of hops included

in the Dictionary message in our implementation.

A

B

c

At Node A :

List of neighbors :

B :B :  
- contact flag = direct
- contact time = t1
- Encounters Map :
  (A-B, t1)

At Node B :

List of neighbors :

A :A :  
- contact flag = direct
- contact time = t1
- Encounters Map :
  (B-A, t1)

Time t1, A and B in 
proximity

Time t2, B and C in 
proximity

c

B

A

Send dictionary (about A)

At Node C :

List of neighbors :

B:                                 A : B:                                 A : 
- contact flag = direct              - contact flag = Indirect
- contact time = t2          - contact time = t2
- Encounter map :          - Encounter map :
   (C-B, t2)                        (B-A, t1)                                            
                

Figure 4.8: Scenario describing the exchange of indirect neighbors information

Therefore, in the Dictionary message sent, not only information about the nodes encountered

in the past are included, but also all edges created between these vertices with their time stamps.

Figure 4.8 shows how edges are stored and exchanged between nodes by describing a scenario :

nodes A and B encounter each other, then each of them stores the edge created (A-B, t1). Later

nodes C and B meet, then B sends information about node A in the Dictionary message to C.

In case a node sends only direct neighbors in the dictionary to the peer, both of them will have

di�erent network picture. See �gure 4.9.
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Figure 4.9: Di�erent network pictures at peers when only sending direct links

4.5.4.2 Time Synchronization of Links

Another challenging issue regarding building the same network picture is the time synchronization

of links between peers. It is observed that two nodes in contact does not have the same exact time

stamp of the current link between them, due to two main observations. The �rst one is caused

by the di�erent times at which both nodes receive Hello messages from each other. As previously

mentioned the contact link is created at a node`s neighbor list, upon the reception of a Hello

message from the peer. The second one is due to the fact that Hello messages are being received

periodically each Beacon_Interval from the peer. This frequently updates the time stamp of the

link at both nodes di�erently. To understand this clearly, we present the following scenario :

.

For example, Nodes A and B are in communication range, they exchange Hello messages. The

information stored about each other is as follows:

.

Node A :

neighbor list : B (Link A�B, tAA−B )

.

Node B :

neighbor list : A (Link B�A, tBA−B) ;

where tzx−y is the time stamp of link x-y , stored at node z, and tBA−B = tAA−B ± 4t ; and ∆t is time

di�erence between the link time stamps.

.

Eventually, after nodes exchange the dictionary message, link A�B appears with two di�erent

occurrences at each node, although only one link has been created. In turn, this leads to wrong

network/graph picture at both peers. Therefore, a mechanism is implemented to synchronize

the time stamp of this link A-B in their lists, before starting sorting, aggregation or any routing

calculations. This mechanism works as follows :

.

The node with the smaller Id ( node A ), is the Dictionary message initiator. It sends the neighbor

list (B : (Link A�B, tAA−B ) to node B, and stores this time stamp tAA−B as the time stamp of the
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link A�B in a list called �Synchronized links�. This storing aims at accurately capturing the time

sample at which a node synchronizes its link with the peer, in spite of the periodic update/change

of this time stamp by every Hello message received. Both nodes will eventually agree on this time

as a time stamp for this link.

.

Node B then receives the Dictionary message from node A, and it extracts the time of the link

A�B included, which is tAA−B and assigns it to the link stored in its own neighbor list. Here the

�Synchronized links� list at node B is also updated with the new synchronized time.

.

Node B:

neighbor list : A (Link B�A, tAA−B) , instead of tBA−B that is probably time shifted by 4t .
.

Whereas node B received the Dictionary message and synchronized its link with node A, node B

can now start sorting, aggregation and calculating the routing metrics. Then it sends a Dictionary

back to node A. When node A receives the Dictionary message, it invokes the synchronized time

stamp stored before for the link A�B and update its neighbor list, to perform the aggregation and

metrics calculation.

.

Node A:

neighbor list : B (Link A�B, tAA−B) , instead of any time that was assigned to this link due to the

periodic reception of Hello messages.

.

Another synchronization problem appears when more than two nodes communicate concurrently.

We now investigate the following scenario, when nodes 1, 2 and 3 are in communication range with

each other. Since all nodes initially broadcast Hello messages, the neighbor list information stored

by the nodes (before sending Dictionary) is as shown in �gure 4.10.

1 2

3

Node 2 : (1-2, t1)

Node 3 : (1-3, t1)

Node 1 : (2-1, t2)

Node 3 : (2-3, t2)

Node 1 : (3-1, t3)

Node 2 : (3-2, t3)

Figure 4.10: Arrows show Dictionary initiators
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After neighbor discovery, dictionary initiators (Smaller Id) send their neighbor lists to the peers

as shown in the �gure.

Node 1 sends dictionary to node 3 including the following links (1�2 , t1) and (1�3 , t1) . Node

3 applies the mechanism we described above to synchronize the time stamp of link (1�3). In

parallel, node 3 receives dictionary message from node 2 including link (2�1 , t2) . Consequently,

node 3 nows obtains information about the same link with di�erent timestamps ( 1�2 , t1) and

(2�1 , t2) .

.

From this, it is observed that links (1�2 , t1) from node 1 and (2�1 , t2) from node 2, are sent

to node 3, before nodes 1 and 2 do apply the synchronization agreement of the link (1�2). As a

result, in this network topology, di�erent occurrences of the same link circulate and lead to wrong

network pictures at all nodes. Therefore, in addition to the synchronization mechanism illustrated

above, a node sending a dictionary to one peer, includes only its synchronized links with other

active peers in the network.

4.5.4.3 Dictionary Reliability Mechanism

Successful data delivery in this challenging environment can be exceptionally di�cult or impossible.

Transforming end-to-end reliability into hop-by-hop reliable communication is crucial to guarantee

the synchronization, hence a correct similar network picture at communicating peers. Therefore,

a reliability mechanism (see �gure 4.11) is implemented as follows :

A node maintains a list of reliability timers for all communicating peers in the Dictionary

level. Whenever a dictionary is sent, a timer is activated and in case the acknowledgement does

not arrive during a speci�c time period (3 secs), the timer expires and triggers another dictionary

retransmission. The maximum number of allowed retransmissions in our implementation is 3, after

which a node is considered inactive and the contact is ignored, unless it reconnects again. It is

�exible to modify the retransmissions and the timer period from the con�guration �les.

Once peers in contact make sure they obtain the same network picture, they start performing

aggregation and metrics calculations according to the steps illustrated in 4.5.3.2. Figures 4.12 and

4.13 describe the procedures of sending and receiving a dictionary message considering all issues

described.

4.6 Social Routing Agent

The Social Routing Agent is the most important part in the testbed architecture and that makes our

testbed capable of evaluating social routing protocols. It consists of three main blocks. Handler,

which is responsible for handling the di�erent incoming messages concurrently. Aggregation, that

provides di�erent ways of aggregating past observed contacts to a social contact graph. Metrics,

which decides the social metrics on which the routing algorithm is based.

4.6.1 Handler

Each node communicates with multiple peers concurrently. Therefore, a Handler is implemented

to keep track of all incoming messages from the peers and to make sure that the communication

�ow is maintained correctly with each peer. Furthermore, it decodes every incoming message to
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Figure 4.11: Dictionary Reliability Mechanism

extract data, source Id , port number and Ip address. To avoid opening a separate thread for

each peer that could stay for a long duration and degrades the testbed performance, the Handler

implemented starts a new thread for each message received, performs its functions then the thread

is closed. The following �ow chart 4.14 shows how the Handler works.

DictionaryHello Bundle Offer Bundle 
Request

Bundles

Listener Broadcast
Hello

Handler

T1 T2

T3 ...n

Routing 
Decision

T = Thread

Aggregation

Social 
Metrics

Figure 4.14: Handler starting di�erent threads for incoming messages
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Figure 4.12: Send dictionary �owchart
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4.6.2 Aggregation

Two ways are implemented in this work to aggregate past observed edges to a social contact graph,

Fixed and Adaptive.

- Fixed : a node can operate the social graph at a certain density, say 0.3 . The node chooses

the �best� edges according to a certain criterion, such that the aggregated edges have the desired

cardinality. Next, two methods of picking the edges to �ll the graph can be selected.

• Most Recent Contacts (MR): Each edge in the graph is assigned a timestamp according to

the occurrence of the last contact. Here, we keep all the recent contacts which happened

after a pre-determined timestamp tthreshold.

• Most Frequent Contacts (MF): Each occurrence of an edge is counted, i.e., whenever two

nodes encounter each other a counter is incremented to keep track of the frequency of contact.

Only those edges are included in the �nal graph Gn with a contact frequency at least equal

to Fthreshold.

- Adaptive : A node can operate the social graph at an optimum density where the underlying

(social) structure guiding mobility best correlates with the social structure that can be observed

on the aggregated contact graph. This is done by implementing an Online Aggregation Algorithm.

Whenever a node encounters other nodes, it keeps a histogram of its similarity values observed.

Then by means of Spectral Analysis and robust clustering, a node chooses the optimum density

at which the separation between regular (high similarity) and random (low similarity) clusters are

maximized. See section 3.1.3 for the detailed explanation.

Testers can choose the desired way of operation from the con�guration �les. See Appendix for

more details.

4.6.3 CNA Metrics

Several social routing protocols are proposed with di�erent social metrics that is mainly used to

asses the utility of a node to carry messages. This block is responsible for the implementation of

social metrics calculated. For example similarity and centrality used by SimBet algorithm that is

implemented in this work, in addition to the �exibility to corporate di�erent routing algorithms

based on di�erent metrics like BubbleRap [8], which uses a Community Detection algorithm rather

than similarity to forward a message to a destination. Moreover, the contact duration observed

between nodes could be a measure on which is the routing decision is based. Testers can de�ne

the desired metrics/social scheme from the con�guration �les.

The last part of the testbed architecture, Performance Statistics is described later in chapter 5..



Chapter 5

Validation and Experiment

The aim of this work was to design, implement and deploy a DTN testbed as a platform, for

evaluating the performance of social-aware routing protocols. For this purpose, di�erent steps

have been taken to validate the implementation of the message exchange �ow between nodes,

SimBet routing protocol and density-based aggregation to the social contact graph. Initially we ran

simulations to make sure that the implementation is e�cient before porting the code on the devices.

Then, di�erent concurrency, reliability and synchronization scenarios have been considered to end

up with an Android testbed, capable of evaluating social-aware routing protocols. To this end, we

run many experiments as a validation and several evaluation results are stated.

5.1 Simulation

In this section we describe the simulations used to validate SimBet algorithm based on locally

collected information at each node and without any global view of the network. For this, a real

mobility trace (ETH trace) has been utilized. ETH trace [9] contacts were collected by 20 students

and sta� working on the same �oor of a building of ETH Zurich. They were carrying 802.11 enabled

devices for 5 days. At an interval of 0.5s, each device sent out a beacon message, the reception of

which was logged by all devices in 802.11 radio proximity. This trace contains more than 23,000

reported contacts and is unique in terms of time granularity and reliability. On average there were

more than 1000 reported contacts per device.

.

Di�erent nodes are simulated on one computer. Each node initially creates a message for each

other node, in this case 19 messages per node. Contacts are handled sequentially from the trace �le,

and nodes in contact exchange all the control messages (Dictionary, BundleO�er and other types)

to decide upon the routing decision (SimBet) as discussed previously. By these simulations, design

choices of the way each node maintains/sends information were con�rmed. Moreover, aggregation

of past observed contacts to a social contact graph is performed according to a �xed aggregation

density at all nodes. We made sure that nodes in contact base their decision on the same network

view correctly according to SimBet routing.

35
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Figure 5.2: Experiment Setup

5.2 Experiment

In order to validate the testbed, we run several experiments in a typical o�ce environment. The

objective of our experiments is to validate our design choices and to evaluate the ability of our

testbed to disseminate data between nodes according to di�erent social routing strategies.

8 Nexus One Android phones (see �gure 5.1) are carried by research colleagues during a day of

normal o�ce activities. These include meetings, o�ce work, and lunch outside the o�ces. A phone

carries a bundle destined to all other phones and new bundles are generated every 5 mins. Each

bundle is assigned a routing �ag indicating which routing strategy used to forward such bundle.

This provides the ability to evaluate di�erent routing protocols under the same conditions. Every

time a phone encounters another phone, they both exchange control messages, perform aggregation

of past contacts, and �nally apply the social routing strategy speci�ed (simBet) to decide upon

the best carrier a bundle. Table 5.2 summarizes the experiment setup.

Figure 5.1: 8 Nexus One Phones used in the experiment

5.3 Performance Evaluation

Our testbed enables each node to log detailed information with di�erent measures. This function

is mainly performed by the Performance Statistics block of the testbed architecture described in

4.2.

• Contact Information : The real time and the contact duration of encounters are reported. A
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contact duration is de�ned as the time period between connection and disconnection times.

This is useful in case the contact duration is used as a metric for forwarding decisions.

Moreover , it is an appropriate way to collect real contact data for mobility traces.

• Bundles Generated : The generation time of all bundles along with their destinations and

the routing �ags assigned.

• Bundles Carried : According to the social routing strategy, nodes carry bundles for other

nodes as they are more likely to meet the destinations. Information about bundles carried

(source, destination and via which node ) are available.

• Bundles Received : When a node receives a bundle, information about its reception time,

generation time, end-to-end delay, routing used, number of hops to arrive is reported.

• Forwarding Calculations : At each contact, a node calculates SimBet coe�cients, as illus-

trated in equation 3.4. These details are stored at each node`s database, for routing analysis.

• Contact Graph View after Aggregation: To keep track of the contact graph maintained by

aggregation at each contact.

As a performance measure, we compare SimBet as social routing protocol, relative to two other

protocols. Direct Transmission, where the source keeps the message until it meets the destination,

and Epidemic routing where a copy of each bundle is given to every encountered node (Flooding).

The measures are based on the following criteria.

5.3.1 The Delivery Ratio

The delivery ratio Rj to a user j is the fraction of messages that were generated by all users and

are delivered to user j over the total number of messages generated by all users [34]. The following

table 5.3 summarizes the results we obtained for the three routing protocols.

     
      Direct 
Transmission

SimBet Epidemic

0.62842 0.77564 0.84544

Figure 5.3: Experiment Results: Delivery ratio comparison

5.3.2 Total Number of Messages Delivered

The ultimate goal of any social-aware routing protocol is to achieve delivery performance as close

to Epidemic routing as possible [7]. This is because Epidemic routing always �nds the best possible
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path to the destination by �ooding a message across the whole network and therefore it represents

the upper bound for the possible delivery performance.

The following chart 5.4 shows the total number of messages delivered by the three routing protocols

in 8.3 hours. Three observations can be noticed. First, Direct Transmission serves as a lower

bound on the total number of messages delivered, as nodes keep the messages until they meet

the destinations with no e�ort to �nd better carriers. Second, the behavior of SimBet and Direct

Transmission is quite similar at the beginning (�rst 1.6 hours), since no enough contacts have

occurred, and hence the SimBet similarity and centrality metrics are not yet properly de�ned.

Third, as one would expect the Epidemic routing represents the baseline for the best possible

delivery performance if bu�ers are not limited.
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Figure 5.4: Experiment Results: Total number of messages delivered

5.3.3 Average End-to-End Delay

End-to-End delay is an important concern in performance evaluation. The following �gures show a

comparison of the End-to-End delay for the three di�erent protocols. It is observed that Epidemic

routing achieves a good baseline for the minimum end-to-end delay, in comparison to SimBet and

direct Transmission, having in mind that SimBet assumes one single copy of each bundle.
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Figure 5.5: Experiment Results: End-To-End Delay (Log Scale)
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Figure 5.6: Experiment Results: End-To-End Delay (Linear Scale)
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5.3.4 Average Number of Retransmissions

SimBet assumes the existence of one copy of the message on the network, and the message is

deleted from the carrier list of bundles if only an acknowledgement is received from the destination

con�rming a successful reception. It has been observed during many experiment trials, that bundles

are not successfully transmitted between peers in contact from the �rst transmission. Instead,

frequent retransmissions are performed to guarantee a successful bundle delivery. We suspect

that this is due to short contact durations and expected indoor network conditions in such o�ce

environment. The observed average number of retransmissions to guarantee a successful delivery is

1.87 retransmissions. From this, we propose to increase the maximum number of retransmissions

allowed per node.

5.3.5 Average number of Hops per Message

It is desirable to minimize the number of hops a message takes in order to reach the destination.

The average number of hops per message achieved by SimBet is 3.4, that is very close to Epidemic

routing which is 2.8.

5.3.6 Total Number of Forwards

It is useful to have a measure of the overhead in the network, in terms of how many times a message

forward occurs. It is observed that Epidemic routing is costly in this sense compared to SimBet.

This is because SimBet assumes only a single copy of a message in the network. This measure is

bene�cial in case two routing protocols achieve the same delivery performance, then the one with

less overhead is preferred for deployment.

5.4 Power Consumption

A limiting factor in our experiment is the battery life time of the mobile devices. The �rst thing we

hence examine is the impact of our testbed application on a mobile phone`s power consumption. As

a baseline, we run a phone isolated with only neighbor discovery on Wi� ad hoc. This gives us an

estimate of the impact of the neighbor discovery mechanism implemented. A listener that captures

events of battery change is implemented. It returns integer values for the battery level and is stored

in a �le with the corresponding accumulated time from the beginning of the application. From

di�erent trials we observe that the beacon interval chosen for neighbor discovery, bears di�erent

weights on the battery life. As �gure 5.7 shows, the battery drains faster if the beacon interval is

set to 0.5 seconds, relative to 1 seconds. The battery of an active node during experiments that

sends and receives data, lasted up to 6 hours before recharging.

For a longer battery life, a mechanism is proposed to operate the testbed at di�erent neighbor

discovery modes based on the network density around. A node will sleep or increase the beacon

interval if it predicts no active neighbors around in a speci�c time window.



5.4 Power Consumption 41

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

Neighbor Discovery: Wifi Ad-hoc Battery Consumption 

0.5  vs 1 sec Beacon Interval

1 sec
0.5 sec

Time in hr

B
a

tte
ry

 L
e

ve
l

Figure 5.7: Experiment Results: Power consumption due to neighbor discovery



Chapter 6

Conclusion And Future Work

Delay Tolerant networks are the class of networks where no end-to-end connectivity exists. Due to

disconnections and many challenges introduced by this environment, routing data from source to

destination has been a challenging research area. Several social routing protocols are proposed to

improve the message delivery performance.

.

In this work, we have designed, deployed and implemented a testbed on Android phones as a

platform for evaluating social routing protocols in DTNs. Whenever two devices encounter each

other, they communicate with WiFi ad hoc. A shell script that runs automatically on each device

is implemented for this purpose. Devices in proximity exchange di�erent control messages, with

several functionalities, to eventually forward the messages to the node which is more likely to

meet the destination. Forwarding decisions implemented mainly rely on two major techniques.

First, aggregation of past observed contacts to a social contact graph, where edges indicate strong

ties between nodes, thus a prediction for future contact opportunities. In this context, we have

implemented two methods to perform aggregation to a certain density, �xed and adaptive. Second,

SimBet is implemented, which is a social routing protocol that operates over the social contact

graph to assess the utility of a node to carry a message, based on CNA (Complex Network Analysis)

social metrics centrality and similarity. The testbed structure is �exible, so that researchers can

test their proposed DTN social routing protocols in comparison to di�erent social metrics.

.

Finally, the testbed has been validated by running several experiments to compare the perfor-

mance of a social routing protocol (SimBet), relative to epidemic routing and direct transmission.

8 Nexus one phones have been carried by researchers during a day of normal o�ce activities. Com-

munication and routing decisions between devices in di�erent scenarios have been observed and

validated by performance measures, showing that the testbed is a suitable platform for DTN social

routing protocols tests.

.
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In future work, we propose the following :

• Longer experiments to validate the online aggregation algorithm impact on the performance of

social routing protocols, as it requires enough number of contacts, in addition to computation

issues that have not been well experimented.

• As the social routing implementation works properly and tested on Android phones, integra-

tion with existing opportunistic twitter applications is possible.

• With modi�cations, it can act as a standalone application to forward unicast messages to

destinations over infrastructure-less and challenging environments (e.g. disasters).

• Enhancements to the testbed Graphical User Interface (GUI) to act as real time monitor

during experiments, and to provide users with more �exible con�guration options.



Appendix A

Code

A.1 Class Diagram

The application is written in Qt/C++ on Android Nexus One phones, consists of about 5500 lines

of code. The following �gure shows the class diagram of the implementation.

GUI

Connection Listener Broadcast sender

Handler Configuration Manager

Bundle GeneratorNode

Figure A.1: Testbed Implementation Class Diagram

• Node Class : In this class, a node instance is de�ned with datastructures used for maintaining

the neighbors list, bundles, similarity values, and timers.

• GUI Class : The graphical user interface that starts the application is de�ned here. The

GUI has an interface with the con�guration �les and starts the both the listener, and the

broadcast sender.

• Connection Listener : A listener is implemented here, to read any incoming datagram from

the socket. The application uses a UDP socket that is binded on port 3001 on the devices. Ip

44
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addresses, node Id, and data are extracted from these datagrams, then passed to the handler.

• Connection Broadcast : Datagrams are written on a UDP socket, then broad-casted to

the address X.Y.Z.255 (broadcast address). The letters are the host address part, that is

determined according to the Ip addresses assigned to the devices.

• Handler Class : This class handles all messages, executes all control functionalities, and

perform the routing procedure.

• Con�guration Manager : This deals with reading con�guration �les that initializes each node,

and sets routing, reliability and timer parameters.

• Bundle Generator : During experiments, bundles are generated periodically. This class

creates di�erent variations of bundles, with respect to size, destinations and routing.

.

The following �gure A.2 shows a snapshot of the con�guration �les read at initialization.

NODEID=4
BROADCASTAddress=192 .168 .1 .255
Beacon_Interval=500
Re l iab i l i ty_Timer=3000
Retransmission_count = 3
Bundle_Timer= 3000
BETA=0.50 % f o r SimBet
GAMMA=0.50 % f o r SimBet
Aggregation_value = 0 .1
Aggregat ion = 1 % 1 = Fixed ; 2 = Online
Dict ionaryTimer=5000
Disconnect ion_Period=6000
STORAGEPATH=/data/data/SDTN/
TTLVALUE=_
CNA_Metric= S , b
Routing_Algorithm = SimBet

Figure A.2: Con�guration File

A.2 Wi� Ad-hoc Shell Script

We implement a shell script to enable nodes to create/detect WiFi ad-hoc network. The script

content is illustrated in the �gure below A.3. This script runs automatically from the application

main function by executing the following command:

system("su -c /system/bin/sh -c /data/data/wi�.sh"); where /data/data is the path of the �le on the

phone.

#!/system/bin /sh
echo $ (whoami )
cd / system/ l i b /modules/
insmod bcm4329 . ko
#output=$ ( insmod /system/ l i b /modules/bcm4329 . ko )
iwcon f i g eth0 mode ad−hoc e s s i d dTn
i f c o n f i g eth0 192 . 1 6 8 . 1 . 1 up

Figure A.3: WiFi ad-hoc shell script
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Important steps are required to successfully run this script:

• Root phones (See Appendix B)

• Switch o� the WiFi interface manually from the phone settings

• Give the �le root, read, and write permissions:

chmod u+rx wi�.sh

chmod 777 wi�.sh



Appendix B

Android Issues

B.1 Necessitas Tool and Java Native Interface

Android main development environment is Java. Since our implementation is in Qt/C++. We use

Necessitas tool [42] that is based on Java Native Interface (JNI) [39] to run C++ code on top of

Java. Necessitas is an IDE letting developers manage, develop, deploy, run and debug Qt Appli-

cations on Android Devices. It is based on Java Native Interface (JNI) which enables aquiring a

pointer of the Dalvick virual machine of Android, and use to it call Java APIs from the C++ code.

Figure B.1 shows a snapshot of Necessitas.

Figure B.1: Necessitas IDE

The following steps are presented to get the Android device detected by the computer to be

able to install Qt C++ applications on it :

47
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• Install SDK, NDK, Necissitas (follow video on QT-Android lighthouse project [42]).

• Now we have an emulator, but to make the device detected by the computer, follow "Setting

up a Device for Development" on android developers website [43] (do not forget to change

the device ID).

• Add the path to Platform_tools folder of the SDK to the Linux path variable by typing the

following command:

export PATH=${PATH}:/home/alhussab/android/android-sdk-linux_x86/platform-tools

• From the shell on linux, we make sure that the device is detected, by typing the command:

adb devices after CD to platform_tools.

B.2 Root Android Phones

Here we provide steps to root Android phones, which is important to enable Ad-hoc and obtain

full root access.

• Download nexus_one_softroot.tar and extract contents to the same folder as adb

• Open up your terminal, cd to the same folder as adb and the extracted �les, and enter the

following commands:

sudo . / adb push psneuter /data/ l o c a l /tmp/ psneuter

sudo . / adb push busybox /data/ l o c a l /tmp/busybox

sudo . / adb push su /data/ l o c a l /tmp/su

sudo . / adb s h e l l chmod 755 /data/ l o c a l /tmp/ psneuter

sudo . / adb s h e l l chmod 755 /data/ l o c a l /tmp/busybox

sudo . / adb s h e l l chmod 755 /data/ l o c a l /tmp/su

sudo . / adb s h e l l

After this you should see only a $ which tells us that we at the android command line with

user privileges only. Type:

$ cd /data/local/tmp

$ ls

$ ./psneuter

property service neutered, killing adb (should restart in a second or two). Then, this wil take

you out of the shell

Enter again:

sudo ./adb shell

After this you should see only a # which tells us that we became root . If you want to double

check issue this command:

# id uid=0(root) gid=0(root)

From this point we will install busybox and su which will make root permanent

Code:

# mount -o remount,rw -t ya�s2 /dev/block/mtdblock3 /system

# cd /data/local/tmp # ./busybox cp busybox /system/bin
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# chmod 4755 /system/bin/busybox

# busybox cp su /system/bin

# chmod 4755 /system/bin/su

# exit

We enter again to �nish the procedure of rooting:

sudo ./adb shell

# su

# mount -o remount,ro -t ya�s2 /dev/block/mtdblock3 /system

# exit

# exit

• Application "Superuser" is needed (get from market)

• You can access each time the device shell by sudo ./adb shell , then type " su " command to

have the root access to your device

• We use application " ROM manager" to check new ROMS, then we used CyanogenMod

6.1.0 ROM where WiFi ad-hoc is enabled.

Another method used to install new custom ROMs on Nexus One :

• Unlock bootloader

• Flash recovery image

• Backup

• Install your desired version of �rmware (Cyanogen mode) from Sdcard

• Wipe data before you install any version (Format).

• A useful guide for the whole previous steps is [44]

B.3 Debugging

We use Shell adb logcat as a real-time debugging and monitoring tool for the code running on

the phones. It runs on the compute`s linux shell, and requires the phone to be connected to the

computer by the USB cable. As we program in C++, to view the stdout logs, the following system

script sould be copied to the phone:

Local.prop which contains this command:

log.redirect-stdio = true
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B.4 Useful Tools During Experiments

• Alogcat App : Application allows using Logcat on the phone, to have real time monitor of

the activities running in the background.

• Clocksynch App : Devices participating in the experiments are not perfectly time synchro-

nized. Clock synchronization in DTNs has been a very challenging area in research. Due to

the lack of time, we used this App, to synchronize the clocks before starting the experiments.

• ScreenOn : Sometimes we had problems in receiving all incoming datagrams while the screen

is o�. This can be due to wireless chipset problems, in addition to the android version

used. This requires more research. Therefore, we used this App, that keeps the screen On if

our testbed application is running in the background. It is recommended to set the screen

brightness to the lowest, for avoiding a very fast drain of the battery. Figure B.2 shows a

snapshot of the alogcat app.

Figure B.2: Broadcast Hello shown in alogcat
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