
Automated Meta-Data Extraction for Confsearch
Semester Thesis

March 16, 2011

Jochen Mattes
(jmattes@ethz.ch)

MSc. Student Electrical Engineering and Information Technology

Advisor: Dr. Michael Kuhn
Supervisor: Prof. Dr. Roger Wattenhofer

Distributed Computing Group
Computer Engineering & Networks Laboratory

Department Information Technology and Electrical Engineering
Swiss Federal Institute of Technology Zurich (ETH Zürich)

Abstract

Extracting meta-data from websites is an open �eld and up till now there exists no
satisfying solution for extracting important dates (e.g. the Paper Submission Deadline)
from conference websites. We present an automated way to extract the meta-data of
an academic conference from its website. We aim to facilitate the manual update of
such data on the conference directory Confsearch (http://www.confsearch.org).

Contents

1 Introduction 2

1.1 General Problem . 2
1.2 Confsearch . 2

2 Related Work 4

2.1 Conference Directory . 4
2.2 Information Extraction . 5
2.3 Web Information Extraction . 5

3 Algorithms 7

3.1 General Procedure . 7
3.2 Representing Websites . 7
3.3 Clustering Words . 9
3.4 Finding and Interpreting Dates . 9
3.5 Finding and Interpreting Labels . 10
3.6 Establishing a Relationship between Label and Date 12
3.7 Finding the Best Date-Label Pair . 14
3.8 Checking for Plausibility . 15
3.9 Special Case: Conference Date . 16

4 Unsuccessful Ideas 17

4.1 Table Extraction . 17
4.2 Column Splitting . 17

5 Results 18

6 Conclusions 19

7 Acknowlegements 20

1

Chapter 1

Introduction

1.1 General Problem

The World Wide Web is a huge source of semi-structured documents that mostly
present information in a way that it is easily accessible to the human user. Yet ex-
tracting the information can be a very hard task for a computer. Several applications
could greatly bene�t from the information stored in these semi-structured documents if
they were readable by computers. Question answering services such as Wolframalpha1

bene�t largely from semi-structured documents. For Confsearch as search engine for
academic conferences it would be very interesting to have access to meta data about
a conference stored in the document. To our best knowledge, other conference direc-
tories and conference search engines (cf. Section 2.1) have the same open problem.
These services could also greatly bene�t form the solution we are evaluating.

1.2 Confsearch

Confsearch is a conference search engine that lists many conferences from various �elds
related to computer science, information technology and electrical engineering. The
unique selling point of Confsearch is its searching and ranking algorithm that works
on basis of DBLP2 publication records [1].

Unfortunately DBLP does not provide meta data for the corresponding conferences
and so in Confsearch the user can modify the meta-data of upcoming events and add
new conferences to the site. The meta-data stored are:

• URL of the conference website,

• Conference Date (start and end),

• Abstract Registration Deadline,

1http://www.wolframalpha.com
2http://www.informatik.uni-trier.de/~ley/db/

2

• Paper Submission Deadline,

• Date of the Noti�cation of Acceptance and

• Deadline for the Camera-Ready Version of the Paper.

When adding a new conference to the website the user is asked to �ll out at least 13
�elds. Confsearch expects the dates to have a speci�c format, which makes copy &
paste form the conference website impractical for most cases and adding or modifying
a conference consumes a lot of time.

It would be much more convenient if the user only had to give the URL of the
conference website and having an automated way to extract all the relevant information
from the website.

3

Chapter 2

Related Work

We take a look at other conference directories and how they keep their data set up to
date (Section 2.1), how information extraction is dealt with in general (Section 2.2)
and what is special for the case of information extraction from websites (Section 2.3).

2.1 Conference Directory

Confsearch is sharing the market of conference directories / search engines with some
other well-maintained websites and a lot of websites with only limited functionality
and use; we list the most important ones (according to our research).

Allconferences.com 1 is a website that list conferences of all academic �elds. One
can add a conference manually through a very extensive form which makes adding a
conference a very time consuming endeavor. The information entered by the user is
evaluated by the website operator and then released.

WikiCFP 2 is a semantic wiki that lists a number of conferences in science and
technology. A registered user can add new conferences and modify existing conferences
and they rely on the �wiki-believe�, that even though a single person might have bad
intentions one can always trust the community. Therefore the data set is maintained
by its users.

Conferencealerts.com 3 is a website that informs its user about new conferences
and updates in the meta data of a conference. Every visitor of the website can add a
new conference to the database, but modi�cation of the meta data is only possible for
the person who added the event.

1http://www.allconferences.com
2http://wikicfp.com
3http://www.conferencealerts.com

4

Other services There are many other sites on the web that are more specialized or
managed by a single person.

2.2 Information Extraction

Grisham describes Information Extraction in the following way: �Information Extrac-
tion [...] involves the creation of a structured representation [...] of selected information
drawn from the text� and states further: �[...] in Information Extraction we delimit
in advance [...] the semantic range of the output: the relations we will represent, and
the allowable �llers in each slot of extraction� [2]. When extracting meta-data like the
submission deadline from the website we do exactly that: we delimit the �semantic
range� to a date and extract that information from the website.

Information Extraction is a wide �eld and the Message Understanding Conferences
(MUC-X) concentrate mostly on Information Extraction. Still Information Extraction
in its general de�nition as given by Grisham [2] concentrates on extracting information
from plain text and not from websites. The more speci�c task to extract information
from websites is part of the �Web Information Extraction�.

2.3 Web Information Extraction

Laender et al. [3] categorize the Web Information Extraction Techniques as follows:

• HTML-Aware Tools, that transform the source code of the website into a parsing
tree and operate on that,

• NLP-Based Tools, that apply �ltering, part-of-speech-tagging and lexical seman-
tic tagging to build relationships between phrases and sequence elements,

• Wrapper Induction Tools, that generate delimiter-based extraction rules,

• Modeling-Based Tools, try to locate parts of the website that conform with a
given structure,

• Ontology-Based Tools, that rely directly on the data and use an ontology to
locate constants.

Still the approach we take does not �t in either of these categories, as we rely on the
parsing capabilities of the Mozilla Browsing Agent and extract relevant information
from the DOM after the website has been parsed.

HTML-Aware Tools HTML-aware tools download the source code of the website
and then transform it to a parsing tree. Tools like W4F [4], XWRAP or RoadRunner
help users to build wrappers that extract information form existing websites. W4F[4]
and XWRAP[5] generate solid website-speci�c wrappers. So the websites have to be
known in advance which is not the case when we want to extract information from an
arbitrary conference website.

5

RoadRunner [6] relies on extracting information from websites that represent ob-
jects of a database, as it uses the di�erence of two similar websites to build a wrapper
that extracts the �di�erent� information on the websites. This works well for any kind
of website that is directly generated from a database [6]. Yet this approach does not
work for our case, as there is no second website that one could use to calculate the
di�erences.

NLP-Based Tools NLP-based tools like RAPIER [7] concentrate on extracting
information from text documents and mostly ignore the HTML context. We might
loose relevant information when discarding the structure of the website. But the main
problem is that the meta data we are searching for is normally contained in tables or
table-like structures. Using NLP-based tools does not seem to help here.

Wrapper Induction Tools Wrapper Induction tools like WIEN [8] always generate
wrappers that are speci�cally built for a certain website. Wrappers help to extract
information from documents that were generated from a database, which is not the
case in our problem.

Modeling-Based Tools Tools following the modeling-based approach like NoDoSE
[9] work with a user-de�ned model of the document. This is mainly done for plain-text
documents as they don't provide additional cues that would allow it to use a wrapper.

Ontology-Based Tools Waterson and Preece state: �An onotology de�nes the ter-
minology of a domain of knowledge: the concepts that constitute the domain, and the
relationship between those concepts.� [10] Ontology-Based Tools rely on a �previously
constructed ontology to describe the data of interest, including relationships, lexical
appearance, and context keywords. By parsing this ontology, the tool can automati-
cally produce a database by reorganizing and extracting data present in documents or
pages given as input.� [3] As this method strongly relies on the careful construction
of an ontology [3] it seems to be an overkill.

6

Chapter 3

Algorithms

3.1 General Procedure

At �rst we describe how to represent the website (Section 3.2) so that we can easily
extract the information we need. Then we describe how to form word clusters (Sec-
tion 3.3) and how to �nd and interpret the dates (Section 3.4) and labels (Section 3.5)
in the word clusters. A label as depicted in Figure 3.1 is in this context any string
that gives information to whatever class the date nearby belongs to. Having found all
dates and labels on the website, we describe how to establish a relationship between
them (Section 3.6) and how to �nd the best �tting of the possible pairs (Section 3.7).
At last we describe how to check the found results for plausibility (Section 3.8).

3.2 Representing Websites

Out of the many possible representations of a website we mainly considered the fol-
lowing three: source code, image and DOM.

Source Code The main advantage of using the web site's source code is simplicity
as the source code is very easy to obtain. However the line distance of two objects in
the source code does not necessarily relate to the pixel distance of the two objects after
the website has been parsed by a web browser. As the human visitor of the website

Figure 3.1: Illustration of Label and Date

7

draws conclusions about the relation of two objects from the pixel distance of these
objects, it is a serious drawback to lose that information.

Image The problem with the source code, that we do not know the absolute position
of an object after it is parsed, can be overcome when choosing the image representation
of the website. This could be obtained by calling the website using a browser, letting
the browser parse it, taking a screen shot of the parsed website and afterwards running
a OCR tool to obtain the text nodes and their position on the website. The big
advantage with this method is that we can access the information stored in the images
on the website. A noticeable number of websites do only publish the conference date
in this way. Still the e�ort necessary to implement this procedure seems to be too
high.

Document Object Model According to International Standards Organization for
the World Wide Web (W3C) the �Document Object Model� (DOM) is �[...] a platform-
and language-neutral interface that will allow programs and scripts to dynamically
access and update the content, structure and style of documents.� [11]

This allows to access the text nodes on the website including their absolute position
including height and width of the text box as well as further information about the
text node. Even though it is therefore possible to directly access all the information
that is stored on the website in clear text, one still had to use OCR tools to extract
the information stored in the images.

Chosen Solution The DOM representation seems to be the most promising. To
make work even simpler we decided to extract only the relevant parts of the DOM
tree. The procedure is the following:

1. Download the website to the local �le system,

2. load the website in �refox,

3. wait for the browser to �nish parsing the website,

4. run a JavaScript script to extract the relevant parts of the DOM Tree

5. and callback the Java application with the extracted data as parameter.

We have to download the website to the local �le system as the Cross Scripting Coun-
termeasures of the browser will not allow us to execute the JavaScript function, when
a website uses frames with di�erent origin top level domains.[12]

The JavaScript function walks through the DOM Tree top down, splits each text
node into �words� (strings that do not contain white spaces) and extracts the infor-
mation we want to use in further processing.
The extracted information namely is:

8

• the node id which is an incrementing number that uniquely identi�es the text
node,

• the actual text in the text node,

• the x and y position of the left top corner of the text node,

• the height and width of the box,

• whether or not the word is struck out,

• and the �test font size� which is a measure for the font size1.

3.3 Clustering Words

The data the Java application receives form the JavaScript function is not yet very
helpful as we lost the context of the individual words when extracting them from the
website. Therefore we combine words that are direct neighbors into a word cluster.
The methods that follow will either work directly on the words or use the word clusters.

3.4 Finding and Interpreting Dates

After combining the words into clusters we can search for dates and interpret them.
This in done in two steps: Marking and Extraction.

Marking The marking step makes extraction easier as it maps multiple representa-
tions with the same meaning to an equivalence class as illustrated in Figure 3.2. It
will further split the words into strings that do only contain alphanumeric characters.
We will then translate possible representation of a day, month or year into a unique
representation. So �Jan� and �January� are both translated to �%month(1)%�. As the
marking algorithm does not have any information of the context, it has no way to
�gure out whether the input string �1.� stands for the �rst day of the month, or for
January. It therefore translates it to �%dayOrMonth(1)%.�.

Extraction After Marking extraction method uses the additional information we
obtain from the context. The extraction method requires a list of possible date formats
(either individual dates or date periods) to search for and extract the obtained results.
Because we are using solely context information and are operating on the marked text,
we can extract date periods as well as single dates in the same step.

Therefore we used the following date formats listed in Table 3.1. This list is not
claiming to be complete, but we are not aware of a single conference website, that
cannot be interpreted correctly using this list.

1The �test font size� is the area covered by the capital 'A' and seems to be a more appropriate

measure for the perceived size of a font than the font size itself.

9

date format

weekday#month#day##weekday#month#day#year
weekday#weekday#month#day#day#year
day#month#year##day#month#year

month#day##month#day#year
day#month##day#month#year

month#day##day#year
day##day#month#year

day##day#month
month#day##month#day

month#day##day
day#month#year

weekday#month#day#year
month#day#weekday#year
weekday#day#month#year

month#day#year
day#month#year
year#month#day

weekday#month#day
weekday#day#month
month*#day#weekday

month*#day
day#month*

Table 3.1: Table of recognized date formats used in the Extraction step. '#' separates
two date elements. '##' separates two dates of a time period and month* is a place-
holder for strings that can only be interpreted as a month (e.g. Jan, January, but not
01)

Sometimes the date format does not explicitly state the year (e.g. Jan 4th). For
this reasons a preferred year can be speci�ed.

3.5 Finding and Interpreting Labels

Having found the dates on the website we have to �nd the interesting labels as they
occur on the website (e.g. �Submission Deadline�) and assign them to the correct class
(e.g. Paper Submission Deadline). This is again done in two steps as illustrated in
Figure 3.3: in the �rst step (Scoring) we calculate a score that expresses our �belief�
that the label belongs to a certain class and in the second step (Classi�cation) we
assign that label to the class with the highest score.

Scoring In the �rst phase we take an individual word cluster and calculate a score
that expresses our �belief� that this word cluster belongs to the speci�ed class. (Even

10

Figure 3.2: Two step procedure to mark and extract the dates.

though using probabilistic vocabulary, this is a deterministic approach.)

The algorithm splits the word cluster (a potential label) into words (splitting at
white spaces). For each word it checks the prede�ned keyword list for the word and
adds the associated score to the overall score if the word is listed. If the word is not
found in the keyword list, the overall score is decreased by 100 points. The algorithm
then returns the positions of the �rst and last word that was found in the keyword list
as well as the calculated overall score.

The following pseudo code describes the principle in more detail.

function calculateClassScore(String wordCluster, int classId)

{

int score = 0

int firstHit = -1

int lastHit = -1

keywordList = get keyword list for class with the correct classId

for each word in wordCluster

{

if word is in keywordList

{

if have not found start point yet

{

firstHit = current word location

}

11

curScore = score assigned with keyword

lastHit = current word location

}

else if found start point

{

curScore = -100

}

score += curScore

if score < 0

{

break

}

}

return (firstHit, lastHit, score)

}

The implemented algorithm is more complex than the pseudo code as it keeps track of
multiple possible start and end positions of a label in the word cluster and returns all
the labels in the word cluster, whereas the pseudo code shown above only return one
label and does not account for the possibility that there might be multiple possible
interpretations for the same string (label candidates might overlap).

Classi�cation The classi�cation method uses the scores generated in the score phase
and assigns the label to the class for which it got the highest score. In this step we also
take labels from di�erent classes that are overlapping. Again the label with highest
score is kept.

The String �Camera-Ready Submission Deadline for Papers� could be interpreted
as deadline for submission of the camera-ready version (interpreted substring �Camera-
Ready Submission Deadline�) and as submission deadline for the presentation version
of the paper (interpreted substring �Submission Deadline for Papers�). When the
possible interpretations overlap, the implemented algorithm returns the interpretation
with highest score.

3.6 Establishing a Relationship between Label and

Date

Having found the dates and labels on the website we now have to investigate the
relationship between these. This can be done by going through all the labels and
�nd the date that minimizes some distance measure. The easiest meaningful distance
measure is probably the euclidean distance between the centers (center distance) of
the boxes representing label and date. The problem with this approach is that these
boxes tend to have a larger width than height. So the center-distance for two boxes

12

Figure 3.3: Two step procedure to extract the labels.

13

Figure 3.4: Di�erence between central euclidean distance and minimal distance.

Figure 3.5: Additional penalty for the direction.

that are direct horizontal neighbors will be larger than the center-distance for the case
when the boxes are vertical neighbors. This is unpleasant as the date is most likely to
be on the right of the label.
Therefore we calculate the minimal distance between the boxes which is de�ned by
the the euclidean distance of the corners that are closest to each other. The min-
distance is de�ned as dmin =

√
[(∆x)min]2 + [(∆y)min]2 as illustrated in Figure 3.4.

Still when having two direct neighbors, one right of the label, one above the label, we
would like to prefer the one that is right, as the analysis of the conference websites
show that the correct date is likely to be on the right of the label. To realize this we
add an additional penalty for the direction which is depicted in Figure 3.5. In addition
we prefer adjacent neighbors and therefore reduce the score if the two boxes are direct
neighbors.

When the distance between label and date becomes too large, it is not likely that
there exists a relationship between them, so we ignore pairs that have a calculated
distance larger than a certain threshold.

3.7 Finding the Best Date-Label Pair

When establishing the relationship between Label and Date, we went through all the
labels we found on the website and looked for their best partner. Now we have to �nd
out which is the best of these pairs for every class.

This problem seems to be trivial at �rst, as one might be tempted to simply select
the pair with the highest score. But this is problematic as we might use the same

14

min max
�Paper Submission Deadline� - �Noti�cation of Acceptance� 15 days1 150 days2

�Noti�cation of Acceptance� - �Camera-Ready Version� 6 days3 108 days4

�Paper Submission Deadline� - �Camera-Ready Version� 22 days3 175 days5

Table 3.2: Minimal and maximal time distance between two events as found my man-
ually scanning 259 conference websites.

Figure 3.6: Minimal and maximal time di�erence between two events.

date for two di�erent labels. To prevent doing this, we sort all possible pairs by their
score in descending order. Then we take the pair with the highest score, make it the
best pair for the speci�c class and remove all pairs from the list, that either involve
the date we assigned to the �rst class or the class itself. By doing this repetitively for
all labels, we have ensured that we only assign one date to one class and all dates are
assigned at most once.

3.8 Checking for Plausibility

When directly accepting the label date pairs obtained from the above step, it might
occur that the sequence of dates is invalid. In the simplest case: a paper cannot be
accepted before it is handed in; so the Noti�cation of Acceptance has to be after the
Paper Submission Deadline. Analyzing the data set, that was manually extracted from
259 conference websites, we found the minimal and maximal time di�erence between
two deadlines listed in Table 3.2

To make use of the knowledge we postulate a model in which a tuple of dates is
only valid if all time di�erences between the events are in the intervals given in Table
3.2. By doing this we accept all data sets that are entirely �valid�.

1euro ssc 2010, http://www.esl.fim.uni-passau.de/eurossc2010/calls/calls.html
2IEEE Infocom 2010, http://www.ieee-infocom.org/2011/
3CoNext 2010, http://conferences.sigcomm.org/co-next/2010/Workshops/StudentWorkshop/

cfp.html
4ALGO 2010, http://algo2010.csc.liv.ac.uk/waoa/
5International Conference on Software Engineering, http://2011.icse-conferences.org/

important-dates

15

A single outlier (e.g. the Noti�cation of Acceptance is extracted incorrectly in a
way that it now lies before the Paper Submission Deadline) would lead to rejection of
the whole tuple. It is easy to evaluate that a time di�erence between two events is
not valid (e.g. �Noti�cation of Acceptance� is �ve days before the �Paper Submission
Deadline�), but without further information it is impossible to tell which date is wrong.

To clean up the dates in a smoother way, we evaluate the time di�erences between
all events and discard the dates for which both calculated time di�erences violate the
model. Therefore we discard heavy outliers. If there are still time di�erences that
violate the model, we discard both dates that contribute to the time di�erence, as we
cannot tell which of them is wrong.

3.9 Special Case: Conference Date

Some of the conference websites only print their conference dates as part of the header
image on the website. It is therefore not always possible to extract the conference dates
without the help of OCR. The approach used to extract other important dates from
the website does not work here, as most websites would not use a �standard� label such
as �Conference date�, but use the conference name as label (e.g. IEEE Infocom: April
10-15). Extracting the conference name �rst and run the date extraction procedure
with a conference speci�c keyword list would make the system more vulnerable and
decrease the performance of the overall system. Therefore we exploit the fact, that
conferences are normally held for several days and the conference date is therefore
displayed as time interval. We extract all time intervals found on the website and use
the one that occurs most often.

16

Chapter 4

Unsuccessful Ideas

4.1 Table Extraction

Some of the conference websites present the important dates in the form of a table.
One could use that structural information to make extraction more precise. The
implementation of a modi�ed (decreased number of necessary iterations) version of the
T-Rex algorithm [13] worked well for cases in which the standard approach presented
in this report worked well and had problems in the cases we could have bene�ted from
being able to extract data from tables.

4.2 Column Splitting

Most websites are organized in multiple columns. Most common is the three column
layout in which the left column is reserved for navigation, the middle column is for
the actual content and the right column is used to display additional information.
Being able to split the document into these columns and interpret each column as a
separate scope, would eradicate the possibility that a label is incorrectly coupled with
a date from another column. Using a simpli�ed version of the algorithm proposed in
�Detecting Web Page Structure for Adaptive Viewing on Small Form Factor Devices�
[14] didn't lead to satisfying results, as the algorithm implemented failed more often
than we bene�ted from it.

17

Chapter 5

Results

To validate the approach we used a database dump from Confsearch with 259 confer-
ence websites. To establish a Ground Truth we checked every website in that database
and updated the database accordingly. Furthermore we downloaded the websites and
stored them locally so that we would not have to update the database whenever a con-
ference is changing its website. Still �wget� was not able to download all the websites,
so these websites are directly downloaded by the web browser whenever we run a test.
This might lead to some faults when the websites are newer than our database. But
it will most likely decrease the precision and therefore we can only underestimate the
performance of our method.

The Hit-rate (#(correct result)+#(incorrect result)
#(correct result)+#(incorrect result)+#(no result)) expresses in how many

cases our approach returns a result and the precision expresses the percentage of cor-
rect results.

One can clearly see that the hit rate and the precision for the Abstract Class is
very low. This is mainly due to the fact that the keyword list for that class is badly
tuned. We would overcome this when using machine learning techniques to tune the
keyword list.

The results for the other classes look better and we are con�dent that the precision
of the method could still be increased with supervised machine learning and stemming
[15]. Yet the low hit rate stays a problem.

Label Hit-Rate Precision

Abstract .31 .21
Paper Submission .48 .91
Noti�cation of Acceptance .51 .91
Camera Ready .52 .88
Conference Start .48 .84
Conference End .50 .83

Table 5.1: Hit rate and precision obtained from the data set of Confsearch.

18

Chapter 6

Conclusions

Keyword List As became clear in the Results section, tuning of the keyword list
used in label recognition is critical. The badly tuned keyword list for the abstract
deadline class lead to an intolerably low precision. As the used method is basically a
weak, deterministic approach for classi�cation, one would expect to obtain a higher
precision when using more sophisticated methods from the supervised machine learning
domain. Precision and hit-rate could be further increased by methods like stemming
[15] and lemmatization [16] as these methods would reduce the necessary size of the
keyword list and make it more likely that a word in the word cluster is found in the
keyword list.

Mechanical Turk The initial motivation for this thesis was to reduce the amount
of time highly educated and/or highly payed people spend maintaining the website.
The concept of a mechanical turk as advertised by various vendors would solve this
problem in a di�erent, yet more promising way. Even though there exist a small
number of conference websites that require a diploma of higher education, having a
human parsing the websites would always lead to a higher hit-rate (as de�ned in the
results section) than obtained by the presented approach.

Application Even though the presented approach does not deliver a satisfying hit-
rate, it one might still want to use the method, when the application of stemming and
supervised machine learning lead to a precision greater .95. In that case the user would
bene�t from the application of the tool if it returns a result (as this result is precise)
and the user experience wouldn't be harmed if the tool does not return a result.

19

Chapter 7

Acknowlegements

I would like to thank Prof. Roger Wattenhofer to support the Semester Thesis and
Dr. Michael Kuhn for his great support productive criticism and his patience with
me, when I tried something that would most likely fail. Furthermore I would like to
thank Alexa McDorman for supporting me with the English language.

20

Bibliography

[1] M. Kuhn and R. Wattenhofer, �The layered world of scienti�c conferences,� Pro-
gess in WWW research and development: 10th Asia-Paci�c Web Conference,
2008.

[2] R. Grishman, �Information extraction: Techniques and challenges,�

[3] A. H. Laender, B. A. Riberio-Neto, A. S. da Silva, and J. S. Texeira, �A brief
survey of web data extraction tools,�

[4] A. Sahuguet and F. Azavant, �Wysiwyg web wrapper factory (w4f),� in Proceed-

ings of WWW Conference, 1999.

[5] L. Liu, C. Pu, and W. Han, �Xwrap: An xml-enabled wrapper construction system
for web information sources,� in In ICDE, pp. 611�621, 2000.

[6] V. Crescenzi, G. Mecca, and P. Merialdo, �Roadrunner: Towards automatic data
extraction from large web sites,� in VLDB, pp. 109�118, 2001.

[7] M. E. Cali� and R. J. Mooney, �Relational learning of pattern-match rules for
information extraction,� in Proceedings of the National Conference on Arti�cial

Intelligence, pp. 328�334, 1999.

[8] N. Kushmerick, �Wrapper induction: E�ciency and expressiveness,� Arti�cial

Intelligence, vol. 118, no. 1-2, pp. 15�68, 2000.

[9] B. Adelberg, �Nodose & a tool for semi-automatically extracting structured and
semistructured data from text documents,� in Proceedings of the 1998 ACM SIG-

MOD international conference on Management of data, SIGMOD '98, (New York,
NY, USA), pp. 283�294, ACM, 1998.

[10] A. Waterson and A. Preece, �Verifying ontological commitment in knowledge-
based systems,� 1999.

[11] W. W. W. Consortium, �Document object model (dom).� http://www.w3.org/
DOM/.

[12] �Same origin policy for javascript.� http://www.mozilla.org/projects/

security/components/same-origin.html.

21

[13] E. Oro and M. Ru�olo, �Pdf-trex: An approach for recognizing and extracting
tables from pdf documents,� in 10th International Conference on Document Anal-

ysis and Recognition, 2010.

[14] Y. Chen, W.-Y. Ma, and H.-J. Zhang, �Detecting web page structure for adap-
tive viewing on small form factor devices,� in WWW '03 Proceedings of the 12th

international conference on World Wide Web, 2003.

[15] J. B. Lovins, �Development of a stemming algorithm,� in Mechanical Translation

and Computational Linguistics, vol. 11, 1968.

[16] J. Plisson, N. Lavrac, and D. Mladenic, �A rule based approach to word lemma-
tization,� in SiKDD 2004 at multiconference IS-2004, 2004.

22

