
Custom Media Player with
Integrated Feedback

Semester Thesis

Rowan Klöti

14th January 2011

Advisors: Sacha Trifunovic

Supervisor: Prof. Dr. Bernhard Plattner

Computer Engineering and Networks Laboratory, ETH Zurich

Abstract

In this work, a media player is designed that delivers feedback on user behaviour
to a host application and allows user ratings and tags. It can be used in the
context of an opportunistic networking system to deliver an implicit rating of
distributed materials to control quality and prevent abuse. This media player
is implemented on the Android mobile operating system. Moreover, to validate
this approach, an analysis is performed on data obtained from Google's video
platform YouTube.

Contents

1 Introduction 2

2 Related Work 3

2.1 Online media popularity studies 3
2.2 The media capabilities of mobile platforms 4
2.3 PodNet . 5

3 Design 6

3.1 Data collected . 7

4 Implementation 8

4.1 MVideoView class . 8
4.2 MVideoViewMonitor class . 8
4.3 CustomMediaPlayer class . 9
4.4 CustomControlApp and MediaInterface classes 10

5 Evaluation 11

5.1 Methodology . 11
5.2 Data gathered from YouTube crawling 12
5.3 Data gathered from user survey 14
5.4 Discussion . 14

6 Future Work 15

6.1 Media player . 15
6.2 YouTube study . 15

7 Conclusion 16

A Further information about design and implementation 17

A.1 Running the applications . 17
A.2 The Activity class . 18

Bibliography 19

1

Chapter 1

Introduction

In order to make use of an opportunistic networking system for media dis-
tribution, it is necessary to di�erentiate between desired and undesired content.
A simple solution would be to make use of a a numerical rating system, such as
the one employed by YouTube. However, most users do not go to the trouble
to explictly rate items, regardless of how simple the rating system is made (e.g.
Youtube's simple binary rating system). So rather than attempting to change
user behaviour, which often proves unproductive, we may instead take advan-
tage of information that can be obtained without any action initiated by the user
himself (or herself). It may be assumed, for instance, that if a video contain's
unwanted advertising (spam), malicious content or is simply not interesting that
the user will not wish to watch the video in its entirety but rather will quickly
cancel the playback. On the other hand, if the user �nds the content especially
interesting, he or she may watch it a second time or a third time. We may also
infer the user's interest from more elaborate statistics, taking into account the
user's seeking behaviour inside the content. This system of deriving a rating
from user behaviour rather than an explicit valuation will be referred to use an
implicit rating. In order to derive such an implicit rating, we must �rst collect
information about user behaviour, in manner that does not obstruct normal
usage and is ideally entirely transparent to user, otherwise we may encounter
issues with user compliance. Therefore, a media player application is developed
which automatically and transparently collects user data. It connects with a
controlling application and forwards collected data to it.

To validate this approach, I have done a study on the popularity of YouTube
videos, with the intention of linking viewing duration and popularity. I have
examined both data obtained from crawling Google and data obtained by sur-
veying channel owners (so-called Insight data).

A brief outlook: In chapter 2, I will examine existing papers and the media
capabilities of mobile platforms, as well as providing a brief introduction to
PodNet. In chapters 3 and 4, I will explain how I designed and implemented
the media player solution. In chapter 5, I will brie�y discuss how collected
data may be used to derive a rating and review data collected on YouTube. In
chapter 6, I will discuss what functionality may still be implemented as part of
the media player as well as how further studies on YouTube may be conducted. I
will also discuss an alternative option for collecting data from YouTube. Finally,
chapter 7 brie�y outlines what I have done.

2

Chapter 2

Related Work

In this chapter, I will brie�y review two papers already written on the topic
of popularity of online media sites, speci�cally YouTube. I will give an overview
of the media capabilities of modern mobile media platforms, with a special
emphasis on Android. I will also give a short introduction to PodNet.

2.1 Online media popularity studies

Chatzopoulou et al. [1] collected a large sample of data (~37 million video
entries) on videos on the YouTube platform, recursively utilising the YouTube
public API's �related video� feature and accounting for approximately a quarter
of all videos on YouTube at the time. They correlate common metrics publicly
available on the YouTube website, namely the number of viewings, the number
of times a video is made somebody's favourite, the number of comments, the
number of ratings and what the average rating is. They claim that

• The average rating does not correlate with other metrics

• All the other metrics correlate with each other

• One in 400 user views results in an action of some sort

• The network of related videos is a small world graph

It must be said that the available data do not allow any statement to be made
about the number of users viewing a video, only about the amount of times a
video is viewed1.

Cha et al. [2] performed an investigation of sites containing �user generated
content� (also including YouTube) and compared user behaviour to sites con-
taining videos not supplied by the user (that is, containing commercial content).
They compared popularity distributions, as well as investigating the e�ciency of
caching and the quantity of material in violation of copyright laws. In particular
they

• Claim that the popularity of videos follows a power law distribution

• Derive similar numbers for user participation as were obtained by the other
study

1See Evaluation (5.3)

3

2.2 The media capabilities of mobile platforms

Before designing any media player, it is essential to know what it should
be able to playback. Modern mobile devices have integrated media platforms
capable of playing and recording in a variety of formats, often rivaling the
capabilities of a PC. Most phones use the 3GP format2 to store media data,
with some also supporting additional formats. I will brie�y summarise support
for video codecs in this section. Audio codec support is only listed for the
Android platform. Most platforms support at least the MP3 format as it is the
most prevalent way to distribute audio �les on the Internet.

The Android media platform supports the MPEG-4 Simple Pro�le, H.263
and H.264 AVC codecs, the latter two also with the .mp4 �le format3. Audio
support includes AAC including HE-AAC, AMR (optimised for speech) as well
as the familiar PC audio formats MP3, Ogg Vorbis as well as PCM/Wave.
Android also supports playback of MIDI �les.

Codec name Support recording? File formats

H.264 Yes .3gp or .mp4
H.264 AVC No .3gp or .mp4
MPEG-4 SP No .3gp

Table 2.1: Supported video formats on Android platform.

Codec name Support recording? File formats

AAC LC/LTP Yes .3gp or .mp4/.mp4a
HE-AAC v1 and v2 No .3gp or .mp4/.mp4a
AMR-NB and WB Yes .3gp

MP3 No .mp3
MIDI No .mid and others

Ogg Vorbis No .ogg
PCM/Wave No .wav

Table 2.2: Supported audio formats on Android platform

The Windows 7 Phone platform supports the WMV9 (VC-1) codec in its
Simple, Advanced and Main pro�les, MPEG-4 Part 2 Simple Pro�le and Ad-
vanced Simple Pro�le, H.263 and H.264 (MPEG-4 Part 10 AVC) in its Baseline,
Main and High pro�les. The 3GP, MP4 and WMV containers are supported,
depending on the codec used4. The Apple iPhone supports H.264 Baseline pro-
�le and MPEG-4 video formats in MP4, M4V and MOV containers5. The Palm
WebOS supports 6 H.263, H.264 Baseline Pro�le and MPEG-4. The Blackberry

2See: http://tools.ietf.org/html/rfc3839
3See: http://developer.android.com/guide/appendix/media-formats.html
4See: http://msdn.microsoft.com/en-us/library/ff462087
5See: http://developer.apple.com/library/ios/#documentation/Miscellaneous/

Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html
6See: http://developer.palm.com/index.php?option=com_content&view=article&id=

1981

4

http://tools.ietf.org/html/rfc3839
http://developer.android.com/guide/appendix/media-formats.html
http://msdn.microsoft.com/en-us/library/ff462087
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html
http://developer.palm.com/index.php?option=com_content&view=article&id=1981
http://developer.palm.com/index.php?option=com_content&view=article&id=1981

supports WMV in its Simple Pro�le, H.263 and MPEG-4 Part 2 in its Simple
Pro�le7.

Operating system H.263 H.264 MPEG-4 Other

Windows 7 Phone Yes Baseline, Main, High Parts 2 & 10 WMV
Apple iOS (iPhone) - Baseline Yes -

Palm WebOS Yes Baseline Yes -
Blackberry Yes - Part 2 only WMV

Table 2.3: Overview of format support on other platforms

It is also worth noting that it may not be necessary to limit playback to
formats supported by a built-in media platform. There are also third party
media platforms, often open source, such as ffmpeg. There are third party
players which utilise �mpeg instead of the default media platform, o�ering a
much larger set of supported formats. An example of such a player is the
RockPlayer application for Android8.

2.3 PodNet

The original motivation for the development of this media player was the
extraction of implicit ratings for use on opportunistic networking systems. It
would therefore be worthwhile to examine such a system. The PodNet con-
tent distribution system, developed at the Computer Engineering and Networks
laboratory of the ETH Zürich9, leverages the WiFi connections available on mo-
bile devices to distribute user-created content (i.e. podcasts) to other interested
users. The user simply subscribes to a podcast and it will be obtained from
peers as soon as it becomes available. This spares users from often expensive
and slow 3G connections, using free and plentiful WLAN bandwidth instead.
It is also envisioned that PodNet will provide opportunities for spontaneous
interaction of geograpically close users as well as allowing research into social
behaviour of platform users.

7See: http://www.blackberryfaq.com/index.php/What_video_and_audio_formats_are_

supported%3F%3F
8See: http://rockplayer.freecoder.org/index_en.html
9See: http://podnet.ee.ethz.ch/

5

http://www.blackberryfaq.com/index.php/What_video_and_audio_formats_are_supported%3F%3F
http://www.blackberryfaq.com/index.php/What_video_and_audio_formats_are_supported%3F%3F
http://rockplayer.freecoder.org/index_en.html
http://podnet.ee.ethz.ch/

Chapter 3

Design

As stated in the introduction, the aim is to develop a media player applica-
tion which collects usage data transparently. In order to allow the media player
to be integrated into existing plaformts, I have elected to implement it as an
external application. Even though the media player is an external application,
it is not intended to be run independently of a host application and this fact is
re�ected in design decisions that I have made.

The media player itself makes use of the built-in framework for playing media
back on Android. The existing media player functionality is simply extended,
the media player does not actually implement any kind of decoding or rendering
on its own, limiting it to playing back those formats supported by the Android
platform.

In order to collect that statistics, I have implemented a straightforward ex-
tension of the built-in video player, which introduces callback functions to sup-
plement those already available. Making use of these functions, I can implement
an object of my own that listens to events relating to playback and keeps track
of user actions. This object is only dependant on my extended video player
class, it can therefore also be integrated into other media player software, if
need be.

I wish to maintain maximum �exibility by not integrating the media player
into an existing application, while ensuring that it is capable of being integrated
easily. Therefore I will also implement a simple control application. This ap-
plication will pass necessary parameters to our media player, then receive the
resulting data and display it to the user, acting in lieu of a host application.
There are several options available to integrate the media player and the control
application together: Here I will make use of the inter-process communication
system o�ered by the Android platform. I will avoid the usage of a �le or a
database for communication so that a host application can manage the data as
it sees �t. This also allows real-time updates of viewing information without
super�uous �le I/O.

The media player should provide cumulative statistics, so it will receive the
stored set of statistical values when it is launched. It will then return the val-
ues added to the newly collected data, either when it is closed or otherwise
interrupted. This process is idempotent, i.e. there is no harm in values being
returned multiple times as we always return the running totals. It is also rela-
tively resilient, there is nothing a user could do to prevent the correct operation

6

of the data collection, aside from terminating the host application.
I could implement an IPC system that allows single values to be passed

between processes, however that would require a large number of comparatively
expensive cross-process function calls. Instead I will forward an entire table
of name-value pairs to the media player at run time, then in return receive a
table when the media player �nishes or is interrupted (for instance by another
process). This mechanism also provides a way by which the media player may
be supplied with a �le name or other arguments, especially the current position
and state. This can be used to seamlessly continue playback if my application
is terminated by the Android operating system due to a screen reorientation or
the like.

Finally, I will provide the user with the ability to give media �les a rating
and assign tags to them. The tags are simply text strings (separated by semi-
colons), while the ratings are numerical (whole numbers from one to �ve). This
information will be stored and forwarded in the same manner as the statistics
described above. Furthermore, it is straightforward and possibly useful to for-
ward information about video resolution and duration to the host application.

3.1 Data collected

It is necessary to decide which data should be collected. This is obviously
limited by the implementation, speci�cally by the type of events that we can
process. I have decided to collect data on the following quantities, all of which
are passed to the host application as integers:

• The total playback time, which should be the central indicator of the user's
preferences. The total is cumulative, so that if we play a ten second video
twice, the result will be twenty seconds of playback time.

• The total rewind time. This is the total amount of time seeked backwards
- the total of the di�erences between the place we have seeked from to the
place we have seeked to, counting only seeks where the destination of the
seek is before the source.

• The total time fast forwarded. This is as above, but now only counting
seeks where the destination of the seek is after the source. These two
statistics together give the total amount seeked, which I have decided not
to collect separately � it can easily be derived from these two statistics.

• The total number of times a certain event occurs. The events supported
include:

� Playback is started

� Playback is paused or suspended

� Playback �nishes normally

� Seeking occurs. We also count rewinds and fast forwards separately,
as de�ned above.

7

Chapter 4

Implementation

In order to ful�ll the design speci�cations, I have implemented two Android
applications, which are called CustomMediaPlayer and CustomControl-
App. The former application is the actual media player and collects the statis-
tics, the latter application allows the user to select a �le name, launches the
media player, then shows the results when the media player exits. These two
applications need to communicate, so I have implemented a simple IPC inter-
face called MediaInterface. The media player functionality is implemented
in the MVideoView class while the statistics collection is implemented in the
MVideoViewMonitor class. I will outline the functionality of these compo-
nents in the following sections.

4.1 MVideoView class

The class MVideoView inherits from the classVideoView, which is supplied
by the Android platform. This class makes use of the MediaPlayer system
in Android, in particular, it can be connected to a MediaController, which
provides a simple GUI for controlling media playback (play/pause, fast forward
and rewind controls as well as a seek bar). The VideoView class is also capable
of playing audio �les, in which case the display is simply blank.

The MVideoView class is a lightweight extension to the VideoView class
that provides a callback on invocation of all of VideoView's public methods1,
which e�ect a change in the player's state. The method setVideoViewListen-
ers(VideoViewListeners) allows me to pass a reference to aVideoViewLis-
teners interface to the MVideoView object. This interface can be imple-
mented by the class that wishes to receive callbacks when MVideoView's public
methods are invoked. If the method setVideoViewListeners is never invoked,
MVideoView behaves exactly like its parent class.

4.2 MVideoViewMonitor class

The MVideoViewMonitor class implements the VideoViewListeners inter-
face. The contructor of MVideoViewMonitor receives a reference to a MVideoView

1These are pause(), resume(), seekTo(int), start(), stopPlayback() and suspend()

8

object, it then calls the setVideoViewListeners method with itself as the ar-
gument. The class can then keep track of MVideoView's internal state. In
particular, we store the position that the video is started from in savedTime,
then when playback stops, we calculate the di�erence and add it to cumula-
tivePlayTime. When seeking, we compare the value of the destination (the
parameter of the seekTo(int) function) to the current position. If the des-
tination is larger (later), we increment the value of fftime by the di�erence.
Otherwise, the value of rwtime is incremented instead. Moreover, counters are
maintained for each of MVideoViews public methods, and separate counters are
maintained for fast forwards and rewinds2.

All of the collected values can be obtained through access functions and the
values can be reset to zero by the reset() method. The class VideoView (and
therefore MVideoView) provides an onCompleted() callback which we make
use of. I therfore provide a callback onFinished() with its own interface On-
FinishedListener, so any class making use of MVideoView and MVideoView-
Monitor can itself receive notice when the video playback is �nished without
interfering with data collection.

4.3 CustomMediaPlayer class

The class CustomMediaPlayer is the actual media player application itself.
Speci�cally, it is an Activity, that is, it inherits from the Android API's Activ-
ity class. The Activity class provides a framework for implementing the part
of an application that actually interacts with a user, i.e. its GUI. In general,
the layout of the Activity is de�ned in an XML �le. The Activity can then
load this layout with the setContentView(int) method. It is then possible
to obtain references to individual UI elements (called views) with the method
findViewById(int). It is also possible to instantiate views programmatically,
in which case they can be added to a layout with the addView(View) method.

The Activity class provides several methods which are invoked when the
state of an Activity changes and which can be overriden by a child class3. The
onCreate() method is used to setup the layout, create necessary objects and
change settings as needed. Here I do not make full use of XML based layouts,
as there is no way to create an MVideoView object from the XML interface.
Instead, the objects are created and added to the existing layouts. The Rat-
ingBar view, used to provide the user a possibility to give videos a rating, is
created and added to the layout in a similiar manner, in this case I only add the
rating bar if the orientation is vertical. In this case, I also add a TextView
to display any tags which have been assigned to the media �les, and a Button
which shows a dialog box so that the user can enter new tags.

The �nal act of the onCreate method is to attempt to connect to the ser-
vice provided by the controlling application and start a timeout counter. The
onDestroy method is used to ensure than the Activity cleans up after itself

2The access methods available are getcumulativePlayTime(), getfftime() and getrw-
time(), which return values in milliseconds, and getpauseCount(), getresumeCount(),
getseekCount(), getstartCount(), getstopCount(), getsuspendCount(), getfin-
ishedCount(), getrwCount(), and getffCount(), which return the number of times that
the event referred to has occured. All returns are of type integer.

3See appendix A.2 on page 18 for list of method an when they are invoked.

9

correctly. If the application manages to connect to the host application suc-
cessfully, the onServiceConnected(ComponentName, IBinder) callback
is invoked, which cancels the timeout counter then receives data through the
established service connection. The data includes the �le name to be opened as
well as any statistics we collected in a previous session, so we can take care of
the accumulation and not leave this to the host application. If the service con-
nection is not established within the speci�ed timeout, the media player exits
and launches the control app, under the assumption that the failure to connect
to the service means that the control app is not running.

When the MVideoView object is �nished loading the video, it calls the on-
Prepared(MediaPlayer arg0) callback, where we restore the state of the
media player if we previously stored it due to the player being destroyed during
a screen reorientation. At this stage, the user can interact normally with the
activity. When the method onPause() invoked, the collected data is obtained
from the MVideoViewMonitor, added to the existing data and sent through the
IPC connection.

4.4 CustomControlApp andMediaInterface classes

In order to implement an IPC receiver on the Android it is necessary to
implement a service by inheriting from the Service class. Like Activities, Ser-
vices constitue part of an Android application. They are intended to perform
background operations and receive IPC connections by implementing onBind
callback. This callback provides the necessary IBinder interface to establish
the connection and also allows the service to maintain multiple connections. We
use two connections, a local connection from the CustomControlApp activity
and a remote connection from the media player. To implement a remote connec-
tion, it is necessary to design an interface using AIDL4(here: MediaInterface)
then implement the interface in the service as an inner class (here: rBinder).
The service is connected to with the bindService(Intent) method, and the
application containing the service must publish the Intent5 via its Manifest in
order for external applications to be able to connect to it.

MediaInterace implements two methods, allowing the media player to receive
a set of values from the service, in the form of a Bundle object, as well as to
forward a set of values back to the service. The Bundle object is a container
provided by the Android API speci�cally for use in IPC; it uses a HashMap
internally.

The local API is built up in a similiar manner, so that the CustomControl-
App can push its stored set of statistics, as well as the �lename which the user
has entered, to the service, from which the media player obtains those values,
and then when media player exits, it sends the values to the service, then when
the control app resumes, it gets the values from the service, parses them and
displays them.

4Android Interface Description Language
5An Intent represents a sort of URL: An application to run plus associated data (if appli-

cable). This is necessary as the Android platform does not have a way of passing arguments
to applications.

10

Chapter 5

Evaluation

Once su�ciently detailed statistics on user behaviour have been obtained, it
is possible to derive some sort of rating from them. A rating should take into
account the number of times a user watches the content. This could be done
by counting the number of times playback is started. A more subtle method
might transform this number into a continuous quantity by dividing the total
playing time by the actual length of the video. Furthermore, any such algorithm
should take into account that user behaviour is likely to vary with the length of
the video, and watching a long video entirely or even multiple times might be
interpreted as being more strongly approving than with a shorter one. Seeking
behaviour could also be taken into account - for instance users may fast forward
because they are bored or rewind because a certain section of the video was of
particular interest. In the absence of a �eld test to validate an implicit rating,
I have performed an analysis on YouTube data instead. The aim is to attempt
to validate the approach of collecting data to assign implicit ratings.

5.1 Methodology

YouTube provides a public API called �Data API�1, allowing automated in-
teraction with the YouTube platform. This API also allows some statistical
information to be gathered - the number of views, the number of users who
made a video a favourite, the number of �likes� and �dislikes�. However, more
detailed information is available via the Insight feature, intended for market-
ing analysis2, which provides more detailed statistics, such as the number of
unique views per video, as well as demographic data. Unfortunately, this data
is only available to the video owner. In order to obtain some data, a survey was
performed and YouTube users with widely subscribed channels were asked to
provide Insight data. In addition, a program was developed to crawl YouTube,
gathering information on popular videos. This program takes an initial feed3

and then iterates through all the entries, adding the �Related videos� feed for
each entry, then proceeding to the next feed. The program ensures that video
entries appear only once in the output.

1See: http://code.google.com/apis/youtube/overview.html
2See: http://www.youtube.com/t/advertising_insight
3The feed used in this case was the standard �Most Viewed� feed

11

http://code.google.com/apis/youtube/overview.html
http://www.youtube.com/t/advertising_insight

5.2 Data gathered from YouTube crawling

The YouTube application made 10,000 requests for information from YouTube,
yielding 3433 video entries4, each containing the number of �like� and �dislike�
ratings, the number of times a video is made favourite and total number of
views. I have obtained a �gure of 486 views per favourite and 611 views per
rating, which agrees well with the claims from the reviewed papers. Comparing
views and ratings in Figure 5.1, it is evident that the two are not correlated
in any meaningful way, that is, popular videos are not necessarily highly rated.
There is a cluster of videos with a high rating, tending to suggest that users
tend to give relatively generous ratings - 87% of all ratings given are a �like�.
The mean rating was 4.42 with a median of 4.70 and a standard deviation of
0.71.

Figure 5.1: Number of views vs. rating

I have also compared the number of ratings given with the rating in Fig-
ure 5.2. It is once again apparent that the average rating is quite high. It might
be assumed that the number of ratings have some correlation on the average
rating - videos which get rated a lot are probably popular and may get higher
ratings on average. The data suggests that no such connection exists, that con-
tent that is rated more often is not rated any di�erent from content rated less
often.

4Performed at 18:06 on 08.01.2010

12

Figure 5.2: Number of ratings vs rating given

In Figure 5.3, I have compared views and favourites. The nearly linear form
suggests that favourites are mostly proportional to the number of views. There
are numerous outliers above the main line, while the form of the lower boundry
is very sharp. Clearly there is a relatively sharp upper limit on the number of
favourites a video gets (which is much lower than the number of views). On the
other hand, the lower limit is much more di�use.

Figure 5.3: Favourite count to views count

Finally, I have compared the favourites-to-views ratio with the rating in
Figure 5.4, under the assumption that the favourites-to-views ratio represents
a sort of implicit rating. Interestingly, it is possible to observe a sort of one
way relationship here. Lowly rated videos rarely become users' favourites -
unsurprisingly - but highly rated videos show a great deal of variation. It
may be that the much larger number of highly rated videos allows for a wider
distribution of values.

13

Figure 5.4: Ratio of number of favourites to view count vs. rating

5.3 Data gathered from user survey

Unfortunately, there were not enough responses to the survey in order to pro-
vide statistically signi�cant data (2 responses for 102 requests - 1.96%). Based
on the limited data available, one point can still be made. One user had 82
unique views and 257 total views (just under 1 unique view for 3 total views),
while the other had 845 unique views and 5423 total views (a ratio of less than
1 unique view to 6 total views). These �gures are for a period of 2 weeks and
per channel (not per video).

5.4 Discussion

Although the results obtained here do not contradict the statements made
in [2, 1], there is a large discrepancy between the number of views a video has
and number of users who have viewed a video. The discrepancy may be a result
of the YouTube page being loaded multiple times, perhaps because the page
is reloaded. It may also be a result of session restore reloading many pages,
without the user viewing them. In any case, it would tend to suggest that the
publicly available data are not adequate for detailed popularity analysis. Based
on the �gure of around 500 views per rating, claimed by both papers and also
re�ected here, content viewed by a small number of people may never even get
a rating. This certainly makes some kind of automatic system sensible. Also,
for future YouTube studies - given that neither approach used has yielded data
in su�cient quantity and quality - it would be worth trying an alternative,
client side solution. Such a solution could built on the CustomMediaPlayer
developed in this thesis. It could be distributed as an application on mobile
systems. It would monitor user behaviour on YouTube (or another video site)
and automatically report to a remote client, or store the data and allow it to
be collected cumulatively at the end of the examined period.

14

Chapter 6

Future Work

6.1 Media player

The media player application must be integrated into a host application,
which would have to manage the data collected by the application as well as
derive actual implicit ratings from the collected data, which should be trivial,
although the rating system should be validated in some way, e.g. by correlating
the ratings with explicit ones. It could also communicate the relevant data to
a remote server, which would allow transparent collection of data pertaining to
user behaviour. It is even possible that the application could learn user pref-
erences, assigning implicit ratings based on previous explicit ratings, although
this would probably require extensive data mining.

It would be preferable if the data collected here were also available for web-
based video playback. It is thinkable that a site such as YouTube (or a com-
parable site providing user-created videos) would add functionality to its video
player so that playback time could be exactly recorded. This would also aid in
the creation of implicit ratings. It could make use of plugin-based players, such
as the Flash based player used by YouTube (although Silverlight would work
just as well, albeit limiting the video playback to systems which support Sil-
verlight), but it could also make use of the new functionality added by HTML5,
in particular the video element, which can interact with JavaScript code.

6.2 YouTube study

The scope of YouTube study was limited by the methodology and might
be seen as a sort of proof-of-concept for a much larger and more extensive
study to be performed at a later date. In particular, obtaining YouTube's
cooperation would greatly increase the quantity of the data collected and remove
the necessity of obtaining user cooperation - always di�cult on a large, relatively
impersonal website. It would be necessary to ensure the anonymity of YouTube
users, and YouTube would be more likely to cooperate if it had some sort of
incentive. Obtaining YouTube's cooperation would have been well beyond the
scope of the small study done here. A client based solution, as discussed in
the Evaluation (5.4 on the previous page), is an alternative that should be
evaluated.

15

Chapter 7

Conclusion

In this semester thesis, I have designed and implemented a media player
application for the Android platform which collects data on user behaviour. I
have developed a backend application, which launches the media player and
acts in lieu of an integration into a larger software project. I have also done a
investigation into videos on YouTube to validate the use of user behaviour to
rate video content.

The media player application integrates a modi�ed media player component
utilising the Android platform, as well as the component that uses the modi�ed
media player component to derive statistics on user behaviour. In hindsight, this
functionality might have been merged into a single component, which could also
be used as a drop-in replacement of the default video widget in other projects,
although the solution chosen here can also be integrated into other projects with-
out great di�culty. The media player uses IPC to communicate with a backend,
which also allows the backend to be replaced without modifying the source code
of the media player. This solution was chosen for maximum �exibility. The data
is passed as a table, which allows easy extensions without modifying the API.
It also o�ers good performance, keeping the number of cross-process function
calls to a minimum. Finally, the media player itself has some workarounds to
adapt to changes in screen orientation. Here performance improvements could
make the process faster and more seamless, although the bene�ts seam small
compared with the additional complexity.

The YouTube study was composed of two parts. Firstly, data was gathered
automatically by crawling. Secondly, a small survey was performed. Unfortu-
nately, the results of the survey were disappointing, if not entirely surprising,
and it was di�cult to make inferences from such a small data set. The data
gathered by crawling provides only rudimentary statistics and does not add any-
thing substantial to results already obtained by others[1, 2]. A case was made
for the development of a client side solution. The approach of using an appli-
cation such as CustomMediaPlayer was validated, given the relative scarcity of
user ratings and the minimal accuracy of simple view counting, such as YouTube
provides.

16

Appendix A

Further information about

design and implementation

A.1 Running the applications

Anyone who wishes to modify and/or compile the Android applications
should observe the following:

• I developed the applications for Android 2.2, with Eclipse 3.5. It may be
possible to get them to work with other versions.

• Obtain the Android SDK at http://developer.android.com/sdk/index.
html and the appropriate version of Eclipse (Galileo) at http://www.

eclipse.org/downloads/packages/release/galileo/sr2.

• It is best to follow the instructions at http://developer.android.com/
sdk/installing.html.

• Once the two projects have been imported, it is necessary to manually
link or copy the AIDL �le, situated in
CustomControlApp/src/android/CustomControlApp to the directory
CustomMediaPlayer/src/android/CustomControlApp. It is important not
to copy it to the directory of the rest of the CustomMediaPlayer source
�les - it must be in the same package as CustomControlApp or Custom-
ControlApp will not be allowed to connect to it.

Anyone who wishes to modify and/or compile the Java application used to crawl
YouTube should observe the following:

• It is necessary to obtain the GData API from Google. Please see http://
code.google.com/apis/gdata/articles/java_client_lib.html. Fur-
ther packages are required - servlet-api.jar, mail.jar and activation.jar.
These must be obtained separately, as detailed on the above. It is neces-
sary to include them in Eclipse.

• It is necessary modify the source code to change operating parameters,
speci�cally the number of queries to make (not too large) and the feed to
start o� with.

17

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://www.eclipse.org/downloads/packages/release/galileo/sr2
http://www.eclipse.org/downloads/packages/release/galileo/sr2
http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/installing.html
http://code.google.com/apis/gdata/articles/java_client_lib.html
http://code.google.com/apis/gdata/articles/java_client_lib.html

A.2 The Activity class

Method Invoked when...

onCreate The Activity is �rst created, essentially like a constructor
onStart When the Activity becomes visible
onResume When the Activity comes to the foreground
onPause When the activity is no longer in the foreground
onStop When the Activity is no longer visible

onDestroy When the Activity in shut down, essentially like a destructor

Table A.1: The various methods that are invoked
when the state of an Activity changes. Source
http://developer.android.com/reference/android/app/Activity.html

Figure A.1: This diagram from the Android developer's guide show's the lifecy-
cle of an Android Activity as a �ow chart. Source http://developer.android.
com/guide/topics/fundamentals.html.

18

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html

Bibliography

[1] Gloria Chatzopoulou, Cheng Sheng, and Michalis Faloutsos. A First Step
Towards Understanding Popularity in YouTube. In IEEE NetSciCom Info-

com Workshop, 2010.

[2] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong yeol Ahn, and Sue
Moon. I Tube, You Tube, Everybody Tubes: Analyzing the World's Largest
User Generated Content Video System. In IMC, 2007.

19

	Introduction
	Related Work
	Online media popularity studies
	The media capabilities of mobile platforms
	PodNet

	Design
	Data collected

	Implementation
	MVideoView class
	MVideoViewMonitor class
	CustomMediaPlayer class
	CustomControlApp and MediaInterface classes

	Evaluation
	Methodology
	Data gathered from YouTube crawling
	Data gathered from user survey
	Discussion

	Future Work
	Media player
	YouTube study

	Conclusion
	Further information about design and implementation
	Running the applications
	The Activity class

	Bibliography

