
A touch-based music player interface optimized

for tablet-sized devices

Bachelor thesis, Yannick Stucki, ETH Zurich

June 2011

Preface

I would like to thank my advisors Samuel Welten and Michael Kuhn for all the
vivid discussions about music players and interfaces, their help and their input.
I would also like to thank Professor Roger Wattenhofer for providing me with
a Motorola Xoom. Without the Xoom I could not have programmed Jukefox
for Tablets, which will hopefully soon appear in the Android market. I also
hope that Jukefox for Tablets will have many female users, even if the user I
am talking about in this thesis will always be male.

i

Contents

1 Introduction 1

2 The history of mobile music players interfaces 3

3 Tablet interfaces 8
3.1 Landscape use . 8
3.2 Thumb navigation . 8

3.2.1 The tablet is placed . 8
3.2.2 The tablet is held in one hand, while interactions are done

with the other hand . 9
3.2.3 The tablet is held with both hands, while interaction is

done with both thumbs 9
3.3 Avoid full screen transitions . 10

4 Design principles and goal 11
4.1 The goal of decoupling the playback experience from the interface

experience . 12
4.1.1 Finding specific songs . 13
4.1.2 Finding non-specific songs 13
4.1.3 The user should be able to plan ahead 14
4.1.4 The user should be able to act spontaneously 14
4.1.5 Never interrupt the playing song, unless the user really

wants to . 14
4.1.6 Avoid starting the playback of music the user does not

want. 15
4.2 Explicit principles for this project 15

4.2.1 Keep in mind that there is no intuitive interface 15
4.2.2 The experience should be visually attractive and fun to use 16

5 Design choices 18
5.1 The play queue . 18

5.1.1 The play controls should always be visible 19
5.1.2 Do not implement a now playing screen 19
5.1.3 Upcoming songs are more important than already played

songs . 21
5.1.4 Gestures allow for precise and spontaneous control 21
5.1.5 The clear button only affects the upcoming songs 22
5.1.6 One play mode is enough 23

ii

5.1.7 Auto refill for smart shuffle 25
5.2 Navigation within the music library and selection of songs 26

5.2.1 Supporting several selection views 26
5.2.2 Means of achieving consistency across all selection views . 27
5.2.3 Put the play queue on the right side 30
5.2.4 Sacrifice genres (for now) 31

5.3 Explore . 31
5.3.1 Allow for hierarchical navigation 32
5.3.2 Encourage flat and linked navigation 32

5.4 Map . 35
5.5 Search . 36
5.6 Playlist . 38

6 Conclusion and outlook 40

iii

List of Figures

2.1 The first Discman, the Sony D50. 4
2.2 Two models of the Apple iPod 4
2.3 The now playing screen of the Apple iPhone 5
2.4 The android player 3 (cubed) with 3D animations for albums

(left) and the Map of Music from Jukefox (right). 6
2.5 The Music Rainbow. 6
2.6 The now playing screen on the default player for android on tablets. 7

5.1 The Jukefox for Tablets interface displaying all albums. 18
5.2 Rearranging through dragging (left) and removing through swip-

ing (right) . 22
5.3 An album being dragged into the queue. 27
5.4 An album’s overlay. 28
5.5 An album’s overlay with selected songs. 30
5.6 An overlay before sliding (left) and after sliding (right). 31
5.7 An artist’s exploration view. On top (left); scrolled down (right). 34
5.8 A tag’s exploration view. 35
5.9 A list to select an artist to explore. 36
5.10 The map view. 37
5.11 The map while the user is drawing a region with his finger. . . . 38
5.12 The search view. 39

iv

Abstract

Mobile music players have changed drastically over the last couple of years and
there is vivid experimentation going on in the field of music retrieval interfaces.
However, the rest of the music player interface, mainly the part responsible for
playback controls, has stayed largely the same as the one the Discman intro-
duced in 1984.

To analyze playback interfaces, we identify a trade-off between what we call
playback and interface experience, where the user can enhance one at cost of the
other. We define a possible goal of music playback interfaces as decoupling the
playback and interface experience, such that their negative coupling becomes
weaker than in previous music playback interfaces. Such a weaker coupling
improves the overall experience, as the trade-off becomes less severe.

Furthermore, we introduce our music player Jukefox for Tablets for the An-
droid Honeycomb platform and explain how we made design choices based on
our previously defined goal. We compare interface elements from Jukefox for
Tablets to interface elements found on other players and show how we achieve
a higher decoupling between the playback and the interface experience.

Chapter 1

Introduction

Like many other habits, the way we listen to music has changed drastically over
the last few decades due to new technologies. One part which evolved probably
more than any other is the field of mobile music players. While the number of
songs that could be listened to on a portable music player used to be limited
by the amount of cassettes or CDs a user could carry, a user can now carry
around thousands of songs stored on a device or even stream from a collection
of millions of songs using the Internet.

Traditionally, songs have been accessed by hierarchically structured meta
data such as artists, album and song names. In the field of music retrieval
interfaces, the question is how to design interfaces which can go beyond this
traditional approach such that we can scale music retrieval to the size of today’s
music collections.

While the question of how to make a good music retrieval interface is of
great importance for any music player, its central functionality still remains
that of playing music. Little research has been going into the question of what
a good interface for a player should look like, besides the interface for retrieving
the music. In the contrary, the part of the interface commonly called the now
playing screen is present in almost any player and added by developers with
barely a second thought.

Our contribution is one possible way to define the question of how to make
a good music playback interface, i.e. what property a good music playback in-
terface should optimize. Furthermore, we implemented a music player interface
for tablets running on Android 3.0 Honeycomb version or later. It is aimed at
optimizing music playback as introduced in our definition.

In the next chapter we look at how mobile music players interfaces evolved,
how they changed and in what aspects they have remained the same.

In chapter 3 we discuss a few aspects which shape and influence the tablet
interface experience and make designing for the tablet different from other plat-
forms such as the desktop or the mobile phone.

In chapter 4 we create the foundation of our application. We define our goal
of music playback interfaces and its consequences. Furthermore, we explicitly
highlight some principles which we deemed to be especially important for the
realization of a music player interface on a tablet.

In chapter 5 we present our music player for tablets running on the Android
platform. It is our attempt to achieve optimized music playback as defined

1

in chapter 5. Furthermore, we highlight a set of design choices which lead to
create the application the way it is. For each design choice we outline the
rational behind the decision, while also explaining how it helps us optimizing
our player, or even is necessary, to fulfill the requirements and adhere to the
principles specified in 5.

In chapter 6 we conclude by summarizing our work and giving an outlook
to what the next steps of our project will be.

2

Chapter 2

The history of mobile music
players interfaces

In this chapter we do not try to give a complete history of mobile music players
and their interfaces, but highlight a few important historic developments and
analyze how two parts of the interface, the one for music retrieval and the one
for music playback, have changed over time.

One of the first portable audio players was Sony’s Walkman in 1979 [3]. For
casette players such as the Walkman, the music retrieval interface was a user’s
casette collection and a whole casette is the smallest quantity that could be
retrieved. The playback interface featured the play and pause buttons we still
have today, but otherwise such players had only rewind and fast forward options
to linearly seek through the casette. There is not really a distiction between
playback and music retrieval interface, as seeking can be viewed at as belonging
to both.

In 1984, Sony introduced the Discman which replaced cassettes by Compact
Discs [13]. The CDs used in the Discman allowed to jump to a specific track
instead of having to seek like when using cassettes. It is clear that this greatly
improved the interface. In figure 2.1 we see the picture of the first Discman, the
Sony D50 [14]. It already featured controls such as play/pause, previous/next
track and displayed information such as track number and playback time.

As with the walkman, finding the right data carrier was part of the music
retrieval interface.

The next step in the evolution of mobile music players where digital audio
players (DAP), which had local storage that could be loaded with the users
songs. Although experimented with before, the digital audio players started
getting into the mass market at around 1998 [12].

DAPs changed the music retrieval interface dramatically, as the user now did
not have to carry around external storage anymore. The interface for retrieving
music was quite trivial at first, since the number of songs on such players was
very limited at the beginning. The music playback interface remained very
similar at first, since the DAPs initially only had tiny screens which could display
a track name or a few letters at best. The most successful DAP is undoubtedly
the iPod, which was first introduced by Apple in 2001 [16]. Although there is
an enoumerous amount of digital audio players, we will analyze the iPod as

3

Figure 2.1: The first Discman, the Sony D50.

an example, not only due to its popularity, but also because it shaped and
influenced the industry for years and still does.

The iPod (see figure 2.2) introduced distinct interfaces for playback (left)
and music retrieval (rigth). The playback interface was the so called now play-
ing screen. In this interface, the user basically had the same controls as when
controlling a Discman: play/pause, previous/next track, change of volume, lin-
ear seeking within the song or changing the play mode to shuffle or repeat (in
later versions). Only the ability to rate a song was not present on the Discman.
Furthermore, the iPod’s display allowed to show an album art (which would be
on the CD case if one were using a Discman) and the name of the title, album,
and song.

Figure 2.2: Two models of the Apple iPod

The retrieval mode offered a choice of hierarchical lists based on meta data
of the songs. For example, a user could find a song by navigation from the list

4

of artists to albums and then to the specific song.
When a song is clicked it is instantly played. If a user is in a special play

mode called the on-the-go playlist, limited enqueing functionality, i.e. the func-
tionality to put a song into a play queue to be played later, can be achieved.
However this functionality is not a first class citizen, as it is not in the main
part of the interface.

When the iPhone was introduced in 2007 by Apple, it was said to include
an iPod and its music application has been called iPod ever since [15]. Clearly,
Apple wanted to leverage the familiarity with iPods among millions of users.
Thus, the music retrieval still operates the same, except that users now use a
touch based list instead of a click wheel. The playback interface also remained
the same, except that the album art got scaled up so that there was no more
space to be used than before on the iPod with a smaller screen. Of course there
where a few details that changed, but the concept clearly stayed the same as
can be seen in figure 2.3.

Figure 2.3: The now playing screen of the Apple iPhone

Since the iPod and iPhone, the vast majority of music players use an inter-
face with the same two parts: A hierarchical meta data based music retrieval
mode and a playback interface with the power of the Discman. Having seen this
interface everywhere, users probably expect this and no major phone manufac-
turer dared to ship a radically different player on their phone.

The differentiation started happening on another level: design and style.
Ever more special ways to animate albums in 3D found their way into music
players, a good example being 3 (cubed) seen in figure 2.4(a) on the left, an
android music player with a cube of albums.

However, not all progress halted. In the last couple of years researchers
started looking into new ways of creating music retrieval interfaces, since they

5

Figure 2.4: The android player 3 (cubed) with 3D animations for albums (left)
and the Map of Music from Jukefox (right).

realized that the hierarchical meta data oriented approaches would not scale.
Examples of research into new kind of interfaces include the Music Rainbow[7]
as seen in figure 2 or the Map of Music from Jukefox seen in figure 2.4(a) on
the right, the player upon which our tablet interface will be based[6].

Figure 2.5: The Music Rainbow.

The latest generation of mobile devices are tablets. While tablets have ex-
isted long before the iPad or the Motorola Xoom, the new generation is the first
generation of tablets to be mainly inspired by phones. This is why the music
players on those devices are also heavily inspired by the music players on phone
if not simply the same. The default music player on Android for example differs
only by replacing the list of albums by a grid of albums with album art, its
now playing screen having only the usual functionality as seen in figure 2. Also
Apple’s iPad interface is quite similar to the one found on the iPhone, having
only a few tweaks borrowed from Apple’s desktop player iTunes, but none of
which would break already discussed paradigm.

6

Figure 2.6: The now playing screen on the default player for android on tablets.

While this chapter does not cover anything and did not touch interfaces of
non-mobile music players at all, it tries to explain how it is possible that the
latest popular technology gadgets of 2011 have a music playback interface which
is largely equivalent to that of the Discman in 1984.

7

Chapter 3

Tablet interfaces

In this section we want to name and explain a few of the tablet’s characteristics
which have to be kept in mind while designing an interface for such a device.

3.1 Landscape use

While phones usually have portrait as their default orientation, tablets are com-
monly held in landscape orientation. The Android developer guide says that
landscape is the default orientation[1]. Although not everyone seems to agree
with this view[2], we found that landscape was better suited than portrait in
our particular case, especially when displaying two views next to each other
horizontally with a the device having a widescreen aspect ratio. Although not
all future tablets might share this ratio, landscape will still work well and thus
our player is optimized for landscape, although it of course is also functional in
portrait.

3.2 Thumb navigation

With mobile devices such as phones and tablets, different placements and hold-
ing positions influence the positions where the user is able to comfortably touch
the tablet and in what manner. Furthermore, those positions also influence
which part of the screen might be hidden because of the user’s fingers. Three
common ways to hold or position a tablet come in mind, while all of them can
be happen in landscape or portrait.

3.2.1 The tablet is placed

If the tablet is placed on a table, a special tablet holder or a person’s lap we
usually do not have any problems with the interface. The person will probably
be able to use both hands freely, but might be forced to use one hand for
supporting the tablet if the ground is not stable enough. With at least one free
hand, the user is able to click and drag & drop any item on the interface easily
while most probably using the index finger. Multitouch operation such as pinch
to zoom are no problem either by additionally using the thumb. Therefore, this

8

mode of operation does not restrict the positioning of important UI elements or
our mode of touchscreen interaction.

3.2.2 The tablet is held in one hand, while interactions
are done with the other hand

In this mode of navigation the user is almost as flexible as when the tablet is
placed (except maybe for typing, but that is not our problem to solve). We
should note however, that tablets have varying weights and balance points and
since users will mostly use their stronger hand for navigation, it may not be
comfortable to remain in this mode for too long depending on the actual device.
Being largely equivalent to the previous mode, this mode does also not restrict
the positioning of important UI elements.

3.2.3 The tablet is held with both hands, while interaction
is done with both thumbs

This is probably the most common mode of navigation, being much more com-
fortable than holding the tablet with one hand only. It is also the mode of
navigation we have to be the most careful about. First of all, multitouch is
not possible in this mode (except maybe if the whole screen is one mulittouch
surface and the both thumbs can be used). Thus, one should provide additional
single touch alternatives for any view using multitouch.

Secondly, if operated in landscape, the area in the middle is not reachable
or uncomfortable to reach (depending on the size of the tablet and the user’s
thumb). Therefore, one should try to place most of the common navigation
controls at the sides. Also, thumbs will cover up the content if one has to reach
inwards with them. For example, if a list is placed on the left of the screen, it
can be easily scrolled by using the left hand. However, if it also features a fast
scroll mode where the scrollbar can be dragged (commonly found on the right
of a list), the user’s thumb will cover up the list while scrolling. The solution is
to put the scrollbar on the left, such that no screen space is covered up when
it is used. Furthermore, the user can now scroll with the thumb placed right
at the edge of the screen, which is usually still touch sensitive. Therefore, like
on desktop computers with the mouse pointers, the edges and especially the
corners are very easy and comfortable to hit correctly. Thus, having buttons in
corners or sliding fingers along vertical edges is a good choice.

A last detail which we need to be careful about is swiping vertically: As
this will happen with the thumbs we should be careful to not have a too great
swipe distance. Furthermore, it is probably save to say that pulling a thumb
inwards (i.e. swiping right to left on the left side and swiping left to right on
the right side of the screen) is more comfortable for the user than pushing the
thumb outward.

There are probably even more details to which one can pay attention while
keeping the tablet form factor and the positioning of hands in mind, but we
mainly listed those which came to our attention while designing the UI for our
application.

9

3.3 Avoid full screen transitions

One property of mobile phone UIs is that one screen is usually devoted to one
task due to the confined space available. Thus, if the user is switching between
different tasks, the phone usually transitions the full screen, i.e. displays a
totally different view. This is a necessity on the phone, as there is simply not
enough space to display two parts of an interface at once while still being finger-
friendly and uncluttered. On the downside, navigation is connected with much
more state as usually. It may be unclear to a user in what context a view was
opened or how to navigate to a particular view he has seen before.

On tablets however, the situation is quite the opposite: Often it makes more
sense to display two views next to each other instead of scaling one view up to
the full size[4]. A common use case could for example be a navigation bar on
the left side for an email program, in which the user can select an email message
that will then be displayed on the right side. On the phone, the same views
would have been hierarchically linked through screen transitions. Furthermore,
having both views side by side the application can provide functionality which
it could not have provided with one view at a time, such as drag and drop across
those views.

Another strategy is to use an overlay, for example for a selection menu or
to display additional information. Instead of launching a new fullscreen view,
the application can just show a smaller overlay with the relevant information.
Note though that this is not like pop ups on traditional computers that require
action on the user’s side and block all the other operations. On the contrary,
the overlays can be implemented in such a way that clicking anywhere outside
of their area closes them. Thus, overlays should only be implemented if they
can be dismissed without having chosen a specific action. When implementing
an overlay, it is a nice idea to overlay the background half transparently. This
way the user does not lose the context in which the overlay is embedded, as the
background is still partially visible.

10

Chapter 4

Design principles and goal

Any user interface has to prove its value in real life and we cannot attest its
quality by solely reasoning about it. User studies are a way to emulate a real life
situation, but reliable and unbiased studies are difficult to conduct. Performing
an extensive user studies was beyond the scope of this thesis and thus we cannot
show anything we claim by citing such studies.

Now that the empirical method has been ruled out, we are left with the
possibility to reason and argue about our interface. While user interface design
is clearly not an exact science, we try to argue as precisely as possible why we
we made certain choices in our design process.

There is also no best or right way of how to design an interface and this is
why we need to define what we actually want to achieve: We based our design
process on one goal and a set of design principles and choices. The goal is to
have an application with playing music as its central functionality. What we
exactly mean by this will be defined and presented in the next section.

While we try to achieve our goal, we always have to adhere to a set of design
principles. We already outlined a few properties of tablet devices with regard
to interface design in the previous chapter. Additionally, we define a set of
principles which we want to mention explicitly as they are of great importance
to this specific project. The principles are that we have to keep in mind that
there is no intuitive interface, to create an efficient user interface and to have
an experience which is visually attractive and fun to use. This are just two
principles which we would like to highlight in the context of a music player on
the tablet and they do by no means cover all the principles and guidelines that
should be kept in mind while designing an interface.

By the end of this chapter we have established our goal and principles. They
become our guidance for the rest of the thesis. In the next chapter we present
our player as a way to achieve our goal while adhering to our principles.

Before we come to discuss our goal we have to mention what kind of player
we are talking about: Our player should allow sequential playback of locally
stored tracks. A suitable player for a DJ or more experimental interaction with
sound such as scratching is not the target of our player[18]. We want a player
for casual music listeners, be it alone or in groups. Furthermore, we do also not
consider streaming or Internet radio and thus, if we talk about music to which
a user wants to listen, we restrict this to the music to which the user wants to
listen and which is also locally available. For the sake of simplicity we will also

11

disregard the gapless playback feature, since it briefly interleaves two songs, but
in general still plays songs sequentially.

4.1 The goal of decoupling the playback experi-
ence from the interface experience

When a user is interacting with an application to listen to music, the application
is giving him an experience. We define the playback experience as the part of
the overall experience which is caused by the user hearing the sound which is
produced by the music application (and its output device). In our player we are
focused on optimizing this playback experience and make it our first priority.

There can be other positive (i.e. desired by the user) experiences such as
looking at animations, music videos, lyrics or artist biographies. This also
includes browsing the music library out of curiosity or entertainment. While
such experiences certainly enhance a music player, we believe that they should
only be implemented or optimized if they do not distract from our main task
of optimizing the playback experience. This is why we will not look at such
features for now and we assume that none are present.

We now look at the interface of a music player after defining that none of
the above experiences are present: Its sole purpose remains that of shaping the
playback experience. We define the experience for the user by interacting with
the application’s interface the interface experience. It consists of the interaction
the user has to perform in order to influence his playback experience. Since
we removed all the user-desired experiences from the interface by definition,
the interface experience becomes the better, the less interaction a user has to
perform. Furthermore, faster and easier to perform interactions also enhance
the interface experience. Moreover, navigating to the player, be it within the
operating system interface or physically moving to the player if one was away
and has to turn the screen on again is also part of the interface experience.

In general, the playback experience and the interface experience are nega-
tively coupled. If a user wants a better playback experience, he needs to do
more interaction to precisely shape it the way he wants. For example, a user
can get a great playback experience with almost any music player by spending
the whole time interacting with the interface. An extreme case is a DJ, who
provides an almost perfect playback experience (for himself, as he decides what
to listen to), but who also has to interact constantly with the interface to do so.

On the other hand, one can just set the music player to shuffle and not
interact with it at all. The interface experience is perfect, while the playback
experience is probably not so good.

The user cares about the overall experience instead of either the playback
or interface experience. Different users (and different situations) give different
weight to the experiences: Some users interact more with an interface to make
sure they get a great playback experience, while others simply want to listen to
some music as long as they do not have to bother with the interface too much.
Thus, we have a trade-off situation which is individual for every user.

We define the goal of music playback interfaces to be the decoupling of the
playback and the interface experience. We further define that the more one of
the two experiences decreases in quality when the other increases in quality, the

12

greater is the coupling between them and vice versa. The larger the coupling,
the harder it is to achieve quality for the overall experience. Ideally, the two
experiences are orthogonal: Shaping the playback experience would then only
depend on the user, as he could never choose a worse playback experience only
because the better playback experience would have required a worse interface
experience. At this stage, the trade-off vanishes.

Obviously, a total decoupling of the two experiences is impossible. Thus, it is
also impossible to absolutely measure how good our interface is at decoupling the
playback from the interface experience. However, we can compare our interface
to existing interfaces and paradigms of music players. For example, if our player
allows for an at least as good playback experience as another player while having
an at most as bad interface experience, then our player can be viewed as having
a less coupled playback and interface experience.

Note that we did not argue that one player’s playback or interface experience
is necessarily better than another’s, as a user can always choose to play songs he
does not actually want or click somewhere meaningless to destroy his interface
experience by not using the interface properly. By talking about a decoupling of
the two experiences we avoid this situation, as it leaves the decision to effectively
utilize an interface up to the user.

We now discuss a couple of consequences and resulting requirements that
need to be followed if we want to decouple the playback and the interface expe-
rience.

4.1.1 Finding specific songs

The interface should make it as easy as possible for the user to find specific
songs that he has in mind. By finding we mean locating in the user interface in
such a way that they can be accessed and used for various functionalities such as
playback or whatever else the player has to offer. This requirement influences
our music retrieval interface and is met by most traditional players, as they
usually do quite well in helping to find specific songs (given their hardware
limitations). Players such as the iPod are mainly optimized for this task.

If it is harder to find a specific song in one interface than the other, the
trade-off between having a good interface experience and having a good playback
experience is bigger in the first interface compared to the second. Thus, if the
user wishes to find a specific song, the interface experienced is downgraded more
severely in the interface where it is hard to find a specific song and thus there
exists a tighter coupling.

4.1.2 Finding non-specific songs

The interface should make it as easy as possible for a user to find songs he would
like to listen to, even if he has no specific song in mind. If the user does not
specifically know which song he wants to listen to right now, we have to make it
as easy and quick as possible to find a fitting song, as otherwise the user might
settle with a song he does not really want. Therefore, a good song-discovery
interface can enhance the playback experience for the user, while not decreasing
the interface experience.

13

4.1.3 The user should be able to plan ahead

If a user already has ideas what to play for the next few songs, he should
be able to easy schedule those songs, i.e. not require a large downgrade in
interface experience to do so. On the other hand, if the user is not able to
schedule songs, he will have to interact at the end of every song to get the same
playback experience as if he had scheduled those songs. Interacting after each
song would clearly be a worse interface experience than scheduling the songs
once in advance.

4.1.4 The user should be able to act spontaneously

A user should be able to change any current or future playback related item
spontaneously, i.e. at any point in time, as otherwise he cannot achieve the
playback experience he wants to. This means that the interface is always readily
available providing its full functionality.

4.1.5 Never interrupt the playing song, unless the user
really wants to

We already discussed that music playback is fundamentally about what comes
out of the speakers at what time. This is the most important thing for our
player and this is what should not be messed up. After all, it is all about
enjoying the music that is produced. This is why the currently playing song is
the most important part of our interface at any moment. If the user interface
(by its design) makes the user mess up some upcoming songs, it is not that big
of a problem as music playback has not been affected as long as the user can fix
the problem in time. However, if we interrupt a currently playing song without
the user really wanting to do so we do not only downgrade the user interface
experience, but also the playback experience itself.

But what do we mean by really wanting to interrupt the playing song. If
a user hits pause he clearly wants to interrupt the current song. If a user tells
the interface to play another song right away, he also clearly wants to interrupt
the current song. Except if he had no viable alternative: A good example to
illustrate this is the iPod Classic. Let us assume that a user is listening to a
song with two minutes of the song left and is not in a special feature called the
on-the-go playlist. The user has a great idea to what he should listen next and
starts navigating the library. When the user finds the song about 30 seconds
later he can either wait for 90 seconds and play the song then, or just play the
song right now. In the latter case, the user did not plan to interrupt the playing
song: There is a trade off between waiting 90 seconds and interrupting the
current song. But that means that the user did not really want to interrupt the
current song. Instead, the interface made it so tedious for the user to perform
this basic functionality, that the user preferred a worse playback experience in
order to have a better interface experience.

14

4.1.6 Avoid starting the playback of music the user does
not want.

If the player starts to play music the user never wanted in the first place, he
will try to interrupt this song with another song as soon as possible. Then,
interrupting the song is desired, but only because something went wrong: The
other song should never have started playing in the first place. Hearing a song
for a few seconds and then skipping it produces definitely a worse playback
experience than if this had not happened. If our interface prevents that situation
without providing a worse interface experience, we loosen the coupling between
the two experiences as the playback experiences was enhanced without making
the interface experience worse.

4.2 Explicit principles for this project

In the rest of this chapter we present two design principles which we want to
highlight explicitly among the myriads of principles and guidelines one could
formulate. As we want to deviate as freely as needed from already established
interfaces, we need to be especially careful about those principles to make sure
our users understand our player and will continue using it after trying it out.

4.2.1 Keep in mind that there is no intuitive interface

A famous quote, which is often attributed to Bruce Edinger [5], states that

The only intuitive interface is the nipple. After that it’s all learned.

Some people even go one step further and claim that even the nipple is learned.
The author of the quote wants to tell us that no interface we create can be
intuitive, as everything needs to be learned at some point, maybe up to a few
basic instincts, which surely are not enough to use an electronic interface. Jeff
Raskin proposes to use the term familiar instead of intuitive in [8]. If a concept
of an interface is familiar to the user, he might be inclined to describe it as
intuitive. In fact though, he means that the concept is familiar and therefore he
can reuse acquired knowledge. According to Raskin, intuitive would have meant
that the user seems to suddenly understand [a concept] without any apparent
effort or previous exposure to the idea. As a highly-regarded interface expert
[17], he said that his newer and better interfaces were often discarded, since
users performed better on older or more traditional interfaces as those were
more familiar.

We do not want to limit ourselves by building a familiar interface, as build-
ing a novel interface is one of the main points of this project. However, we will
use already established concepts where they make sense. So instead of going
the extreme of either copying more or less existing interfaces or creating some-
thing radically almost entirely new, we try to go a balanced way somewhere in
between.

Since we can neither run an expensive ad campaign nor is it our intention
to write a manual which nobody is going to read, we need another strategy to
make our users understand our interface. This is why we choose to have the
strategy of discoverable and explanatory controls together with a consistent user
interface.

15

Use discoverable controls and explain the user what happens once
they are used

The way how we are trying to make the user understand our interface is by
letting him try it out, see what happens and understand what exactly and why
it happened. By letting the user experiment and then explain (in whatever way)
what is happening, the user will be able to understand the interface without
having to read a manual or view some instruction video.

To achieve this we first need discoverable controls. Everything which the
user can click should look clickable; everything the user can drag should look
draggable. Once the user clicks or starts dragging, the application should im-
mediately respond visually and it should be clear that something happened.

Moreover, we need to explain what actually happens: Having icons without
description is usually not enough and this is why we will add text when needed
to really explain what the next action should be.

If we use gestures, we can explain what is happening by making the target
object of the gesture respond to the gesture. For example, if we swipe a control
to the right, the control should also move to the right with the finger. The user
can then understand that swiping the control actually moved the control.

Consistency

We will try to make our interface as consistent as possible. Parts of the interface
which look the same should behave the same. And parts which behave the same
should look the same. This way, a user can learn a concept once and apply the
knowledge again in another part of the interface where the same concept is used.

Furthermore, if possible, there should be as many parts of the user interface
which look and behave the same, so that this reuse of knowledge can actually
happen.

4.2.2 The experience should be visually attractive and fun
to use

Since the iPhone came to the world of mobile phones, style has become an
omnipresent requirement for all personal devices. Apple’s success and the fact
that many other companies now release more stylish and better looking products
than before show that users really value having good looking devices, especially
when they are as personal as a mobile phone. The current wave of tablets
is inspired by the recent developments in mobile phones and thus it comes at
no surprise that style and looks has the same value as with phones. Also the
fun aspect, mostly achieved with nice graphics or engaging gestures, is very
important to both modern phone and tablet platforms.

By developing a music application, we develop an entertainment application.
Therefore it is even more crucial to make it visually attractive and fun to use
than with most other applications. On top, music playing functionality has
always been one of the iPhone’s primary functionalities, as it evolved from the
iPod, and helped to make Apple devices almost synonymous with playing music
for many people.

All indications show that one cannot succeed on a large scale on tablets and
phones with a music application that is not good looking or no fun to use. With

16

so many applications available, the attention devoted to trying out a single one
is quite limited and many users would stop trying out the application before
they would discover new and improved features.

However, we are not designers and thus it is not our goal to make the best
looking application where every color is chosen nicely, every graphic is beautiful
and every spacing has the right value. The goal is to make a visually attractive
enough and mostly fun applications so that users will enjoy it. The idea is that
any decent designer could make it a great looking application without changing
the way the interface works or is laid out, i.e. that the interface ideas where
right, but the graphical execution not perfect.

Of course we also have to discuss how this fits into our idea of only looking
at the interface experience without any fun or visually attractive features. We
will still adhere to this principle and we will not make decisions purely on fun or
looks. After all, every interface, be it as fun or good-looking as it gets, becomes
boring after a while if the user has the goal of enhancing his playback experience.

Thus we will try to first design the functionality of our interfaces according
to all the other principles mentioned before. Then, we will try to make it good-
looking and fun without decreasing any functionality, clarity or getting in the
way of our goal.

17

Chapter 5

Design choices

In this chapter we introduce our player Jukefox for Tablets running Android
3.0 Honeycomb. We will also often refer to the mobile phone player Jukefox,
which is the code basis for Jukefox for Tablets. Before we look at the interface
in detail we present a screenshot as a first overview in figure 5.1

Figure 5.1: The Jukefox for Tablets interface displaying all albums.

5.1 The play queue

A crucial piece of Jukefox for Tablets’ interface is the play queue; the gray area
on the right as seen in figure 5.1. It consists of the currently playing song, the
progress bar, the upcoming songs and the playback controls. We used color to
group all the parts of the play queue such that it appears as one.

The play queue works as follows: The playing song is always on top. If the
song on top is changed, then this new song will start playing. Upcoming songs
are displayed in a list underneath the playing song. Even though the top song

18

is not actually part of the list (as it does not scroll), it behaves exactly the
same way as the other songs: A song can be removed by dragging the arrow
on the left side to the right and it can be moved within the play queue (also
to the top) by dragging it on the drag handle on the right side. When a song
finished playing, it is removed from the play queue and every song moves up
one position.

We made several conscious choices which lead us to use the play queue as it
is:

5.1.1 The play controls should always be visible

There are plenty of reasons why users should always have access to the play
controls. For example they have to mute the music because someone is calling
them on another device or they suddenly get tired of the playing song and want
to advance to the next one. If the player is not currently the application being
run in the foreground, a user can still have access to features such as play next
or play/pause via a headset or the a notification icon. The notification icon can
also help the user get quickly back to the application. Another possibility is to
use widgets on the home screen to also be able to control basic functionalities
from there. An application should provide such controls out of the regular
interface.

The same and additional functionalities should be always accessible if the
user currently runs our application in the foreground. If the user for example
has to leave a view within his application to browse his music collection just to
hit pause or advance to the next song, this would be inconvenient. Furthermore,
it would take longer to actually get to the controls and thus he would have to for
example listen longer to a song than he wanted, which decreases the playback
experience. In section 4.1.4 we talked about how the user should be able to
change his plans for playback at any time: the sooner, the better. Moreover,
if the user has to navigate through an interface to get to the play controls and
abandon a current task (such as finding a specific song), he is faced with a trade
off between interface and playback experience.

This is why the play queue is always visible at exactly the same spot while
we are in our interface. Even if the keyboard is shown for typing a search query,
the play/pause button is visible and other controls are moved up as seen in
figure 5.12. Otherwise, toggling the play/pause button would require the user
to temporarily close the keyboard and then open it again and thus he might
choose to first finish his search which decreases his playback experience.

5.1.2 Do not implement a now playing screen

Almost every mobile music players features a dedicated now playing screen; a
screen which shows the controls found on a Discman among maybe a few others
and an album art. Please refer to chapter 2 for more information. Firstly, we
need to look at what this now playing screen is. The now playing screen is a
screen which simply features the currently playing song along with a few basic
controls to such as previous/next song, play/pause and toggles for shuffle or
repeat song. In short, while the user is in the now playing screen he is expe-
riencing the Discman interface. The large screen space which is not used by
the few present controls is used up by a prominent album art. Some players

19

also expose some playlist/playqueue behavior which makes a bit more use of
the available space. Navigation to the now playing screen often happens auto-
matically: In most players, clicking a song in the library opens the now playing
screen. Furthermore, being idle for some time also opens the now playing screen.

So why did we choose to not implement a now playing screen. The advantage
of the now playing screen are that it can display a big album art of the current
song, since in any other screen there will not be enough space for such a large
picture. Everything else, i.e. having all the controls mentioned above, can be
done in any other screen. So all the now playing screen gives is a good looking
screen where users can enjoy a large picture and familiarity, since users know
this concept from almost every mobile music player since the Discman. However,
familiarity to the Discman interface is by no means an advantage, as we do not
want to inspire ourselves at interfaces created for primitive devices according
to today’s standards. On the downside, the now playing screen can introduce
a plethora of inconveniences: As argued in a previous point, the play controls
should always be visible. Thus, having a now playing screen we can potentially
duplicate those controls in some other place and thus break consistency. On
”Music” on Android, the play/pause and previous/next controls practically at
the same spot in any screen, since there is a thin strip at the bottom of each
screen (except the now playing screen), displaying some of the now playing
screen functionality. So in this example the developers where able to avoid such
an inconsistency. On the iPad’s music player however, those controls shift from
the top center to the top right once the now playing screen is opened. The second
inconvenience is that the now playing screen opens when the user do not want
it or do not expect it. As mentioned above, most players open the now playing
screen once song is clicked to play it. This works fine in players where clicking a
song makes it play directly, yet it would be a highly annoying thing in a player
which is built around having a play queue where it is unknown whether the user
does not want to continue enqueueing songs. The other method of displaying
the now playing screen would be after a certain period of user idleness. But
also there it is hard to judge when or whether that is welcomed by the user. If
a user comes back to a player after being idle for a while, then he most likely
wants to change or add some new songs. It is probable that he already has to
turn on the screen again, which is inconvenient enough, so we do not have to
further annoy our users by showing them the now playing screen.

The last option would be to just display the now playing screen upon a click
on some control, but then again, we are just talking about displaying a large
picture so there is no usefulness involved towards achieving our goal of playing
music and thus it is unclear whether users would click this, just to dismiss it
later once they want functionality again. Basically, such a button would just be
a toggle between a function and a non-functional screen.

To sum up, thenow playing screen does not improve the playback experience
and can only worsen the interface experience. Having an attractive interface is
desirable as argued in section 4.2.2, however our primary goal is to decouple
the interface and the playback experience and only make the interface more
attractive if it does not introduce a stronger coupling of those experiences.
There are enough ways to make an interface attractive without a now playing
screen.

20

5.1.3 Upcoming songs are more important than already
played songs

It is nice to have quick access to already played songs. For example, one might
to check what exactly has just been played before or maybe one wants to replay
a recently played song.

The back button found in almost any player is a bad tool for this. First
of all, the back button usually does two things: If the song has been played
for longer than a certain threshold of a few seconds, the song is restarted from
the beginning. If the song has not played longer than those few seconds, the
previous song is being played. While this duality of functionality was certainly
a good idea for the Discman there is no reason why we should still have this
on a 10 inch touchscreen. Before we do cover our alternative, we would like to
point out that in places such as widgets, headphones and notification system
those controls are still viable, as there the interface options are constrained.

Some players such as Jukefox feature a playlist in the now playing screen.
When a song has finished playing, it still remains in the visible playlist. However,
this approach has drawbacks. First of all, the playlist is monotonically increasing
as long as nobody cleans up the already played songs. Then, a player provides
either a way how to clean up songs explicitly (which no user would want to do)
or the player cleans up the playlist when the user performs some other action,
where this action then either has two meanings or the clean up of the already
played songs as side effects (in which case the user loses his functionality to
quickly look at already played songs).

Of course one could also just let this list grow, but then the playlist would
become more and more complicated to handle as one could get lost in a huge
scrolling list and would have to make sure not to lose track where the currently
playing song is.

We cannot identify another reason to keep the recently played songs of a
playlist on the screen, except when one mixes the concept of the list of songs
which is actually playing with the concept of playlists which are a way of storing
a group of songs persistently. For a discussion on such playlists please refer to
section 5.6.

In Jukefox for Tablets we provide a solution to the problem of finding recently
played songs by having a button which shows us recently played songs on click.
Furthermore, this button could also be used for recent songs that were in the
play queue but then deleted, however it is not clear whether it makes sense to
have those songs quickly available again.

Having the upcoming songs in the queue however is very important, as it
allows to plan ahead as requested in section 4.1.3

5.1.4 Gestures allow for precise and spontaneous control

Section 4.1.3 requires us to allow the user to plan and schedule playback ahead.
This is why our play queue features upcoming songs as explained in section
5.1.3. While adding songs or groups of songs to the play queue, they are often
not in the desired order right away. For example, we might encounter a song
which we want to listen, but we are actually on the way of finding a song for
the queue which we want to listen to sooner than this encountered song. If the
queue did not allow for rearranging, planning ahead would be possible, but also

21

much more tedious. A user would think twice if he wants to exactly plan ahead
or maybe tolerate a few small changes in his plan in order to do less interaction
with the interface. Thus, the queue needs an easy way to change the order of
the upcoming songs, such that the rearrangement of songs will not cause a great
decrease in interface experience. We achieve this by allowing to drag any song
(even the top song) to any other song position as demonstrated in figure 5.2 on
the left. For this, the user grabs the drag indicator on the right.

For similar reasons, the removal of a song in the queue should also be allowed,
as it is for example sometimes easier for the user to put a whole album into a
queue and so that he can then remove some specific songs he does not want to
listen to. This removal is demonstrated in 5.2 on the right, where the user drags
the arrow drag indicator on the left and swipes the song to the right.

Figure 5.2: Rearranging through dragging (left) and removing through swiping
(right)

Gestures are not only great for planning, but also quite important for spon-
taneously changing the scheduled songs as requested in Section 4.1.4. If the user
wants to make only a small change spontaneously, for example the swapping of
two neighboring songs, the required interface interaction is minimal and thus
the user will very likely take this only slight decrease in interface experience to
increase his playback experience.

5.1.5 The clear button only affects the upcoming songs

Section 4.1.4 requires that we can change all our future plans spontaneously
and replace them with something else. We have seen in the previous section
how little changes can be performed easily with the queue’s gesture support.
However, if the user wants to change the future plans totally, it is the easiest if
he can simply clear the whole play queue.

However, we should not clear the currently playing song with this function-
ality. In section 4.1.5 we argue why the playing song should only be interrupted
if the user really wants to do it. If clear only clears the upcoming song, but the
user also wants to change the current song, then this requires one additional
steps. However, if the user only wants to clear the upcoming songs, but wants
the current song to continue he can either clear all the songs manually, which is
tedious and decreases the interface experience, or clear all the songs regardless
to have a worse playback experience. Thus we chose that clear only removes
the upcoming songs from the play queue.

22

5.1.6 One play mode is enough

Some of the controls which are a relict from the Discman are toggles to enable
shuffle or the repetition of songs. The latter often allows to toggle the repetition
of a group of songs or of a single song. The repetition of a single song or album
can be easily done in our play queue: Simply enqueue the respective item several
times. While this will not provide a repetition forever, one can get enough
repetitions in most cases. This is a quite rare use case and was included in
earlier players that had no queue functionality at all. Of course this mode could
be implemented and toggled somewhere in our interface, but then the queue
would not function as a queue anymore and instead stay static once this mode
is activated. While it could be made clear that the queue is in repetition mode,
it makes the player more complicated or might even confuse people (which might
forget that this mode is on). In short, it adds another dimension of state to the
player, and the more state it has, the more possibilities there are to be confused,
to be in the wrong state or to have to make an extra effort to switch states.

Having decided that it is probably desirable to have a single play mode, we
explore how other possible play modes fit into our queue model. Shuffle is a
play mode found on virtually every player and it can come in many flavors. One
of them is shuffling a playlist, album or just any selected set of songs. There are
two common ways how to implement this: Either, the position of the playing
song jumps around randomly in the list of songs, or the list is randomly shuffled
and then played from top to bottom. Having the play queue going from top to
bottom anyway, it makes sense that we pick the latter approach. This way we
do not need a play mode for shuffle, but can simply provide a shuffle button
to shuffle our upcoming songs. Moreover, this version of shuffle comes with
additional advantages on top of preserving the consistency of our play queue:
The play queue is still fully functional, such that the user can first perform a
shuffle and then tweak the order to his liking or enqueue additional songs. As
required in section 4.1.5, we do never change the currently playing song except
when the user really wants to. If the user starts a shuffle process, he is probably
still happy with finishing the current song. He simply wants a randomization of
what is coming next. Otherwise, he can always drag the current song somewhere
into the queue after shuffling. Another benefit is that if new songs are enqueued
after shuffling, another shuffling will lead to the desired result, which is that the
new songs are shuffled within the other upcoming songs. Note that the songs
which where previously shuffled but already played are not in the upcoming
list anymore, and thus do not appear again in the shuffled list. This shows that
the concept of removing the already played songs from the queue perfectly plays
together with the concept of the shuffle button. The only potential disadvantage
of the shuffle button instead of the randomly jumping around song position is
if the user does not want to know beforehand in what order the songs will be
played, as he wants to be surprised after each song. However, our interface
was built around giving people control and knowledge about the playback of
their music. Thus, the only advice we can give in this situation is to hit shuffle,
quickly look away and enjoy the music. This should be enough, as once again
it would not be worth adding some extra state for such a special need.

Another version of shuffle is shuffling the whole library. Again, having a new
play mode is superfluous: While there are upcoming songs in the queue, they
are played. If the user suddenly does not want them anymore, he can clear the

23

list. If there are no upcoming song in the list Jukefox for Tablets will start doing
a random shuffling of the whole library. This way, telling the player specifically
what to play and getting random songs can be effortlessly interleaved. When
one talks about randomness, one also has to specify its probability distribution.
At first, players used the uniform distribution for such functionality. However,
modern music players provide ways so called smart shuffle functionalities, which
learn what songs the user is more likely to want at this moment or what songs
fit well to the recently played songs.

In Jukefox , smart shuffle is one of its primary features and in Jukefox for
Tablets we reuse the same smart shuffling capabilities. In Jukefox , among other
players, the user still has the possibility to do a uniform shuffling. But why
would a user want to listen to songs uniformly distributed among all possible
probability distributions? In a more confined setting, e.g. where the user chooses
to shuffle a group of songs such as an album, the uniform distribution makes
sense as the user has already applied a selection among a larger set of songs.
However, if our player should give the user random songs among all the songs,
we see no reason why not to use the smarter version in any case. After all the
playback experience will most likely be better (there will probably be less skips)
if we have a good smart shuffle implementation. In a study published in [6],
with 128 data logs over a period of each more than five days, the authors found
that smart shuffle triggered 25 times as many songs to be played as the regular
shuffle.

Of course one could argue once more that in some special cases someone
might want explicitly this uniform distribution, but once again we would intro-
duce more state to the player and in this case, pretty hard to detect state. If
the player was running in the wrong mode, it would often be quite hard to find
it out just by listening to the music, depending on the quality and configuration
of the smart shuffle and the diversity of the music library. In Jukefox for Tablets
a user could still enqueue the whole library (an item representing all the songs
can be found as the first item in the grid of all the albums in the exploration
view) and then hit shuffle, if he really wants it.

If we look at Jukefox , we see that there are two more modes that we have
not covered yet. One mode plays a playlist once and then stops. While this
might be desirable in rare cases (e.g. while falling asleep), it again introduces
state where detecting that one is in the wrong state would be annoying. We also
think that continuing with smart shuffle (which just learned from the previous
playback) is almost always the better playback experience as no playback at all.
This is why we did not include such a play mode.

The last mode we are going to talk about is the play similar song mode
from Jukefox . It takes the currently playing song and then only plays similar
songs to this song. We are not going to reiterate the added state and potential
confusion that might arise from being in the wrong state. In Jukefox for Tablets,
the interface will enable the user to obtain similar songs from any song and then
simply enqueue them while still having all the benefits of the queue. In general
there can be different interesting modes of smart shuffle or modes which play
similar songs. Interface wise it is probably best to decide on one and try to
substitute the other ones through other means. For example, one could add
a button to an interface which suggests songs based on recent playback and
based on some specialized and chosen smart shuffle mode. If we use an overlay
to display those songs as discussed in section 5.2.2, we can not only use those

24

songs for playback, but also to navigate to even further songs.
In conclusion, play modes are obsolete. They are a confined and limited set

of ways to play the user’s music and any set of play modes will be incomplete.
They were introduced on players that do not allow for proper play control. Our
solution of the interactive queue together with smart shuffle once the queue is
empty and a shuffle upcoming song button. We are able to cover almost all the
relevant and commonly found play modes while still preserving the flexibility
of the queue and not adding additional state. In the future, further interesting
and smart versions of play modes could be added not as actual play modes, but
as parts of the interfaces making song suggestions to the user.

5.1.7 Auto refill for smart shuffle

In the previous section we discussed how we want to eliminate all possible play
mode state and can provide this functionality explicitly or implicitly with our
queue model. There is however one play mode we did not cover: It is the
auto refill mode from Music Queue[9].Music Queue is an Android music player
which served as a big inspiration for Jukefox for Tablets, especially Jukefox for
Tablets’s play queue. In Music Queue, the queue consists always of five visible
songs: If the user removes a song, a new one will be filled-in automatically. The
idea is to improve the way people listen to music randomly.

If a user listens to random music from his whole collection, he will only
listen to a certain percentage of the songs. And even if this percentage is as
high as 50%, the user will still skip every second song. This is certainly not
a nice playback experience, but the interface experience is quite good as the
user needs to only skip occasionally, which is easy to do, and thus this mode of
listening is quite popular.

While popular, this method of music listening can still be improved. In
section 4.1.6 we argue that an interface should not start playing unwanted songs
in the first place. If we present a couple of songs chosen by our smart shuffle
instead of just the currently playing song, we can make our decision which songs
to skip before those songs actually start playing. On the one hand, the playback
experience is quite smooth, as there is no skipping through songs. On the other
hand, the user has to do a little bit work rarely, when adjusting those next five
songs. However, having set up those couple of songs, the user will not have to
skip anymore for quite a while and thus not only the playback experience will
increase, but maybe also the interface experience. After all, if a user has no
time to adjust the next couple of songs and does not look at them, the interface
will behave exactly the same as the other one, and thus can never be worse.

Another advantage is that the smart shuffling becomes much more infor-
mation in a much quicker way when using this mode. While in the traditional
mode the smart shuffle only becomes the played and skipped songs as input, the
smart shuffle in this auto refill mode already can become information from the
songs that are not even played yet. If for example a user listens to about every
third song and there is an auto refill of size five, the user will in expectation
go through about 15 songs until those five songs are adjusted. Going through
those 15 songs can be done very quickly, as it just requires ten quick swipes.
Within a less than a minute (a swipe should take less than six seconds), the
smart shuffler already has the information about around 15 songs.

We chose to enable a refill mode as it clearly can provide an improved way

25

of listening to random music and fits well into our queue interface. On the
downside, we need to have an additional toggle in the queue interface. The
toggle’s state should indicate the activation of the mode, but ideally some more
visual feature like a colored line up to where the songs are filled would be
helpful. Furthermore, we have not yet been able to fully optimize smart shuffle
for this mode, as we focused on interface design first, but this would surely be
an interesting topic for the future.

5.2 Navigation within the music library and se-
lection of songs

In the previous section we established the play queue as an always visible way
of controlling and supervising the playback of music. This leaves the rest of the
space to have an interface for navigating ones music library and selecting songs
for playback.

This is where the strength of the additional screen space for the tablet comes
into play. The larger area allows for much more display of information and in a
more visual way than just a boring list (QUOTE GOOGLE IO). For example,
the default tablet music player on Android and the player on the iPad both make
use of the larger screen space by having a larger album art in the now playing
screen. Furthermore, they also have views where they display a grids of all the
albums showing their album art. Thus, they both make user of the larger screen
space. However, they just feature the same interface as their counterparts on
the phone in a bigger way.

While this makes navigation easier and more beautiful, it falls short of the
possible enhancements a bigger screen would allow. In particular, we can utilize
the fact that we can display two screens for separate tasks at once. Thus, instead
of merely making the interface for song selection bigger, we make it directly work
with the queue, for example via drag and drop.

5.2.1 Supporting several selection views

A selection view is a view which enables the user to select songs for the queue.
For example, one possible selection view is showing all the albums in figure 5.1.
In this section we will try to analyze how many different selection views there
could or should be.

On the one hand, we do not want to restrict ourselves to one selection view
only, as there is a range of possible ways to browse music and probably not one
mode which fits all those possible ways. On the other hand, we also want to
make sure that those selection views do not overlap significantly in what they
try to achieve or in the way they function. During development we cut down
the number of selection views to only two: explore and map. We also provide
search, however, it is a bit different and we will cover it separately.

The concept for the selection views are that explore acts as a primary selec-
tion view. It should be the selection view which provides the basic functionality
together with a few interesting concepts. Then, map acts an auxiliary naviga-
tion mode to complete explore with a more visual selection view. We will talk
about both of those navigation modes in their own section.

26

Moreover, did not want to limit future versions to only two modes and
wanted to keep the whole concept exdendable so that in the future novel and
creative ways of selection can be tested while keeping the main views intact.
Thus, the natural choice was to have a tab for each selection view. This way
the selection views are on the same level in the hierarchy and can be used
independently.

5.2.2 Means of achieving consistency across all selection
views

Although the selection views function quite differently and can work indepen-
dently from each other we have to make sure to adhere the consistency principle
we defined in the previous chapter. This way the user will be able to transfer
knowledge gained in one selection view to the other and the whole experience
will be consistent across the whole application.

Drag and drop is possible if and only if the item has a drag indicator

The drag indicator introduced in the play queue is also used in the rest of the
interface. While the drag indicator lets the user change the position of a song
in the queue, it lets the user drag an item from a selection view right into the
queue and drop it at any position. A drag operation can be started by either
touching the indicator directly or long pressing the object the indicator is a part
of; thus in exactly the same way as it works in the queue.

Almost any item which represents music, be it a name of an artist, an album
art representing an artist or of course a song features a drag indicator and can
thus be directly played without being opened first.

Figure 5.3: An album being dragged into the queue.

The only exception are the albums in the map and the tags in the explore
mode: Adding a drag indicator there would have cluttered the view too much. In
the map it would have been also problematic, since the user does many gestures
with his fingers already and it would have maybe caused too many accidental
drags. Only allowing drag and drop then via long press is not an option, since
this way consistency would be broken and the feature would not be discoverable
in the first place.

27

To also ensure that there is no confusion between the dragging of objects
into the queue and the dragging of objects only inside the queue we limit the
movement if a song is dragged in a queue to only be vertical. This way it is
clear that the movement is only meant to rearrange and the song cannot leave
the queue in this way. In addition, the queue is highlighted with a green frame
as soon as an object is picked up in a selection view to indicate that it is the
area where the song can be dropped. We do not add any further drag and
drop gestures which would represent any other action than managing songs to
be played in the queue. This way we really ensure consistency throughout the
concept of drag and drop. As soon as the user discovers that drag and drop
is possible since the drag indicators are quite visible and invite to be pressed
or held, he will realize quickly how to use drag and drop in any situation. It
is also not a bit problem that some users will probably never notice that long
press also leads to drag and drop (although they could, as it would feel quite
natural on the Android platform), since it is only an added convenience next to
the drag indicator which does the same thing.

The song overlay as the only way to display songs

The song overlay is the only view (in a selection view) in which the user will
ever encounter a song. The song overlay is a square view which pops over the
current view and triggers an action view. It is used to display a list of songs.

Figure 5.4: An album’s overlay.

But before we look in detail at the song overlay we look how this view is
opened, i.e. what the user has to do that it shows up and overlays the current
view. There are a few special ways how an overlay of songs is displayed, but
we can state the following implication: If the song overlay is opened by clicking
on a view inside a selection view, this view must have had a square shape. One
example are albums which are displayed as an album art. If the user clicks this
album art, the song overlay will appear as a zoomed in overlaid version. In this

28

mode, when the overlay displays a single album, we are also able to add some
nice looking effects such as displaying the album in the background of the list of
songs or to display some cloud-like effect around the overlay with a color used in
the album. The benefit of only allowing square items to cause an overlay is that
the user will learn to expect an overlay once he sees such an item, especially
since the view causing the overlay and the overlay share the same shape and
background.

This decision to only have only square items which represent a list of songs
opening up overlays which actually display songs leads the interface in a direc-
tion where it will consist mostly of items representing albums. A single song
will never be in the main selection view interface. One might think that this
introduces an inefficiency, as nobody will ever see a song without first clicking
on an album or a square item representing all songs of a particular artist. We
take this as a small inefficiency trade-off. However, tapping outside of the over-
lay on the transparent cloud-like structure will take the user back to the screen
underneath again. Thus, transitioning back is quick and since the overlay is
not a full screen transition due to its transparent border the user does not lose
context because of some hierarchical navigation.

Having songs always in the song overlay we can now think about enhancing
it with some common features that will be desirable everywhere: We have talked
about how any item with a drag indicator can be placed into the queue by drag
and drop. While drag and drop is certainly enough to put albums an artists
into the queue (after all, users will not be doing too often as one drag operation
already provides quite a long time of music), this would probably end up tedious
if it were the only possibility to play a song. After all a drag operation requires
more time than clicking and furthermore makes the user extend his thumb out
of the comfort zone or hold the tablet in one hand. This is why users can select
songs in the song overlay. There is also an item on the top representing all
the songs (and displaying with a number how many there are). Clicking it will
toggle all the songs. As long as a song is selected three areas appear on the left
side of the overlay easily reachable by the left thumb. They also appear if a user
starts dragging a song in the overlay mode to serve as a drop target. If songs
are selected they can be clicked to perform an action on all selected songs. The
three actions are play now, play next and enqueue. Instead of using symbols,
we use words to describe what they do, as there is enough space and we argued
in our principles that we want to be descriptive. This is an example how we
explain a user what he should do, after he clicked or started dragging a song,
i.e. after he curiously tried out what is possible.

Those three actions are probably the most common actions which a user
might want to perform with songs. Additionally, a user can always perform a
rearrangement with his right hand in the queue after the left hand performed
one of those actions, if this is more comfortable for the specific user than directly
dragging and dropping the song. While play next and enqueue insert songs on
the top and on the bottom of the upcoming list respectively, play now replaces
the currently playing song (and inserts the the rest of the songs on the upcoming
list if the action was performed on several songs). This way the action is not
quite the same as if the user dragged the song or songs to the top of the queue,
as then the currently playing song would be pushed down. But in the case
of dragging, this is made clear during the animation and thus removing the
currently playing song would not make sense. Also, the previously playing song

29

Figure 5.5: An album’s overlay with selected songs.

can be easily removed in this case if it needed, since the finger is already in the
right place as it just dropped songs. In the case of pressing the play now button
however, the semantics is that the user has heard enough of the current song
and wants to play another song right away. We think that this situation is more
common and do not expect any confusion arising from the way we handle this.

Another functionality of the song overlay is the ability to navigate to any
song’s artist or album in the form of the explore and map mode respectively.
If all the songs are from the same album or artist, the respective controls are
displayed at the right top in the action bar (Android Honeycomb’s name for the
bar on top), which is Android’s preferred place for context related actions.

A last feature present in any overlay is the slider on the bottom. To make
clear what it does and encourage the user to try it out, we add a descriptive
text on top as suggested in section 4.2.1. When the user is moving the slider,
the overlay will randomly select and permute a subset of songs which will be
displayed instead of all the songs, the relative number of songs selected being
proportional to the position of the slider. This way, one can create a random
and smaller playlist out of every set of songs and there is no need to add any
kind of playlist generation tool in any other place. An open question is what to
do when the overlay only displays one or two songs to begin with: For now the
slider remains, but we might remove it in the future.

5.2.3 Put the play queue on the right side

For a long time during the development the play queue was placed on the left
side, without giving it much initial thought. The queue is a bit more complex to
operate than the other modes and since more than 70%-95% of the population
are right handed[11], placing the queue on the right makes our player easier to
operate for a majority.

Another advantage is that the content is selected from the left side and

30

Figure 5.6: An overlay before sliding (left) and after sliding (right).

dragged to the right side, which seems to be the more natural in a culture
where we read and write from left to right. The same can be applied to the
swipe removal, which is also left to right if we place the queue on the right, as
discussed in section 3.2. The drag controls are then on the right side to allow
easy dragging along the vertical edge of the tablet.

If one where to internationalize this application, one would maybe prefer
(for similar reasons) to put the queue on the left side.

5.2.4 Sacrifice genres (for now)

Unfortunately we have not yet found a satisfying way to implement genres,
since we already prominently feature tags and having both systems next to
each other might be confusing. Maybe there is an elegant way how to combine
the two concepts, however we will also have to see how users react to their
omission. Maybe the combination of linked navigation by tags, similar albums
of the map and smart shuffling will take on the roles that genres might have
had before. Thus we sacrifice the concept of genres for now in order to keep
the concepts simpler by not having two competing paradigms such as tags and
genres.

5.3 Explore

One advantage of the tablet over the phone is the ability to flatten navigation
(as we have already discussed?). At one stage of the development for Jukefox
for Tablets, we considered having three lists next to each other as a way of
navigation: artists, albums and songs. The artist list would always display all
the artists, while at the top one could also select ”all artists”. Then, depending
on which artist was selected in the artist list, the album list would display this

31

artist’s albums. Of course, if ”all artists” was selected, we would then display
all albums. At the top of the album list, analogously to artists, there was an
all albums button and then in the same way all the songs of this album where
displayed in the song list. The default selections for artists and albums were
always those, which selected all artists or albums respectively. This hierarchical
navigation was very efficient: Initially it displays all the artists, all the albums
and all the songs. If the user restricts the navigation to a specific artists, he
immediately sees all of his albums, and in the third list also all of his songs as
”all albums” was the default selection in the second column. On a phone, those
three lists would have been three different screens, and navigation between them
required moving up and down levels. Having all three next to each other was
more efficient and in most of the cases it also allowed to skip the album level as
it had a sensible default selection (which on the phone would need to be pressed
first).

However, there were numerous drawbacks which lead us to discard this in-
terface: Firstly, it was not thumb friendly, as the lists in the middle of the screen
were hard to scroll (see section 3.2). Then, it was one of the least attractive in-
terfaces imaginable. Together with the play queue, our interface had four scroll
lists next to each other without a single image or graphic. A visual chaos for
any user. According to section 4.2.2 the interface should be attractive and fun
to use. Thus, just using the tablet’s larger screen to flatten a hierarchy was not
sufficient to create a good interface. Having a good interface experience is not all
about efficiency, but also about how comfortable or convenient it is to use this
interface. Furthermore, we were already experimenting with a non-hierarchical
navigation mode at this time and having two different modes which where too
similar made the interface too complicated and thus also would have hindered
efficiency.

We will now discuss the design choices made for our default navigation mode:
the exploration mode.

5.3.1 Allow for hierarchical navigation

Music is, in some sense, hierarchical. Artists create albums and albums contain
songs. Furthermore, this kind of information is usually known by the users
and hierarchical navigation is usually a core functionality in music players as
discussed in chapter 2.

While it has been suggested that hierarchical navigation has hit its limit in
[6], not everyone has an enormous music library. Moreover, also in huge libraries
it is sometimes useful to for example select a particular artist from a list of all
artists. This is why we decided to keep some form of hierarchical navigation,
albeit not exactly in the traditional way. But before we explain how hierarchical
navigation fits in, we talk about what navigation we primarily want.

5.3.2 Encourage flat and linked navigation

Since our application is built on top of Jukefox , we can make use of high
dimensional Euclidean music similarity space (from now on called music space)
which is described in [6]. In particular, the music space allows for both a global
view of the music (where songs can be assigned a global coordinate), as also for
a local view (where each pair of songs can be compared by a similarity measure

32

to each other). In the exploration view, we are going to make use of the latter.
We are not going to explain the music space in detail and how to use it as this
is done for Jukefox in [10], but try to give an overview of what we need for
our purposes. In the music space, the similarity between two songs is given by
their distance in space. Furthermore, we also use social tags which are part of
the music space in form of direction vectors. The vector’s direction influences
the tag’s style, and a vector’s length influences the tag’s popularity. Songs are
points in space, and the further they lie in the direction of a tag, the more
probable it is that this tag is assigned to this particular song. Therefore, the
scaler product between a tag and a song gives us a measure. This is what is
used in Jukefox to allow playlist creation based on tags.

We extended this idea by also calculating similarities between tags, as the
scalar product between two tags indicates their similarity. In this case, however,
we chose to use the angle instead of the scaler product to also include less popular
tags.

This way we have similarity measures between all possible combinations of
songs and tags (in particular also between any two songs and any two tags).
With this, we have a viable alternative to the hierarchical nature of music given
by meta data. It enables us to provide flat navigation via links, so that users
can browse their music more like they browse the Internet, instead navigating
it as if it were a file system.

However, we did not want through songs, tags, album and artists but have
some more given structure: Our solution is to permit the exploration of artists
and tags. If the user explores an artist, we display all the artist’s albums, a
collection of tags and a set of related albums. We also include a special collage
of albums representing all songs of an artist and one representing all related
songs of an artist.

Having no special view to explore a particular song or album, the user cannot
perform exploration up or down the hierarchy: The exploration page already
shows everything of the artist; songs can be seen by opening the corresponding
overlay. Furthermore, every overlay becomes a navigation hub as described in
section 5.2.2 and allows us to explore either the artist or map the album of the
songs in the overlay. On top, playlist generation, for example creating a playlist
out of all related songs, is built into the overlay as well. An additional benefit is
that we only display a tag cloud and grid of albums, so the whole experience is
very visual and we get to improve our application with respect to section 4.2.2

If a user clicks on a tag, we show related tags of this specific tag along with
related albums of this tag. In the current version, the tags are arranged in a tag
cloud alphabetically, where the size of the tag indicates how much it is related
to the tag or artist we are currently exploring. This is not optimal though. If a
user sees a tag in the cloud, even if only with a small font, which does not seem
to fit at all, he might think that our tag system is not very good. On the other
hand, we do not only want to display the very close tags, but also some tags
further away. If we are only displaying the closest couple of tags, the user will
never (or only very slowly, depending on how dense the tags are distributed) get
away from those tags. The perfect navigation allows not only to navigate closely
to related areas, but also to reach every other area in a small, constant amount
of clicks. Otherwise our related navigation alone is not sufficient, and the user
will have to rely on the hierarchical navigation again. It is okay if the user uses
hierarchical navigation, after all we provide it, but he should not have to use it

33

Figure 5.7: An artist’s exploration view. On top (left); scrolled down (right).

only because our linked navigation system is not satisfactory. We have planned
to implement a solution where we also consciously display not as close tags, but
instead of a tag cloud use a more spatial approach where the related tags will
be in the middle and the not so related tags further away at the boundaries.

A last question is to look at how we can build in hierarchical navigation. A
large part is already provided: If we explore an artist, we can see all the artist’s
songs and albums. We also add a button to select a specific artist to explore
from a list which gets overlaid on the left. To avoid full screen transitions and
suggested in section 3.3 we only display a list on the left side of the screen and
darken the rest out transparently. Also, the list is very comfortable to navigate
as requested in section 3.2, with the scrollbar for faster scrolling on the left
edge of the screen. Furthermore, there is also an option to select all artists and
thus to display a grid of all albums, which we use as a default view when the
application is opened. Also, the first item of this grid is a collage of albums
which represents all songs, so one can also find the list with all songs.

In conclusion, the exploration view offers a mixture between hierarchical and
linked navigation between related music. In the design, we did not want to force
the user to use the linked approach, but instead tried to make it as attractive
as possible, while blending in the hierarchical navigation so that one does not
have to navigate multiple levels of hierarchical screens.

34

Figure 5.8: A tag’s exploration view.

5.4 Map

The map was not developed as part of this project but is one of the feature of the
Jukefox player. We already discussed that during the development process we
cut down on the number of modes that songs could be selected by merging the
explore and hierarchical selection view. The map, however, fits into the concept
as a secondary navigation mode: It offers the global view of the music space
described in the previous section. As exploration is built on top of hierarchical
meta data and local similarity measures instead of the global similarity view,
there is little overlap with the music map and thus it makes sense to support
both modes. Furthermore, the music map is a fun and playful way and helps
us to make the player visually impressive in order to satisfy section 4.2.2.

The map needed almost no adaption from the phone version, scaling auto-
matically to fit all available space, yet there are a couple things worth mention-
ing.

The ability to select a region of albums to create a playlist is hidden on
the phone as one needs to press the trackball to activate it. On tablets, the
larger screen space made it no problem to have space for a button at the left
bottom where it is easily clickable. Furthermore, we made it semi-transparent
and round so it looks unimposing on the map of albums, yet visible enough on
the black background if zoomed out completely. The button uses an icon of a
convex polygon to hint at the area of selection that the user draws to select a
set of albums. While this might remind users that have tried the feature before,
it does not tell a novel user what will happen. As described in section 4.2.1, we
try to utilize the curiosity of users to our advantage and instruct them in the

35

Figure 5.9: A list to select an artist to explore.

bar at the top with what they have to do.
Once the selection happened, we display an overlay of all the songs of all

the selected albums. There is nothing more we have to do: Random playlist
creation and navigation options are already provided as described in section
5.2.2.

5.5 Search

The Android developer guide states:

Search is a core user feature on Android. Users should be able to
search any data that is available to them, whether the content is
located on the device or the Internet.

Over the last few years, search has become an almost ubiquitous paradigm and
it comes as no surprise that Google as Android’s primary developer has put
great emphasis on search for its mobile platform. From the perspective of a
mobile music player it makes sense to provide search (especially together with
search-as-you-type) since typing a few characters yield faster results than list
scrolling depending on the size of the user’s library, even if only a software
keyboard is available.

To make search worthwhile for the user, it has to be as efficient and painless
as possible, as otherwise scrolling through lists will be faster and more comfort-
able.

First of all, we note that search-as-you-type is a must, especially on de-
vices with soft keyboards where typing is anything but optimal. The interface
experience will be better in any case.

Otherwise, there a few different ways how search can be done since we have
different types of data such as artists, albums and songs. A first way is to let
the user select what kind of data should be searched. However, selecting what

36

Figure 5.10: The map view.

to search is not necessary if the search query already implies what the user are
looking for.

Another way would be to let the user have a search box without options,
but to display data items of different types at the same time either mixed or
grouped by type.

A third way is to only display one type of data type (e.g. songs), but search
for all data types in the background. For example, if one searched for some
album then all songs in this album would match the search term.

We chose to implement the last option for a couple of reasons: Songs are
displayed in the same fashion across the whole application: In popovers which
allow enqueueing, random selection and navigation functionality. So if we are
to display songs in search results (which would be the most obvious type to
display), we also should display them in such a popover for consistency reasons.
But then, we cannot display artists or albums since there will be no space.
However, that is not necessary, since navigation functionality is built into the
popover already. If the user wants to explore an artist or map an album by
search, he can simply search for the artist or the album respectively, click on
the first matching song and user the navigation buttons on the right top. And
if the user wants to search for an artist or an album just to enqueue some or
all of its songs, he does not even need to leave the search interface as all the
matching songs are already displayed. In this case, he can also just search for
another term without leaving the search interface. This would not be possible
if we had chosen to display artists and albums, since clicking them would open
another view.

37

Figure 5.11: The map while the user is drawing a region with his finger.

In conclusion, the approach to only display songs with search term matching
song, album or artist name and display them in the omnipresent popover gives
the user the most consistent, efficient solution and functional solution.

5.6 Playlist

Playlists are a way of saving time and work that the user put into grouping and
arranging songs that he wants to listen to often or together. They are away of
reusing already invested interface interactions, as it the interface experience can
improve if we can do repetitive actions only once.

Many players however mix concepts when using playlists. For example, a
player might use playlists as the only mean to allow for planning as required
in 4.1.3. However, playlists are usually not first-class citizens in music player
interfaces, as usually playback happens through other means. For example, in
players like the default player on Android or iOS, scheduling songs can only
happen via playlists. If the user is not currently playing songs from a playlist,
he cannot start scheduling songs without interrupting the playing song, which
is undesirable according to section 4.1.5. Furthermore, if a user wants to use
playlists for dynamic scheduling, he has to create a persistent object as a side
effect. Then, either the list of playlists will be full of useless playlists or he will
have to delete them from time to time, investing energy for maintenance.

Another undesirable interface choice coming from the use of playlists where
they should not be used is the display of already played songs, which is discussed
in section 5.1.3.

When developing Jukefox for Tablets, we consciously decided to not imple-
ment playlists until the very end. This way, they are not able to interfere with
the rest of our design and we will not mix them up with other concepts. So
far, we have not yet have time and that is why there is unfortunately no persis-

38

Figure 5.12: The search view.

tent mechanism to store a group of songs. This is surely a desired feature for
the future, but of course we will be required to first think the concept through
instead of just implementing and old paradigm.

39

Chapter 6

Conclusion and outlook

The journey to the optimized music player is far from over. Our aim of trying
to decouple the playback experience from the interface experience clearly made
the goal of making a great music player into an optimization problem, which is
impossible to ever be maximized. With our possible definition of what the goal of
a music player actually is, we have built a foundation upon which music players
can be compared. We hope that also others will realize that more emphasis has
to be put into the playback interface itself, instead of only looking at new music
retrieval interfaces. Those parts of the interface are both of great importance,
then only with both together can a music player truly shine.

Our music player is a solid first attempt at getting closer to the goal of
an optimized music player in the sense we have and we were able to show by
many examples, how our choices achieve a greater decoupling of the playback
experience and the interface experience than in other players.

But much more important than theoretical discussions is the implementa-
tion and distribution of such ideas. As of this writing, Jukefox for Tablets is
not yet ready to be released on the Android market. To really make a com-
pelling product, one needs to take care of countless more details than already
mentioned. We hope that we will soon be able to launch a first version and hear
from the users what they think about our ideas. Furthermore, it would be great
to have some usage data to be able to verify whether the users engage with our
application as intended, or whether they even employ new usage patterns not
yet imagined.

We have already mentioned certain points in chapter 5 which are so far
missing or not optimal, such as the absence of anything comparable to playlists
and it would be great to add or improve those functionalities. As a long term
goal, it would be our dream to take this concept to other platforms as well, first
and foremost to the mobile phone, where many of the ideas and almost all of
the source code could be reused.

40

Bibliography

[1] Open Handset Alliance. Android Developer Guide: Optimizing Apps for
Android 3.0. 2011. url: http : / / developer . android . com / guide /

practices/optimizing-for-3.0.html.

[2] Tim Bray. Tall and Narrow. May 2011. url: http://www.tbray.org/
ongoing/When/201x/2011/05/22/Portrait-Mode.

[3] History of the Portable Audio Player. 2008. url: http://gadgets.

softpedia.com/news/History-of-the-Portable-Audio-Player-046-

01.html.

[4] Apple Inc. iOS Human Interface Guidelines. 2011. url: http :

/ / developer . apple . com / library / ios / documentation /

UserExperience/Conceptual/MobileHIG/MobileHIG.pdf.

[5] Richard Kettlewell. The Only Intuitive Interface Is The Nipple. 2001. url:
http://www.greenend.org.uk/rjk/2002/08/nipple.html.

[6] Michael Kuhn, Roger Wattenhofer, and Samuel Welten. “Social Audio
Features for Advanced Music Retrieval Interfaces”. In: Human Factors
(2010), pp. 411–420. url: http://portal.acm.org/citation.cfm?id=
1874007.

[7] Elias Pampalk and M Goto. “Musicrainbow: A new user interface to dis-
cover artists using audio-based similarity and web-based labeling”. In:
Proceedings of the 7th International Conference on Music Information
Retrieval Victoria BC Canada. Ed. by Kjell Lemström, Adam Tindale,
and RogerEditors Dannenberg. ISMIR, 2006, pp. 367–370. url: http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.

9090&rep=rep1&type=pdf.

[8] J Raskin. “Viewpoint: Intuitive equals familiar”. In: Communications of
the ACM 37.9 (1994), pp. 17–18. url: http://dialnet.unirioja.es/
servlet/articulo?codigo=388848.

[9] Yannick Stucki. Music Queue. 2009. url: http://yannickstucki.com/
musicqueue.html.

[10] Samuel Welten. Personalized Organization of Music on Mobile Devices.
2009. url: http : / / www . disco . ethz . ch / theses / fs09 / report _

swelten.pdf.

[11] Why are more people right handed? 2001. url: http : / / www .

scientificamerican.com/article.cfm?id=why-are-more-people-

right.

41

[12] Wikipedia Digital Audio Player. 2011. url: http://en.wikipedia.org/
wiki/Digital_audio_player.

[13] Wikipedia Discman. 2011. url: http : / / en . wikipedia . org / wiki /

Discman.

[14] Wikipedia Discman D50. 2005. url: http://en.wikipedia.org/wiki/
File:Sony_Discman_D_50.jpg.

[15] Wikipedia iphone. 2011. url: http://en.wikipedia.org/wiki/IPhone.

[16] Wikipedia iPod. 2011. url: http://en.wikipedia.org/wiki/IPod.

[17] Wikipedia Jef Raskin. 2011. url: http://en.wikipedia.org/wiki/Jef_
Raskin.

[18] Wikipedia Scratching. May 2011. url: http://en.wikipedia.org/wiki/
Scratching.

42

