e
E'H 7o
g5 e

.
. g s
Distributed  [*g9%
Eidgendssische Technische Hochschule Ziirich . ‘:‘i“‘ o
Swiss Federal Institute of Technology Zurich Computing %%,

Skirting ISP Traffic Shaping in P2P
Systems, and Countermeasures

Bachelor’s Thesis

Pascal Studerus
studi@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Raphael Eidenbenz
Prof. Dr. Roger Wattenhofer

October 16, 2011


mailto:Pascal Studerus<studi@student.ethz.ch>

Abstract

The BitTorrent (BT) protocol was already in 2005 a widley used peer-to-peer
(P2P) file sharing protocol and produced a high amount of traffic. Some internet
service providers (ISPs) began to slow down the BT protocol to provide users
more bandwidth for other protocols. The BT community introduced a new
protocol, called Message Stream Encryption (MSE) to bypass the limitations of
the ISPs. This thesis discusses the structure of the MSE protocol. Furthermore,
different shaping methods that could be used by ISPs to detect and slow down
BT traffic, are compared with the possible methods for BT clients to hide from
the shaping methods. The improvements of the possibilities of ISPs and the BT
developers can be regarded as an arms race.



Contents

[Abstractl i
(1__Introductionl
(L1 Introductionl. . . . . . . . . . . 1
2__BitTorrent 2
2.1 BitTorrent Protocoll . . . . . .. ... ... ... .. .. ... .. 2
2.2 Message Stream Encryption| . . . . . . ..o oL 2
[2.2.1 MSE protocol structure] . . . . . ... ... ... ... .. 3
[2.2.2  Early termination conditions| . . . . ... ... ... ... )
[2.2.3  Tracker peer obfuscation|. . . . . . .. ... ... ... .. 6
224 Handle MSE connections] . .. ... ... ......... 6
[3__Discussion| 7
BI Whentouse MSEl . . . ... ... ... ... ... 7
3.2 Traffic shaping methods| . . . . . . ... ... ... ... ... .. 7
8.3  Conclusion|l . . ... ... ... . ... 9
[4 Implementation| 10
EIT BitThiefl . . . . . . . o 10
4.1.1 Noted .. ... .. . .. 10
[Bibliography| 12
[A° Appendix Chapter| A-1
[A.1 Modified classes. . . . . .. ... o o A-1
A2 Addedclasses . . . ... ... ... ... A-1

ii



CHAPTER 1

Introduction

1.1 Introduction

The BitTorrent (BT) Protocol is a protocol for distributed file sharing and was
designed in 2001 by Bram Cohen [21]. He developed it originally for the etree.org
community for sharing linux files and presented the code at the hacker conven-
tion CodeCon in 2002 [4]. BT was soon used for other purposes, including illegal
file sharing, i.e. distributing copyrighted files over local networks and/or the
internet. The BitTorrent Protocol creates a peer-to-peer (P2P) network to ex-
change files. In contrary to the client-server paradigm each node acts as a client
and server in the P2P model and hence there is no centralized server. Because
there is no hierarchy in the system, each node has the same role and thus we call
the nodes the peers.

In 2005, BitTorrent was responsible for more than a third of the total traffic in
the internet [2I]. This lead to a problem for internet service providers (ISPs), as
they had to support more and more data flow through their networks. In order
to keep up with the high amount of BitTorrent traffic, ISPs had two options:
Either they could increase the capacity of their networks or they could throttle
the traffic generated by BitTorrent and other popular P2P protocols. Some ISPs
began to shape traffic, i.e. increase or decrease the speed for certain packets
through their network. ISPs that shape traffic assign priorities to protocols and
slow down or even block traffic with low priority. Due to the high amount of
traffic generated by the BT protocol many ISPs that shaped traffic assigned a
low priority to BT. As a response, the BitTorrent community used obfuscation
and encryption to prevent traffic shaping [2]. The BitTorrent developers pro-
posed a new encryption protocol called Message Stream Encryption (MSE) [6]
in 2006. MSE is the standard encryption method for BitTorrent clients today.



CHAPTER 2

BitTorrent

2.1 BitTorrent Protocol

BitTorrent is a P2P file sharing protocol. A peer can publish information about
the data of the file she wants to share by creating a so called torrent file.

In order to download a file with BT, a peer has to download the corresponding
torrent or rather torrent metafile from a torrent discovery website, i.e. that is a
website that publishes torrents. As a next step the peer has to connect to a P2P
network to share her file. To achieve this the peer sends an HTTP get request
to a tracker. Urls of trackers are provided in the torrent metafile. The response
of the tracker is a BT specific encoded message that has stored IP addresses of
other peers in the P2P network. The peer then sets up individual connections
to a subset of the peers by sending a BT handshake to these addresses. The
receiver checks the message and decides if she uploads and downloads from that
peer. If she does, she sends her own BT handshake message. Once a peer has
sent her own handshake message and received the other’s handshake message,
the handshake is completed. BT splits the original file into smaller pieces and
provides a hash for each piece in the torrent metafile. Clients use these hashes to
verify the integrity of received pieces. The BT protocol incorporates several types
of messages, which are used to distribute the pieces of a file among peers. For
more information on the protocol see the BitTorrent protocol specification [3].

2.2 Message Stream Encryption

Message Stream Encryption (MSE) was intended to provide payload and proto-
col obfuscation for data streams, thus making it much more difficult for passive
eavesdroppers to identify the BitTorrent protocol. As a positive side effect, MSE
also gives the user some confidentiality and limited peer authentication.



2. BITTORRENT 3

2.2.1 MSE protocol structure

The protocol structure consists of a handshake, where the communicating peers
decide how to send the BT messages afterwards.

In the following we consider A as the initiator of the handshake and B as the
responder. The handshake consists of five steps, whereas in each step the struc-
ture of the step itself is presented. The sender is placed on the left side of the
arrow, the receiver on the right side of it and the payload is shown in the box.

1)

A-B:

A sends its Diffie-Hellman (D-H) [13] public key (Y4) and a random padding
(Pada) with a length of 0-512 bytes to B. The group taken for D-H is Z;
where g = 2 is the generator, and p is a 768 bit prime. X,, X} are the D-H
private keys of A and B with recommended length of 160 bits. Thus, the
secret D-H key is S = (¢%%)X? = (g¥b)X.

The padding Pad 4 is varied to prevent a detection of the handshake based
on particular message lengths.

B A: [¥; ] Pady |

As soon as B receives the first parts of A’s message, B sends her own D-H
public key (Y3) with an appended random padding (Padp) of length 0-512
bytes to A.

A—B: ’ hash part ‘ data part ‘

The message consists of two parts: a hash and a data part.

hash part: | H’REQ1”| S) | H’REQ2”|| SKEY) XOR H("REQ3”|| S) |

The hash part consists of three hashes. SHA-1 is used to compute the hash
for H with an output length of 20 bytes. "REQ1”, "REQ2”, "REQ3” are
predefined strings used by the hash function H. The common shared key
(S) and the common shared weak secret (SKEY) are taken as additional
inputs for the hashes. SKEY is the torrent info hash of the torrent to be
downloaded and can be found in the torrent metafile. The torrent info
hash is a secret as it is only provided in the torrent metafile. It is a weak
secret, as everyone that has access to the torrent metafile knows it.

B uses the first hash to synchronize, since the length of Pada is unknown.

data part: | E(VC|| CryptoProvide|| L(Padc)| Padc| LIA)) | E(TIA) |

The entire data part is encrypted using RC4 [I7] as a stream cipher. RC4 is
a binary additive stream cipher that generates a pseudo-random keystream.




2. BITTORRENT 4

This keystream is combined with the plaintext using XOR to create the
ciphertext. Therefore it is important to decrypt the ciphertext in the right
order and it holds that E(a||b) = E(a)||E(b). Hence it’s possible to decrypt
one part after another of the cipher text. When A sends data, it uses the
20 bytes hash H("keyA”|| S|| SKEY) as key for RC4. When A receives
data, it uses H("keyB”|| S|| SKEY) as key for RC4. Analogously, B uses
H("keyB”|| S|| SKEY) when sending and H("keyA”|| S|| SKEY) when re-
ceiving data. The first 1024 bytes of the keystream are discarded to protect
against a Fluhrer, Mantin and Shamir attack [18].

VC is a verification constant that is an array of 8 bytes, where each byte
is set to 0x00.

The 4 byte field CryptoProvide stores the information which cryptographic
methods A supports. For now, the first 3 bytes are all 0x00 and reserved
for later use. The last byte is either 0x01 for plain or 0x02 for RCA4.

L(x) is a function that maps 2 big-endian encoded bytes to an integer that
indicates the length of x.

Padc is a zero-valued padding of length 0-512 bytes.

TA is the so-called initial data out. It can be the typically BT handshake
message or the empty string.

B—A: ’ E(data part) ‘ E2(Payload Stream) ‘

The message consists of two parts: a data and payload stream part.

data part: | E(VC|| CryptoSelect| L(Padp)|| Padp) |

The entire data part is encrypted using RC4 as stream cipher. The keys
for encryption and decryption are the same as described in Step 3.

A uses the verification constant (VC) to resynchronize, as the length of
Padp is unknown.

The 4 byte field CryptoSelect contains the information which cryptographic
method B chooses for the encryption of the message stream after the hand-
shake. Like with CryptoProvide, the first 3 bytes are set to 0x00. The in-
formation about the encryption method is contained in the last byte, 0x01
for plain, and 0x02 for RC4.

Padp is an additional zero-valued padding of length 0-512 bytes.

E2() is the encryption method on which A and B have agreed in Step
4, plain or RC4. With plain ”encryption”, messages are sent in plain text
without any obfuscation or encryption. With RC4, messages are encrypted,
using the same RC4 stream cipher as in Step 3.

Payload stream can be any original message of the BT protocol that B
wants to send to A.



2. BITTORRENT 5

5) A — B :| E2(Payload Stream) |

A uses the encryption method selected by B in Step 4 to encrypt future
BT messages.

2.2.2 Early termination conditions

The MSE protocol description provides additional options that if any of the
following conditions holds, the handshake can be regarded as failed and the
connection is closed. It is not mandatory to check the conditions and therefore
it is up to the implementation if the conditions are checked, or ignored. The
conditions should be checked before the mentioned step of the MSE protocol has
started.

1. Step 2: B terminates the connection if

e A sent less than 96 bytes within 30 seconds, or
e A sent more than 608 bytes within 30 seconds.

2. Step 3: A terminates the connection if

e B sent less than 96 bytes within 30 seconds, or
e B sent more than 608 bytes within 30 seconds.
3. Step 4: B terminates the connection if
e the correct S hash can not be found within the first 628 bytes, and
thus, B has not found the synchronization point,
e it received a wrong SKEY hash after the S hash,
e VC can not be decoded correctly after the SKEY hash,
e none of the options provided in CryptoProvide are supported, or each
byte of CryptoProvide is set to 0x00.
4. Step 5: A terminates the connection if
e VC can not be decoded correctly within the first 616 bytes, i.e. A has
not found the synchronization point, or

e the option selected in CryptoSelect was not provided in Step 3.

It is up to the next protocol layer, the BT protocol, to terminate the connec-
tion if none of the conditions are met.



2. BITTORRENT 6

2.2.3 Tracker peer obfuscation

The tracker peer obfuscation extension [9] is intended to prevent a passive eaves-
dropper to read the replied peer list from a tracker. The extension is the response
to an attack on the BT protocol that reads the peer list to get IP-port pairs.
Corresponding to BT users such IP-port pairs could be used to identify peers
willing to share files among each other, and the connection between them could
be blocked.

In the torrent metafile, a special list with trackers that support the tracker peer
obfuscation extension is added. A peer adds new parameters to the standard
URL get request indicating what kind of connection it prefers when requesting a
peer list from such a tracker. One parameter is whether she supports or requires
encrypted connections to other peers. The second parameter is the port on which
she accepts BT connections. In such a request, a SHA-1 hash of the info hash is
sent rather than the info hash in plaintext. The tracker itself obfuscates the peer
list and any other part containing information about peers with RC4. The first
768 bytes of the keystream of RC4 are dropped to prevent a known attack [18].
According to the BitTorrent Enhancement Proposal (BEP) Nr. 0008 [9] the
tracker peer obfuscation is deferred. BEPs are used to discuss possible exten-
sions to the BT protocol and standardize them. As it is not an official accepted
proposal, only a very small amount of trackers support the extension. Tracker
peer obfuscation leads to more overhead for trackers and clients, which could be
a reason for it to be only an unofficial extension.

2.2.4 Handle MSE connections

BT clients that support MSE have three possible options how to deal with con-
nections [6]. These options are necessary for such clients, because they can not
communicate the desired way with all other clients as not all of them support

MSE.

e Allow incoming MSE encrypted and usual BT connections. Only usual
outgoing BT connections.

e Allow incoming MSE encrypted and usual BT connections. Outgoing con-
nections are MSE encrypted, usual outgoing BT connections only if a MSE
encryption connection attempt failed.

e Only MSE encrypted incoming and outgoing connections.

A fourth option which uses only usual BT connections is omitted as it is the

same as to disable MSE. Such an option is regarded as there is no support for
MSE.



CHAPTER 3

Discussion

3.1 When to use MSE

The main reason for a BT user to use encryption is to optimize its speed if the
user is traffic shaped by the ISP. While the ISP does not use sophisticated meth-
ods to detect BT traffic, using MSE could lead to the same speed as if the user
was not traffic shaped.

Using a stream cipher like MSE to encrypt and decrypt any data sent increases
the load on a system but provides obfuscation. RC4 was chosen over more secure
stream ciphers, because RC4 is less hardware consuming. An additional option
using plain instead of RC4 can be selected to reduce the load compared to RCA4.
But except for the handshake any BT message is sent in plaintext instead of
being encrypted, and thus the overhead is in most cases insignificant.

As long as a user has an ISP that does not throttle BT traffic, there is no reason
to use encrypted connections to other peers that are not traffic shaped either.
This is simply because in this scenario the cryptographic handshake leads to a
higher load on the system and a possible drop in the download speed without any
advantage. MSE can not be used to prevent any passive eavesdropper to read
what is shared between users as it does not provide authenticity nor confiden-
tiality. The MSE protocol is not entirely secure as there exist several weaknesses
in it that can be abused to obtain information about the message stream [12].

3.2 Traffic shaping methods

There exist several traffic shaping methods, which are discussed in this section.

Packet inspection

A method to detect BT messages is to check for the BT handshake messages
by inspecting sent packets [19, 20]. If such a handshake message is found, an



3. DISCUSSION 8

ISP knows which parties are invloved. The ISP also knows on what ports they
communicate and can slow down or block any packets matching that IP-port
pair. This shaping method can be avoided by a BT client using MSE. If the RC4
option is used for MSE it is not possible to detect any BT specific byte pattern
in messages as all the messages are encrypted. An ISP that still wants to detect
MSE using RC4 can not try to break possible MSE connections as it would be
too power consuming to break several single connections [12].

Using packet inspection can lead to privacy issues for an ISP, because the ISP has
to read packets sent by users, which is not allowed on some network locations.

Flow-level heuristics

A technology for ISPs to detect also encrypted BT traffic are flow based meth-
ods using statistical approaches [16] 14, 22]. These methods seem to be able to
detect BT traffic with a high efficiency and have a good enough accuracy. Flow-
level heuristics are more robust against protocol changes as they detect protocols
by its characteristics that do not often change, i.e. how long average messages
are and how often messages are sent between two peers. A negative point is
that it takes longer to execute the detection algorithm, meaning more messages
must be analysed to detect a protocol. A possibility for BT clients to hide from
this method is to use flow obfuscation or to hide inside a well known protocol [14].

Intercept peer-to-tracker communication

Trackers are the entry points for any peer to a BT P2P network. The message
from a tracker to a peer contains a list of IP/port pairs of peers that are already
in the P2P network that the peer wants to join. The ISP can store the IP/port
pairs and as soon as the peer sends a message to a pair in the list, the ISP
knows that it is a BT connection and can close it. To achieve this an ISP may
according to the policy close BT connections between two such peers by sending
TCP resets. A company providing hardware tools to block BT and other P2P
traffic using this idea is Sandvine [8]. Tracker-peer obfuscation described in [2.2.3]
may help to avoid this traffic shaping method.

Bandwith limiting methods

According to the Vuze wiki [I1] there are ISPs that slow down traffic if a client
has a too high traffic volume or limit the possible traffic of any client at peek
times during a day. Against such methods can not even encryption increase the
speed of the BT client, and there exist not any other known possibility to bypass
bandwith limiting methods yet.



3. DISCUSSION 9

Prioritize traffic

Some ISPs prioritize recognizable traffic and therefore it can happen that hiding
BT traffic by obfuscation methods does not increase the speed as the unrecog-
nizable BT traffic also receives a lower priority. An example of a company that
prioritizes traffic is pipex [7]. ISPs like pipex give traffic like HTTP a higher
priority whereas P2P traffic receives a lower priority. Such ISPs regard HT'TP
and the like as sensitive traffic, because you immediately recognize if the speed
is reduced in contrast to P2P traffic. These ISPs state that at peek times, where
the used bandwith is close to its maximum, sensitive traffic should be prioritized
over unsensitive traffic. It also should not hurt P2P systems that much if P2P
systems can use their full speed during times where the bandwith of an ISP is
not fully used. Due to the higher priority of HTTP traffic, some developers try
to hide BT traffic as HT'TP traffic. But even this method seems to be detectable

[5]-

3.3 Conclusion

MSE was designed to provide peer obfuscation but not confidentiality or au-
thentication. Therefore it should not be used to hide any secret data from an
adversary, as several attacks exist to break the protocol. But these attacks are
power consuming, hence these attacks can not be used by ISPs to shape BT
traffic.

How useful MSE is in practice can not be clearly stated. It seems like sta-
tistical approaches can detect MSE well enough to be used by ISPs to shape
MSE encrypted traffic. The best approach for an ISP is to combine packet in-
spection with statistical approaches [16]. Packet inspection is faster, but works
only against non-encrypted traffic, whereas statistical approaches can be used if
packet inspection failed. A problem that remains is false positives, i.e. detecting
non-BT traffic as BT traffic by mistake. ISPs have to decide what their priority
is. Either they detect less undesired traffic with a lower amount of false positives,
or they detect more undesired traffic with a higher amount of false positives.

A user having an ISP shaping BT traffic to lower his BT speed has to try sev-
eral methods provided by the used BT client. This is required because she does
not know which shaping techniques are used by her ISP. If the user’s BT client
supports any method to hide BT traffic that the ISP does not have a detection
for, the user can increase her speed. A user has to try all possibilities, as there
are many ways to hide BT traffic, similarly many ways to identify BT traffic. It
is like an arms race [15] where each side (ISP versus P2P) tries to improve its
methods to come out ahead. According to the seen traffic shaping methods, it
seems like if an ISP really wants to block BT traffic using any available shaping
method, the ISP can do it with a good accuracy.



CHAPTER 4

Implementation

4.1 BitThief

During my Bachelor thesis I implemented Message Stream Encryption support
for the ETH BitTorrent client BitThief [I] without the tracker peer obfuscation.
There are four options concerning encrypted connections:

e No encrypted connections: Normal BT handshake is used for outgoing and
incoming connections.

e Encrypted connections if needed: Outgoing connections are tried to estab-
lish with the normal BT handshake. If such a connection attempt failed
MSE is used to try to establish a connection to that peer. Normal BT and
MSE incoming connections are accepted.

e Encrypted connections if possible: Outgoing connections are tried to estab-
lish with MSE. If such a connection attempt failed a normal BT connection
is tried to establish to that peer. Normal BT and MSE incoming connec-
tions are accepted.

e Encrypted connections only: MSE is used for outgoing and incoming con-
nections.

4.1.1 Notes

I read and analyzed the MSE implementation of the open source BitTorrent
client Vuze [10]. As the Vuze implementation mechanics differ a lot from Bit-
Thief, only a few classes could be taken from Vuze. The rest of the code was
written specific to BitThief.

BitThief supports only RC4 as encryption method for the payload stream after
the cryptographic handshake is completed. As described in the RC4 algo-
rithm depends on already encoded or decoded code. Following the correct order

10



4. IMPLEMENTATION 11

of encoding and decoding must be met to be compatible to other BT clients.
The first 1024 bytes of the keystream of the RC4 stream cipher are discarded to
protect against a possible attack [18], as discussed earlier.



[1]

2]

Bibliography

BitThief, A Free Riding BitTorrent Client.
bitthief.ethz.ch (retrieved on Oct. 9th, 2011)

BitTorrent protocol encryption, Wikipedia.
http://en.wikipedia.org/wiki/BitTorrent_protocol_encryption (retrieved on
Oct. 9th, 2011)

BitTorrent protocol specifications.
http://wiki.theory.org/BitTorrentSpecification (retrieved on Oct. 9th, 2011)

CodeCon, Wikipedia.
http://en.wikipedia.org/wiki/CodeCon (retrieved on Oct. 9th, 2011)

Detect BT traffic encrypted as web traffic.
http://www.studlife.com/archives/News/2006/09/27 /ResTechsolvesnetworkissues/
(retrieved on Oct. 9th, 2011)

Message Stream Encryption.
http://wiki.vuze.com/w/Message_Stream_Encryption (retrieved on Oct.
9th, 2011)

Pipexuk.  http://www.pipexuk.com/terms/broadband_terms_2.html (re-
trieved on Oct. 9th, 2011)

Sandvine homepage. www.sandvine.com (retrieved on Oct. 9th, 2011)

Tracker-peer obfuscation BEP. http://bittorrent.org/beps/bep_0008.html
(retrieved on Oct. 9th, 2011)

Vuze, open-source BitTorrent client. http://www.vuze.com (retrieved on
Oct. 9th, 2011)

Vuze wiki. wiki.vuze.com (retrieved on Oct. 9th, 2011)
J. Valkonen and B. Brumley. Attacks on Message Stream Encryption, 2009.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans.
Inf. Theory, vol. IT-22, no. 6, pp. 644-654, Nov. 1976.

W. John and E. Hjelmvik. Breaking and Improving Protocol Obfuscation,
2010.

12



BIBLIOGRAPHY 13

[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

D. Sicker, K. Bauer and D. Grunwald. The Arms Race in P2P, 2009.

D. Peleg, L. Roditty, R. Bar-Yanai and M. Langberg. Realtime Classification
for Encrypted Traffic, 2010.

R. Rivest. The RCY Encryption Algorithm. RSA Data Sec, Inc., 1992.

A. Shamir, S. Fluhrer and I. Mantin. Weaknesses in the Key Scheduling
Algorithm of RC4, 2001.

D. Wang, S. Sen and O. Spatscheck. Accurate, Scalable In-Network Identi-
fication of P2P Traffic Using Application Signatures.

A. Broido, T. Karagiannis and M. Faloutsos. Filesharing in the Internet: A
characterization of P2P traffic in the backbone. Technical report, University
of California, Riverside Department of Computer Science, November 2003.

Clive Thompson. The BitTorrent Effect.
http://www.wired.com/wired /archive/13.01/bittorrent.html,
January 2005. (retrieved on Oct. 9th, 2011)

Arno Wagner, Thomas Diibendorfer, Lukas Hammerle and Bernhard Plat-
tner. Flow-based Identification of P2P Heavy-Hitters.



Appendix

APPENDIX A

Chapter

A.1 Modified classes

ArrayUtil.java
BitThiefConfiguration.java
BitTorrentConnection.java
ConnectionCloseReason.java
Connectionlnitiator.java
GlobalSettingsWindow.java
ListUtil.java
PacketFactory.java
Packetizer.java
PacketSocket.java
PacketSocketImpl.java
PeerManager.java
PeerManagerTest.java
PeerRecord.java
T4TConnection.java
T4TPacketSocket.java
TrackerClient Test.java
TrackerRequest.java
TrackerRequestBuilder.java
TrackerRequestTest.java
TrackerResponseTest.java

A.2 Added classes

ArbitraryPacket.java
Base32.java
ByteFormatter.java
CryptoConnection.java

A-1



APPENDIX CHAPTER

CryptoPacket.java
CryptoPacketFactory.java
CryptoPacketizer.java
CryptoPacketSocket.java
DHPubKeyPacket.java
EncryptionSettingsWindow.java
HashPacket.java
HashWrapper.java
IALengthPacket.java
TAPacket.java
InfoPacket.java
RandomUtils.java

SHA1 java
SHA1Hasher.java
TransportCipher.java

A-2



	Abstract
	1 Introduction
	1.1 Introduction

	2 BitTorrent
	2.1 BitTorrent Protocol
	2.2 Message Stream Encryption
	2.2.1 MSE protocol structure
	2.2.2 Early termination conditions
	2.2.3 Tracker peer obfuscation
	2.2.4 Handle MSE connections


	3 Discussion
	3.1 When to use MSE
	3.2 Traffic shaping methods
	3.3 Conclusion

	4 Implementation
	4.1 BitThief
	4.1.1 Notes


	Bibliography
	A Appendix Chapter
	A.1 Modified classes
	A.2 Added classes


