
Distributed
 Computing

MEAMM — Movie Experience
and Metadata Manager

Group Project

Damiano Boppart Erwin Herrsche

dboppart@ee.ethz.ch heerwin@ee.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Raphael Eidenbenz

Prof. Dr. Roger P. Wattenhofer

January 19, 2012

mailto:Damiano Boppart Erwin Herrsche<dboppart@ee.ethz.ch heerwin@ee.ethz.ch>

Abstract

Currently there are few applications available that help users organize the film
file collection that they store on their computer. The focus of this project was
to design and start developing a new application that links relevant metadata to
the users film files in his collection, providing her with a powerful tool to keep her
collection organized and manageable. As this application was built from scratch,
much of the effort went into planning and building a solid foundation that allows
for easy extension beyond the extent of what was accomplished in this group
project.

This project consist of the following parts:

• This paper, outlining the reasoning behind design decisions made concern-
ing the implementation,

• The source code of the application that was developed, which is called
“MEAMM”.

The source code is available through the web-based hosting service for soft-
ware development projects Gitorious1 at this location: https://gitorious.org/
meamm/meamm/trees/StrangerThanFiction2.

1http://gitorious.org/
2Please note that this link references a specific version of the application, the commit tagged

with StrangerThanFiction. Later version might be available, a version history can be found
at https://gitorious.org/meamm/.

i

https://gitorious.org/meamm/meamm/trees/StrangerThanFiction
https://gitorious.org/meamm/meamm/trees/StrangerThanFiction
http://gitorious.org/
https://gitorious.org/meamm/

Contents

Abstract i

1 Introduction 1

2 Design 3

2.1 Inspiration . 3

2.1.1 Music Players . 3

2.1.2 Tag Editors . 4

2.1.3 Media Collection Managers 5

2.1.4 Conclusion . 5

2.2 Choosing a Metadata Source . 5

2.2.1 IMDb — http://www.imdb.com/ 6

2.2.2 Linked Movie Database — http://linkedmdb.org/ . . . 7

2.2.3 Freebase — http://www.freebase.com/ 7

2.3 Data Model . 7

2.3.1 Artwork . 7

2.3.2 Manila . 9

2.3.3 File . 9

3 Implementation 11

3.1 The Interface to Freebase . 11

4 Discussion of Results 14

5 Outlook 15

6 Acknowledgements 16

ii

Chapter 1

Introduction

Both authors of this paper have made a habit of watching films on their computers
in recent years. As our collection of film files started to grow, we came to see that
there are practically no applications available that can assist us in managing a
collection of film files. Common, repetitive tasks that would be easy to automate
have to be done by hand. The following paragraphs describe a couple of these
tasks.

Often, after having watched a film, we are interested in seeing the actors that
have played in the film to see if they appear in other films worth watching. Or,
we would like to find a song from the soundtrack and to see whether a sequel is
in production.

Whenever we want to look up details on a specific film we have on disk, we
typically have to go online and use an encyclopedia such as Wikipedia1 or a site
that catalogs movies such as IMDb2 to do so. We have what we want to know
more about right in front of us — the film file — and yet we have to go somewhere
else to find out more about it — online. Even worse, it does not suffice to do it
once for every film file, it has to be done every time we want to look something
up.

An application that could retrieve the relevant metadata on a film and store
it locally linked to a file would save us the trouble of entering the films names
into a search field in the browser every time we want to look something up.

As our film file collections have grown beyond what one HDD can hold, de-
termining whether we have a film on disk and if so, where exactly it is located
becomes an increasingly involved job: Do I still have it on the HDD of my laptop
computer? Or have I moved it to my desktop PC? Did I copy it to my external
HDD that my friend just borrowed over the weekend? Is my USB thumb drive
even big enough to hold my film file if I find it? Having an overview of one’s film

1http://www.wikipedia.org
2http://www.imdb.com

1

http://www.wikipedia.org
http://www.imdb.com

1. Introduction 2

file collection becomes increasingly difficult as the number of involved devices
and HDDs increase.

In this world of removable storage devices and network shares, just because
a file is not found at the path in the file system it was last seen does not auto-
matically mean that it has been deleted. An application that could keep track of
these volatile files in our film collection would be of great help in answering the
above questions.

As we were unable to find any existing application that can help us with
problems such as these, we decided to write our own. As the software engineering
proverb goes: “Use the best tool for the job — If it doesn’t exist, write it yourself.”

Chapter 2

Design

2.1 Inspiration

After having decided to write our own application, our first step was to study ex-
isting ones to find ideas or concepts we could reuse. We examined applications for
traits worth considering in the design of MEAMM. We broke the interesting ap-
plications into three categories, Music Players, Tag Editors and Media Collection
Managers, which are discussed in detail in the following sections.

2.1.1 Music Players

Music players is the most important category of applications that has influenced
MEAMM. This is due to the fact that for many applications in this category,
metadata has traditionally played an important role in how the user interface is
structured and how the application is used. Many music players include a library
or catalog for the user to keep track of his collection of files, and browsing the
collection using metadata is ubiquitous for these applications. In fact, many ap-
plications in this category have embodied the concept of navigation by metadata
so deeply that using them as a “front end” for managing files is complicated.
Things such as “copy the audio files in this playlist into a specific folder” or
“move these files in my library to a different location on the file system” are
uncomfortable to accomplish at best. Music players seem to try their best to
make the user deal with files exactly once: when importing files into the internal
library.

Notable examples of applications that fit this description are GMusicbrowser1,

1http://gmusicbrowser.org/

3

http://gmusicbrowser.org/

2. Design 4

Banshee2, Winamp3 and iTunes4.

Today, many music players have the capability of managing video files along-
side audio files. They are, however, not yet adept at managing film files as there
are several important differences between video and audio files.

Audio files are generally containers that permit the storage of metadata in
addition to the audio content. In practice, music players make the supposition
that this feature is made use of. This assumption reduces a music players library
to a mere cache of data found within the files it tracks. However, this assumption
does not generally hold for film files. Many containers do not offer the possibility
to store metadata within the file, and in containers that do, the feature is simply
never used. There is also no industry standard defining the format of such meta-
data. Music players are often not designed to retrieve metadata from anywhere
but within the file, so files which do not incorporate metadata are considered
not to have metadata at all. Another circumstance that is often not respected
by these music players is that one film might consist of several files or one file
might contain several films. For these reasons, music players were useful making
decisions concerning the user interface, but not the back end.

2.1.2 Tag Editors

Tag Editors are applications that assist the user in editing the metadata stored
in audio files. As the presence and quality of this metadata is crucial to music
players as has been discussed above, some functionality found in the stand-alone
tag editors in this category is often also found built into music players themselves.
Many tag editors make it easy to use a web resource to retrieve metadata from to
be stored in the audio files. Some offer the possibility to find the correct record
in a web database based on incomplete metadata already present in the files.

Notable examples of applications in this category are Picard5 and Mp3tag6.

As tag editors are generally designed to handle audio files only, they make
the same assumptions that music players have on the nature of the files they
can handle. As has been discussed for music players, this makes tag editors a
reference for user interface design decisions only.

2http://banshee.fm/
3http://www.winamp.com/
4http://www.apple.com/itunes/
5http://musicbrainz.org/doc/MusicBrainz_Picard
6http://mp3tag.de/

http://banshee.fm/
http://www.winamp.com/
http://www.apple.com/itunes/
http://musicbrainz.org/doc/MusicBrainz_Picard
http://mp3tag.de/

2. Design 5

2.1.3 Media Collection Managers

Media collection managers, often also called DVD collection managers, are ap-
plications designed to catalog physical media that contains films such as DVDs
or Blu-ray discs. The user interface in essence consists of a browser, similar to
the user interfaces found in music players. Applications in this category are un-
aware of any files, as they are designed to organize physical objects. If a user
were to use a Media Collection Managers to organize her video files it would
require additional work, as she would have to manage the metadata stored by
the collection manager in addition to managing the film files. Nevertheless, we
consider applications of this category closest to what we envision MEAMM to be
— a media collection manager that handles files where others handle references
to physical media.

Notable examples of media collection managers include Griffith7.

2.1.4 Conclusion

Even though each category of applications discussed above has severe shortcom-
ings with respect to our goals, they have been of great help. Many design decisions
regarding how the user interface of MEAMM is structured, or how a given task
for the user is broken down into small steps, have been made a lot easier by the
authors’ familiarity with existing applications in the above categories.

2.2 Choosing a Metadata Source

One of the most important features of MEAMM is its ability to retrieve film meta-
data from a web-based database. We decided early on to structure MEAMM’s
code modularly in such a way that it would be able to support using multi-
ple resources for metadata lookups. However, given the time constraints of this
project, it was also decided that the implementation would only access one remote
resource to begin with.

As the usefulness of MEAMM depends to a large part on the comprehen-
siveness and completeness of the metadata of the films it keeps track of, careful
selection of the one data source to be used was of paramount importance.

From the list of possible candidates we compiled, we picked the three that
looked the most promising and evaluated them in more detail.

7http://griffith.cc/

http://griffith.cc/

2. Design 6

Table 2.1: Quantitative criteria of the evaluated web resources

Source Alexa rankc # of filmsb

IMDb 37 268571c

Linked Movie Database 3501526 85620d

Freebase 19463 192292e

a Alexa traffic rank, global; retrieved from http://www.alexa.com/
b The number of film entries in the resource. Only feature films considered where the

statistics differentiated between types of films.
c retrieved from http://www.imdb.com/stats
d retrieved from http://wiki.linkedmdb.org/Main/Statistics
e retrieved from http://www.freebase.com/view/film/film

We considered the following criteria to evaluate the web resources:

• Alexa global traffic rank and the number of feature film entries
These were the only two quantitative measures considered. We took them
as a rough indicator of the comprehensiveness and completeness of the
database, assuming that resources with more traffic and more film records
were better.

• Content licensing
The license of the content MEAMM was to retrieve and the terms of use
of the interface to the service were also taken into consideration.

• The API
Our most important criterion was, however, the design of the interface
of the web resource to be used from within MEAMM. The nature of the
interaction with the web resource and the data models employed obviously
have a great impact on code complexity and performance of MEAMM.

The quantitative criteria are given in Table 2.1. A more detailed discussion
of each candidate can be found in the following sections.

2.2.1 IMDb — http://www.imdb.com/

Given the above numbers, it is safe to say that IMDb is one of the most im-
portance film reference works available online. It is also a website well-known
to both authors and was therefore the most obvious candidate. However, IMDb
does not offer any way for applications to directly interact with its service that

http://www.imdb.com/stats
http://wiki.linkedmdb.org/Main/Statistics
http://www.freebase.com/view/film/film

2. Design 7

would have been useful to us8. Also, the terms of use9 were too restrictive for
our taste. IMDb was therefore discarded as a candidate.

2.2.2 Linked Movie Database — http://linkedmdb.org/

The Linked Movie Database licenses its content under the Creative Commons
Attributions License or the GNU Free Documentation License depending on the
source10. Its API consists of a SPARQL11 endpoint: http://data.linkedmdb.

org/sparql. As neither of the authors had been familiar with this type of in-
terface, and we were unable to find any comprehensive documentation on it, we
discarded the Linked Movie Database as a candidate in favor of Freebase.

2.2.3 Freebase — http://www.freebase.com/

Content on Freebase is licensed under the Creative Commons Attribution Li-
cense12. Freebase offers multiple APIs13. The main advantage of Freebase over
the other contenders is its extensive documentation found on the website14. In ad-
dition, anecdotal evidence collected during the work on MEAMM suggests that,
at least for U.S. film productions, the extent of metadata available on Freebase
is comparable to that offered by IMDb. As at this point we considered Freebase
to be “as good as it gets” we refrained from evaluating further web resources.

2.3 Data Model

2.3.1 Artwork

An “artwork” in our data model is defined to refer to the metadata associated
with a single motion picture production, and encompasses all versions of it. We
defined the term “artwork” because the terms “film” and “movie” are commonly
used to refer to both a film’s metadata and a medium carrying a film such as a
DVD or file.

8All interfaces apart from the website itself are listed on http://www.imdb.com/

interfaces
9http://www.imdb.com/help/show_article?conditions

10http://wiki.linkedmdb.org/Main/Licensing
11SPARQL = SPARQL Protocol And RDF Query Language
12http://wiki.freebase.com/wiki/License
13http://wiki.freebase.com/wiki/Developers
14for instance http://www.freebase.com/docs/mql

http://data.linkedmdb.org/sparql
http://data.linkedmdb.org/sparql
http://www.imdb.com/interfaces
http://www.imdb.com/interfaces
http://www.imdb.com/help/show_article?conditions
http://wiki.linkedmdb.org/Main/Licensing
http://wiki.freebase.com/wiki/License
http://wiki.freebase.com/wiki/Developers
http://www.freebase.com/docs/mql

2. Design 8

Table 2.2: Predefined attribute types

attribute
type

integer
value

string 0 string 1 string 2

title priority title string languagea description

date date stringb countryc description

person person id function (character
name)

genre priority genre string

keyword priority keyword
string

URL URL description

image priority URL description

origin countryc

language priority languagea

length length in sec-
onds

version/description

relation artwork id type description

map id web resource
id

a Language code as specified by ISO 639-3
b Date string as specified by ISO 8601
c Country code as specified by ISO 3166-1 alpha-2

An artwork is a set of attributes. Each attribute has a type, an integer value,
a source and up to four string values. The semantics of the integer and string
values depend on the attribute type. The source is used to track the origin of
the attribute. Any artwork may contain zero or more attributes of any attribute
type. We defined a set of attributes which are listed in table 2.2 and can be used
to describe almost anything related to artwork metadata. The attributes defined
so far do not make use of the fourth string. It is reserved for future use.

2. Design 9

Table 2.3: Predefined attribute types

attribute type integer value string value

name priority name

URL URL

gender gender

birthday datea

death day datea

map id web resource id
a Date string as specified by ISO 8601

Person

We decided to track persons separately to be able to store some metadata for
them in a similar manner to artworks. Person attributes are therefore very similar
to artwork attributes, except they only have one possible string value. Table 2.3
shows our predefined attributes and their value interpretation.

2.3.2 Manila15

Manilas are used to group files independent of their actual location within a file
system. This allows the program to be aware of atomic groups of files for various
actions such as copying and playing. There may be no manila without a file in
it, and no file without at least one manila.

2.3.3 File

A file may refer to an actual file on a file system or to a disk in a shelf. Files
are stored with their size, location and file type. To solve the problem of keeping
track of files on removable drives, the location is stored as a hookpath.

Hookpath

Keeping track of files on removable drives is not trivial. The absolute path of a
file may change. There are technologies to keep track of a removable drives within

15as in Manila folder, a file folder made out of Manila paper

2. Design 10

several operating systems. They all introduce several layers of abstraction. Hooks
and hookpaths are a solution which operate on top of the file system, therefore not
introducing any new abstraction layer and staying independent of the underlying
system.

A hookpath is a method to store files as a relative path and a reference to the
base directory. A hookpath has the following form:

hook:{UUID (hook)}/relative path

The hook is stored in a hookfile in the corresponding base directory. The path of
a file can then be determined by taking the path of the hookfile and the known
relative path from the hookfile to the actual file. If the path of the hook is
unknown or invalid, when the hookfile is found again all the files depending on
that hook will be automatically recovered. This means that if a hook is no longer
present, the files are considered to be temporarily unavailable. Only if the hook
is present and the file associated with that hook is not, is the file is considered
to have been deleted.

The local storage has a hookcache to cache the mapping from hooks to direc-
tories.

Chapter 3

Implementation

The program is made with Qt 41, a multi-platform GUI toolkit. It has integrated
database and network modules.

To abstract the access to the local storage and web resources there are two base
classes (LocalStorageBase and WebResourceBase) which define the interface.
These interfaces are implemented for a SQLite local storage and the Freebase
web resource.

SQLite is a serverless SQL database. The SQLiteStorage class acts as a
wrapper between the “semantic web”-like data model and the relational database
back end.

3.1 The Interface to Freebase

Of the APIs Freebase offered, we chose to use the one based on MQL2. This
interface uses queries and responses that are structured as JSON3 objects. They
are sent and received using HTTP requests and responses.

A simple example query is shown in Listing 3.1, the corresponding response
is shown in Listing 3.2.

Generally speaking, a query consists of an object (represented using JSON)
with some known properties (i.e. key-value-pairs where the value has a sensible
value) and keys with values that are meaningless (i.e. null or {}). The “empty”
values are then replaced by data from the database, and an object with the same
keys is returned.

This query uniquely identifies an object in Freebase’s database by specifying

1http://qt.nokia.com/
2MQL = Metaweb Query Language
3JSON = JavaScript Object Notation

11

http://qt.nokia.com/

3. Implementation 12

Listing 3.1: A simple query example

[{

"type": "/film/film",

"id": "/en/the_dark_knight",

"name": [{

"lang |=": [

"/lang/en",

"/lang/de",

"/lang/fr"

],

"lang": null ,

"value ": null ,

"optional ": true

}]

}]

its type as /film/film and its id as /en/the dark knight. It asks for a possibly
empty array of objects that have the key name, whose value is an array of objects.
Each of these name objects has the key lang with a value of either /lang/en,
/lang/de or /lang/fr. For each name object that matches these requirements,
the name object is to be returned containing exactly the two keys lang and value

with their associated values retrieved from the database.

Freebase returns the actual response to the query together with some status
information. The actual response is the value of the key result. It can clearly
be seen that the structure of the object with the present keys exactly resembles
that of the query, the keys lang|= and optional excluded.

In MEAMM the responses from Freebase are parsed using the QScriptEngine
class.

3. Implementation 13

Listing 3.2: The result of the query

{

"code": "/api/status/ok",

"result ": [{

"id": "/en/the_dark_knight",

"name": [

{

"lang": "/lang/en",

"value ": "The Dark Knight"

},

{

"lang": "/lang/fr",

"value ": "The Dark Knight : Le Chevalier noir"

}

],

"type": "/film/film"

}],

"status ": "200 OK",

"transaction_id ": "cache;cache03.p01.sjc1

:8101;2012 -01 -18 T22 :17:54Z;0001"

}

Chapter 4

Discussion of Results

Although far from having all the features its users could desire, MEAMM at
this stage is already sophisticated enough that it might be a useful tool to some
users in practice. We successfully managed to implement some features related
to every aspect of the intended use case.

Comparing the current version of MEAMM with the requirements originally
specified in the agreement of this group project1, we must however conclude that
our original projection concerning the capabilities of MEAMM at the end of this
project were a bit too optimistic. This is due to the fact that we invested more
time in the planning and design phase which cut into the time left for actual
implementation. However, we see this meticulous planning justified in the fact
that during implementation we never encountered any serious design flaws made
during the planning phase. Our data and logical structure devised for MEAMM
proved to be sound. Being able to rely on a solid base pays off as a software
project as it grows. We succeeded in establishing such a solid base.

1disco.ethz.ch/theses/fs11/meamm.pdf

14

disco.ethz.ch/theses/fs11/meamm.pdf

Chapter 5

Outlook

We plan to continue to develop MEAMM in our spare time and implement the
still missing features. Most important is polishing up the user interface, which
would make the user experience smoother. More differentiated metadata should
be imported from the web resource. Also export functionality for search results
or selections is required. We would also like to see searching or adding an artwork
based on a filename and adding directories to manilas. Also, the user should be
able to perform actions on manilas, such as copying a manila. The hook handling
would also benefit from refinement.

Some outstanding work might even be extensive enough as to warrant a group
project in their own right:

• Extracting technical information from files

• Automatically adding artworks based on file (meta)data

• Automatically updating of manually-added artworks with incomplete data
with data from a web resource

• Implementing importing metadata from a web resource other than Freebase

15

Chapter 6

Acknowledgements

The authors would like to thank our tutors Raphael Eidenbenz and Prof. Dr.
Roger P. Wattenhofer: who accepted our proposal for this group project, allowing
us to pursue our personal interests whilst getting credit for conducting academic
work for the ETHZ; did not constrict us through strict deadlines or unnecessary
bureaucracy; always made time for meetings on very short notice.

Damiano Boppart would also like to thank Philip Stark, who, through in-
sightful contributions at a very, very early stage ensured that MEAMM matured
from a vague dream to a proposal for a group project.

16

	Abstract
	1 Introduction
	2 Design
	2.1 Inspiration
	2.1.1 Music Players
	2.1.2 Tag Editors
	2.1.3 Media Collection Managers
	2.1.4 Conclusion

	2.2 Choosing a Metadata Source
	2.2.1 IMDb — http://www.imdb.com/
	2.2.2 Linked Movie Database — http://linkedmdb.org/
	2.2.3 Freebase — http://www.freebase.com/

	2.3 Data Model
	2.3.1 Artwork
	2.3.2 Manilaas in Manila folder, a file folder made out of Manila paper
	2.3.3 File

	3 Implementation
	3.1 The Interface to Freebase

	4 Discussion of Results
	5 Outlook
	6 Acknowledgements

