
Virtual Wishlist

Figure 1: Welcome Page of the Virtual Wishlist

Group project carried out by

Josua Dietrich, Nils Braune and Tino Canziani

created 2011 at D-ITET, ETH Zürich

21.12.2011

Contents

1 Introduction and Background 3
1.1 Idea . 3
1.2 Related Work . 3
1.3 Tools . 3

2 Concept 5
2.1 Core functions . 5
2.2 Website Layout . 5
2.3 Sessions & Pro�les . 7

3 Implementation 8
3.1 HTML/Login/Session (Welcome.html) 8
3.2 MySQL server: creating a database 9
3.3 setupConnection.php . 11
3.4 $.ajax(), getWishlists() 12
3.5 Adding a pro�le picture . 14

4 Results and Future Steps 16
4.1 Results . 16

4.1.1 Welcome Page . 16
4.1.2 Pro�le Page . 16
4.1.3 my Wishes menu . 16
4.1.4 my Friends and Search Friends Menu 16
4.1.5 Settings menu . 17
4.1.6 Friend Page . 17
4.1.7 Terms, Privacy, About, Help Page 17
4.1.8 Process of ful�lling and getting wishes ful�lled 17
4.1.9 Security . 17

4.2 Future steps . 18

A Server/PHP functions 20

B Screenshot of the pro�le page 21

C Setting up the Virtual Wishlist step by step 22

D Endnotes 23

1

Abstract

In this group project we designed and implemented a virtual wish list as
a social media service on the web. It enables its users to maintain a personal
pro�le, create their own wish lists or opt to grant other friends their speci�c
wishes. The use case of this virtual wish list will mostly tend to birthday and
christmas events, social gatherings, leisure activities or work related events. For
instance, a couple will be able to create a wish list for their wedding, making it
accessible online to all the guests listed in their friend list. A guest may then opt
to ful�ll any of those wishes on the wish list, which will be marked thereafter
and thus making sure that no second guest will bring the same gift.

The implementation is based on the web standards HTML, JavaScript, PHP
and SQL. HTML describes the structure of the web page, JavaScript its dynamic
interaction at run time, PHP enables the �ow of information between user and
database and SQL fetches or changes the entries in the database. The program-
ming was done with an IDE named Aptana Studio and the implementation was
built upon the very common XAMPP stack.

2

Chapter 1

Introduction and Background

1.1 Idea

The general concept is simple and clear: Let people create their own wish
list on the web to share them with others. This should address two kinds of
problems: being in a situation where you receive a gift you aren't very happy
about because you didn't want it, and the situation of not being able to �gure out
or �nd a suitable gift for a person. Our project proposes a solution to circumvent
both of these embarassing situations.

It is important to note that a wish list should not necessarily have to be for
a birthday party, it should be usable for an arbitrary event, such as a picnic.
Attendees could then organize who brings what.

1.2 Related Work

Similar concepts already exist on the web, notably websites which let you
manage wedding presents, such as weddingwishlist.ie, weddingshop.com or mar-
riagegiftlist.com.

But we haven't come across a virtual wish list designed for an arbitrary kind
of event and with the possibility to set up personal pro�les. The use cases were
limited exclusively to speci�c events.

Another site o�ering a similar service is amazon.com. Yet it is bound to its
own selling platform. And there is facebook.com, as a social media service, which
yet lacks the functionalities of wish lists.

The idea of facilitating the organization of events was also grabbed up by
doodle.com, yet addressing di�erent kinds of problems, as it is a site which
allows people to show their availability for di�erent dates and times.

1.3 Tools

To manage our code, we used a CVS (Concurrent Versions System) called

SVN1

A SVN repository allows to store all code �les on an external server such that
all group members can update their local code (svn update) to the newest
version or save it back onto the �le server when �nished (svn commit). Every
change is tracked and can be reset at any time, while SVN automatically identi�es
con�icts in the code. The work was done on an IDE (Integrated Development
Environment) called

Aptana Studio 32

It is available as a standalone version as well as a eclipse plugin. The service
is built upon a server called

XAMPP3

It bundles an Apache server4 to display web pages with content, a PHP
environment5 for server side computing as well as aMySQL database6 which
stores our user data. You can run XAMPP locally for development purposes, but
for deployment, there will be a signi�cant physical distance between web server
and a user sur�ng the web with a browser.

3

http://www.weddingwishlist.ie/wwl/www/
file:weddingshop.com
http://www.marriagegiftlist.com/
http://www.marriagegiftlist.com/
http://www.amazon.com/wishlist
http://facebook.com
http://doodle.com/

Virtual Wishlist CHAPTER 1. INTRODUCTION AND BACKGROUND

The PHP functions are called upon by JavaScript through the $.ajax()
method. This method is part of a set of functions in the

jQuery Library7

which is freely available on the web and is used to simplify common tasks
in JavaScript. This library also provides other useful functionality, such as the
handling of events like mouse clicks as well as visual animation e�ects.

4

Chapter 2

Concept

The following section describes the evolution of an idea into an implementable
concept.

2.1 Core functions

The core functions of the service consist of:

Client Server (database)

Create, edit and delete pro�le Store pro�les

Create, edit and delete wish lists Store wish lists

Create, edit and delete wishes Store wishes

Add and delete friends Store user relationships

View and/or ful�ll own or friends' wishes Store user-wishes and relationships

Login and logout Start and end a session for a user

Table 2.1: Core Functions

As seen in the table 2.1 above, all actions a user proceeds requires an im-
mediate action by the server. A list of necessary functions on the server side
to handle the actions of the user can be found in Appendix A. Beside the core
functionalities, a website layout is required, as discussed in the next section.

2.2 Website Layout

The layout of the site has to follow some requirements:

� The website must present itself in a simple manner, everyone should im-
mediately be able to use it.

� Content like wishes or names should be loaded dynamically into the same
page, instead of loading the whole page time and time again.

� The service should consist of a few single webpages, rather than many
di�erent ones.

The following page will show a diagram of the website �ow 2.1. For a screen-
shot of the pro�le page, please see Appendix B.

5

Virtual Wishlist CHAPTER 2. CONCEPT

Figure 2.1: Websites Flow

6

Virtual Wishlist CHAPTER 2. CONCEPT

A short description of each page:

Welcome.html: Welcomes the user and allows registering and logging in to the
virtual wish list service

Pro�le.html: Shows the user's pro�le with his wishes, pro�le details and friends

Friend.html: Shows a friend's pro�le with all his wishes, personal information
and friends

Registered.html: After a user registered, he will be redirected here

notLoggedIn.html: If no session exists or a user logged out unexpectedly, he
will be redirected to this page

Privacy.html: Displays details on the privacy agreement (which has still to be
written)

Terms.html: Displays terms and conditions (which also have to be written yet)

Help.html: Displays help

About.html: Displays about

2.3 Sessions & Pro�les

To handle user data and address privacy concerns correctly, the data needs to
be stored and linked on a per-pro�le basis. Also, the connections to several users
at the same time need to be separated in sessions. With this, and by encrypting
every connection, user data can be protected from illegitimate manipulation.

7

Chapter 3

Implementation

This chapter will explain the programming by highlighting and showing some
code examples of some important functions. The general structure of any web
page looks the following:

HTML JavaScript PHP SQL

De�nes and Calls PHP functions Communicates Inserts data
makes visible: with AJAX and with the database from the requests
input�elds, handles clicks and loads the and stores data.
simple texts, on buttons etc. content into the
pictures etc. site

Table 3.1: Language Usage

When looking at the source code, these program �les will be su�xed .html,
.js, .php and .dml/.ddl respectively. HTML will include JavaScript functions,
which call PHP code in �les on the server, which then again connect to our
database and call SQL procedures.

The starting page is called Welcome.html. If someone tries to access other
web pages without logging in before, he will also be redirected to this page (as a
result of his missing session).

3.1 HTML/Login/Session (Welcome.html)

In our case, HTML8 merely de�nes the regions and containers where content
is placed in. The properties and attributes of those are set in CSS9 (cascading
style sheets), which we will not examine further. Following �gure shows the
HTML passage for the login boxes:

Figure 3.1: HTML De�nition loginBox

It makes appear two text input �elds in the top right corner. Line 1 de�nes a
<div>, the common container for content in the HTML markup language. Line
2 adds a form, which has three inputs assigned to it, one for the email address
(line 3), one for the password (line 5) and a last one being the log in button (line
8). The onkeypress event will call a JavaScript function, which will check if
the user has pressed the 'enter' key, causing the system to commence a login
attempt. Lines 11/12 de�ne a region in which an error message will appear if the
input is not valid. Clicking the input button will trigger the call of the login()
JavaScript function. This will validate if the user exists in the database by
calling a PHP function, again with the name login(). Futhermore, a session
is initialised, as visible below:

8

Virtual Wishlist CHAPTER 3. IMPLEMENTATION

Figure 3.2: PHP Function login()

Line 2 produces a SQL command string containing the call of a procedure
with the given email. Line 3 sends this command to the database server through
the standard function mysql_query(). The fetched data is stored in $result.
If the email does not exist or there are multiple database entries with the same
email we throw an error message (lines 4-6). Otherways we create a password
hash with the password the user typed in and the stored salt string and com-
pare the result to the stored password hash (lines 7-8). If the password hashes
match (line 9), an individual session is started for the user using the standard
command session_start() (line 10), which allocates memory for his session
and initializes it. Lines 11-30 store all the necessary data in this session and line
19 sets a hashed user ID cookie which is stored locally on the clients' browser
for identi�cation purposes. The user will now be able to access his pro�le and
use all the funtionalities with the given user ID cookie. When he decides to log
out, the cookies are set to expire and the session is closed through the standard
session_unset() method.

To track the login and logout of each user, we found a �tting set of core PHP
functions implementing user sessions10. When the user logs in and requests his
data, the information is stored into the servers' RAM in a prede�ned $_SESSION
array assigned to that user. When he logs out, his session memory is cleared.
Through the process of hashing and salt11 sensitive data such as passwords and
person IDs is protected from being compromised by external threats. The data is
transmitted over an encrypted SLL connection with a (yet) unsigned certi�cate.
Sessions expire even when the user forgets to log out after a certain time.

3.2 MySQL server: creating a database

Every database needs to be set up before use. Ours is called genie. It needs
to know what to store and how its stored elements interact with each other or
the outside world. The structure of a database is made by adding tables and
linking them with each other. These are sophisticated, two dimensional arrays

9

Virtual Wishlist CHAPTER 3. IMPLEMENTATION

which are able to track and control dependencies among each other. Each user
will have di�erent data associated to the tables named person, photo, wishlist,

wish, wishful�ller, friend and friendrequest. An example:

Figure 3.3: SQL Table friendrequest

Line 1 asserts that tables are not de�ned twice. Line 2 includes the SQL
demand to create a table. Lines 4-6 de�ne the columns of our table. Lines 5/6
will tell us which user sent a friendrequest to which other user. Lines 7-11 make
sure that the table entries are identi�ed by their FRID (�friend request ID�) and
that entries corresponding to a speci�c user (PID for �person ID�) are deleted
when the user is deleted (lines 9/11).

Figure 3.4: Database Structure

The �gure 3.4 shows the structure of our database. As you can see, our
data is stored in tables or so-called entities, every of them containing a key
and several attributes. The tables are linked amongst each other meaning that
an attribute in one table can reference a key in an other table. The attribute
genie.wish.w_fulfiller for example depends on genie.person.PID.
These links, also called foreign key constraints, are represented by the lines be-
tween the tables and show the structure among the di�erent tables. Please note
that genie.wishfulfiller is not a table, but a "view". It selectively takes
data from the table genie.person and presents an interface to that data ac-
cessible from the outside, while the data showed by genie.wishfulfiller
itself is not re-stored physically.

10

Virtual Wishlist CHAPTER 3. IMPLEMENTATION

After setting up the tables, we need procedures (SQL statements similar to
functions) to read and write on these tables. These procedures are called by
PHP functions, which connect to the database. An example:

Figure 3.5: SQL Procedure get_wishlists()

Line 1 asserts that the procedure is not de�ned twice. Line 3 includes the
SQL demand to create a procedure. We select data from the wishlist table
(line 4-6) and data from the wish table (line 7) from our user (line 8), which
is then sorted (line 9) and returned to the calling PHP function, which will
relay the data to the user. For testing purposes, we wrote code fragments which
insert example data into the database through prede�ned procedures. When
setting up a new database, we execute following code segments in the given
order: importalltables.ddl, importallmethods.dml, importAllExampleData.dml.
The database is now ready. All we have to do is to set up a connection to it.

3.3 setupConnection.php

As stated before, PHP enables the communication between the clients' system
and the server with the database. But before a connection is established through
the setupConnection.php method, a check is performed to see if the user is
still logged in by the checkCookie() function in Pro�le.js:

Figure 3.6: Javascript Function checkCookie()

Line 2 takes the content from the cookies PID. If there is no content, the
user will be redirected to the page �notLoggedIn.html� (line 4). After this short
check, the connection is established:

Figure 3.7: PHP Function connectDatabase()

Lines 1 and 2 save the username and password for the database (which in
this example are set to root and none). The command mysql_connect()
establishes the desired connection to the database server. Since we are working

11

Virtual Wishlist CHAPTER 3. IMPLEMENTATION

with XAMPP locally, the server's address is simply �localhost�. Line 8 includes
a necessary step to select the database we want (here: �genie�) since one server
can have more than one database.

3.4 $.ajax(), getWishlists()
One core functionality available to the user is looking at his wish lists. Doing

so involves the contribution of most of the processes mentioned above. The
following explanation on how a wishlist is loaded into the users Pro�le page
wraps up the code. First we click on �My Wishes� in the Pro�le page. This will
activate the following JavaScript event:

Figure 3.8: Button for 'My Wishes'

When the user clicks on �My Wishes�, which is the HTML element named
myWishes, the functions above will be called. Line 1 declares the event and
binds it to the clicking of the element myWishes. Lines 3 and 4 move a small
triangle in the left menu bar as a visual e�ect. Line 5 will then call the main
function showWishlists() seen below in Figure 3.9

Figure 3.9: showWishlists()

Before continuing, we will check if the user is still logged in (line 2). If
not, he will be directed back to the welcome page. After that, the $.ajax()
method is called. It comes from the jQuery library we included and has the job
to make an AJAX request to a PHP function and send it the proper inputs.
This routine takes the following parameters: The PHP script to be called (line
4) and what to do in case of a successful execution of the PHP script (line 5).
If the user is still logged in, we �ll the HTML container named content with
the message send by the PHP script which contains our wish lists stored in
the database, after emptying it beforehand (lines 9/10). Lines 11 addresses the
element addWishlist, which is added our table in the PHP script and allows
us to add a new wishlist (line 13) by triggering the addWishlist() function
when addWishlist is pressed. We will now go one level deeper into the code,
into the PHP.

12

Virtual Wishlist CHAPTER 3. IMPLEMENTATION

Figure 3.10: Function getWishlists()

We therefore look at the PHP code of getWishlists() as presented in
�gure 3.12. Line 2 intialises the SQL command which will be sent to the server
on line 3. The result is saved in $result. We are going to need 2 variables
for the upcoming processing: $responseText, which will store the message
going back to the Javascript �le by the echo command right at the end (line 51)
and $currentWishlist, which keeps track which wishlist we are looking at
when loading the wishes, since one user can have several wishlists. Lines 6/7
handle a empty return my the SQL server, these 12 lines of code are omitted
for this purpose and can be seen in the code. If $result is not empty we will
work through every single wishlist and read it out �rst into $wishResultRow
(while loop, line 10). For simpli�cation purpose, we will only look at the post-
ing of wishlist elements into $result, since the adding of wishes is similar.
First is checked if there is a new wishlist or not. I yes, we continue to store that
into $currentWishlist(line 11). Lines 13-21 add the inputs for adding a new
wish. After that we �rst enter the wishlist ID into our $responseText(line23),
then subsequently the title (lines 24/25), the description and creation date (lines

13

Virtual Wishlist CHAPTER 3. IMPLEMENTATION

26-29). The next elemented added is an input in the form of a picture to delete
a wishlist (omitted). This button is attibuted an onclick event with the pa-
rameter being the current wishlist. The onclick function will be trigger, as the
name suggests, when the user clicks on the picture. Line 34 would have shown
a similar procedures for an �edit� button, which lets the user edit the wishlist.
Before returning the resulting $responseText to our Javascript function, the
$currentWishlist variable is updated on line 35. Lines 36-48 add the func-
tionality to add a new wish. So to summarize, the initial action will be fetching
the data from the database, after which the data is processed and written in a
structured manner into the variable called $responseText. This variable will
be sent back to the JavaScript function (where it it referred to as msg) which will
write it into the container called content in the Pro�le page. As mentioned,
we have generated an input to delete a wishlist. The code executed when the
�delete� picture is clicked is the following:

Figure 3.11: deleteWishlist()

As you might have noticed, the structure is similar to the JavaScript func-
tion showWishlists(). But here we have another extra parameter in our
$.ajax() method: �async: false�. It will assure that no other JavaScript
function will be executed until the Wishlist is deleted. AJAX will call deleteWish-
list.php, which takes the wishlist ID wlid and sends a command to the SQL server
to delete the corresponding wishlist
("CALL delete_Wishlist(".$ _REQUEST[’wlid’].")";).

3.5 Adding a pro�le picture

Because of scope reasons the uploadNewPhoto.php �le contains a whole
html form, namely the UploadNewPhoto form (line 1-12) to search for a �le
on the user's computer, which is loaded (line 13) into an iframe. When the
Upload Photo button gets pressed, the variable $_POST is set and the �le
written into the variable $_FILES. The �gure 3.12 shows the structure of the
process to upload the photo. To keep it simple we didn't include the subfunctions,
but their name explain their use.

If the $_POST variable is set and no �lesize-error on the client side occured we
start the uploading process (line 15-16). We get the $filename and extension
$ext (line 17-19) and use our previously de�ned routine checkExtension()
to determine the validity of the extension. If it isn't valid, an error message is
returned and the uploading process ended (line 20-22). The same thing happens
with the �lesize using our prede�ned routine checkFileSize (line 24-26). We
create an internal image name using a time stamp (line 27) and a path to store
our photo in the �lesystem (line 28). We copy the �le from the variable
$_FILES to our path using the PHP internal function copy(). If the attempt

14

Virtual Wishlist CHAPTER 3. IMPLEMENTATION

Figure 3.12: Code fragments from uploadNewPhoto.php

fails, an error message is returned and the uploading process ends (line 29-31).
We ask the database for the details of the old photo (line 32, code not shown) in
order to remove the old photo from the �le system in a later step (line 40, code
not shown). We prepare the new photo details for the database and overwrite the
database-entry of the old photo (line 34-36). If the attempt fails, the new photo
gets deleted from the �lesystem, an error message is returned and the uploading
process is interrupted. A handy additional feature would be a photo crop and
resize/rescale function (to be used before putting the photo into the �lesystem),
but this has not been implemented yet.

15

Chapter 4

Results and Future Steps

4.1 Results

The following list is an overview of the implemented functionality. We con-
centrated on listing the the characteristic functionality for the Virual Wishlist
itself and as well implemented functionality that cannot be seen directly by using
the page but is running in the background as for example checking the photo
size when uploading the photo.

4.1.1 Welcome Page

� Register form

� check for empty �elds which are not allowed

� check matching of password and repeat password

� check matching of email and repeat email

� check whether the user that wants to register already exists or not

� login form

� enter key can be used in both forms as alternative to pressing the respective
button.

� check if cookie exists and redirection to Pro�le.html if it does

4.1.2 Pro�le Page

� namebar with the user's name at the top of the page

� overview with the newest wishes from friends

� overview with wishes user wants to ful�ll

� 'upload new photo' button when hovering over photo

� design: white arrow pointing on current menu item

4.1.3 my Wishes menu

� input sanitisation

� add wishlists and wishes

� edit and delete wishlists and wishes

� design: background color orange when hovering over names

� design: date, edit button and delete button have a fade-in/fade-out e�ect

4.1.4 my Friends and Search Friends Menu

� display friendlist

� display sent and recieved friendrequests

� delete friend-relation

� making, accepting and declining friendrequest

� click on names to get on other people's pro�le

16

Virtual Wishlist CHAPTER 4. RESULTS AND FUTURE STEPS

4.1.5 Settings menu

� change all user details except the email adress, as it is used as an identi�er

� change password

� empty password �elds not allowed when wanting to submit new pass-
word

� check matching of new password and repeat new password

� design: fade out e�ect for password noti�cation

� upload a photo

� check �le type

� check �le size

� unique internal name for photo

� replace old photo

� database entry for photo details

� photo stored in �le system

� delete user pro�le

4.1.6 Friend Page

� view wishes, information and friends

� click to show intention to ful�ll a wish

� undo intention to ful�ll wish

4.1.7 Terms, Privacy, About, Help Page

� Button to get back to Pro�le Page or Welcome Page

4.1.8 Process of ful�lling and getting wishes ful�lled

� user can click 'ful�ll wish' or undo it.

� a wish cannot be ful�lled by two users at the same time

� user doesn't see he gets a wish ful�lled

� user can mark his wish as ful�lled

4.1.9 Security

� auto-logout when cookie not available for any reason on every page

� auto-logout when forgetting to logout

� sanitization of Input

� hashed password with salt in database and in cookie

17

Virtual Wishlist CHAPTER 4. RESULTS AND FUTURE STEPS

4.2 Future steps

The next step now would be to go online. Nonetheless we consider it being a
good idea to start programming the Virtual Wishlist from scratch again using a
server side framework. The reason for that is to have a standardised environment
where common tasks are greatly simpli�ed.

In order to go online we intend to put emphasis on scalabilty and handling
multiple server requests, data security, user friendliness of the page and de-
sign polishment. Regarding scalability and handling multiple server requests
the database choice should be reevaluated. In contrast to a relational database
as MySQL using an object-relational database such as PostgreSQL could be the
preferred choice when it comes to a very large amount of user data and user pro-
�les. It has been found that object-relational databases are given the �rst draw
when handling millions of data points or data objects such as in GIS systems.

After going online, we proceed to gather users as a �rst task and making a
business out of Virtual Wishlist as a second one. There are various opportuni-
ties to do so, ranging from setting up a Facebook landing page, press releases,
mailings, to marketing campaigns and search engine optimisation. Having a fair
amount of users would give us the opportunity to make a business by referring to
relevant products and o�ers as soon as someone wants to ful�ll his or her friend's
wish.

18

Acknowledgements

We would like to thank the following people for their contribution to the
group project by providing conceptual advise, infrastructure and guidance.

Professor Bernhard Plattner, our supervisor, for allowing us to develop the
project under his institute for technical infromatics and communication networks
and intital advise.

Sacha Trifunovic, our assigned advisor, for his continuous guidance, construc-
tive inputs and developing a work plan.

The members of the IT-Support-Group who set up and keep running a SVN
repository to store and handle our code.

19

Appendix A

Server/PHP functions

The �le name explains its use.

AcceptFriendRequest.php GetReceivedFriendRequests.php
AddWish.php GetSentFriendRequests.php
AddWishlist.php GetSettings.php
CheckUser.php GetUser.php
DeclineFriendRequest.php GetUserlist.php
DeleteFriend.php GetWishesToFul�ll.php
DeleteFriendRequest.php GetWishlists.php
DeletePro�le.php Login.php
DeleteWish.php Logout.php
DeleteWishlist.php MakeFriendrequest.php
EditPassword NewUser.php
EditUserdata.php SetupConnection.php
EditWish.php SetWishIsFul�lled.php
EditWishlist.php SetWishNotFul�lled.php
Ful�llWish.php UndoFul�llWish.php
GetFriend.php UpdateFriend.php
GetFriendFriendlist.php UpdateSettings.php
GetFriendlist.php UpdateWishesToFul�ll.php
GetFriendPhoto.php UpdateWishlists.php
GetFriendSettings.php UploadNewPhoto.php
GetFriendWishlists.php ViewFriend.php
GetNewestWishes.php ViewFriendsFriend.php
GetPhoto.php

20

Appendix B

Screenshot of the pro�le page

Figure B.1: Pro�le Page

21

Appendix C

Setting up the Virtual Wishlist step
by step

In order to get our Virtual Wishlist running on a computer (running Windows),
the following steps need to be accomplished:

� Install XAMPP from http://xampp.com

� Copy our Code to ../xampp/htdocs/. Copy the entire folder 'Gruppenar-
beit' to the named location.

� Follow the steps in ../Gruppenarbeit/SSL/HOWTO.txt to con�gure SSL
on your server

� Start XAMPP:

� run 'setup_xampp.bat' in ../xampp. This needs to be executed only
once after having installed xampp.

� run 'xampp-control.exe' in ../xampp and press the button 'Start' next
to 'Apache' and 'MySQL'

� Set up the database:

� replace ../xampp/phpmyadmin/con�g.inc.php with
../xampp/htdocs/Gruppenarbeit/con�guration/con�g.inc.php.

� open your browser and type 'localhost' into the adress bar,

� open 'phpmyadmin' in the XAMPP menu

� import the �le 'setupDatabase.ddl' from '../xampp/htdocs/Gruppenarbeit/
My_SQL/example data & import �les' using the import tab.

� Open our Virtual Wishlist homepage by typing
'https://localhost/Gruppenarbeit/html/Welcome.html' into the browser's
adress bar.

� You can now register a new user account or sign into an existing user ac-
count using the identities provided in the table C.1 below.

Email Password

jamesbond@mi6.com james
vindiesel@triplex.com vin
johnnyenglish@topsecret.com johnny
batman@gotham.com batman
superman@metropolis.com superman
spiderman@manhattan.com spiderman
luke@xwing�ghter.com luke

Figure C.1: Prede�ned User Accounts

22

http://xampp.com
https://localhost/Gruppenarbeit/html/Welcome.html

Appendix D

Endnotes

Notes
1SVN was provided by the isg.ee.ethz
2Aptana Studio 3 was downloaded from http://aptana.com/products/studio3/download
3XAMPP was downloaded from http://xampp.com
4Apache server standard see on http://apache.org
5PHP see on http://php.net
6MySQL standard see on http://mysql.com
7The jQuery-library http://jquery.com
8For instructions and tutorials on the topic see http://www.w3schools.com/
9The Cascading Style Sheet Standard see on http://www.w3.org/Style/CSS/

10Usage of php-sessions see on http://php.net/manual/en/book.session.php
11Usage of salt see http://de.wikipedia.org/wiki/Salt_(Kryptologie)

23

http://aptana.com/products/studio3/download
http://xampp.com
http://apache.org
http://php.net
http://mysql.com
http://jquery.com
http://www.w3.org/Style/CSS/
http://php.net/manual/en/book.session.php
http://de.wikipedia.org/wiki/Salt_(Kryptologie)

	Introduction and Background
	Idea
	Related Work
	Tools

	Concept
	Core functions
	Website Layout
	Sessions & Profiles

	Implementation
	HTML/Login/Session (Welcome.html)
	MySQL server: creating a database
	setupConnection.php
	$.ajax(), getWishlists()
	Adding a profile picture

	Results and Future Steps
	Results
	Welcome Page
	Profile Page
	my Wishes menu
	my Friends and Search Friends Menu
	Settings menu
	Friend Page
	Terms, Privacy, About, Help Page
	Process of fulfilling and getting wishes fulfilled
	Security

	Future steps

	Server/PHP functions
	Screenshot of the profile page
	Setting up the Virtual Wishlist step by step
	Endnotes

