
Institut für
Technische Informatik und
Kommunikationsnetze

Lightweight Autonomic Network
Architecture

Daniel Borkmann

Master’s Thesis MA-2011-01
January 2012

Advisors, ETH Zurich: Ariane Keller, Dr. Wolfgang Mühlbauer
Supervisor, ETH Zurich: Prof. Dr. Bernhard Plattner
Supervisor, HTWK Leipzig: Prof. Dr.-Ing. Dietmar Reimann

ETH Zurich
Computer Engineering and Networks Laboratory

Communication Systems Group

Abstract

During the last decades the Internet architecture matured and gained more and
more popularity. Networking devices of all kind ranging from high-end servers
to personal computers, tablet devices, mobile phones or even embedded sensor
networks make use of it. The Internet became ubiquitous for us. Even though
we witness such a diversity of devices, the progress of having an efficient inter-
connection between all of them only advances in small steps. No matter if we
consider a server, a mobile phone or a resource-constrained temperature sensor
on an embedded device from this large spectrum, with high probability, all of
them have the same, one-size-fits-all TCP/IP protocol stack, although there are
more appropriate communication mechanisms than that.

Recent research tries to challenge this stagnation by introducing dynamic adap-
tion into computing systems. For instance, the EPiCS project aims at making
devices more self-aware, so that they can dynamically adapt to their current
needs. Imagine such a temperature sensor that only has a very minimal protocol
stack, hence it has only protocols active, it is actually using in order to save re-
sources. If such a sensor detects that it is loosing too much battery power, it could
automatically switch to a less reliable but less power-intense protocol. Therefore
it needs to dynamically adapt its communication stack during runtime. For the
EPiCS networking part, the Autonomic Network Architecture (ANA) lays the
foundation of such an architecture.

This master’s thesis is situated in the ANA context. The first ANA prototype
implementation has shown that such a dynamic adaption of the protocol stack is
possible, but it heavily suffers from performance issues. While complying with the
most basic ANA design principles, we have redesigned the architecture to a great
extend and implemented it from scratch in the Linux kernel by utilizing design
principles for efficient networking architectures. The outcome that we have called
Lightweight ANA (LANA) has a competitive packet per second performance with
the Linux networking subsystem and is about 21 times faster than the original
ANA prototype.

In this work, we have shown that it is possible to fulfill three partially conflicting
goals with LANA: i) high flexibility for network programmers, ii) re-configuration
of the network stack at runtime, and iii) high packet processing rates. With a
voice-over-Ethernet example application, we have demonstrated that it is possible
to adapt the underlying protocol stack during runtime without notable voice
interruption. Hence, we claim that with LANA we have developed the base for a
successful future Internet architecture.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Aims of this Thesis . 7
1.3 Outline . 7

2 Design Concepts of Network Architectures 9
2.1 Network Bottlenecks . 9

2.1.1 Bottlenecks on End Nodes 9
2.1.2 Bottlenecks on Intermediate Nodes 13

2.2 Fifteen Implementation Principles 15
2.2.1 Systems Principles . 16
2.2.2 Principles for Modularity with Efficiency 19
2.2.3 Principles for Speeding up Routines 20

3 Related Work 22
3.1 Linux Kernel Networking Subsystem 22

3.1.1 Packet Path in Ingress Direction 22
3.1.2 Packet Path in Egress Direction 28

3.2 FreeBSD’s Netgraph Project . 34
3.3 Click Modular Router Project . 36
3.4 x-kernel Project . 38
3.5 Autonomic Network Architecture 40

4 Architecture 45
4.1 The Big Picture . 45
4.2 Components . 48

4.2.1 Functional Blocks . 49
4.2.2 Functional Block Builder 52
4.2.3 Functional Block Notifier 53
4.2.4 Functional Block Registry 54
4.2.5 Packet Processing Engine 54
4.2.6 Virtual Link Layer . 56
4.2.7 BSD Socket Layer . 56

2

CONTENTS 3

4.2.8 User Space Configuration Interface 57
4.2.9 Controller . 57

5 Implementation 59
5.1 Basic Structure and Conventions 59
5.2 Core Module and Extensions . 61

5.2.1 Crit-Bit Extension . 61
5.2.2 Socket Buffer and IDP Extension 63
5.2.3 Virtual Link Extension . 64
5.2.4 Functional Block, Notifier, Registry and Builder Extension 67
5.2.5 Packet Processing Engine Extension 72
5.2.6 User-Interface Extension 73

5.3 User Space Configuration Tools 73
5.4 Functional Block Modules . 74

5.4.1 Ethernet, Simple . 74
5.4.2 Ethernet, Vlink-tagged . 75
5.4.3 Berkeley Packet Filter . 76
5.4.4 Tee . 76
5.4.5 Counter . 77
5.4.6 Forwarding . 77
5.4.7 PF LANA BSD Socket . 77

5.5 Example Application . 80

6 Performance Evaluation 82
6.1 Functional Verification . 82
6.2 Measurement Platform . 83
6.3 Measurement Methodology . 84
6.4 Benchmarks . 84

6.4.1 LANA versus Linux and LANA’s Scalability 84
6.4.2 LANA’s PF LANA versus Linux’s PF PACKET Socket . . 88
6.4.3 LANA versus Click Modular Router 89
6.4.4 LANA versus ANA’s Prototype 95

6.5 LANA’s Road to 1.4 Mio Packets per Second 99

7 Conclusion and Future Work 101
7.1 Conclusion . 101
7.2 Future Work . 104
7.3 Acknowledgements . 105

List of Figures 106

List of Abbreviations 108

References 111

CONTENTS 4

A Publication ’Efficient Implementation of Dynamic Protocol Stacks’
at the ANCS 2011 122

B Task Description 125

C Getting Started with LANA 129
C.1 Building Linux and LANA . 130
C.2 Remote Debugging of LANA . 131
C.3 Setup of LANA Modules . 132
C.4 Functional Block Development . 137
C.5 LANA Development with Coccinelle 138

D LANA-derived Development Utilities 141
D.1 High-Performance Zero-Copy Traffic Generator 141
D.2 Top-like Kernel Networking Statistics 144
D.3 Berkeley Packet Filter Compiler 147
D.4 Linux Kernel One-time Stacktrace Module 152

E Time Schedule 155

F Content of the Attached CD 156

G Declaration of Originality / Eidesstattliche Versicherung 157

Chapter 1

Introduction

1.1 Motivation

Today’s Internet architecture has clearly matured out of its infancy and its suc-
cess has found its way into our everyday life. Yet, most people are not aware of its
internals. However, in professional circles issues arise such as the transition from
IPv4 to IPv6 which targets to prevent the exhaustion of the IPv4 address space.
IPv6 already found its way into the Linux kernel 2.1.8 in 1996 [1]. But, interna-
tional events such as the IPv6 day reveal that IPv6 usage has only a median rate
of 1.96 Mbps for the entire Swiss national research network, for instance, an IPv6
traffic proportion of less than one percent [2]. This example demonstrates the
difficulty of deploying changes within the current Internet architecture. Hence,
this inflexibility shows a major weakness that needs to be challenged.

But instead of challenging this, most research and development rather con-
centrate on improving performance on the operating system level through the
introduction of zero-copy mechanisms [3] [4] [5], networking device driver multi-
queues [6], CPU locality of flows [7], TCP segmentation and checksum offloading
[8], or device driver polling (NAPI [9]) to reduce interrupt load. Especially after
the introduction of 10 Gigabit Ethernet or even 100 Gigabit Ethernet products,
such optimizations became more interesting for carrier-grade platforms based
on Linux. Furthermore, most research in protocols or networking applications
shifted towards upper protocol layers such as peer-to-peer overlay networks and
applications like Tor [10], Bitcoin [11] or peer-to-peer DNS [12]. Also, there are
tremendous efforts to fix security design flaws in today’s Internet architecture
such as the introduction of TCP SYN Cookies [13], DNSSEC [14] or DNScurve
[15].

Concluding, there are no radical changes in the underlying Internet architec-
ture that address its inflexibility. Only a few research projects like the x-kernel
[16], FreeBSD’s Netgraph [17] or MIT’s Click modular router [18] have tried to
introduce more flexibility. However, we argue that these projects only concen-

5

1.1 Motivation 6

trate on specific parts of the Internet architecture, but not its full framework.
What if we could have a future Internet architecture that is designed for change
on all levels?

Innovations on lower network protocol layers could be made attractive to re-
searchers and to the networking industry. More appropriate communication
mechanisms could be introduced that reside next to IP. Some of these mech-
anisms could have its application in resource-constraint devices like in sensor
networks or even in the high-performance computing area where protocol over-
head is avoided or minimised in favour to increase processing capabilities. Also,
communication mechanisms we do not yet know of could be easily included.

A first step towards this flexibility has been taken with the Autonomic Net-
work Architecture (ANA) [19]. The concepts of this dynamic architecture have
been adopted into the ongoing EPiCS research project. There, one aspect is
to develop a dynamic network architecture with high-performance capabilities.
Such capabilities will be introduced by dynamically offloading calculation inten-
sive functions to hardware threads during runtime. A further step on top of this is
to introduce self-awareness into these systems, so that based on sensor values, an
algorithm will autonomously decide which processing functions will be mapped
to hardware for improving performance. To achieve that, the software part must
provide a framework for this first. Therefore, ANA divides network functional-
ity into small, independent building blocks, also referred to as functional blocks.
Each functional block processes portions of incoming or outgoing network pack-
ets. Moreover, functional blocks can be assembled into a graph-like construct
that represents the host’s protocol stack (figure 1.1). Such binding of functional
blocks is dynamic and can even change during runtime without restarting the
networking component of the operating system. It even allows for an automatic
reconfiguration during runtime and builds the foundation for offloading blocks to
hardware. Compared with the traditional Internet architecture (figure 1.1), per-
formance through a static binding or configuration of protocol functions is being
traded for more flexibility in the protocol stack.

This thesis focuses on the networking aspect in software of such systems by
using the idea of ANA as a basis for further research. The ANA prototype heavily
suffers from performance issues. We demonstrate a networking benchmark with
64 Byte packets per second (pps) on Gigabit Ethernet where Linux achieves a
maximum of 1.385 million pps and ANA only a maximum of 64,000 pps in its
minimal configuration. Hence, the scope of this thesis will focus on a rework of the
architecture to tackle the challenge of fulfilling three partially conflicting goals:
i) high flexibility for network programmers, ii) re-configuration of the network
stack at runtime, and iii) high packet processing rates.

1.2 Aims of this Thesis 7

Figure 1.1: Basic idea of the traditional, static TCP/IP architecture compared to a
dynamic (L)ANA protocol stack

1.2 Aims of this Thesis

The aim of this thesis is to design a lightweight ANA architecture (LANA) and
implementation. The architecture has to follow basic ANA principles while the
implementation has to significantly outperform the previous prototype implemen-
tation.

The first step will be to identify the critical parts of the ANA architecture
and to combine them in a new architecture. In the second step, this architecture
will be implemented where main parts of this implementation should reside in
the Linux kernel space. In the third step, the performance will be evaluated and
compared to the original ANA prototype.

1.3 Outline

This thesis is structured in the following way: chapter 2 provides theoretical as-
pects about possible networking bottlenecks on intermediate and end nodes in
networks and describes possible solutions on how to eliminate them. Chapter 3
gives insights into the path of Linux network packets in ingress and egress direc-
tion as a basis for further discussion and points to related work that has been
conducted within this research area. In chapter 4, the architecture of LANA
is explained in detail including a discussion about the major differences to the
original ANA prototype, what possible bottlenecks have been removed and about

1.3 Outline 8

ingress and egress entrance points to the packet path of the Linux kernel. Next,
chapter 5 describes implementation details about the LANA core framework as
well as a set of implemented functional blocks. An evaluation of LANA’s per-
formance is done in chapter 6 where LANA is compared to the Linux kernel’s
networking subsystem, to the Click Modular Router and the original ANA pro-
totype. We come to a final conclusion and point to future work within the last
chapter, chapter 7.

Chapter 2

Design Concepts of Network
Architectures

With main reference to Varghese [20], we debate aspects on how efficient network
architectures should be designed. Later, design principles of this chapter are also
further discussed in design and performance evaluation chapters of LANA. Before
talking about optimizations, we discuss typical network bottlenecks for end nodes
and intermediate nodes of computer networks first.

2.1 Network Bottlenecks

Bottlenecks are phenomena where the performance or capacity of an entire sys-
tem is limited due to few single components. In computer networks, the loss of
performance is usually measured in packets per second a system can process. Ac-
cording to Varghese, network bottlenecks are subdivided into bottlenecks on end
nodes and bottlenecks on intermediate nodes in computer networks. Although
one might believe that intermediate node bottlenecks are less likely due to power-
ful backbones and core routers, recent measurement studies [21] [22] have shown
that bottlenecks on ISP or AS levels should not be underestimated1.

2.1.1 Bottlenecks on End Nodes

Classification

On networking endpoints of the Internet like personal computers, workstations
or servers of all different kinds, causes for network bottlenecks can be classified
according to Varghese into structure and scale.

1 Note that in this chapter we assume that network traffic on intermediate nodes is not being
throttled on purpose, so that the discussed bottlenecks refer to possible bottlenecks caused by
the system itself.

9

2.1 Network Bottlenecks 10

For the sake of having systems designed in a general purpose manner, protec-
tion mechanisms and software layers are added to keep up with the intention
to have a flexible software architecture. The aim is to still have maintainable
code where new components can be added without much efforts. Next to this,
different usage scenarios play an important role, thus not every user on the end
node should have the same privileges, for instance. Therefore, software is usu-
ally structured into various software architectural layers or design patterns. A
little exaggerated example about software layering is demonstrated in figure 2.1.
How the introduction of such software layers can cause performance penalties is
discussed in the examples section.

Figure 2.1: Not so serious example of software architectural layers on an end node
(from: XKCD, 676, slightly modified).

Next to structural problems there are scaling problems, for instance on web
servers. Concurrent client requests to the server can cause high communication
latency, if underlying data structures for the web server software or the operating
system were not designed for high concurrency.

Examples and their cause

Summary of discussed bottlenecks:

• Copying

• Context switching

2.1 Network Bottlenecks 11

• System calls

• Timers

• Demultiplexing

• Checksums, CRCs

• Protocol code

A few examples of end node bottlenecks and their causes are presented in this
section. One of the most expensive end node bottlenecks is copying. This is
usually done due to reasons of protection. For instance, the operating system
kernel copies data between two address spaces for security reasons [23] [24]: data
from the address space where the kernel with a high level of privileges runs is
copied to the address space where all user-level applications with low privileges
reside, since user-level applications have no direct access to kernel space mem-
ory. Copying can also occur within complex software systems, such as a network
stack. There, packet data could be copied between layers of the protocol stack
due to protection from race conditions by concurrent packet data access. Hence,
copying in general is performed because of protection or software structure. Ac-
cording to Varghese, one solution could be to copy data in hardware without
operating system intervention like in remote direct memory access (RDMA) [25],
for instance.

Another bottleneck on end nodes can be context switching. Context switch-
ing is the process of saving all current CPU registers of a running process in RAM
and restoring all CPU registers and data of another process for resuming execu-
tion from a point where it was previously interrupted. Context switching is done
on i) multitasking, thus several processes can share a CPU for their execution2,
ii) on the reception of hardware interrupts, or iii) context switching can occur
if the operating system needs to switch between user and kernel mode. Context
switching can become a bottleneck on complex scheduling situations according to
Varghese. For instance, this can be the case on server applications that spawn
new processes for each connected client [26]. There, if too many clients are con-
nected at the same time, scheduling between these processes becomes a major
issue. Event-driven servers with a fixed thread pool could resolve scheduling over-
head, for example. Applications that make use of select(2), poll(2) or even
better, the more efficient epoll(2) [27] for their opened file descriptors can re-
duce context switching, since the operating systems process scheduler only wakes
them whenever new incoming data is present.

Performing system calls can yet result in another bottleneck on end nodes.
Usually, they are performed by the user space to communicate with hardware
through the operating system kernel, for instance, for sending or receiving network
packets. Due to security reasons, user space must not have control over the

2On an Intel Core 2 Quad Q6600 Linux 3.0 workstation with approx. 190 tasks, and an
rather idle CPU, about 850 context switches occur per second (measured with ifpps, D.2).

2.1 Network Bottlenecks 12

hardware directly like the privileged operating system kernel. The only interface
the kernel therefore offers to user space applications are system calls. The main
reasons for this are to protect from malicious user space applications and also to
add a layer for access control to applications. Hence, structure can be seen as
another reason for system calls. An example for bypassing system calls is the
traffic generator that we have developed (appendix chapter D.1). Here, instead
of performing system calls for each network packet that needs to be transmitted,
a shared ring buffer between user space and kernel space is set up for handing
over packet data. A kernel thread polls status flags of each ring buffer slot, thus
it knows which packet can be processed for transmission [28]. This approach
saves system calls and CPU resources for copying data and therefore speeds up
the implemented traffic generator significantly to more than three times of the
processing capabilities of usual system call methods [29]. So, direct channels to
underlying infrastructure can reduce networking bottlenecks significantly.

Another possible system bottleneck can be the maintenance of timers.
Timers are used in the operating system for several reasons. One is to recover
from failure, for instance, with the help of watchdog timers. There, some piece
of hardware needs to notify the timer controller periodically that it is working
properly. However, when the hardware has a failure that prevents it from work-
ing correctly, the timer expires and the operating system forces the hardware to
restart, for example. Timers are also present in algorithms like the TCP state
machine. Data packets sent to a remote host need to be acknowledged by the
remote host to signal its successful data reception to the sender. However, if the
acknowledgement packet is not being received by the sender’s host, a timer on the
sender’s host will expire and trigger retransmission of specific data packets. Next
to networking algorithms, timers are also applied in several other subsystems,
like scheduling. Application of timers can become a performance bottleneck, if
they are increasingly used due to scaling issues with the number of timers in
the system. According to Varghese, timing wheel data structures [30] which are
circular buffers for start, stop or maintenance of timers, can be used for a faster
lookup to reduce this bottleneck.

The next possible network bottleneck refers to demultiplexing. Demulti-
plexing is basically the process of delivering a received network packet to the
appropriate client application. In case of a server application, it traverses the
protocol stack layers of IP, TCP or others, and queues data into the right ap-
plication socket receive queue. Which of the network protocols is being applied
is determined from the packet headers, starting with the Ethernet type field.
Traditional demultiplexing is fairly straightforward, since the lookup of the cor-
responding protocol handler can be done with an exact match of the type field,
thus hashing can be applied. In general, demultiplexing scales with the number
of network nodes. However, early demultiplexing is much more challenging, espe-
cially on high speed. It determines the path of the packet in one operation during
arrival of the packet. This means that early demultiplexing would determine that

2.1 Network Bottlenecks 13

the path of a packet is e.g., Ethernet → IP → TCP → Web. Its original idea
comes from user-level protocol implementations and network monitoring applica-
tions, where the decision whether to keep or to drop a packet should not just be
made in user space but as early as possible. Hence, features like Berkeley Packet
Filter [31] [32], a minimal assembler-like filter language that operates on network
packets (appendix section D.3), have been introduced to shift the decision to an
early point into the kernel with having less processing overhead.

Furthermore, another possible network bottleneck is calculating checksums,
since this scales with link speed, no matter if it is for validation purpose of
incoming packets or if it is for outgoing packets. Checksums in packets usually
are variants of CRC [33]. In traditional networks like the Internet, there are
commonly checksum calculations performed from the network layer down to the
link layer. However, in TCP/IP both have different algorithms applied which are
usually calculated and checked by the operating systems network stack. Since this
can lead to a significant amount of computation time on high packet load or on
packet fragmentation, today’s hardware vendors implement checksum offloading
[34] where checksums are pre-calculated by the network card’s chipset instead of
by the kernel.

Last but not least, protocol code can cause network bottlenecks on end hosts
according to Varghese. Especially TCP plays an important role in this case, be-
cause it is used by over 90 percent of the end hosts of today’s Internet traffic.
Since processing of incoming TCP packets is not complicated but long and de-
tailed, TCP would have been almost replaced with a faster variant namely XTP
[35], if Van Jacobson didn’t optimize TCP processing path by a feature called
header prediction [36]. Much of the TCP processing complexity is caused by
rather rare cases, so header prediction provides a fast-path by predicting TCP
header values that are very unlikely to change (or that contain only few important
information) based on previously incoming packets.

2.1.2 Bottlenecks on Intermediate Nodes

Classification

Unlike end nodes, network bottlenecks on intermediate nodes are of different
nature. Intermediate nodes in computer networks are, for instance, routers, gate-
ways, security appliances like firewalls, bridges or network monitors. Structure is
usually not a bottleneck on such specialized devices. Mostly, they are deployed
with a lightweight operating system that has short packet forwarding paths. Also,
in many cases, parts of that forwarding path are implemented in hardware to
achieve a better throughput. However, Varghese states two classifications for
causes of network bottlenecks on intermediate nodes, namely scale and service.

Scaling issues on intermediate nodes can be subdivided into bandwidth scaling
and population scaling. Bandwidth scaling is characterized by the steady growth

2.1 Network Bottlenecks 14

of today’s Internet traffic and by innovation on networking links that keep getting
faster and faster from 1 Gbps up to 100 Gbps for Internet backbones [37]. On
the other hand, population scaling addresses the challenge in which intermediate
nodes have to cope with the increasing number of end nodes that get connected
to the Internet, no matter if caused by the increase of company workstations or
electronic consumer devices.

In addition, intermediate nodes need to deal with service issues. The term
service is especially addressed to network guarantees regarding performance, se-
curity and reliability [38]. Here, intermediate nodes shall protect company net-
works during attacks. They shall guarantee availability on fail-over or bandwidth
guarantees for certain applications, for instance.

Examples and their cause

Summary of discussed bottlenecks:

• Exact lookups

• Prefix lookups

• Packet classification

• Switching

• Fair queueing

• Internal Bandwidth

• Measurement

• Security

Most of intermediate nodes network bottlenecks are caused by link speed scal-
ing. Such an example is the issue of exact lookups. In a simple forwarding
model, the destination address of an incoming packet is being looked up in order
to determine a router’s destination port. Once the destination has been found,
the packet is scheduled for QoS on the port of the outgoing packet queue. Here,
the destination port lookup could be a database query that is realized with (par-
allel) hashing [39]. However, other scenarios for exact lookups could apply to
firewalls, for instance. Here, certain pre-defined rules for specific IP addresses
could first be looked up and then applied.

Next to exact lookups, intermediate nodes also have to deal with prefix lookups
which are used for packet forwarding in routers. According to Varghese, in 2004,
core routers stored about 150,000 prefixes instead of billions of IP entries for
each possible Internet address. Such prefixes are usually stored in compressed
multi-bit tries such as Patricia tries [40], also known as Radix tries. Network
bottlenecks cased by prefix lookups are classified as scaling issues of link speeds
and as scaling issues of the prefix database size.

Packet classification [41] can be a network bottleneck on intermediate nodes.
Causes for this are that service differentiation needs to be done, or that issues

2.2 Fifteen Implementation Principles 15

arise due to link speed scaling problems or size scaling problems of the decision
tree. Usually, classification is done by information that is found in the network
packet. This refers to the destination address, source address, TCP or UDP
ports and other header fields such as TCP flags. It can become more complex
when deep packet inspection (DPI) is performed. Classification is applied within
forwarding functions of firewalls, QoS routing or unicast and multicast routing
mechanisms.

Further network bottlenecks are packet switching and internal bandwidth
limitations of intermediate nodes. Both refer to the hardware side. Within packet
switching, bottlenecks are caused by the optical-electronic speed gap [42] or by
head-of-line blocking [43]. The latter phenomenon is basically a blocking of a
switch output port. Since the switching fabric is busy forwarding a packet to a
specific output port, another packet from an input FIFO to the same output port
has to wait until the first one has been processed. Internal bandwidth refers to
bottlenecks cased by the limits of internal bus speeds.

Commonly, measurement is performed on intermediate nodes. On excessive
traffic rates, this can cause a bottleneck induced by link speed scaling. Reasons
for measurement are mostly in the area of optimization, for instance, in mid-
to longterm capacity planning, accounting on ISP-side for billing customers or
traffic analysis like DPI. The latter is done to identify certain types of traffic in a
network like peer-to-peer traffic, or malicious traffic such as port scans (done in
intrusion detection systems), or simply to have a general overview of the traffic
distribution.

A further bottleneck can be fair queueing [44] for reasons of QoS routing.
Causes of this bottleneck depend on the packet scheduling algorithm and mainly
refer to scaling issues of link speeds and memory.

The last network bottleneck on intermediate nodes is security. In security
the bottleneck scales with the number and intensity of attacks. Examples are
denial-of-service attacks [45].

2.2 Fifteen Implementation Principles

After having discussed possible network bottlenecks, design and implementation
principles will be presented within this section. These principles provide hints on
how to reduce system bottlenecks. They can be categorized into three kinds of
principles, namely i) system principles, ii) principles for modularity with efficiency
and iii) principles for speeding up routines. Hence, categorized principles reach
from the abstraction of subsystems and modules down to individual routines.
Principles of each category are first named and then explained in more detail.

2.2 Fifteen Implementation Principles 16

2.2.1 Systems Principles

Systems principles take advantage of the fact that the system is built out of
subsystems. By regarding subsystems system-wide rather than black boxes, per-
formance can potentially be improved.

Summary of principles:

• P1: Avoid obvious waste

• P2: Shift computation in time

– Pre-compute
– Evaluate lazy
– Share expenses

• P3: Relax system requirements

– Trade certainty for time
– Trade accuracy for time
– Shift computation in space

• P4: Leverage off system components

– Exploit locality
– Trade memory for speed
– Exploit hardware features

• P5: Add hardware

Principle P1 ’avoid obvious waste’ mainly means to reduce redundancy
in code or to quash operations that are unnecessary and degrade performance.
Optimizing compilers, for instance, search for repeated subexpressions, like i :=
5.1∗n+ 2, and j := (5.1∗n+ 2)∗4 and replace the repeated expression in j with
j := i ∗ 4, thus the value of 5.1 ∗ n + 2 is only calculated once. Another example
for networking would be to make multiple copies of network packets in cases
where it can be avoided. Each single operation like computing a statement often
seems to have no waste on the first hand, but the combination of operations like
computing the same statement twice will make it wasteful. Therefore, detecting
and optimizing such routines mostly need an inspection on a higher layer of
abstraction.

Principle P2 ’shift computation in time’ divides a system into space and
time. The term space refers to subsystems that compose the system as a whole.
Time refers to different points in time of the system’s lifetime like fabrication
time, initialization time, compile time or runtime. Three sub-principles apply in
P2, namely pre-computation, lazy evaluation and sharing of expenses.

The principle of pre-computation means that quantities are computed or allo-
cated before they are used in order to save time at the actual point of use. One

2.2 Fifteen Implementation Principles 17

such method is to use lookup tables. Here, instead of having to execute an ex-
pensive function during runtime, a mapping with pre-computed values for every
element of the function’s domain is being created at initialization time. Also, as
another example, memory could be allocated beforehand, thus during runtime,
expensive memory operations such as de-fragmentation can be avoided. In net-
working, TCP/IP headers could be precomputed under the assumption that only
few header fields change for each packet.

Lazy evaluation is a technique which is often known in combination with func-
tional programming languages like Haskell [46]. It is the process of postponing
expensive operations at critical times in hopes that the operation will not be
needed later, or a less busy time will occur for the execution of this operation. In
operating systems, lazy evaluation is used in techniques like copy-on-write [47].
Assume that processes are migrated between two virtual address spaces, hence
they must be copied from virtual address space A to virtual address space B.
A general solution would be to simply copy all pages from A to B. However, a
better solution would be to point all page table entries in B’s space to pages of
A. If a process using B’s space writes to certain entries, a copy of only these
specific pages from A are made and B’s page table is updated to point at the
newly copied pages. By this, unnecessary copies can be avoided.

The last principle belonging to P2 discusses sharing of expenses. Sharing of
expenses means taking advantage of expensive operations that are performed by
other parts of the system. According to Varghese, sharing of expenses means
also trading latency for throughput. For instance, this is done in batching where
several expensive operations can be done more efficiently than doing them sep-
arately. Besides others, this is the case in Linux NAPI [48] (section 3.1) where
network packets are first collected and then processed in the network stack instead
of processing each packet directly on arrival time.

P3 ’relax system requirements’ proposes that implementation difficulties
can sometimes be solved by relaxing or loosening specification requirements. This
means that i.e., weakening the specification of subsystem A from SA1 to SA2 at
the cost of making subsystem B obey to a stronger property SB2 compared to
the previous SB1 . This can be arranged into trade certainty for time, trade
accuracy for time and shift computation in space.

The first one, trade certainty for time, suggests using randomized strategies
in cases where deterministic ones are too slow. In networking, this principle can
be applied to measurement, in particular Netflow [49], where sampling can be
performed randomized instead of collecting all traffic data. By collecting such
samples certainty degrades, but at the same time, the process of measurement
consumes less processing time or resources.

Trade accuracy for time can, for instance, be applied to packet scheduling algo-
rithms on routers that require sorting packets by their departure deadline. Here,
the sorting overhead could be reduced during high traffic loads by approximate
sorting. This would slightly reduce the quality of the QoS algorithm, but increase

2.2 Fifteen Implementation Principles 18

processing capabilities at the same time.
Last but not least, shift computation in time means that computations are

moved from one subsystem to another. For example, this is applied in packet frag-
mentation. There, fragmentation of packets on intermediate nodes like routers is
avoided by having end systems doing fragmentation after calculating the maxi-
mum packet size a router can process.

P4 ’leverage off system components’ states that used algorithms should
be aware of their underlying hardware. Thus, hardware features can better be
exploited. Systems are usually designed top-down, but for performance-critical
components, a bottom-up approach can help to improve systems performance.
This can be done by exploiting locality, trading memory for speed or
exploiting new features, for instance.

In operating systems, locality is exploited in file systems. There, B-tree algo-
rithms [50] are mostly used since they are optimized for systems that read and
write large blocks of data.

Trading memory for speed, on the other hand, can be seen from two perspec-
tives. To retrieve the example with lookup tables, more memory is used since all
values of the functions domain need to be calculated, but with the benefit of not
needing to calculate an expensive function. On the other hand, less memory could
be used to make data structures fit into faster memory such as CPU caches. This
is done in the Lulea IP lookup algorithm [51] for storing and searching Internet
routing tables efficiently.

The last part of P4 is about exploiting new hardware features. In modern oper-
ating systems, this is done by offloading checksum calculation to the hardware, for
instance. Another lower-level example would be the exploitation of CPU-specific
features such as MMX (Multimedia Extension) registers or SSE (Streaming SIMD
Extensions) registers. Thus, copying of larger memory regions can be accelerated
by using wider CPU registers combined with hardware pre-fetching. However, as
a disadvantage, systems optimized by this principle could be less portable or less
performant on different hardware.

If everything else fails, then the brute-force principle P5 ’add hardware’ can
help. This basically means making systems faster by more modern hardware such
as faster CPUs, higher amounts of memory, faster bus speeds or faster interfaces
such as preferring network cards with PCIe instead of PCI or PCI-X. Also, P5
states to program special purpose chips with the help of design tools such as
VHDL synthesis packages in order to offload software routines to hardware to
improve performance. Of course, this can only be done with routines that are
appropriate for hardware such as encryption, pattern matching or hashing, for
instance.

2.2 Fifteen Implementation Principles 19

2.2.2 Principles for Modularity with Efficiency

Principles mentioned here suggest performance improvements while still having
complex systems built with modularity.

Summary of principles:

• P6: Create efficient specialized routines

• P7: Avoid unnecessary generality

• P8: Don’t be tied to reference implementation

• P9: Pass hints in layer interfaces

• P10: Pass hints in protocol headers

P6 ’create efficient specialized routines’ implies that sometimes the one-
size-fits-all approach of general purpose functions can lead to inefficiencies as in
Stonebraker [52]. In these cases it can pay off to create a specialized and optimized
routine which might break the general purpose manner, but with the gain of a
better performance. A networking example for this can be found in [53] where
UDP processing has been improved by introducing special purpose routines.

Principle P7 ’avoid unnecessary generality’ states that modules can be
sped up by removing rarely used features. The tendency to design abstract and
general subsystems can lead to the inclusion of unnecessary or rarely used fea-
tures. Hence, instead of applying P6 and replacing these routines, they could
also be removed entirely to gain performance. According to Varghese, this was
the case in RISC processors, for instance, where complex instructions have been
eliminated such as multiplications that required to be emulated by firmware.

Principle P8 ’don’t be tied to reference implementation’ can lead to
performance improvements, too. Specifications are mostly written for the sake
of clarity and not for describing efficient implementations. The problem with
specifications is that they tend to over-specify and their implementations try to
strictly copy this. Since implementors are free to change implementation details as
long as two implementations still have the same external behaviour, the internals
are not tied to follow the reference implementation. Hence, faster or more efficient
modules could be developed.

P9 ’pass hints in layer interfaces’ refers to passing information from a
client to a server, thus if the information is correct, the server can avoid expensive
computations. Here, in contrast to caches it is not guaranteed that the provided
information has to be correct and therefore must be checked. For instance, such
a hint can be used to supply a direct index for a processing state at the receiver.
Thus, a lookup operation can be avoided in case the data at the index is still
valid. However, incorrect hints must not corrupt the correctness of a system, but
only result in a performance degradation.

P10 ’pass hints in protocol headers’ implies a logical extension to P9.
Here, information is passed within the header of a message that is applied in

2.2 Fifteen Implementation Principles 20

distributed systems, for instance. An application example is tag switching [54].
There, packets carry additional information next to the destination address in
order to help the destination address being looked up more quickly. Tags can
be regarded as hints in this case since this information is not guaranteed to be
consistent.

2.2.3 Principles for Speeding up Routines

Next to subsystems or modules, this subsection considers individual functions or
routines by themselves and suggests possible performance improvements.

Summary of principles:

• P11: Optimize the expected case

– Use caches

• P12: Add or exploit state for speed

– Compute incrementally

• P13: Optimize degrees of freedom

• P14: Use bucket sorting, bitmaps or similar for finite universes

• P15: Create efficient data structures by algorithmic techniques

Principle P11 ’optimize the expected case’ implies that systems perfor-
mance can be improved by optimizing the expected system behaviour. Behaviours
of systems usually fall into a smaller subset, called the expected case. This means
that systems should operate mostly in a fault and exception free way. Often,
heuristics can be applied to guess such a case as in a CPU’s branch prediction
unit, for instance. There, the aim is to improve the flow in the CPU’s instruc-
tion pipeline by heuristic-based guessing which path of an conditional construct
will be taken next. To further support branch prediction, likely and unlikely

macros [55] in source code can provide hints for modern compilers such as GCC
[56] about the potential path of the branch. Another example refers to caches
that hold i.e., pages that are expected to be accessed very often. By using a
clever cache eviction strategy, it is aimed to minimize expensive fetches of pages
from slower memory like hard-disks.

P12 ’add or exploit state for speed’ suggests considering additional or
redundant state for expensive operations in order to speedup execution. For
example, it can sometimes pay off to have an additional index for entities via
hash tables or balanced trees for improving lookup times. Costs for this would
be the use of more memory and the maintenance of additional data structures.
However, additional state can sometimes also be avoided by exploiting existing

2.2 Fifteen Implementation Principles 21

states like the incremental computation of checksums when only a few fields
in the packet change.

Another principle in speeding up routines refers to P13 ’optimize degrees
of freedom’. In this case, it helps to be aware of variables that are under one’s
control and evaluation criteria that is used to determine a better performance.
Compilers, for instance, are aware of a specific CPU architecture with their in-
structions, registers and others. Thus, they can apply techniques such as coloring
algorithms [57] for register assignment in order to minimize register spills.

If a system deals with small finite universes such as a moderately sized integer
space, P14 ’use bucket sorting, bitmaps or similar for finite universes’
can help improving performance. There, often more efficient techniques than
general purpose search algorithms can be used. Examples are bucket sorting [58],
array lookups or bitmaps [59]. The latter is used in memory management, too,
and known under the term bitmap allocator. There, it is used to keep track of
unused memory locations for book-keeping purpose [60]. Another example refers
to the virtual-to-physical address space translation of pages. In the translation
process the CPU’s translation look-aside buffer (TLB) is consulted first [61]. It
is a small cache with a fixed number of entries that maps virtual addresses to
physical ones. However, if the lookup in the TLB fails, the processor then refers
to the page table, where a prefix of the address that is looked up is used to index
the table directly. With that said, both examples avoid the use of hash tables,
binary search or other general purpose algorithms.

The use of ’efficient data structure and algorithmic techniques’ as in
P15 can also improve performance of systems. However, in many cases, principles
P1 to P14 mostly apply before any algorithmic issue becomes a major bottleneck
under the assumption that the system was designed carefully. Nevertheless, algo-
rithmic techniques as described in [62], [63] can range from standard structures
to techniques as divide-and-conquer or randomized algorithms.

Chapter 3

Related Work

Research projects that are related to this work are shortly presented within this
chapter. At first, introductory information about the processing path of the Linux
kernel networking subsystem is provided, since LANA is implemented in kernel
space. Understanding this packet processing path is essential to find suitable
ingress and egress points for the LANA framework. Then, related projects to
LANA are discussed. This concerns FreeBSD’s Netgraph, MIT’s Click modular
router project, the x-kernel and the prototype of the ANA project.

3.1 Linux Kernel Networking Subsystem

The journey of a network packet from the device driver layer up to the dispatch of
packets to the socket receive handlers is discussed within this section for both the
ingress and egress direction of the network stack. Throughout this subsection,
our descriptions are referenced partly to Love [64], Benvenuti [65] and the Linux
kernel source code [66] itself. However, only lower-level kernel parts are covered
without going into detail of Linux protocol implementations or routing, which
could be handled differently in LANA. Since recent literature does not cover the
packet paths in depth, we have used the kernel’s source code and written a small
kernel module that is able to generate stack traces during runtime (appendix D.4)
to gain a detailed knowledge.

3.1.1 Packet Path in Ingress Direction

If a network packet is received on the hardware layer, for instance on a PCI net-
work interface card, a PCI MSI-X interrupt request is sent by the hardware to
the CPU to signal the availability of data. The CPU then executes the kernel’s
do_IRQ function and invokes the registered interrupt handler of the network de-
vice driver (figure 3.1). The context of the function call to the interrupt handler
is the top half context where further incoming interrupts are disabled, thus the

22

3.1 Linux Kernel Networking Subsystem 23

DMA Receive
Ring Buffer

do_IRQ

irq_enter

irq_exit

corkscrew_interrupt

1.

2.
3.

boomerang_rx

Device driver 3c59x

Network card (hardware)
PCI MSI-X IRQ

Signal

sk_buff

netif_rx

1.

2.

netpoll framework

enqueue_backlog
CPU sk_buff

backlog queue

Hardware
Interrupt
Context /
Top Half

__napi_schedule

If NAPI would
have been
implemented

____napi_schedule

__raise_softirq_irqoff(NET_RX_SOFTIRQ)

Figure 3.1: Overview of the packet ingress path within hardware interrupt context

handler cannot be interrupted by other sources during execution. Such interrupt
sections are marked within the kernel with functions irq_enter and irq_exit.
This, on the other hand, means that the interrupt handler must return as quickly
as possible to allow continuing normal operation of the kernel. However, within
the NICs interrupt handler, usual operations are performed as the following:

• Copy of the frame into a sk_buff data structure (the Linux representation
of network buffers, later also referred to as socket buffer or skb). However,
if direct memory access (DMA) is used by the hardware, then only the
sk_buff data pointer is set (figure 3.2)

• Initialization of sk_buff parameters like skb->protocol that are used for
upper layers in the stack

• Update of private device parameters like per-CPU network statistic counters

• Signalization to the kernel of a new frame by scheduling a NET_RX_SOFTIRQ

software interrupt for execution (figure 3.1)

Besides packet reception, interrupts from the network card can be signaled for
different reasons. Thus, the kernel is given a number along with the interrupt
notification for the interrupt service routine of the device driver.

Regarding DMA, most of today’s network device drivers usually have at least
one internal receive and at least one internal transmit ring buffer for DMA mem-
ory. As shown in figure 3.2, a typical network device driver maps the sk_buff

3.1 Linux Kernel Networking Subsystem 24

data structure into its DMA slot of the receive ring buffer, except for small pack-
ets, they are directly copied into non-DMA memory by the driver as in figure
3.2. The boomerang_rx function of the 3c59x/3c515 network device driver is
only one example that performs such operations on DMA memory. This function
is called directly from the interrupt service routine of the 3c59x/3c515 driver,
namely corkscrew_interrupt.

stat ic int boomerang rx (struct ne t dev i c e ∗dev)
{

. . .
while ((r x s t a t u s = l e32 to cpu (vp−>r x r i n g [entry] . s t a t u s)) &

RxDComplete) {
. . .

struct s k b u f f ∗ skb ;
dma addr t dma = le32 to cpu (vp−>r x r i n g [entry] . addr) ;

. . .
/∗ Check i f the packe t i s long enough to j u s t accep t wi thout

copying to a proper l y s i z e d s k b u f f . ∗/
i f (pkt l en < rx copybreak &&

(skb = d e v a l l o c s k b (pkt l en + 2)) != NULL) {
. . .

/∗ Small packe t s are copied d i r e c t l y in t o the skb ∗/
. . .

} else {
/∗ Pass up the s k b u f f a l r eady on the Rx r ing . ∗/
skb = vp−>r x s k b u f f [entry] ;
vp−>r x s k b u f f [entry] = NULL;
skb put (skb , pkt l en) ;
pc i unmap s ing le (VORTEX PCI(vp) , dma, PKT BUF SZ,

PCI DMA FROMDEVICE) ;
vp−>rx nocopy++;

}
skb−>pro to co l = e th type t r an s (skb , dev) ;

. . .
n e t i f r x (skb) ;
dev−>s t a t s . rx packe t s++;

. . .
}

. . .
}

Figure 3.2: Device drivers receive ring with DMA memory (3c59x.c)

However, to notify the kernel about the reception of a new frame, most older
network device drivers like the 3c59x/3c515 call directly netif_rx within their
interrupt service routine, if its receive ring is populated with enough Ethernet
frames (figure 3.2). Later versions apply a more performant technique, namely
Linux NAPI (New API) that was implemented after the findings of Salim et al.

3.1 Linux Kernel Networking Subsystem 25

[48].
The netif_rx function posts the socket buffer to the network code and acts as

the entrance point into the Linux network stack. When the socket buffer structure
has reached this point, then it has left the device driver layer. netif_rx queues
the buffer for upper level processing, which, in most cases, is protocol level code
(figure 3.1). Besides passing the buffer to netpoll, a kernel space framework for
implementing UDP clients and servers (like the Linux kernel source level debugger
over Ethernet kgdboe), it is being queued in one of the per-CPU backlog queues
for later processing in software interrupt mode. Either the socket buffer is being
enqueued to the current CPU’s backlog queue or, if enabled, a technique called
receive packet steering (RPS) [7] is applied which is used to distribute the load
of ingress packet processing across multiple CPUs1. There, the CPU’s backlog

queue is selected by a 4-tuple hash value (i.e. IP + TCP, IP + UDP) that is
determined by the network packets header data. Nevertheless, in each case all
socket buffers are queued up and the interrupt handler returns.

NAPI, on the other hand, is a modification to the device driver packet pro-
cessing framework, which is designed to improve the performance of high-speed
networking through [9]:

• Interrupt mitigation: High-speed networking can create thousands of inter-
rupts per second, all of which tell the system something it already knew: it
has lots of packets to process. NAPI allows drivers to run with some inter-
rupts disabled during times of high traffic with a corresponding decrease in
system load.

• Packet throttling: When the system is overwhelmed and must drop packets,
it is better if those packets are disposed of before much effort goes into
processing them. NAPI-compliant drivers can often cause packets to be
dropped in the network adaptor itself, before the kernel sees them at all.

This technique is usually applied in modern Gigabit-Ethernet or 10 Gigabit Eth-
ernet device drivers like Intel’s e1000/e1000e network driver that is capable of
enabling and disabling chip interrupts from software side. The NAPI framework
in Linux consists of kernel threads that periodically poll the device driver for
new packets done by net_rx_action (figure 3.3). The device driver’s interrupt
handler, on the other hand, arranges this polling through the __napi_schedule

function (figure 3.1). In any of these cases, netif_rx is not being called anymore.
Once the NAPI thread decides to poll the device driver or, in other words, to
call the device driver’s registered poll routines (figure 3.3), all previously stored
incoming frames are processed similarly as the interrupt handler did within non-
NAPI device drivers [9]. Also, within the poll handler, netif_rx is not being

1The Linux kernel in general refers to the term ’CPU’ in the meaning of CPU core, thus for
instance one Intel Core 2 Quad Q6600 processor has 4 cores and therefore 4 ’CPUs’ repre-
sented in the kernel. On the other hand, two single core AMD Opteron 250 processors that are
present on a system have 2 ’CPUs’ in the kernel.

3.1 Linux Kernel Networking Subsystem 26

called, instead, netif_receive_skb is invoked with the socket buffer as parame-
ter (figure 3.3) whose implementation looks similar to netif_rx on the first hand.
However, the main difference is that the calling context is the software interrupt
context instead of the hardware interrupt context.

Software
Interrupt
Context /
Bottom
Half

do_softirq

__do_softirq

invoke_softirq

irq_exit

wakeup_softirqd

Kernel Process
Scheduler

Depending on
Kernel setup

net_rx_action

NET_RX_SOFTIRQ

Device drivers
NAPI poll handler

Assuming NAPI is
implemented in the driver

DMA Receive
Ring Buffer

drivers_napi_rx_function

Network card (hardware)

sk_buff1.

netif_receive_skb

2.Forall packets

enqueue_backlog

CPU sk_buff
backlog queue;
if wrong receive
packet steering

CPU

__netif_receive_skb

Assuming the packet came via
netif_rx or receive packet steering
was triggered

Forall registered
NAPI functions

process_backlog

netpoll framework

deliver_skb

IPv4, IPv6, ...
protocol handler
(entrance to the
protocol stack)

VLAN processing

rx_handler

Bridging

ksoftirqd

CPU-local
softirq thread

Figure 3.3: Overview of the packet ingress path within software interrupt context

This means that after irq_exit was called, the kernel process scheduler sched-
ules the do_softirq (figure 3.3) function with the net_rx_action function that
was registered for NET_RX_SOFTIRQ. Within this context, the device driver’s bot-
tom half handler (here, the poll routine for NAPI) does all the time-consuming
work that was avoided within the top half interrupt handler, because in this
case the kernels process scheduler or another interrupt may suspend the bottom
half handler during its work. However, the do_softirq function is part of the
ksoftirq daemon which is a per-CPU kernel thread that processes NAPI rou-
tines, the CPUs backlog queue, timer tasks and other code that can be triggered
by software interrupts2.

2Statistics for ksoftirq daemons execution reasons like NET_RX_SOFTIRQ or
NET_TX_SOFTIRQ are available in the procfs file /proc/softirqs.

3.1 Linux Kernel Networking Subsystem 27

Now, within software interrupt context, netif_receive_skb can either apply
receive packet steering and queue the packet to a different CPU’s backlog queue
than its own like in netif_rx or, if unnecessary, the __netif_receive_skb func-
tion is called (figure 3.3).

In both cases, netif_rx and receive packet steering, enqueued packets of the
backlog queue of a CPU are dequeued via the process_backlog function that
is called from net_rx_action, too.

This function also internally calls __netif_receive_skb for further processing.
Hence, the CPUs backlog queue can also be seen as a transition point from
hardware to software interrupt context.

The main focus is now within __netif_receive_skb, where both, the new and
the old driver approach, join their paths. Within this function, the socket buffer
can either be pulled from the netpoll mechanism in case the packet came here
through NAPI, or otherwise possible VLAN tags are handled and the packet is
handed over via deliver_skb to upper protocol implementations like IPv4 or
IPv6. However, if a special receive handler (rx_handler) has been registered
by a kernel module to the networking device, the kernel bypasses the delivery
to the socket protocols and hands the packet to the rx_handler for processing
instead. This is the case in Linux network bridges [67], for instance, that connect
two Ethernet segments together in a protocol-independent way. There, packets
are forwarded based on Ethernet addresses and do not need to walk through the
upper protocol stack.

In deliver_skb (figure 3.3), on the other hand, a packet handler is called that
matches the correct Ethernet type field of the frame which was set within the
driver’s interrupt handler as in figure 3.2 (eth_type_trans function). This can
be a value of ETH_P_IP or 0x0800 for IPv4 packets, thus the ip_rcv protocol
handler will be called (figure 3.4) from deliver_skb.

stat ic struct packet type ip packe t type = {
. type = cpu to be16 (ETH P IP) ,
. func = ip rcv ,

. . .
}

Figure 3.4: Packet type for IPv4 packets seen from the kernel structure (af inet.c)

The upper protocol levels will not be in focus of this section, since the descrip-
tion of their complexity would go beyond this work. Basically, protocol functions
process their part of the network packet according to the given protocol identifier
and call other, higher-level protocol handler such as for UDP or TCP. These pro-
tocol handler also have NF_HOOKs included, which are callbacks to the netfilter

framework of Linux. Thus, packets can be dropped according to the given firewall
rules that have been passed to the iptables front-end from the user space.

3.1 Linux Kernel Networking Subsystem 28

Most likely, the packet will end up in a socket receive queue from the UDP or
TCP handler for instance. Thus, user space system calls to read(2), recvfrom(2),
recvmsg(2) and others can then copy the kernel space socket buffer into the pro-
vided user space memory buffer. It is also noteworthy, that socket buffers can be
queued in one of the protocol implementations before queueing into the socket
receive queue. By that, the function can return earlier within the software in-
terrupt context. Processing of such a queued socket buffer will then continue in
socket context that is invoked, if an application from the user space performs
system calls on that socket. Further details about the socket protocol code can
be read in literature [65], [68] and from the Linux source code itself.

3.1.2 Packet Path in Egress Direction

Figure 3.5: Overview of the packet egress path within system call context

The opposite direction, starting from the user space, is quite similar on the
first hand. Data that will be transmitted is copied from the user space address

3.1 Linux Kernel Networking Subsystem 29

space to the kernel space via memcpy_fromiovec into a socket buffer structure,
then traverses the protocol layers downwards, again, combined with NF_HOOKs
from netfilter. At the exit point of the protocol handling functions such as of
TCP, UDP or IP, the function dev_queue_xmit is being called (figure 3.5).
dev_queue_xmit is responsible for queueing a socket buffer for transmission

to a networking device. At this point, the packet leaves the protocol layers and
enters the traffic management section of the Linux networking stack which, by
the way, does not exist on the receive side.

As a side note, dev_queue_xmit can also be called within interrupt mode, for
instance, if the kernel handles ARP packets and other protocols that do not leave
the kernel space, or when bridging is done.

Typically, elements and methods of such traffic management are [69]:

• Shaping: shaping is the mechanism by which packets are delayed before
transmission in an output queue to meet a desired output rate. This is one
of the most common desires of users seeking bandwidth control solutions.
The act of delaying a packet as part of a traffic control solution makes
every shaping mechanism into a non-work-conserving mechanism, meaning
roughly: ”Work is required in order to delay packets.” However, shapers
attempt to limit or ration traffic to meet but not exceed a configured rate.

• Scheduling: scheduling is the mechanism by which packets are arranged
or rearranged between input and output of a particular queue. The over-
whelmingly most common scheduler is the FIFO scheduler. From a larger
perspective, any set of traffic control mechanisms on an output queue can
be regarded as a scheduler because packets are arranged for output.

• Classifying: classifying is the mechanism by which packets are separated for
different treatment, possibly different output queues. During the process
of accepting, routing and transmitting a packet, a networking device can
classify the packet in a number of different ways. Classification can include
marking the packet which usually happens on the boundary of a network
under a single administrative control or classification can occur on each hop
individually.

• Policing: policing, as an element of traffic control, is simply a mechanism
by which traffic can be limited. Policing is most frequently used on the
network border to ensure that a peer is not consuming more than its allo-
cated bandwidth. A policer will accept traffic to a certain rate, and then
perform an action on traffic exceeding this rate. A rather harsh solution is
to drop the traffic, although the traffic could be reclassified instead of being
dropped.

• Dropping: dropping a packet is a mechanism by which a packet is simply
discarded.

• Marking: Marking is a mechanism by which the packet is altered. For
instance, traffic control marking mechanisms install a DSCP (Differentiated

3.1 Linux Kernel Networking Subsystem 30

Services Codepoint) on the packet itself, which is then used and respected
by other routers inside an administrative domain (usually for DiffServ [70]).

Depending on the settings by the user, different traffic management mecha-
nisms can be applied: random early detection queue (RED [71]), hierarchical
token bucket (HTB [72]), stochastic fairness queueing (SFQ [73]) and many oth-
ers. More information about the details of such disciplines can be read in [20]
or [69]. The most important kernel data structure where traffic management
mechanisms are implemented is called Qdisc.

All of these methods are controlled by the user space tool tc(8) which is
part of Linux iproute2 suite. The control commands are sent via the Netlink
communication mechanism from user space to the kernel’s traffic management
framework. The usual policy that is applied by default is a simple fifo queue
called pfifo with a queue length of 1000 slots times the MTU of the device in
Byte. The 1000 slots is usually the default length, whose value can be obtained
from user space with the ifconfig command (see figure 3.6). There, the value
is stated in txqueuelen.

eth10 Link encap : Ethernet HWaddr f0 : bc : ca : 3 8 : 6 5 : 1 f
. . .

TX packets :39805 e r r o r s : 0 dropped : 0 overruns : 0 c a r r i e r : 0
c o l l i s i o n s : 0 txqueue len :1000

RX bytes :92643642 (9 2 . 6 MB) TX bytes :6941162 (6 . 9 MB)
In t e r rup t : 20 Memory : e3200000−e3220000

Figure 3.6: ifconfig output of the networking device eth10

Nevertheless, socket buffer queues that are used in the traffic management layer
are represented by double linked lists. Thus in every case, socket buffer structures
are passed by reference and not by copy.

Special cases where a networking device has no queue at all, thus traffic man-
agement is being bypassed, are loopback devices, VLAN devices and tunnels,
for instance. Hence, the packet directly enters the next stage by calling the
dev_hard_start_xmit function where it leaves the Linux networking subsystem
and is being passed to the device driver layer. However, since these are virtual
networking devices, at some point in time they need to call the dev_queue_xmit

function for their non-virtual carrier networking device. Hence, the traffic man-
agement procedure is being applied afterwards (figure 3.5).

In any non-virtual device case, the socket buffer is enqueued to the networking
device transmit queue via q->enqueue in __dev_xmit_skb. __dev_xmit_skb also
triggers the current Qdisc of the networking device to run by calling __qdisc_run

(figure 3.5 and 3.7), which invokes the qdisc_restart function. If a certain quota
of packets is reached or the CPU is needed by another process, the processing of
socket buffers of this Qdisc is being postponed by __netif_schedule that raises

3.1 Linux Kernel Networking Subsystem 31

Figure 3.7: Rough summary of the packet egress path within software interrupt
context

a software interrupt for NET_TX_SOFTIRQ, the opposite of NET_RX_SOFTIRQ from
the previous section. Hence, all the further transmit processing is transfered to
the ksoftirq daemon in software interrupt context (figure 3.7).

Within the raised NET_TX_SOFTIRQ, the ksoftirq daemon runs the net_tx_action
function which internally calls __qdisc_run, too (figure 3.7). Hence, qdisc_restart
is invoked at this point in time, too, and if the CPU is needed again or a quota
has been reached, it registers to the ksoftirq for re-scheduling.

This means that both paths continue its actual processing in the qdisc_restart
function. Within this function, a socket buffer is being dequeued from the
Qdisc and passed to sch_direct_xmit, which locks the transmit queue and
passes the socket buffer to the function dev_hard_start_xmit. As mentioned,
dev_hard_start_xmit was called earlier in the fast-path, if the networking de-

3.1 Linux Kernel Networking Subsystem 32

vice does not have a transmit queue. However, now it processes the socket buffer
for the physical carrier device.

The dev_hard_start_xmit function prepares the last steps the networking
subsystem needs to perform before the socket buffer is finally handed over to the
device driver. Hence, dev_hard_start_xmit adds VLAN tags and linearizes the
socket buffer’s underlying data memory (figure 3.7). This is done when the socket
buffer’s memory is fragmented and the device does not support fragmentation or
when the socket buffers memory is fragmented and some fragments are within
the high-memory area where the device cannot perform DMA operations. In
both cases, the socket buffer is reallocated in non-fragmented and DMA-capable
memory. Also, if checksumming of upper layer protocols like UDP or TCP
cannot be offloaded to the hardware of the networking device, it is performed
within dev_hard_start_xmit. Finally, the packet is handed over to the device
driver by calling the ndo_start_xmit function (figure 3.7). Similar to the ingress
path, the 3c59x/3c515 driver implementation is used as an example. This time,
relevant parts of the 3c59x/3c515 implementation of ndo_start_xmit, namely
boomerang_start_xmit is discussed.

Within boomerang_start_xmit (figure 3.8), the next transmit ring slot is cal-
culated first and the current address of the socket buffer is set to this ring slot.
Status flags are determined. Thus, the hardware knows if checksumming still
needs to be done, for instance. With such status flags the binary or is calculated
on the skb->len field, since the upper Bits of the 32 Bit are unused. Further-
more, if the socket buffer memory is linear, the DMA address is being put into
the address field of the current transmit ring slot and a status flag is set to mark
this single memory fragment as the last one of this socket buffer. CPU interrupts
are turned off and the address of the current transmit ring slot is written to the
hardware. Thus, it can process initialized fields such as the status register and
the address of the current entry. Afterwards, CPU interrupts are enabled and
the transmit function returns. The frame is now sent out by the hardware.

3.1 Linux Kernel Networking Subsystem 33

stat ic netdev tx t
boomerang start xmit (struct s k b u f f ∗skb , struct ne t dev i c e ∗dev)
{

. . .
/∗ Ca l cu l a t e the next Tx d e s c r i p t o r entry . ∗/
int entry = vp−>cur tx % TX RING SIZE ;

. . .
vp−>t x s k b u f f [entry] = skb ;

. . .
/∗ Set r e g i s t e r f l a g s f o r checksumming , i f supported by hardware ∗/

. . .
i f (! s k b s h i n f o (skb)−>n r f r a g s) {

vp−>t x r i n g [entry] . f r a g [0] . addr =
cpu to l e32 (pc i map s ing l e (VORTEX PCI(vp) , skb−>data ,

skb−>len , PCI DMA TODEVICE)) ;
vp−>t x r i n g [entry] . f r a g [0] . l ength = cpu to l e32 (skb−>l en |

LAST FRAG) ;
} else {

. . .
}

. . .
s p i n l o c k i r q s a v e (&vp−>lock , f l a g s) ;
/∗ Wait f o r the s t a l l to complete . ∗/
i s su e and wa i t (dev , DownStall) ;

. . .
i o w r i t e 3 2 (vp−>tx ring dma + entry ∗ s izeof (struct boom tx desc) ,

ioaddr + DownListPtr) ;
vp−>queued packet++;

. . .
i o w r i t e 1 6 (DownUnstall , ioaddr + EL3 CMD) ;
s p i n u n l o c k i r q r e s t o r e (&vp−>lock , f l a g s) ;
return NETDEV TX OK;

}

Figure 3.8: A networking device drivers ndo_start_xmit implementation (3c59x.c)

3.2 FreeBSD’s Netgraph Project 34

3.2 FreeBSD’s Netgraph Project

A project related to (L)ANA is Netgraph [74], which is part of the FreeBSD oper-
ating system kernel. Netgraph is a graph-based kernel networking subsystem and
was originally developed with the aim to provide uniform modules for different
underlying transmission protocols below the IP layer. The first implementation
prototype was targeted for router products that need to deal with bit-synchronous
serial WAN connections, i.e. dedicated high speed lines that run up to T1 speeds,
where IP packets are transmitted via HDLC (ISO13239), Cisco HDLC3, frame
relay4, Point-to-Point Protocol (PPP) over HDLC (RFC1662) or PPP over frame
relay (RFC1973), for instance [17].

FreeBSD’s answer of implementing such scenarios was a system that divides
protocol functionality into a single module called node with the possibility to
combine these nodes in a graph-like manner. Such a combination forms the
building blocks of the network stack up to the IP layer. Hence, if a frame has
reached the IP layer, traditional, static binded protocol functions are applied.

A connection between two nodes in Netgraph is called an edge in the node-
graph. Each end-point of the edge is called a hook. Thus, nodes can have multiple
hooks to other nodes (Figure 3.9).

Figure 3.9: Netgraph nodes connected via hooks [17].

The data flow on a pair of connected hooks is bidirectionally between nodes.
A node may have as many hooks as it needs, and may assign whatever mean-
ing it wants to a hook [74]. Furthermore, there are two data types that can be
passed between nodes, in particular data messages and control messages. How-
ever, all exchanged messages are mbufs which are network buffer representations
in FreeBSD. There are furthermore two possible data paths: upstream and down-
stream.

In Netgraph each node has a type, which is represented as a unique ASCII
name. Compared to object-oriented languages, Netgraph types refer to classes
and Netgraph nodes to specific instances of their respective class. The type

3Cisco HDLC is an extension to HDLC for multi-protocol support, thus Cisco HDLC frames
make use of an alternative framing structure to the standard ISO HDLC.

4Industry-standard, switched data link layer protocol that handles multiple virtual circuits
using HDLC encapsulation between connected devices, more information: http://docwiki.

cisco.com/wiki/Frame_Relay (Aug 2011)

http://docwiki.cisco.com/wiki/Frame_Relay
http://docwiki.cisco.com/wiki/Frame_Relay

3.2 FreeBSD’s Netgraph Project 35

implies what the node does and how it may be connected to other nodes [74].
The type name is mainly used for reference from the user space to create instances
of a loaded Netgraph module.

Next to type, each hook and node also has a name assignment in ASCII form
like in figure 3.9. Both names are used in Netgraph’s addressing scheme for
control messages. Thus, control messages can send configuration information to
arbitrary other Netgraph nodes within the local graph of a host. However, hook,
node and type names must not contain the special characters [:.].

In Netgraph, there exists a relative and an absolute addressing scheme for
nodes. If, for instance, node1 wants to send a control message to node2, it can
use its absolute address ’node1’ followed by a : (colon character) and then the
destination. Next to the absolute address, the . (dot character) can also be used
locally on the source node instead of its name. Relative addresses can be used to
describe the destination node via hooks. Hence, if node1 wants to send a message
to node2, it uses the address node1:hook1a or simply .:hook1a [17].

Once a Netgraph node has been created, its lifetime lasts until all hooks have
been removed. Thus, the node is not part of the graph anymore. It is automat-
ically removed from the system, except the node is directly bound to a certain
hardware. If this is the case, the node stays permanently in the kernel.

Netgraph is configured via user space by the ngctl tool. The most important
commands of ngctl are [17]:

• connect: Connects a pair of hooks to join two nodes

• list: Lists all nodes in the system

• mkpeer: Creates and connect a new node to an existing node

• msg: Sends an ASCII formatted message to a node

• name: Assigns a name to a node

• rmhook: Disconnects two hooks that are joined together

• show: Shows information about a node

• shutdown: Removes/resets a node, breaking all connections

• status: Gets human readable status from a node

• types: Shows all currently installed node types

Nowadays, Netgraph has been extended with a larger set of functionality rang-
ing from nodes, which handle ATM, Bluetooth, NAT, Netflow, up to VLAN.
However, the source code [75] shows that network packets are not always passed
directly by reference between nodes. The usual case is that if node A wishes to
send an mbuf to the neighboring node B, then it calls B’s receive handler via the
generic Netgraph data delivery method. Nevertheless, each Netgraph node also
has an input queue, where incoming data to this node is distinguished to be either
a writer or a reader of the internal node state. Therefore, the node implements a
reader/writer semantic. Thus, if there is a writer in the node, all other requests

3.3 Click Modular Router Project 36

are queued, and while there are readers, a writer, and any following packets are
queued [74]. In case there is no reason to queue data, the input method is called
directly. If mbufs need to be queued, then they are processed in a later point
of time either by a special Netgraph thread that is activated when queued items
are present or by the calling thread itself. Next to this, mbufs are automatically
queued as soon as a too high stack usage of the current thread is detected with
the help of empirical stack usage thresholds. This is necessary to prevent the
kernel from running into a stack overflow, since the node receive functions are
called successively without returning between two calls.

The main difference from Netgraph to (L)ANA is, that Netgraph was intended
to combine various underlying carrier protocols up to IP in an easy manner while
still relying on today’s Internet architecture. (L)ANA on the other hand follows
a clean-slate approach and does not necessarily intend to support or reimplement
the traditional Internet architecture. Thus, it rather provides a framework where
functional blocks on all protocol layers can be developed and researched.

3.3 Click Modular Router Project

The Click Modular Router is a software developed by the MIT for creating con-
figurable and flexible software routers [18]. Their main motivation for Click is
that most routers have inflexible designs and only few configuration possibilities.
Thus, network administrators might be able to turn router functions on or off,
but they cannot easily specify or identify the interactions of different functions
[18]. Also, router extensions require access to software interfaces in the router’s
forwarding path, but these often do not exist at all, do not exist at the right
point, or are not published [18].

Click’s router functionality is implemented into so-called elements (figure 3.10)
which perform simple operations on network packets like decrementing the pack-
ets TTL field, doing packet classification or queueing. Their main purpose is
that non-complex elements can be connected together to a graph in order to
build rather complex routing functionality. Incoming network packets will then
traverse a path in the graph and each element processes specific parts of the
packet. Such a single element of Click is implemented in the C++ programming
language and consists of an element class, input and output ports and option-
ally a configuration string. Element classes can be seen similarly to classes from
object-oriented programming languages. The input and output ports are used to
connect with other elements in the graph and, in general, an element can have
any number of input or output ports [18]. Last but not least, a configuration
string is an optional feature where some element classes can support additional
arguments for its element initialization.

In Click, there are two types of connections between elements: push and pull
connections (figure 3.10). In a push connection, an upstream element hands a

3.3 Click Modular Router Project 37

Figure 3.10: Click processing path example with push and pull control flow [18]

packet into a downstream element and in a pull connection a downstream element
asks an upstream element to return a packet [18]. Push and pull mechanisms
of each element in Click are realized by function calls. As shown in figure 3.10,
packets are enqueued into a central queue that is also implemented as an element,
so that all push and pull handler can return.

Click elements can be run within kernel space or within user space. If Click is
run from user space, it will communicate with the network via Berkeley Packet
Filter capable sockets. In contrast to Linux socket buffers, Click has its own
packet abstraction. Click also carried out small changes to the Linux kernel code
in order to pass control to Click during the receive path of the packet. However,
Click code within kernel space is executed in a bottom-half handler and bypasses
the traditional Linux network stack.

Summarizing, Click’s core system components are [18]:

• Elements: atomic entities that process parts of the packet and form the
building-blocks of complex routing functionality. Elements can be con-
nected with other elements to build a graph-like structure, where packets
traverse a certain path of the graph.

• Router: Click’s router object mainly collects relevant routing configura-
tion information at initialization time, configures elements and does basic
element connection checks for validity.

• Packets: Packets are Click’s abstractions of Linux socket buffers. The
packet data is copy-on-write. Thus, when copying a packet, the system
copies the packet header but not the data.

• Timers: Some elements use timers to keep track of periodic events. In
Click, timers have a 10 ms resolution.

• Work list: Work lists are used in Click to schedule Click elements for a
later processing. It is a simple single CPU scheduler that is invoked by

3.4 x-kernel Project 38

Click on either every eighth processed packet or if no packets are queued.

In contrast to (L)ANA, Click is only suited for building software routers, thus
it is not applicable for end nodes. Hence, higher-level protocols like UDP or
TCP are not of further interest. The main focus in Click is rather on routing
and traffic management, whereby (L)ANA focuses on both, end nodes and in-
termediate nodes. Furthermore, Click loads its router configuration via procfs

on initialization time and completely replaces new router configurations with old
ones, thus not allowing to replace only single elements during runtime instead
of whole configurations. Regarding implementation, Click made slight changes
within Linux kernel source itself which (L)ANA explicitly avoids. Only outdated
Linux kernel patches for Click are available.

3.4 x-kernel Project

The x-kernel [76] is an architecture for implementing network protocols. Com-
pared to other related projects within this chapter, the x-kernel is the earliest
one that tackled the challenge of introducing more flexibility into the networking
stack. The x-kernel architecture describes itself as an operating system kernel
that is designed to facilitate the implementation of efficient communication pro-
tocols [76].

Therefore, besides protocol implementations, x-kernel has integrated memory
management, supports multiple address spaces, offers lightweight process man-
agement facilities and kernel-managed interprocess communication mechanisms.
For implementing network protocols, three primitive communication objects are
available and classified either as static, dynamic or passive in the x-kernel: pro-
tocols, sessions5 and messages.

Protocol objects are statically loaded, passive and correspond to a conventional
network protocol like IPv4, UDP or TCP. The relationships between such pro-
tocols are defined at initialization time [76], and protocol objects available in a
particular network subsystem together with their relationships are defined by a
protocol graph at kernel configuration time [16]. A session, on the other hand, is
an instance of a running protocol and contains a protocol interpreter, also passive
but dynamically created [76]. It is usually bound to a network connection and
maintains its state, for instance, similar to the TCP state machine. Moreover,
a session can be regarded as a local end-point of a communication channel and
is created as channels are opened or closed. Loosely speaking, protocol objects
export operations for opening channels resulting in the creation of a session ob-
ject, and session objects export operations for sending and receiving messages
[16] (figure 3.11). x-kernel messages are active objects containing data that is

5Protocols and sessions are also referred to as protocol objects or session objects.

3.4 x-kernel Project 39

passed between sessions and protocols. Such messages can be seen as x-kernel’s
representation of network packets that traverse the protocol stack.

Figure 3.11: x-kernel scheme of passing messages up and down the protocol stack
[16]

As shown in figure 3.11, operations as xPush and xPop are used in each layer
to pass a message to the next session object down or up the stack, respectively.
However, xDemux is used to select the right protocol object depending on the
packet’s protocol header information. Therefore, xDemux also needs to know of
all possible protocol objects that are on top of the current one within the protocol
stack.

x-kernel’s main difference to (L)ANA is that each protocol object must imple-
ment a specific protocol in the stack, whereby in (L)ANA this requirement is not
tied to a complete protocol. The (L)ANA equivalent of x-kernels protocol objects
are functional blocks, which are also able to perform smaller tasks like computing
a checksum or more complex tasks than a single protocol, for instance. Moreover,
x-kernel rather focuses on end nodes and not on intermediate networking nodes
like routers. Next to this, the x-kernel is a full operating system kernel and not
just a framework for building a network stack. Since the development of x-kernel
has stopped, it is impossible to compile and run it on today’s machines. Further-
more, unlike (L)ANA, x-kernel’s protocol graph changes can not be performed
during runtime and usually requires recompilation.

3.5 Autonomic Network Architecture 40

3.5 Autonomic Network Architecture

Since conceptual parts of this work are derived from the original Autonomic
Network Architecture, its idea and architecture is covered within this section
with reference mainly to literature [77].

The basic idea of ANA orientates on the concept of UNIX file descriptors, where
applications are able to send data to a file descriptor without having to worry
whether the data is actually sent to a file or to the console, for instance. There-
fore, ANA has introduced four basic abstractions, namely functional block (FB),
information dispatch point (IDP), information channel (IC) and compartment.

A functional block is the building block entity of ANA. ANA’s whole protocol
stack is built out of functional blocks, whereas a functional block represents a pro-
tocol entity that generates, consumes, processes or forwards information. This is
not only restricted to abstractions of network protocols. Thus, a functional block
can just increment a network packet’s TTL field, calculate a packet’s checksum
or even represent a whole monolithic legacy protocol stack. Functional blocks are
the smallest atomic entities of ANA.

Information dispatch points in ANA can be seen as connection pivots between
functional blocks. Hence, more generally, they draw an analogy to file descrip-
tors in UNIX. Functional blocks are always accessed via IDPs. Thus, instead of
passing data to the functional block directly (through a function call), the data
is first sent to the corresponding IDP which then internally passes the data to its
destination functional block. Therefore, IDPs can be seen as a level of indirection
to functional blocks.

Similar to file descriptors, IDPs are usually represented as integer numbers
in ANA, but unlike file descriptors, the binding is of dynamic nature and can
change over time. Thus, an underlying functional block of an IDP can be ex-
changed dynamically during runtime. By this, a functional block sending data
to another functional block is not aware of the other functional block’s semantic
meaning. With the help of IDPs, ANA can provide flexibility to reorganize the
communication paths within the network stack.

Further, an information channel in ANA is an abstraction of a communication
service between a distributed set of functional blocks, where the term distributed
refers to non-local functional blocks like two identical functional blocks but on
different hosts in the network. If an IC is set up between two functional blocks,
they can be accessed via additional, dynamically created IDPs, too. There are
four possible types of ICs:

• Unicast IC: one-to-one association of IDPs

• Multicast IC: one-to-many association where multiple endpoints usually
receive data simultaneously in a single transmission (special case: Broad-
cast)

3.5 Autonomic Network Architecture 41

• Anycast IC: one-to-one-of-many association where a packet is transmitted
to a single member of a group of potential receivers (used in load-balancing)

• Concast IC: many-to-one association where multiple senders transmit data
to a single receiver that merges the received data to a single packet

Compartments, the fourth abstraction in ANA, can be seen as a context of a
region of a network that is homogeneous in some regard with respect to addresses,
packet formats, transport protocols or others. This abstraction permits hiding of
the internals and specific underlying technologies like the composition of a set of
functional blocks of a compartment. However, many compartments can co-exist
either in vertical (stacked) or horizontal layers on one networking node. Inter-
working of compartments is also possible, but compartment-dependent. Possible
ANA compartments are Ethernet segments, the public IPv4 Internet, private
IPv4 subnets, peer-to-peer systems or others. Their communication entities are
all built out of functional blocks.

Two types of compartments exist in ANA, namely node compartments (LC)
and network compartments (NC).

A node-local compartment or LC is present in every ANA node and forms a
primary hub for all node-local interactions with ANA elements like functional
blocks. Such a node compartment controls what is visible and what not to each
functional block, and thus allows implementing resource isolation or fine-grained
access control. Therefore, on startup, each functional block publishes itself to the
node compartment with a service and context identifier string. Thus, the node
compartment can retrieve requests for a functional block that offers a certain
service (e.g. tcp:80) within a given context (e.g. 127.0.0.1).

The network compartment on the other hand involves several ANA nodes that
communicate across an underlying network infrastructure like Ethernet. Hence,
it consists of a set of FBs, IDPs and ICs, where the FBs provide the commu-
nication stack on each ANA node. Besides end nodes, a network compartment
can also include intermediate nodes like routers. Communication in a network
compartment is always performed via ICs.

As an example for network compartments, one could think of a corporate net-
work where hosts and other network nodes host a set of FBs that provide the
communication stack and use an underlying infrastructure like Ethernet, VPNs,
or other technologies that represent ICs. A similar scenario would be a peer-to-
peer overlay network where overlay nodes host FBs that provide the communi-
cation stack and virtual links that are connected via the Internet that represents
ICs. Hence, network compartments can operate at different layers; they can be
limited to a single layer (e.g. to a layer of the OSI model), several layers or a
whole communication stack within one compartment. Noteworthy is that such
network compartments can be stacked. Thus, multiple network compartments
can co-exist on a single ANA node.

Figure 3.12 shows an example of four ANA nodes connected via ICs. ANA

3.5 Autonomic Network Architecture 42

Figure 3.12: ANA network with four nodes connected to each other

node 3 consists of 3 functional blocks namely FB1, FB2, and FB3, where FB1 is
able to send data via IDPs to FB2 and FB3. FB3 on the other hand sends its
data to an IDP of an Multicast IC that forwards its data to ANA node 2 and
ANA node 1. FB2 of ANA node 3 sends its data to an IDP of an Unicast IC.
This data is then received by FB1’s IDP. Both of ANA node 4’s functional blocks
send its data to an IDP of an Unicast IC that is connected to ANA node 1.

Figure 3.13: Basic components of ANA’s implementation

Next to the high-level abstraction (compartment) and to the medium-level
abstractions (the internals of the compartment: functional blocks, information
dispatch points and information channels), there are also other terms that refer
to the implementation level of the ANA architecture.

ANA’s implementation consists of two main parts, namely MINMEX and the
ANA playground (figure 3.13). The former stands for ’Minimal Infrastructure for
Maximal Extensibility’ and is the mandatory software part of ANA that needs

3.5 Autonomic Network Architecture 43

to be present on every ANA node. MINMEX can be considered as ANA’s ker-
nel that is needed for bootstrapping a node or for managing functional blocks.
Among other things, MINMEX consists of a controller that performs continuous
assessment of basic operations of an ANA node with health or sanity checks,
for instance. By this, MINMEX aims to protect itself up to a certain extent
against misbehaving components. Examples of this include periodical checks of
all forwarding paths with loop detection, a garbage collector for unused or expired
dynamically assigned IDPs (e.g. from allocated ICs) or a heartbeat check of all
active functional blocks.

Next to the controller, MINMEX also contains an information dispatch frame-
work that is responsible for the delivery of data packets to the right IDP of a FB
or IC. Within an ANA node, data is forwarded on a chain of IDPs similar to hop-
by-hop forwarding of data within the Internet. However, a hop in the meaning
of ANA is a functional block that processes the received packet. Depending on
the context, the information dispatch framework maintains several IDPs to func-
tional block mapping tables. Interaction with this framework happens through
ANA’s API with functions like publish or resolve.

However, the information dispatch framework is not responsible for path setup
or path reconfiguration during runtime. This is rather the job of an ANA appli-
cation. Also noteworthy is that since IDPs are all dynamically assigned, they are
encoded into network packets as the next hop field.

The next part of ANA’s implementation is the ANA playground. All optional
software components that bring actual functionality to ANA are part of the play-
ground. It hosts, for instance, all optional protocols one is free to develop. Al-
though components inside the playground are optional, some standard features
are shipped for basic operation. These components are either so-called bricks or
functional blocks. In the implementation, a functional block consists of one or
more bricks. Thus, bricks represent atomic elements.

Bricks from the ANA playground can be attached in two possible modes: plugin
mode or gates mode. In plugin mode, the brick is usually called a plugin brick and
if the brick is loaded within kernel space, it can be called by the MINMEX via
function calls. The data reception on that brick is done via message queues. Thus,
data is being copied into the bricks receive queue. To protect from concurrency
issues, data is copied between every brick. However, if a brick is loaded in gates
mode, it is being called a stand-alone brick. There, an ANA node’s MINMEX
communicates either via UDP or Netlink to the brick. Stand-alone means that
for each brick a process is being spawned (e.g. a kernel thread or a POSIX
thread). In this mode, data that is forwarded between such bricks is copied into
the message buffer that is provided for the appropriate IPC mechanism. The
MINMEX and the bricks can either be run from user space or from kernel space.
The ANA playground has a special brick called virtual link support brick (or vlink
brick), that is the only brick that has access to the underlying carrier layer, like
Ethernet or Bluetooth. The implementation for Ethernet, for instance, has its

3.5 Autonomic Network Architecture 44

own ANA Ethernet type for compatibility with common hardware. Also, a UDP
tunnel for ANA has been written to test communication across the Internet.

An example is given where two ANA IP stacks communicate over Ethernet
compartments. Node N and node M refer to each of the communication partners:

Inside node M:
FBIP publishes itself to FBEth with publish(y,"*","1.2.3.4"), where y is

IDPy of FBEth, the ’static’ IDP of the compartment that is stored in the MIN-
MEX. The string ”1.2.3.4” is the address through which FBIP wants to become
reachable from FBEth. On success FBEth then stores the mapping between FBIP

and its bound IDPz. Note that this is not stored in the MINMEX, but in FBEth.

Inside node N:
To instantiate the communication, FBIP calls resolve(e,"*","1.2.3.4"),

where e is the IDPe of FBEth, the ’static’ IDP of the compartment that is stored
in the MINMEX. The MAC lookup of address ”1.2.3.4” is FBEth specific. How-
ever, on success FBIP gets the IDPs from FBEth, which can be used by FBIP to
send data to FBIP of node M. Again, this IDP is stored in the FBEth, but not in
the MINMEX.

How the resolve works:
The resolving of an address or more specific a service in a certain context can

be seen as ANA’s equivalent of today’s ARP. Since in this example the context is
"*", it gets translated into "FF:FF:FF:FF:FF:FF" by the compartmentEth. FBEth

in M then receives the resolve message, looks into its own translation table, finds
out that service ”1.2.3.4” is registered and hence replies with a token t used for
demultiplexing incoming messages to IDPz, so that t → z. FBEth in N creates
a local mapping of the new IDPs → (MAC address, t), where t is the 16 Bit
next header field. Afterwards, sending of data from N to M can be done with
send(s,data).

Chapter 4

Architecture

This chapter describes the architecture of LANA. At first, requirements for the
architecture are defined and basic changes of the core machinery in comparison
to the current prototype implementation [78] are discussed. Next, we provide a
rough overview of interactions between components and each core component is
explained in more detail afterwards. Throughout this chapter, we also discuss
major architectural differences to the ANA architecture.

4.1 The Big Picture

The main goal of this work is to design and implement a lightweight ANA archi-
tecture for Linux. While we follow the basic ANA principles, the implementa-
tion has to significantly outperform the previous prototype implementation. To
achieve this, the main part of LANA should run in Linux kernel space. It is not
explicitly required that LANA should be implemented from scratch. We discuss
major design differences of LANA to the original prototype implementation first
and come to a conclusion whether to enhance the current implementation or to
build a new one.

In the original ANA architecture, memory that is passed between functional
blocks is copied. This is the case of incoming or outgoing network packets, or
internal messages that are used to exchange configuration data between functional
blocks. We assume that passing memory by creating copies is the most crucial,
time-consuming bottleneck of the ANA prototype implementation. Hence, all
messages that are exchanged between functional blocks are passed by reference
throughout the whole LANA framework. By doing this, we apply principle P1
from section 2.2.1.

ANA’s API for developing functional blocks consists of a set of functions that
are layered from low-level functions to higher-level functions. There, functional
block developers can choose to program their functional block by only using i) the
low-level interface, ii) the high-level interface, or iii) a mixture of low-level and

45

4.1 The Big Picture 46

high-level interface functions. High-level interface functions themselves internally
call the low-level interface functions. This complexity should be avoided, since
it increases the learning curve for novice ANA developers and introduces code
bloat as well as a possible performance decrease by multiple, unnecessary layers of
abstraction [79]. Ideally, a single-layered, well-defined API exists for LANA that
is conform to the Linux kernel coding conventions. This change applies principle
P7 from section 2.2.1.

In the implementation of ANA, there is one thread per functional block that
communicates with MINMEX. Hence, the more functional blocks are attached to
the running system, the more threads are running, which can lead to starvation
of other kernel threads, user space processes or functional block threads. Also,
on high packet load, the scheduler more often needs to switch contexts between
these threads. Instead of having one thread per functional block, we tie this
down to only one thread per CPU under the assumption that multiple CPUs are
used. This method, further described in the implementation section 5, reduces
context switching and exploits locality of data in order to reduce CPUs cache
line movements. By optimizing this for multi-core and multiprocessor systems,
we also introduce support for NUMA-awareness (non-uniform memory access) for
memory that is allocated per CPU. This basic architectural change can be seen
as the application of principle P2 from section 2.2.1.

ANA’s prototype implementation can be run both, inside the Linux user space
and Linux kernel space. If it is run from user space, the modules communicate
via UDP or Netlink to the MINMEX. MINMEX receives packets from kernel
space via system calls that copy incoming packets into the user space and vice
versa. However, the core code of the prototype is system-agnostic, which means
that the same core functions are called from kernel space as well as from user
space. By this, system agnostic helper routines were implemented in ANA and
an own representation of socket buffers was introduced. More specialized and
efficient kernel data structures and algorithms could therefore not be used. All
in all, we identify bottlenecks that are caused by copying packets into the user
space MINMEX which involves system calls and possibly context switches. Also,
we identify bottlenecks in code generality, since helper routines were written from
scratch and the use of optimized kernel code was avoided. Furthermore, in the
user space MINMEX, bottlenecks are assumed in the communication between
functional blocks via UDP or Netlink. Next to the time-consuming preparation
of network packets for local functional block communication, it is also assumed in
the prototype that a native networking stack must be present for UDP or Netlink.

The most major architectural change is that the renewed architecture will be
kernel space only. By this, we are able to i) make the architecture more kernel
space compliant by using the offered kernel space routines and data structures
and to ii) reduce code complexity of all the user space functionality of the original
prototype. We also assume that a kernel space only implementation will increase
the overall performance of LANA, since critical packet paths are shorter and

4.1 The Big Picture 47

address space overhead as well as context switching overhead can be avoided.
Multiple principles apply here, such as P1, P3 (shift computation in time), P4,
P6, P7 and P8 from section 2.2.

The interception of packets from the Linux core network in the original ANA
architecture is done only for packets with a special Ethernet type field by im-
plementing a special ANA protocol handler that is the ingress point of the ANA
stack. Instead of implementing a protocol handler, all packets will be pulled from
the Linux network stack as early as possible in the receive path without altering
the Linux kernel.

A new virtual link layer will be introduced, too. There, for the Ethernet
part, virtual Ethernet devices that are bound to a real underlying carrier can
be created where incoming and outgoing packets will enter the LANA stack that
have special tagged packets similar to VLANs. This has the advantage to manage
these devices with standard Linux tools such as ethtool, ifconfig or route.

Further, by implementing everything in kernel space, the BSD socket interface
can be exploited for LANA application development in user space which was not
the case in ANA. A common set of system calls will be implemented to allow
sending and receiving packets for applications.

Unlike ANA’s prototype implementation, functional blocks in LANA are seen
as object instances similar as in object oriented programming languages. There,
an instance of a given class is spawned upon request. Such object oriented code
polymorphism, also applied in some Linux kernel subsystems [80] [81], will be
similarly used in LANA. Registered functional blocks (‘classes‘) should be able
to create instances (‘objects‘) of themselves, whereby one or more instances of
the same functional block can be active at a time. To reach this with the cur-
rent prototype implementation of ANA, one would need to implement multiple
copies with slight modifications of the functional block code i.e., a different unique
service/context name.

Last but not least, a basic architectural change will be the introduction of a
central, single user space tool called fbctl that should be able to perform all sorts
of functional block configuration tasks like binding or unbinding of functional
blocks.

The prototype source distribution of ANA that can be downloaded from [78]
consists of 127 C files and 44,142 lines of code including comments and whitespace.
Efforts of refactoring these significant changes in the core machinery would be
immense, even if some portions of the lines of code refer to existing functional
blocks. Therefore, we decided to perform a redesign from scratch that we call
Lightweight ANA (LANA).

Contrary to TCP/IP stacks as in Linux, the core of LANA is a meta-architecture
and does not provide any protocol functionality. The core of LANA rather pro-
vides management mechanisms for functional blocks. Like in ANA (section 3.5),
functional blocks provide the actual functionality of LANA and are connected
together. In contrast to ANA’s bricks, functional blocks are the smallest possible

4.2 Components 48

entities in LANA. LANA also does not have a MINMEX or Playground as in
ANA. The core of LANA on the contrary consists of:

• Packet processing engine, that calls one functional block after the other

• Functional block builder, that creates new functional block instances

• Functional block notifier, that dispatches event messages between func-
tional blocks

• Functional block registry and helper data structures, that manage cre-
ated functional block instances

• User space configuration interface, that is able to receive control com-
mands from user space administration utilities

Next to ’normal’ functional blocks, functional blocks can be part of the virtual
link layer (vlink) that can be seen as an interface between device drivers and
the LANA system. Functional blocks can also be part of the BSD socket layer,
where they provide an interface between user space applications and the LANA
system.

An example of a running instance of LANA is given in figure 4.1. There, in-
coming packets are forwarded from the network device driver layer to a functional
block (FB 1) that resides within the virtual link layer. This functional block rep-
resents the ingress point to the LANA stack for incoming packets. The control
is passed to LANA’s packet processing engine (PPE) by this functional block,
where the PPE manages all further functional block execution. Depending on
the interconnection of the functional block instances, the packet processing en-
gine invokes a receive handler of each functional block that processes parts of the
network packet. The scenario of figure 4.1 also includes a functional block (FB 7)
that is part of the BSD socket layer which leaves the packet processing engine and
passes the incoming network buffer to a user space LANA application with the
help of system calls. However, the packet processing engine does not necessarily
need to pass buffers to functional blocks that are part of the BSD socket layer.
It can also pass buffers to kernel space sinks like functional block instance FB 8.
What a functional block actually does depends on the implementation and can
reach from very simple functions like incrementing the TTL of a packet to more
complex functions like routing.

4.2 Components

Having the overall picture in mind, the design of LANA’s individual components
are discussed within this section. Components include i) the core machinery or
back-end of LANA and ii) functional blocks with two special fictitious layers,
namely the virtual link layer and the BSD socket layer.

4.2 Components 49

Figure 4.1: Overview of LANA’s architecture

4.2.1 Functional Blocks

Functional blocks are LANA’s atomic building-blocks of the protocol stack. The
core of LANA only provides a meta-architecture without any protocol function-
ality. Hence, functional blocks fulfill the part of processing packets. LANA can
be deployed to a broad range of technologies such as Ethernet, InfiniBand, Blue-
tooth, or GSM, for instance. A functional block in LANA usually implements a
specific protocol in the protocol stack, but functional blocks are not restricted to
this. Thus, their functionality can range from performing only small tasks up to
containing whole legacy protocol stacks. Example tasks for functional blocks are:

• Checksum calculation

• TTL incrementation

• IP routing

• IP fragmentation

• Packet classification

4.2 Components 50

• Packet duplication

• Payload encryption or compression

• UDP processing or similar

• BSD Socket demultiplexing

Instead of directly accessing functional blocks e.g. via function calls, an indi-
rection layer is introduced which is named information dispatch point. Like in
ANA, information dispatch points are represented as Bit-vectors of a fixed size,
so that they can be encoded into network packets with respect to their endianness
of different hardware platforms. A functional block can only have one IDP at a
time. By accessing functional blocks only through their IDP, other functional
blocks are not aware of their underlying purpose.

Functional blocks can be bound to other functional blocks, thus a protocol stack
in LANA is represented by a graph of functional blocks: vertexes are represented
as functional blocks and edges can be seen as a binding of functional blocks.

The process of binding and unbinding is realized by event messages. This
means that each functional block can subscribe to an arbitrary number of other
functional blocks in order to get notified about new events. If two functional
blocks get connected to each other, they are automatically subscribed. The event
messaging system can be used to send protocol-specific data to other functional
blocks or implementation-specific configuration commands to a running func-
tional block. The dispatch of event messages is independent of the dispatch of
packet data and done by the functional block notifier. During runtime, functional
blocks can be replaced by others where the IDP is transferred to the new block.
By this, a newer version of a functional block can replace the current running
version without other functional blocks being aware of this.

Figure 4.2: LANA’s functional block module with spawned instances

When talking about functional blocks in a low-level context, we distinguish
between functional block modules and functional block instances. When only

4.2 Components 51

mentioning functional blocks, we usually refer to an instance. The difference be-
tween both is the following:

• Functional block module: a Linux kernel module that implements a con-
structor and destructor for its functional block instance as well as commonly
used functions; can be seen as a ’class’ in object oriented programming lan-
guages

• Functional block instance: a memory structure with a private data area
that was initialized by the constructor of the functional block module; can
be seen as ’instances’ of a certain ’class’ in object oriented programming
languages

Unlike ANA, functional blocks are object instances that are created on request
by a functional block builder. This means that a functional block module, usually
a Linux kernel module, can spawn functional block instances upon demand (figure
4.2).

Each instance has a unique human-readable name for addressing purpose from
user space, a unique information dispatch point and its own private data memory
containing information about bound functional blocks, for instance. However,
all instances from a functional block module have a common type name, and
common callback functions for receiving network packet data or event messages.
In LANA, all kind of messages exchanged between functional blocks are accessed
by reference. Copying of passed network packets as done in ANA is studiously
avoided.

Summarized, in LANA each functional block instance consists of the following
components:

• A unique information dispatch point

• A unique name that can optionally be a qualified name

• A common type derived from their functional block module

• Private data area containing IDPs to bound functional blocks or other data

• Receive handler for network packets and for event messages from the module

• Subscribed functional blocks

• Own subscriptions to other functional blocks

• A reference counter to determine if the functional block is in use and has
dependencies to others

• Common constructor and destructor functions from their module

4.2 Components 52

4.2.2 Functional Block Builder

As already mentioned, LANA uses functional block object instances that are
created by a functional block builder as shown in figure 4.3. There, on func-
tional block module insertion, two functions are registered to the functional block
builder registry, namely constructor and destructor functions. Both functions
need to be implemented for each functional block since they must know what
private data parts to allocate, set up and to destruct. If an instance of a func-
tional block is requested, the functional block type and a unique name for the
instance must be provided. The functional block type string is then used to look
up the constructor and destructor functions of the functional block module. As
shown in figure 4.3, the functional block builder then calls the given functional
block constructor function which allocates a new instance of a functional block
structure and sets up all the necessary functional block internal data. Outside of
the functional block builder context, the newly created instance is then registered
to LANA’s functional block registry and can be used in the LANA stack after-
wards. The lifetime of a functional block ends upon deletion request from user
space. There, the functional block is unregistered from the core and its destruc-
tor, which is responsible for cleaning up internal data and for freeing allocated
memory related to this functional block instance, is called.

Figure 4.3: LANA’s functional block lifetime and interaction with functional block
builder

4.2 Components 53

4.2.3 Functional Block Notifier

Another part of the LANA core machinery is the functional block notifier. The
functional block notifier is used to notify functional blocks about new events or
about configuration instructions. The functional block notifier construct has no
central entity and is distributed across all functional blocks. This means that
each functional block instance maintains its own list of subscribed functional
blocks and of its own subscriptions to other blocks (figure 4.4). The delivery of
notifications is done by Linux notification chains.

Figure 4.4: LANA’s functional block notification chains

If a functional block fb1 wants to receive event notifications from another
functional block fb2 (figure 4.4), then it needs to subscribe to fb2’s notification
chain. This is first done by adding a subscription element to its own subscription
database for bookkeeping purposes. This subscription element contains a call-
back function that is provided by functional block fb1. This callback function
is registered to fb2’s notification chain. If functional block fb2 updates internal
information that is needed by some other functional blocks, fb2 will then exe-
cute the registered callback functions of its notification chain with the necessary
arguments.

This mechanism is fully asynchronous, so that internal data of remote func-
tional blocks must be protected by locking mechanisms if necessary. The calling
context of the provided function from fb1 will be the execution context of func-
tional block fb2. Since this creates also complex functional block dependencies,
each functional block is therefore protected from unloading by a reference counter
which, besides others, accounts current subscriptions to other functional blocks.

There is one special case of the functional block notifier in which the pro-
vided callback function is invoked out of the notification chain context. When
performing operations on functional blocks such as binding or unbinding to other
functional blocks, the callback function is invoked from the kernel part of the user

4.2 Components 54

space configuration interface (section 4.2.8) in a temporary subscription element
that does not belong to a functional block.

In contrast to the original prototype implementation of ANA, this architec-
ture results in a simpler functional block intercommunication model. In ANA,
functional block intercommunication is realized by introducing special intercom-
munication packets, so that communication between functional blocks can be
seen similarly to a protocol-like packet communication, where state needs to be
maintained.

4.2.4 Functional Block Registry

LANA’s functional block registry tracks all active functional block instances and
consists of two functions:

• f : name→ information dispatch pointname

• g : information dispatch pointname → pointer to structure

Hence, if a functional block instance is addressed by its name i.e., from the user
space, the corresponding pointer to the functional block instance is retrieved by
applying g(f(name)). However, the usual case in kernel space is an addressing by
the information dispatch point of the functional block. Thus, the pointer to the
structure of the instance can be retrieved by applying the information dispatch
point to the function f . Functional blocks of the LANA stack are not allowed
to directly address other functional blocks by their address pointer. Rather, the
corresponding information dispatch point has to be used. By this, function g can
simply remap the value of a specific information dispatch point (key).

Function g is a performance-critical part of the system since this function is
consulted in each IDP to functional block pointer conversion and represents an
additional layer of indirection. We assume while function f is only invoked a few
times during setup and runtime stack modification, function g is far more often
called, especially on a high incoming and outgoing packet rate.

4.2.5 Packet Processing Engine

The packet processing engine is responsible for calling one functional block after
the other.

Each functional block instance provides a network packet receive callback func-
tion that is conditionally invoked by the packet processing engine (figure 4.5).

Depending on the functional block bindings, a specific network packet receive
function of a functional block instance encodes the next information dispatch
point into the private data area of a socket buffer. Next, the network packet
receive function of that instance returns by telling the packet processing engine

4.2 Components 55

Figure 4.5: LANA’s packet processing engine that calls receive handler of func-
tional block instances

whether to continue execution or to stop execution for that specific socket buffer.
The execution is stopped in case i) the current functional block is the last one in
the processing chain, ii) an information dispatch point was given that is invalid or
iii) the functional block drops the socket buffer. If the execution shall continue,
the packet processing engine decodes the next information dispatch point from
the private data area of the socket buffer. Afterwards, the mapping function
g (section 4.2.4) is consulted to translate the information dispatch point into a
pointer of the structure of the functional block instance. Next, the receive callback
function of that functional block is invoked. The packet processing engine loops
through this process until the execution is stopped.

Functional block instances may create new socket buffers that need to be
queued for traversing the packet processing engine, too. This is, for instance,
the case in functional blocks that clone packets for a network analyzer functional
block or in functional blocks that implement parts of the protocol stack and need
to send acknowledgement packets to a remote host. Therefore, the packet pro-
cessing engine contains a backlog socket buffer queue, where new packets can be
queued from outside of the context of the packet processing engine. This queue
is tested for packets after the processing loop of a socket buffer has been left. If
the queue is non-empty, then the head will be dequeued and processed by the
packet processing engine.

Next to the socket buffer, information about the path traversal direction is
given to the packet processing engine and to the network packet receive callback
functions. This direction can either be egress direction or ingress direction.

Functional blocks in LANA therefore have bindings that can be in egress or
ingress direction, too. We call one specific binding in egress direction an egress
port and respectively one specific binding in ingress direction an ingress port. How
many ingress or egress ports (bindings) a functional block has is implementation-
specific, but usually, there is one ingress port and one egress port.

Consider the example functional block ingress binding of figure 4.6. A virtual
link layer functional block (section 4.2.6) receives an incoming socket buffer and
triggers the packet processing engine to run on the current CPU. The packet

4.2 Components 56

Figure 4.6: LANA’s functional block example binding and processing

processing engine calls the receive handler of fb1 which then forwards the packet
to the functional block with the IDP of fb2. Being at fb2, the packet is condi-
tionally forwarded either to ingress port 1 which is the IDP of fb3 or to ingress
port 2 which will forward the packet to the IDP of fb4. If fb3 is taken into
account, then fb3 forwards the packet after processing to the IDP of fb4. Func-
tional block fb4 could then transmit the packet to an Ethernet device for delivery
and exits the packet processing engine. The fact that fb2 has two egress ports
is implementation-specific, so that an internal mechanism exists in fb2 which is
able to decide whether to forward the packet to fb3 or to fb4.

4.2.6 Virtual Link Layer

The functional block in the virtual link layer represents entry and exit points for
the packet processing engine on the networking device level. It represents the
glue from the operating system to the LANA protocol stack. Functional blocks
in this layer are not called directly by the packet processing engine from the
ingress path. Rather, they directly receive packets, encode the next IDP into
the socket buffer and call the packet processing engine for further stack traversal.
Functional blocks in this layer implement the underlying network technology such
as Ethernet, Bluetooth, InfiniBand or others. In case of the egress path, they are
called by the packet processing engine directly, since they will schedule packets
for transmission, they represent the last link of the functional block processing
chain.

4.2.7 BSD Socket Layer

Similar to the virtual link layer, there is a BSD socket layer that functional blocks
can represent. The main difference to the virtual link layer is that the BSD socket
layer is the glue between the LANA stack from kernel space to LANA applica-
tions that reside in user space. Therefore, functional blocks in this layer need
to implement common system calls such as socket(2), close(2), recvmsg(2),

4.2 Components 57

sendmsg(2), poll(2), bind(2) and others. Unlike the virtual link layer, func-
tional blocks in the egress path are not invoked directly by the packet processing
engine. Rather, they receive data from user space, encode their bound egress IDP
into the allocated socket buffer and invoke the packet processing engine from the
socket context. Moreover, in the ingress path, they are called directly by the
packet processing engine and represent the last link of the functional block pro-
cessing chain before the buffer will be copied to the user space. The LANA stack
does not necessarily need functional blocks in the BSD socket layer if no LANA
user space applications run on that system. This can, for instance, be the case
on intermediate networking nodes. There, all processing could reside in kernel
space. However, a protocol stack without a virtual link layer would not make
much sense, except for networking simulation purposes.

4.2.8 User Space Configuration Interface

Figure 4.7: LANA’s user space configuration interface

The configuration of the LANA machinery is done from user space with the help
of two central utilities, namely fbctl and vlink (figure 4.7). fbctl has the role
of performing all functional block related configurations such as the creation or
deletion of functional block instances, binding and unbinding of functional blocks
or subscription to other blocks as well as replacing one functional block instance
with another during runtime. The vlink utility is responsible for controlling
functional blocks of the virtual link layer. If virtual link layer functional blocks
support the creation of virtual networking devices, e.g. for Ethernet, then they
can be created, managed and removed by the vlink tool. Both, fbctl and
vlink, send Netlink messages to the kernel space that are received by LANA’s
configuration interface.

4.2.9 Controller

Future work on LANA will include a user space controller that communicates
through the same Netlink interface as the fbctl and vlink utilities, but with

4.2 Components 58

the major difference that changes to the LANA protocol stack are performed
autonomously by the controller. The controller will have self-* features such as
self-awareness, self-expression and is able to efficiently respond to a multitude
of requirements with respect to functionality, flexibility, performance, resource
usage, resource costs, reliability, safety or security, for instance. Since LANA is
controlled through the Netlink interface, a controller implementation can range
from very basic monitoring and reaction tasks up to more complex ones.

Chapter 5

Implementation

Within this chapter, the Linux implementation of the LANA project is described.
The focus is first set to the back-end of LANA including its data structures for
functional blocks and on the second part, concrete functional block implemen-
tations are described. Further, a short overview about the implementation of
LANA’s user space configuration tools is given as well as a first example applica-
tion that we have developed.

5.1 Basic Structure and Conventions

Figure 5.1: Basic code structure of LANA’s src directory

The source directory of LANA (figure 5.1) contains no further subdirectory, but

59

5.1 Basic Structure and Conventions 60

files that are defined as the following:

• core.c file: The main file of the LANA back-end that implements the kernel
module initialization and de-initialization routines and loads or unloads
necessary xt_name components, which need an initialization respectively
de-initialization. Together with all xt_name files, it gets compiled to a
single kernel module, namely lana.ko.

• xt name.{c,h} files: LANA core extension files; these files implement
library routines or subsystems that are needed for the back-end and offer
interfaces via header files for invocation from functional blocks. Each name

implements a concrete subsystem such as vlink or engine (packet pro-
cessing engine), or library functions such as crit-bit (crit-bit trees [82]).
Names are well-defined in reference to their purpose.

• fb name.c files: Each file implements a specific functional block of name
name. No multiple files for one functional block are allowed. Each functional
block gets compiled as its own loadable kernel module.

In contrast to the original prototype, code complexity has been reduced sig-
nificantly. The whole distribution including functional blocks, consisted of 91 C
files and 30,687 lines of code in the original prototype 1. Our lightweight imple-
mentation only consists of 24 C files and 6,597 lines of code (excluding tools from
appendix D and the example application):

347 ./xt_critbit.c 117 ./xt_vlink.h

74 ./xt_user.h 298 ./xt_user.c

869 ./fb_ethvlink.c 93 ./core.c

21 ./xt_idp.h 533 ./fb_bpf.c

80 ./xt_skb.h 744 ./fb_pflana.c

415 ./fb_eth.c 64 ./xt_builder.c

27 ./xt_engine.h 277 ./fb_counter.c

206 ./fb_dummy.c 21 ./xt_builder.h

189 ./xt_engine.c 251 ./xt_fblock.h

230 ./fb_tee.c 665 ./xt_fblock.c

345 ./xt_vlink.c 66 ./xt_critbit.h

239 ../usr/vlink.c 426 ../usr/fbctl.c

6597 total [lines of code]

All files follow the standard Linux kernel coding guidelines [83] and are licensed
under the GNU General Public License, version 2 [84]. The implementation was
performed under a vanilla Linux 3.0 kernel [85] and without the need for patching
the kernel. Everything is implemented as kernel modules. Furthermore, during
development, we used Git [86] as a distributed version control system with a
public repository that is available at repo.or.cz [87].

1We have removed the chat application, the IP bricks and routing to have a comparable
functionality left over.

5.2 Core Module and Extensions 61

5.2 Core Module and Extensions

LANA’s core kernel module lana.ko includes all basic functionality that is needed
for the back-end and for running a protocol stack with functional blocks such as
described in section 5.4. On initialization time, the module performs the following
steps:

• Setting up a LANA procfs directory under /proc/net/lana/

• Setting up a procfs file that shows current functional block instances under
/proc/net/lana/fblock

• Loading the vlink subsystem

• Loading the functional block subsystem

• Loading the functional block builder

• Loading the Netlink user space interface

• Loading the packet processing engine

On de-initialization time, opposite steps are performed in reverse order, if no
other functional block module is present anymore.

5.2.1 Crit-Bit Extension

The crit-bit tree core extension, used by the functional block and the func-
tional block builder extension (subsection 5.2.4), is a library for mapping null-
terminated strings to structure pointers, since, to our knowledge, the Linux kernel
does not offer a generic data structure for this specific purpose. Compared to a
hash table, a crit-bit tree, sometimes also referred to as a radix tree, has com-
parable speed and two big advantages: the first advantage is that a crit-bit tree
supports more fast operations like finding the smallest string, for example, and
the second advantage is that a crit-bit tree guarantees good performance, so that
it doesn’t have any tricky slowdowns for unusual or malicious data [82]. Crit-bit
trees are faster than comparison-based structures such as AVL trees (e.g. [88])
and B-trees (e.g. [50]), and they’re also simpler, especially for variable-length
strings [82].

For this purpose, we have ported Daniel J. Bernstein’s public domain crit-bit
user space implementation [82] into kernel space, with two major modifications:
we have modified the code so that the tree can entirely be used on multi-core
systems with efficient RCU protection (read copy update) [89] [90] instead of no
locking protection at all, and we have modified the code so that data structures
where a given string belongs to can be retrieved with the kernel’s container_of
macro (figure 5.2). The original implementation does not allow for key-value data
retrieval. Thus, it is only possible to check whether a crit-bit tree contains a given
string or not.

5.2 Core Module and Extensions 62

#define offsetof(type, member) ((size_t) &((type *)0)->member)

#define container_of(ptr, type, member) ({ \

const typeof(((type *)0)->member) * __mptr = (ptr); \

(type *)((char *)__mptr - offsetof(type, member)); })

Figure 5.2: container_of macro implementation from include/linux/kernel.h

However, for the retrieval, there are a few restrictions: the string must be a
’flat’ part of the structure (hence, a character array and not a pointer per se)
and it must be cache line aligned. The cache line alignment, or at least power-
of-two alignment, is needed, since the crit-bit tree internally uses the pointer’s
least significant bit as a tag to determine if the tree node is an internal node or
an external node.

A crit-bit tree has the following basic structure:

struct critbit_tree {

void *root;

spinlock_t wr_lock;

};

The spinlock in RCU context is only used to serialize write operations on the
tree. Furthermore, the crit-bit tree has the following API elements that are
exported to the kernel:

• int critbit_insert(struct critbit_tree *tree, char *elem): Inserts
an element elem into the crit-bit tree tree

• char *critbit_get(struct critbit_tree *tree, const char *elem):

Retrieves an element elem from the crit-bit tree tree

• int critbit_delete(struct critbit_tree *tree, const char *elem):

Deletes an element elem from the crit-bit tree tree

• int critbit_contains(struct critbit_tree *tree, const char *elem):

Checks if the crit-bit tree tree contains an element elem

• inline void critbit_init_tree(struct critbit_tree *tree): Initial-
izes the Spinlock of the tree root

• void get_critbit_cache(void): Increments the crit-bit tree cache counter
that prevents the kernel module from unloading during usage

• void put_critbit_cache(void): Decrements the crit-bit tree cache counter

The above tree access API is an RCU protected variant. The API also contains
non-lock holding (only CPU barriers) variants of these functions that are not
named here.

Internal elements of the crit-bit tree have the following structure:

5.2 Core Module and Extensions 63

struct critbit_node {

void *child[2];

struct rcu_head rcu;

u32 byte;

u8 otherbits;

} ____cacheline_aligned;

Concrete functions or meanings of these data structure elements except rcu can
be taken from literature [91]. The rcu element is used for deletion, since such a
node will then be enqueued into an RCU deletion queue that gets scheduled after
an RCU grace period [89].

Each critbit_node tree element is allocated through an slab [92] kernel mem-
ory cache that uses hardware alignment for a faster memory access.

struct critbit_node_cache {

struct kmem_cache *cache;

atomic_t refcnt;

};

The atomic refcnt element of the critbit_node_cache is altered by the two
API functions get_critbit_cache and put_critbit_cache.

A valid LANA kernel structure such as the main structure of functional blocks,
that makes use of the crit-bit tree extension, could then look like:

struct mystruct {

char name[IFNAMSIZ];

int flag;

...

} ____cacheline_aligned;

Hence, an insert into a valid tree would be performed via critbit_insert(&mytree,
foo->name), where we assume that the name component of foo has a con-
tent of "foobar" in this example, so that the structure can be retrieved via
critbit_get(&mytree, "foobar"). Latter returns the pointer of the struc-
ture element name, that can then be resolved to the structure container via
container_of, for instance.

5.2.2 Socket Buffer and IDP Extension

Both core extensions, the socket buffer extension and the IDP extension, are
header-only extensions that provide storage definitions for LANA-specific control
data in Linux socket buffers and for information dispatch points.

The latter defines that an information dispatch point is internally stored as an
architecture-independent integer of 32 Bit width. Hence, for all idp_t elements
the size of 32 Bit applies.

5.2 Core Module and Extensions 64

The socket buffer extension provides an API for storing private LANA data
within the Linux socket buffer skb->cb array. This is used to hand over important
data, such as bound information dispatch points, between protocol layers. The
following function signatures are therefore exported:

• inline void write_next_idp_to_skb(struct sk_buff *skb, idp_t from,

idp_t to): Writes IDPs from and to into the skb’s private data area

• inline idp_t read_next_idp_from_skb(struct sk_buff *skb): Reads
the to IDP from the skb’s private data area

• inline void write_path_to_skb(struct sk_buff *skb, enum path_type

dir): Writes the stack traversal direction dir (ingress or egress) into the
skb’s private data area

• inline enum path_type read_path_from_skb(struct sk_buff *skb): Reads
the stack traversal direction dir from the skb’s private data area

The IDP extension is used within the whole source code and the socket buffer
extension is mainly used within the packet processing engine extension (subsec-
tion 5.2.5) and by functional blocks that spawn new socket buffers or socket buffer
clones, for instance.

5.2.3 Virtual Link Extension

The virtual link framework of the LANA core represents the glue between the
device drivers of networking hardware and the LANA protocol stack. Functional
blocks that are part of this layer need to register themselves to the virtual link
framework, so that they can receive and process commands from user space con-
figuration tools like vlink (section 5.3).

On initialization of the virtual link framework, a vlink_subsystem_table is
being created that holds reference to all registered virtual link subsystems. Fur-
thermore, a vlink Netlink group is being created, so that user space tools are able
to send Netlink messages to the vlink subsystem. Last, a procfs file is being cre-
ated under /proc/net/lana/vlink that lists all currently available virtual link
systems.

A specific virtual link subsystem e.g. for Ethernet, Bluetooth or other tech-
nologies, or more concrete, the functional block implementing this subsystem,
needs to register the following structure to the virtual link framework:

struct vlink_subsys {

char *name;

u32 type:16,

id:16;

struct module *owner;

struct rw_semaphore rwsem;

5.2 Core Module and Extensions 65

struct vlink_callback *head;

};

The name element represents a unique vlink subsystem name, the type element
gives information about the underlying technology i.e., VLINKNLGRP_ETHERNET,
the id element is provided by the virtual link framework during subsystem reg-
istration, and the owner is a reference to the functional block kernel module,
which gets locked from unloading from the kernel during packet redirection to
the packet processing engine. Furthermore, there is a list of callback functions
(head element) that is protected by a read-write semaphore rwsem. One such list
element has the following structure:

struct vlink_callback {

int (*rx)(struct vlinknlmsg *vhdr, struct nlmsghdr *nlh);

int priority;

struct vlink_callback *next;

};

Such a callback element has a pointer to the implemented function, namely
rx with a generic vlink message format vlinknlmsg and the original Netlink
message header nlmsghdr. Furthermore, if a callback element is being registered
to the list, it can be prioritized by the priority element. Last but not least, the
element has a next pointer for the next list element.

The virtual link framework exports the following API that is used by functional
blocks, for example:

• int init_vlink_system(void): Initializes the virtual link framework

• void cleanup_vlink_system(void): Cleans up the virtual link frame-
work

• int vlink_subsys_register(struct vlink_subsys *n): Registers a vir-
tual link subsystem to the vlink_subsystem_table

• void vlink_subsys_unregister(struct vlink_subsys *n): Unregisters
a virtual link subsystem from the vlink_subsystem_table

• void vlink_subsys_unregister_batch(struct vlink_subsys *n): Un-
registers a virtual link subsystem from the vlink_subsystem_table and
removes all callback list elements

• struct vlink_subsys *vlink_subsys_find(u16 type): Returns a vir-
tual link subsystem that has a type element of value type

• int vlink_add_callback(struct vlink_subsys *n, struct vlink_callback

*cb): Adds a single callback element cb to the callback list of n

• int vlink_add_callbacks(struct vlink_subsys *n, struct vlink_callback

*cb, ...): Adds multiple callback elements cb to the callback list of n

5.2 Core Module and Extensions 66

• int vlink_add_callbacks_va(struct vlink_subsys *n, struct vlink_callback

*cb, va_list ap): Adds multiple callback elements cb to the callback list
of n

• int vlink_rm_callback(struct vlink_subsys *n, struct vlink_callback

*cb): Removes a single callback element cb from the callback list of n

Currently possible commands that can be accessed from the vlinknlmsg within
a callback function are: VLINKNLCMD_ADD_DEVICE, VLINKNLCMD_RM_DEVICE,
VLINKNLCMD_START_HOOK_DEVICE and VLINKNLCMD_STOP_HOOK_DEVICE.

Adding and removing devices refer to virtual LANA networking devices. In
section 5.4, for instance, we describe the implementation of an Ethernet func-
tional block that is able to create virtual Ethernet devices that can be managed
with standard Linux tools such as ifconfig, where networking packets with
specific tags are processed. Such devices are created or removed via the vlink
VLINKNLCMD_ADD_DEVICE or VLINKNLCMD_RM_DEVICE commands.

The other two commands, namely VLINKNLCMD_START_HOOK_DEVICE and
VLINKNLCMD_STOP_HOOK_DEVICE, have the purpose to notify the vlink functional
block, that it must be switched active or inactive, so that network traffic will
bypass the standard Linux network stack and enter LANA’s packet processing
engines.

Figure 5.3: Virtual link subsystem invocation from user space

A typical call path for the virtual link framework from user space via Netlink
sockets can be seen in figure 5.3. The request first enters the Linux Netlink

5.2 Core Module and Extensions 67

messaging subsystem, which triggers vlink_rcv, the Netlink handler from the
virtual link framework. This handler locks the vlink_subsystem_table via
vlink_lock/vlink_unlock, and calls the generic Netlink receive function
netlink_rcv_skb. This function performs basic Netlink header checks and hands
over control to __vlink_rcv, which first checks if the request comes from a privi-
leged user, then looks up the corresponding subsystem via __vlink_subsys_find

and delivers the payload to the callback functions through __vlink_invoke. If
a hook has been started, the functional block kernel module’s reference counter
is incremented by the virtual link framework, so that it prevents the user from
unloading the kernel module.

In this work, we have implemented two functional blocks (section 5.2.4) that
make use of the virtual link framework.

5.2.4 Functional Block, Notifier, Registry and Builder Ex-
tension

The functional block and functional block builder extension of LANA provides
a common generic framework for implementing functional blocks as described
in section 5.4. The structure of a functional block instance that is part of the
protocol stack looks like the following:

struct fblock {

char name[FBNAMSIZ];

void __percpu *private_data;

int (*netfb_rx)(const struct fblock * const self,

struct sk_buff * const skb,

enum path_type * const dir);

int (*event_rx)(struct notifier_block *self, unsigned long cmd,

void *args);

struct fblock_factory *factory;

struct fblock_notifier *notifiers;

struct fblock_subscrib *others;

struct rcu_head rcu;

atomic_t refcnt;

idp_t idp;

spinlock_t lock; /* Used in notifiers */

} ____cacheline_aligned;

This main structure is cache line aligned, so that the element name can be
used in the crit-bit tree for functional block retrieval i.e., during requests from
user space. Therefore, the name element must also be unique. The next structure
element is private_data which represents a pointer to the working data of a func-
tional block instance. This can, for instance, include the bound egress and ingress

5.2 Core Module and Extensions 68

functional blocks or other implementation-specific data. This private_data

memory is a __percpu pointer, which means that the allocated memory is only
accessed CPU local. This memory is allocated NUMA-aware in case of SMP sys-
tems. netfb_rx and event_rx are two receive functions that are implemented
by the functional block module. These functions have a reference to their func-
tional block structure, so that private data can be accessed within the function
implementation. This access is performed directly from netfb_rx and indirectly
via the container_of macro in event_rx through the notifier block structure.
The next element is a pointer to the functional block factory element that is
used by the functional block builder. notifiers and others are lists that man-
age event notification subscriptions by the functional block notifier. Locking for
this is performed via the lock element. The rcu element is used to schedule the
structure for the RCU deletion queue, that gets active after a RCU grace period.
refcnt tracks the number of users of this current functional block instance, so
that the block gets not cleaned up during usage. If the refcnt reaches the value
zero, then this functional block instance will automatically be removed from the
system. Finally, idp is the unique information dispatch point value of this func-
tional block instance. All structure members are accessed via RCU protection.
Similar to crit-bit tree nodes, the functional block main structure is allocated
through an slab kernel memory cache that uses hardware alignment.

The functional block builder’s factory element of this structure has the fol-
lowing layout:

struct fblock_factory {

char type[TYPNAMSIZ];

enum fblock_mode mode;

struct module *owner;

struct fblock *(*ctor)(char *name);

void (*dtor)(struct fblock *fb);

void (*dtor_outside_rcu)(struct fblock *fb);

} ____cacheline_aligned;

Since a crit-bit tree is used for looking up the builder’s ctor constructor func-
tion, the structure is therefore also cache line aligned and has a unique type

name element. For instance, for the fb_bpf functional block, the type name bpf

is being used. Next to the constructor ctor, there are two destructor callback
functions that are implemented by the functional block module, namely dtor

and the optional dtor_outside_rcu. The former is a functional block instance
cleanup function that is called within RCU context and the latter is a cleanup
function that is called before the RCU context. Hence, dtor_outside_rcu can
do some spadework where parts of this function may call the kernel scheduler e.g.
through a kernel mutex triggered by changes on Ethernet devices, since this is
forbidden in the non-preemptive dtor context. The element owner is a reference

5.2 Core Module and Extensions 69

to the functional block kernel module, that will get locked from unloading if at
least one functional block instance is present in the LANA stack. Finally, the
element mode gives information about the working mode of the functional block,
more concrete, if it is a traffic source (MODE_SOURCE), a traffic sink (MODE_SINK),
or a forwarding element (MODE_DUAL).

A functional block notifier element, which is used within the main structure of
the functional block, namely notifiers, consists of the following parts:

struct fblock_notifier {

struct fblock *self;

struct notifier_block nb;

struct fblock_notifier *next;

idp_t remote;

};

In this structure, the element self is a back-reference to its functional block
main structure, since the event callback function event_rx from the main struc-
ture gets the notifier_block’s nb element as an argument. By this, the fblock_notifier
container can be fetched via the kernel’s container_of macro. Then, self pro-
vides a reference to the main structure, where per-CPU private_data can be
accessed to store or read functional block private information. The element next
points to the next fblock_notifier in the list and remote is the information
dispatch point of the functional block instance where this block is subscribed to.
Summarizing, this list contains all subscriptions of this functional block to remote
ones.

The element others of the functional block’s main structure contains an atomic
notifier head, namely subscribers:

struct fblock_subscrib {

struct atomic_notifier_head subscribers;

};

These are other functional blocks that would like to be informed about new
events of this functional block. Hence, this list contains remote nb elements of the
structure fblock_notifier that are invoked by the notification chain framework
of the Linux kernel.

The functional block registry is realised by two mappings: first, a crit-bit tree
is used to translate the unique functional block instance name to a pointer to
its main structure. Second, a kernel radix-tree is used to translate information
dispatch points into a pointer to its main structure. The difference between our
crit-bit tree and the kernel radix tree is, that the kernel radix tree uses long

integers instead of character arrays as keys. Both data structures are utilizing
RCU protection.

5.2 Core Module and Extensions 70

The functional block builder, that maintains the presented fblock_factory

structure, consists of a crit-bit tree for translating the functional block type name
to the corresponding pointer to its factory structure. It is then responsible for
calling the constructor’s callback function and returns a newly spawned functional
block instance.

A selection of API calls that are related to functional blocks are:

• inline void get_fblock(struct fblock *fb): Increments the functional
blocks (fb) reference counter, hence protects the functional block instance
from being freed

• inline void put_fblock(struct fblock *fb): Decrements the func-
tional blocks (fb) reference counter; if the count is zero, the optional
dtor_outside_rcu destructor is invoked and the functional block is en-
queued into the RCU’s deletion queue

• struct fblock *alloc_fblock(gfp_t flags): Allocates a new functional
block structure from the functional block kernel memory cache; depending
on the flags, the allocation can be atomic (GFP_ATOMIC) or preemptive
(GFP_KERNEL) for instance

• void kfree_fblock(struct fblock *fb): frees an allocated functional
block structure (fb) by putting it back into the functional block kernel
memory cache

• int init_fblock(struct fblock *fb, char *name, void __percpu *priv):

Initializes the elements of a newly allocated functional block structure fb

with name name and private data priv

• void cleanup_fblock(struct fblock *fb): Notifies fb’s subscribers that
fb will be removed, calls fb’s dtor destructor function, and frees its noti-
fication subscriptions; mainly called from within free_fblock_rcu

• void free_fblock_rcu(struct rcu_head *rp): If the functional blocks
reference count is zero, this function is being scheduled for RCU deletion on
the RCU grace period; via the container_of macro, the functional block
structure container is fetched and cleanup_fblock as well as kfree_fblock
performed

• int register_fblock(struct fblock *fb, idp_t idp): Registers a func-
tional block instance to an existing, but unused IDP into the radix tree

• int register_fblock_namespace(struct fblock *fb): Registers a func-
tional block instance to the system; a new unique IDP is acquired, the func-
tional block instance is registered into the radix tree and into the crit-bit
tree

• void unregister_fblock(struct fblock *fb): Unregisters a functional
block instance only from the radix tree, but not from the crit-bit tree

• void unregister_fblock_namespace(struct fblock *fb): Unregisters
a functional block instance from the system; the functional block instance

5.2 Core Module and Extensions 71

is removed from the radix tree, from the crit-bit tree and decrements its
reference count for RCU deletion

• void unregister_fblock_namespace_no_rcu(struct fblock *fb): Un-
registers a functional block instance from the system; the functional block
instance is removed from the radix tree, from the crit-bit tree, but does not
decrement its reference count

• struct fblock *search_fblock(idp_t idp): Searches a functional block
instance in the radix tree by its idp idp

• struct fblock *search_fblock_n(char *name): Searches a functional
block instance in the crit-bit tree by its name name

• void fblock_migrate_p(struct fblock *dst, struct fblock *src): Mi-
grates the private data of the functional block instance src to dst by drop-
ping dst’s data and transferring src’s data without copying

• void fblock_migrate_r(struct fblock *dst, struct fblock *src): Mi-
grates all data of the functional block instance except the private data of
src to dst by dropping dst’s data and transferring src’s data without
copying

• int fblock_set_option(struct fblock *fb, char *opt_string): No-
tifies the functional block instance fb with an event message that includes
a null-terminated key value option string opt_string

• int fblock_bind(struct fblock *fb1, struct fblock *fb2): Binds
two functional block instances to each other assuming that fb1 is ’on top’
of fb2 in the protocol stack

• int fblock_unbind(struct fblock *fb1, struct fblock *fb2): Un-
binds two functional block instances from each other that previously have
been bound to each other

• int subscribe_to_remote_fblock(struct fblock *us, struct fblock

*remote): Subscribes the functional block instances us to the remote func-
tional block instances remote, so that us gets an event message, if remote
notifies its subscribers

• void unsubscribe_from_remote_fblock(struct fblock *us, struct fblock

*remote): Unsubscribes the functional block instances us from the remote
functional block instances remote, so that us does not get messages from
remote anymore

• inline int notify_fblock_subscribers(struct fblock *us, unsigned

long cmd, void *arg): Invokes the atomic notification chain of the func-
tional block instance us with the command cmd and payload arg

Next to these API functions, there are also non lock-holding variants for some
cases and macros that are not further mentioned here.

All functional block instances with additional information such as their bound
functional block instances are exported to the procfs file /proc/net/lana/fblocks.

5.2 Core Module and Extensions 72

Moreover, a procfs directory /proc/net/lana/fblock/ is being created for func-
tional block specific procfs files.

5.2.5 Packet Processing Engine Extension

The packet processing engine extension, used to execute one functional block
receive handler after another, runs within the ksoftirqd, the kernel software
interrupt daemon, which is a low-priority per-CPU kernel thread.

Each CPU local packet processing engine has NUMA-aware structures for
packet- and functional block statistics and backlog queues. The backlog queue
holds socket buffers that are scheduled indirectly for LANA stack traversal. One
socket buffer at a time is usually directly processed by the packet processing en-
gine. In case a functional block instance spawns a new socket buffer, e.g. through
socket buffer cloning or through sending acknowledgement packets back to the
sender, it is scheduled for later processing in the CPU local backlog queue on the
next packet processing engine run.

The packet processing engine API only consists of four exported functions:

• int process_packet(struct sk_buff *skb, enum path_type dir): In-
vokes a packet processing engine run for a specific socket buffer skb in a
specific stack direction dir

• void engine_backlog_tail(struct sk_buff *skb, enum path_type dir):

Enqueues a socket buffer skb that needs to be processed by the packet pro-
cessing engine in a specific stack direction dir; processing is not performed
immediately, rather the packet will be processed on the next process_packet
invocation; scenarios for this function call are for instance functional block
instances that spawn new socket buffers during processing

• int init_engine(void): Initializes internal per-CPU data structures for
statistics and backlog queues

• void cleanup_engine(void): Cleans up internal per-CPU data struc-
tures

Within the RCU-protected process_packet function, the next information
dispatch point is read from the socket buffer via read_next_idp_from_skb and its
corresponding functional block structure pointer is being looked up. On success,
the functional blocks receive handler is being called via fb->netfb_rx(fb, skb,

&dir). The direction dir is handed over to the receive handler as a pointer,
so that a functional block instance can also flip the processing direction. The
functional block needs to take care of writing the next information dispatch point
into the socket buffer via write_next_idp_to_skb. Thereby, the engine loops
through all bound functional blocks as long as yet another information dispatch
point has been encoded. After having processed a particular socket buffer, the

5.3 User Space Configuration Tools 73

CPU local backlog queue is tested for waiting socket buffers. If at least one socket
buffer is present, it is dequeued and processed in the same manner.

The packet processing engine exports its per-CPU statistics into the procfs file
/proc/net/lana/ppe.

5.2.6 User-Interface Extension

Similar to the virtual link extension, the user-interface provides a Netlink group
for requests from user space configuration tools. Since all possible requests are
performed through this core extension, the user-interface is therefore one of the
main users of the exported functional block API. Depending on the Netlink com-
mand, there are eight different possibilities of processing a message. Internal
functions that can be accessed by a switch statement which tests for the Netlink
command are:

• static int userctl_add(struct lananlmsg *lmsg): Adds a new func-
tional block instance

• static int userctl_set(struct lananlmsg *lmsg): Sends an event mes-
sage to a functional block instance containing a key-value option string

• static int userctl_replace(struct lananlmsg *lmsg): Replaces one
functional block with another; optionally, private data can be dropped in-
stead of replaced

• static int userctl_subscribe(struct lananlmsg *lmsg): Subscribes
one functional block with another to receive event messages

• static int userctl_unsubscribe(struct lananlmsg *lmsg): Unsub-
scribes one functional block with another to not receive event messages
anymore

• static int userctl_remove(struct lananlmsg *lmsg): Removes a func-
tional block instance

• static int userctl_bind(struct lananlmsg *lmsg): Binds one func-
tional block instance with another

• static int userctl_unbind(struct lananlmsg *lmsg): Unbinds two
bound functional block instances

The struct lananlmsg is a generic structure such as in struct sockaddr and
can be casted to more context-specific structures.

5.3 User Space Configuration Tools

We have implemented two small central user space applications for configura-
tion of LANA, namely fbctl and vlink. Both send Netlink messages via the
AF NETLINK BSD socket to the user-interface extension (subsection 5.2.6) and

5.4 Functional Block Modules 74

to the virtual link extension (subsection 5.2.3). Both tools can only be executed
with a high level of privileges.
fbctl has equivalent commands as described in subsection 5.2.6 and is used to

maintain bindings, subscriptions, and the creation of ’normal’ functional blocks.
vlink is used to create virtual networking devices, to set up instances of vlink
functional blocks and to maintain redirection of traffic into the LANA stack.

5.4 Functional Block Modules

We have also implemented a small set of functional blocks. Two of them are vlink
functional blocks, one implements a BSD socket family and the rest of them is
about forwarding, statistics creation, packet cloning or packet filtering.

5.4.1 Ethernet, Simple

__netif_receive_skb

rx_handler

fb_eth_handle_frame

process_packet

Incoming Packets Outgoing Packets

fb_eth_netrx

dev_queue_xmit

process_packet

Figure 5.4: Simplified view of ingress and egress path of the Ethernet functional
block

The Ethernet vlink functional block connects networking devices to the LANA
stack. A single functional block instance is bound to a single networking device.
One such instance for the device eth0 is created with the vlink tool via vlink

ethernet hook eth0 and removed from the system with vlink ethernet unhook

eth0.
The packet path can be taken from figure 5.4. Recalling section 3.1, the ingress

point to LANA is located in the kernel receive function __netif_receive_skb.
Without explicitly patching the Linux kernel, this represents the earliest possible
interface in the receive path a kernel module can access. The functional block
instance registers a receive handler for the networking device that is executed
before the packet enters the Linux protocol stack. After having the packet pro-
cessed in the packet processing engine via fb_eth_handle_frame which invokes

5.4 Functional Block Modules 75

process_packet, the socket buffer is being dropped in every case, so that it can-
not reach the Linux protocol stack anymore. fb_eth_handle_frame performs
some basic packet checks, such as if the device origin of the socket buffer is from
a hooked Ethernet device or if its MAC address is valid, for instance. Afterwards,
the bound ingress information dispatch point is looked up, written to the socket
buffer via write_next_idp_to_skb and the packet processing engine is invoked.

The egress point is of different nature (figure 5.4): since no incoming packet
is handled in the functional blocks receive function, its only purpose is to trans-
mit socket buffers to the networking device by calling dev_queue_xmit and set-
ting the correct socket buffer’s networking device beforehand via skb->dev =

fb_priv_cpu->dev.

5.4.2 Ethernet, Vlink-tagged

In contrast to the Ethernet vlink functional block, the Ethernet vlink-tagged
functional block can create virtual Ethernet devices that are visible to standard
Linux tools such as ethtool or ifconfig.

Figure 5.5: Simplified view of ingress and egress path of the Ethernet vlink-tagged
functional block

Similar to VLANs, the Ethernet type field must consist of 0xAC as the first
byte and a second byte with the virtual device identifier. The virtual device
identifier is set up via the vlink tool i.e., vlink ethernet add mydev0 eth0

10 sets up a virtual Ethernet device that is visible under mydev0 and a functional
block instance that is bound to this device, and uses eth0 as a carrier device. If

5.4 Functional Block Modules 76

Ethernet traffic has an Ethernet type field of 0xAC0A, then this frame is received
on the virtual Ethernet device mydev0.

The ingress and egress packet path is slightly longer since the packet must pass
the virtual device and the carrier device (figure 5.5). fb_ethvlink_handle_frame’s
task is to perform basic packet checks and to redirect the frame to a possible vir-
tual Ethernet device, which then receives the socket buffer via
fb_ethvlink_handle_frame_virt before it passes it to the packet processing
engine via process_packet.

In the inverse direction (figure 5.5), the socket buffer is passed to eth_vlink_netrx,
similar as in the simple Ethernet functional block, but this time, the first dev_queue_xmit
call dispatches the socket buffer to the xmit function of the virtual Ethernet de-
vice rather than to the carrier’s driver directly.

5.4.3 Berkeley Packet Filter

We have implemented a packet filtering functional block that is based on the
Berkeley Packet Filter (BPF). Syntax and semantic of Berkeley Packet Filter
language is described in appendix section D.3. Once a packet filter has been
loaded into a BPF functional block instance, all traffic that passes this block
is evaluated through this filter and either passes it or fails it. In the latter
case, the socket buffer is being dropped by this block. The evaluation of filters
is done with the kernel virtual BPF machine that is invoked through the macro
SK_RUN_FILTER. The setup of filters happens via a procfs file within the directory
/proc/net/lana/fblock/. There, a user simply redirects the filter code into the
file with the Unix tool cat for instance.

We have developed a Berkeley Packet Filter compiler bpfc (appendix section
D.3) for the development of filters. bpfc’s output can directly be written to the
procfs file like bpfc myfilter > /proc/net/lana/fblock/myfb.

With bpfc, filters can be developed by applying the Assembler-like language
that is described in literature [31].

5.4.4 Tee

The tee functional block is a functional block that clones socket buffers. An in-
coming socket buffer is being copied to a new one, the information dispatch point
of the first subsequent bound functional block instance is written to the original
socket buffer, and the information dispatch point of the second subsequent bound
functional block instance is written to the newly created socket buffer. The latter
is scheduled for execution via the engine_backlog_tail function.

5.4 Functional Block Modules 77

5.4.5 Counter

The counter functional block creates a procfs file named after its functional block
instance within the directory /proc/net/lana/fblock/, so that the number of
packets and bytes that have passed this block can be exported.

The counter itself is a per-CPU counter unit, where each CPU only updates
statistics about packets that have passed this CPU, not others. Hence, during
access of the procfs file with standard Unix tools such as cat, data from all CPUs
are accumulated in kernel space.

5.4.6 Forwarding

The forwarding or dummy functional block is the simplest functional block of all.
It receives a socket buffer and immediately passes it to the next bound functional
block instance, without performing operations on the socket buffer.

5.4.7 PF LANA BSD Socket

The PF LANA functional block implements a BSD socket interface in order to
allow the development of user space applications such as in section 5.5. It there-
fore implements basic system calls for network communication from the kernel
space side, such as socket(2), close(2), recvfrom(2), sendto(2) or poll(2).
Sockets can then be created from user space with socket(AF_LANA, SOCK_RAW,

0). On successful socket creation, a functional block is implicitly instantiated
that is directly bound to this socket. Hence, the functional block instance is
destroyed on close(2), too.

A simplified view of the packet ingress and egress path in kernel space is shown
in figure 5.6. The egress path is less complex than the ingress path.

In the egress path, a send(2) system call is performed that switches the
context to the kernel space in CPU ring 0 and triggers the execution of the
PF LANA functional block socket handler lana_proto_sendmsg. Through the
socket structure, the corresponding functional block structure can be looked up.
Basic packet and socket checks are performed in lana_proto_sendmsg. If these
checks have been passed successfully, socket buffer is being allocated through
sock_alloc_send_skb. Afterwards, the socket buffer structure elements are ini-
tialized and the user space buffer is being copied into the kernel space socket buffer
through memcpy_fromiovec. Then, still in lana_proto_sendmsg, the bound in-
formation dispatch point is written into the socket buffer’s private data area and
the control is handed over to the packet processing engine in egress direction via
process_packet.

The ingress path (figure 5.6) is far more complex and starts for this functional
block through the process_packet function that calls the PF LANA functional
block’s packet receive handler that is named pf_lana_netrx. Similar to the

5.4 Functional Block Modules 78

Figure 5.6: Simplified view of ingress and egress path of the PF LANA functional
block

Ethernet functional blocks, this function performs socket buffer checks, such as
if the socket buffer is in shared use, so that it eventually must be cloned. The
control is then handed over to sk_receive_skb with the socket buffer and the
corresponding socket structure to this functional block instance as arguments. In
sk_receive_skb, the Berkeley Packet Filter machine is triggered, if a filter is
attached to this socket, and the socket receive queue is being checked, so that the
packet is dropped if the queue is already full. If the queue is not yet full, then the
function sk_backlog_rcv is called. This function internally calls the function
pointer that is defined by the corresponding socket functions, implemented in
PF LANA. Hence, lana_proto_backlog_rcv is triggered.

In general, such backlog functions of socket family implementations are used

5.4 Functional Block Modules 79

to process packets before they are enqueued into the sockets receive queue, for
instance to send acknowledgement packets back to the sender.

In case of PF LANA, we just check if the socket type is set to SOCK_RAW and
then trigger the function sock_queue_rcv_skb. The main purpose of sock_queue_rcv_skb
is to unlink the socket buffer from the networking device and to enqueue the
socket buffer into the sockets receive queue via __skb_queue_tail. Now, the
packet is only further processed if the corresponding user space process per-
forms a system call such as recv(2), that operates on the socket buffers re-
ceive queue. After the context is given to the kernel space, the recv(2) sys-
tem call invokes the PF LANA specific system call implementation, namely
lana_proto_recvmsg. This function first calls skb_recv_datagram, which trig-
gers __skb_recv_datagram. In __skb_recv_datagram, the socket buffer queue is
being peeked via skb_peek. If the system call flag MSG_PEEK is not present, then
the socket buffer is removed from the queue via __skb_unlink and the control
returns to lana_proto_recvmsg. This function then checks if the packet is trun-
cated and eventually sets proper flags for the user space caller. Afterwards, the
buffer is copied to the user space address space via skb_copy_datagram_iovec,
timestamps are added and the kernel space socket buffer is being freed.

5.5 Example Application 80

5.5 Example Application

Figure 5.7: LANA example application: voice-over-Ethernet

As an example application for LANA, we have implemented a simple voice-over-
Ethernet application (figure 5.7) based on the celtclient [93]. The application runs
in the Linux user space and interacts with ALSA [94], the advanced Linux sound
architecture, to read and write PCM (pulse code modulation) frames.

Machine 1 Machine 2

Userspace

Kernelspace

Hardware

PF_LANA
Voice Application

PF_LANA
Voice Application

NIC NIC

LANA LANA

LANA Datagram

1.

2.

FB1

FB2

FB3

FB1

FB2

FB3

Figure 5.8: LANA voice-over-Ethernet setup between two hosts with runtime
changes in the LANA stack

After capturing, the PCM frames are passed to the Speex [95] echo cancellation
and are encoded through the CELT low-latency audio codec [96] before they are
sent to the kernel with a PF LANA BSD socket. The latter passes the memory
through system calls to its corresponding kernel space functional block instance.
The PF LANA functional block instance then passes the created socket buffer to
a bound Ethernet vlink functional block to bring the data to the network.

5.5 Example Application 81

Another machine within the same LAN segment and the same LANA setup
receives the packet and forwards it into the user space via another PF LANA
BSD socket (figure 5.8). The voice data is then being put into a jitter buffer
and when the ALSA device signals that it is ready for processing the next PCM
frame, data is being dequeued from the jitter buffer, decoded through CELT and
written to the ALSA framework. This bidirectional data transmission through
our LANA framework (figure 5.8) shows it’s robustness of the code and also real-
time capabilities since the ALSA buffer needs to be filled periodically to not run
into an ALSA overrun or underrun.

More importantly, in the scenario of figure 5.8, we were able to change the
underlying communication stack within kernel space during runtime without a
notable voice interruption on the application side. During runtime, we inserted a
forwarding functional block (FB3) between the PF LANA functional block (FB1)
and the Ethernet functional block (FB2).

Chapter 6

Performance Evaluation

Within this chapter, we evaluate LANA regarding performance in packets per
second. At the beginning, we focus on functional verification of LANA and af-
terwards, we describe the hardware platform of our benchmarking setup. In the
next sections, we explain our measurement methodology, compare LANA to the
Linux networking stack, to the Click router and to the original ANA prototype.
Last but not least, we provide details of how we successively optimized the LANA
implementation towards its final packet processing rate.

6.1 Functional Verification

The Linux kernel does not support automatic testing frameworks such as the Test
Anything Protocol [97], since they are designed for user space applications and
run on top of the operating system kernel. Therefore, we have performed LANA
functional tests manually without the help of an automatic testing framework.
We have performed the following functional tests on our LANA implementation:

• Create a functional block instance under heavy load
√

• Remove a created functional block instance under heavy load
√

• Bind one functional block instance to another under heavy load
√

• Unbind two bound functional block instances under heavy load
√

• Subscribe one functional block instance to another under heavy load
√

• Unsubscribe two subscribed functional block instances under heavy load
√

• Replace one functional block instance with another under heavy load
√

• Redirect traffic into the LANA stack with a functional block instance of
fb_eth

√

• Create a virtual Ethernet device with fb_ethvlink
√

• Remove a virtual Ethernet device with fb_ethvlink
√

• Redirect tagged traffic into the LANA stack with a functional block instance
of fb_ethvlink

√

82

6.2 Measurement Platform 83

• Filter specific traffic (i.e., ARP, IPv4) with a functional block instance of
fb_bpf

√

• Duplicate a packet with a functional block instance of fb_tee
√

• Count the number of packets and Bytes with a functional block instance of
fb_counter

√

• Forward a packet to another functional block instance with the help of a
functional block instance of fb_dummy

√

• Transfer an incoming packet from kernel space to a PF_LANA user space
socket with a functional block instance of fb_pflana

√

• Transfer an outgoing packet from a PF_LANA user space socket to kernel
space with a functional block instance of fb_pflana

√

• Transfer datagrams between two hosts via PF_LANA
√

6.2 Measurement Platform

Each machine in our laboratory consists of the same hardware components. The
basic setup of our machines is described in the following:

Hardware:

• CPU: Intel Core 2 Quad, Q6600, 2.40GHz

– 4 cores
– L1 instruction cache: 32KB, L1 data cache: 32KB
– L2 cache: 4096KB

• RAM: 4GB

• NIC: Intel Corporation 82566DC Gigabit Ethernet Controller

– Onboard, PCI Express: 2.5GB/s, Width x1, supports NAPI

The basic setup for performing benchmarking consists of a traffic source that is
directly connected via Ethernet to a traffic sink (figure 6.1).

Traffic
Source

Traffic
Sink

Machine 1 Machine 2

Ethernet

Figure 6.1: Basic benchmarking setup

6.3 Measurement Methodology 84

6.3 Measurement Methodology

Each measurement value of section 6.4 represents the statistical median of a
measurement series of a specific benchmarking setup. A measurement series
consists of 7 measurement values that we recorded during our benchmark. For
instance, when measuring the packets per second performance of a certain traffic
sink, we started first with generating a maximum packet load from the traffic
source to the traffic sink, where each packet matches a requirement like a packet
size that is conform to RFC2544 [98]. These sizes include the maximum (non
jumbo frame) and minimum frame sizes permitted by the Ethernet standard and
a selection of sizes between these extremes with a finer granularity for the smaller
frame sizes and higher frame rates [98]. Then, we monitored our traffic sink
with the help of ifpps (appendix section D.2) and waited until the system has
stabilized if possible. Afterwards, we noted the packet per second measurement
value of the system that was generated by a counter application of the currently
evaluated framework.

6.4 Benchmarks

We first compare LANA against the bare performance of the Linux kernel, when
the kernel is configured to receive and drop packets immediately in order to gather
the systems limits and how they correlate to LANA. Afterwards, we measure
LANA’s internal scalability up to 50 chained forwarding functional blocks. Next,
we have developed a user space packet sniffing application that utilizes non-zero-
copy BSD sockets provided by i) PF SOCKET from Linux and ii) PF LANA
from LANA to determine how both relate to each other in terms of performance.
Furthermore, we compare LANA with the Click modular router and LANA with
the prototype of ANA.

6.4.1 LANA versus Linux and LANA’s Scalability

Short summary:

• Platform: Linux 3.0

• Test setup: 2 physical machines, direct connection

• Traffic generator: pktgen

• Result: in their minimal configuration, the Linux networking subsystem
and LANA have comparable packet per second performance

In our first setup, both machines from figure 6.1 run on a 64 Bit Debian
GNU/Linux 6.0.2.1 with a vanilla Linux 3.0.0 kernel that we have fetched from

6.4 Benchmarks 85

 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

 1.1e+06
 1.2e+06
 1.3e+06
 1.4e+06

 64
 128

 256
 512

 1024

 1280

 1518

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Packet Size in Bytes (RFC2544)

LANA versus Linux, Receive and Drop

Linux
LANA, 1 FB

LANA, 2 FBs

LANA, 3 FBs
LANA, 4 FBs
LANA, 5 FBs

LANA, 6 FBs
LANA, 7 FBs
LANA, 8 FBs

LANA, 9 FBs
LANA, 10 FBs

Figure 6.2: Linux versus LANA, 1-10 FBs, increment: 1 FB

Linus Torvald’s Git repository [85]. On the traffic source, the kernel space pktgen
was used as a traffic generator. The traffic sink either run i) LANA with a specific
functional block configuration, or ii) the usual kernel networking subsystem. The
generated packets on the traffic source were UDP packets of a specified length
from RFC2544 [98] with random payload. For reception, the traffic sink was put
into promiscuous mode via ifpps (appendix section D.2), so that the packets
arrive at the Intel e1000e driver first and were then forwarded to one of the two
networking subsystems through NAPI. Other, driver-specific interrupt throttling
settings as described in [99] were not performed for the e1000e driver on the
traffic sink. For both networking subsystems, we monitored the packets per sec-
ond rate via ifpps. The output values of ifpps showed us the network driver’s
receive statistics that could be gathered through procfs from user space. Since
both subsystems run within the ksoftirqd and have no further threads or socket
buffer queues, that could fiddle the network drivers receive statistics by exiting
the ksoftirqd earlier before all packets have been processed. We used these
values to generate our graphs from figure 6.2 and figure 6.3.

Figure 6.2 shows the maximum packet per second rate that can be achieved
with the traffic sink’s system on Linux and LANA. In both cases packets were
received and dropped immediately. In case of LANA, we determined the over-
head of the framework by creating a simple forwarding functional block that
receives the packet and passes it to the next one until it is dropped by the packet
processing engine after it has passed the last block. The forwarding functional

6.4 Benchmarks 86

block chain length reaches from only one functional block up to ten functional
blocks, each scenario increased by one functional block. We assume that systems
running LANA have an average of 5 till 10 functional block instances. The bare
comparison of the Linux kernel’s versus the LANA framework’s receive-and-drop
performance is represented by the graph Linux respectively LANA, 1 FB in figure
6.2. Both graphs overlap each other which means that the bare receive-and-drop
performance in packets per second is alike. Speaking in numbers, we were able
to process about 1,38 million 64 Byte packets per second in both cases, which is
only 100,000 packets per second less from processing Gigabit Ethernet at wire-
rates. We assume that this is rather a limitation of our network adapter and
not of Linux or our LANA framework. When it comes to packet sizes equal to
and larger than 128 Byte, the packets per second rate has no significant differ-
ences for all LANA configurations from figure 6.2 compared to the Linux kernel
maximum. Even with a chain of 10 forwarding functional blocks in the LANA
stack, a packet per second rate of roughly 1,18 million 64 Byte packets can be
achieved. Furthermore, it is noteworthy that the packet processing at such high
packet rates in the ksoftirqd and therefore in LANA, too, is CPU-friendly to
that regard, that the kernel scheduler tries to distribute the load in a low-priority
per-CPU ksoftirqd thread. Thus, other important user space processes are not
further disturbed. Also, the packet per second rates of both Linux and LANA
were stable, which means that during monitoring the system, there was no no-
tably deviation of more than 20,000 pps of our measurement values. For a packet
size of 1,518 Byte, a packet per second rate of approx. 81,000 was achieved.

Short summary:

• Platform: Linux 3.0

• Test setup: 2 physical machines, direct connection

• Traffic generator: pktgen

• Result: the performance of LANA with long functional block chains (> 10)
drops due to blocking of the ksoftirqd; chains > 10 are not recommended
and also rarely needed since a protocol stack is usually smaller

Since we are interested in LANA’s framework scalability, we continued chaining
forwarding functional blocks from 10 up to 50 functional blocks by incremental
steps of 5 functional blocks. The results are presented in figure 6.3 together
with the previous Linux maximum rates for comparison. Network packets with
512 Bytes or more, still have the Linux maximum rates, but in case of packets
smaller than that, we notice a rather dramatical drop in performance the more
functional blocks are chained together. We assume that there are two reasons
for this behaviour: The first, less significant reason is assumed to be related

6.4 Benchmarks 87

 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

 1.1e+06
 1.2e+06
 1.3e+06
 1.4e+06

 64
 128

 256
 512

 1024

 1280

 1518

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Packet Size in Bytes (RFC2544)

LANA versus Linux, Receive and Drop

Linux
LANA, 10 FB
LANA, 15 FB

LANA, 20 FBs
LANA, 25 FBs
LANA, 30 FBs

LANA, 35 FBs
LANA, 40 FBs
LANA, 45 FBs

LANA, 50 FBs

Figure 6.3: Linux versus LANA, 10-50 FBs, increment: 5 FBs

to the introduced layer of indirection, namely information dispatch points, that
are looked up in LANA. Since this is deeply wired into LANA’s basic idea and
architecture, it is very unlikely that this layer is removed. The second reason
for this observed drop in performance is assumed in the ksoftirqd processing.
Since the packet processing engine runs directly within the ksoftirqd’s per-CPU
threads, the ksoftirqd therefore needs to wait until the packet processing engine
has finished. Since the packet processing engine does not run in an extra thread
(section 6.5), it is at same performance rates as the Linux networking subsystem.
However, it comes with the trade-off, that an expensive packet processing blocks
the ksoftirqd from processing other packets on a specific CPU.

Our future work will therefore investigate Van Jacobson’s idea of network chan-
nels [100] for our LANA framework, so that we can postpone expensive work to
a later point in time to exit the packet processing engine earlier. This kind of
lazy evaluation could lead to a higher packet per second rate, since then the
ksoftirqd will be able to process more packets in a given time than the current
framework.

Concluding, this benchmark demonstrated that the LANA framework has com-
petitive performance to the Linux kernel networking subsystem when it comes to
packet reception. However, we do not necessarily recommend building a packet
path that must pass more than 10 functional blocks in series when there is a de-
mand for a high packet processing performance at the same time. Nevertheless,
we naturally expect a similar, but slightly less fatal performance degrade in the

6.4 Benchmarks 88

classical Linux protocol stack for such a scenario.

6.4.2 LANA’s PF LANA versus Linux’s PF PACKET Socket

Short summary:

• Platform: Linux 3.0

• Test setup: 2 physical machines, direct connection

• Traffic generator: pktgen

• Result: the PF LANA BSD socket has comparable performance to the
PF PACKET BSD socket, on some packet sizes even a slightly better packet
per second performance

 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

 1.1e+06
 1.2e+06
 1.3e+06
 1.4e+06
 1.5e+06

 64
 128

 256
 512

 1024

 1280

 1518

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Packet Size in Bytes (RFC2544)

Userspace BSD Socket Sniffer: PF_LANA versus PF_PACKET

Physical max
Linux max

Linux PF_PACKET
LANA max

LANA PF_LANA

Figure 6.4: User space BSD socket sniffer: PF LANA versus PF PACKET

The second benchmark, presented in figure 6.4, refers to both BSD socket im-
plementations, PF LANA from LANA and PF PACKET provided by the Linux
networking subsystem. Our area of interest in this benchmark concerns the packet
per second processing rates from user space applications. For this purpose, we
have implemented two raw network packet sniffer applications which invoke the
PF LANA respectively PF PACKET BSD socket family for capturing packets
from user space, both in a non-zero-copy manner. The operating system and
software distribution are the same as in benchmarks of 6.4.1, both machines run

6.4 Benchmarks 89

a vanilla Linux 3.0.0 kernel and a Debian GNU/Linux 6.0.2.1 on top of it. Also
in this benchmark, we have used pktgen as a traffic generator on our traffic
source from figure 6.1. The traffic sink had either a PF PACKET traffic sniffer
application or a PF LANA one. The latter consisted of the kernel space LANA
framework which was running with the Ethernet vlink functional block fb_eth

that was bound to the PF LANA socket’s functional block instance of fb_pflana.
Both user space applications performed recvfrom(2) system calls to fetch net-
work packets from kernel space to count received packets and bytes. Hence, we
used these numbers to generate our graphs from figure 6.4. For comparison, we
have also included the Linux and LANA kernel space maximum receive values,
that both are equal to each other. The maximum physical Gigabit Ethernet rates
have been included, too. Taken from the results, packet sizes that are larger than
or equal to 512 Byte do not differ from their maximum physical values. For
smaller packet sizes, the maximum values of both, PF LANA and PF PACKET,
also differ not significantly. PF LANA has slightly better packet per second re-
sults (roughly 20,000 packets per second more) than PF PACKET for packet
sizes of 128 and 256 Bytes. We assume that in PF LANA, the critical receive
path could be shorter than in PF PACKET. The maximum packet per second
values for PF LANA and PF PACKET for 64 Byte packets are near 850,000
packets per second from user space. Also, the measured results were stable with
only minor deviations.

In conclusion to this benchmark, we have reached similar, and partly even bet-
ter packet reception rates for our PF LANA BSD socket compared to the Linux
PF PACKET socket. For LANA, this means, by having more flexibility in the
underlying protocol stack, user space applications can yet expect a competitive
packet performance from kernel space.

6.4.3 LANA versus Click Modular Router

Short summary:

• Platform: Linux 3.0 (LANA, Click in user space), Linux 2.6.38 (Click in
kernel space)

• Test setup: 2 physical machines, direct connection

• Traffic generator: pktgen

• Result: LANA is more than twice as fast as Click running in user space,
processes about 400,000 packets per second more than Click in kernel space;
LANA is more resource sparing than Click

Our third benchmark focusses on the framework overhead of LANA and MIT’s
Click (section 3.3). For LANA, the same software setup applies as in both pre-
vious benchmarks from subsection 6.4.1 and 6.4.2. In case of Click, we had two

6.4 Benchmarks 90

 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

 1.1e+06
 1.2e+06
 1.3e+06
 1.4e+06

 64
 128

 256
 512

 1024

 1280

 1518

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Packet Size in Bytes (RFC2544)

LANA versus Click (userspace), Receive and Drop

LANA, 1 FB
LANA, 4 FBs
LANA, 8 FBs

LANA, 10 FBs
Click-usr, 1 Elem

Click-usr, 4 Elems

Click-usr, 8 Elems
Click-usr, 10 Elems

Figure 6.5: Click running in user space versus LANA

different setups, since Click can be run from user space and also from kernel space.
The first evaluation whose results can be found in figure 6.5 compared LANA to
Click running in user space. There, Click was compiled with multi-threaded sup-
port and also run on a vanilla Linux 3.0.0 kernel with a Debian GNU/Linux
6.0.2.1 software distribution. In this case, pktgen was also used by the traffic
source (figure 6.1). For Click, we have written a SimpleFwd element (figure 6.8)
that can be chained together with other Click elements, where it just forwards
packets to the next bound element. Furthermore, we used elements that were
already provided by the Click software distribution, such as FromDevice(eth0)

for forwarding packets from the networking device into the Click framework, or
SimpleIdle for dropping packets by the end of the processing scheme. In be-
tween, we utilized the SimpleFwd element. In our measurement, the user space
variant of Click reaches a maximum of about 550,000 64 Byte packets per second
with just one element (figure 6.5). Compared to that, LANA is more than twice
as fast. Concerning packet sizes of 128 Bytes, LANA reaches about 800,000 pack-
ets per second and Click roughly 300,000 packets per second less from user space.
We assume that the reason for this is mostly due to copying packets between
address spaces and due to context switching. For all packet sizes larger than or
equal to 256 Bytes, we did not find a significant difference between Click and
LANA. We noted that the performance differences that relate to the number of
Click elements were less significant than those of LANA’s functional blocks. We
assume that the reason for this - as mentioned in subsection 6.4.1 - relies on the

6.4 Benchmarks 91

 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

 1.1e+06
 1.2e+06
 1.3e+06
 1.4e+06

 64
 128

 256
 512

 1024

 1280

 1518

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Packet Size in Bytes (RFC2544)

LANA versus Click (kernelspace), Receive and Drop

LANA, 1 FB
LANA, 4 FBs
LANA, 8 FBs

LANA, 10 FBs
Click-kern, 1 Elem

Click-kern, 4 Elems

Click-kern, 8 Elems
Click-kern, 10 Elems

Figure 6.6: Click running in kernel space versus LANA

fact that processing packets in different threads is, on the one hand, indepen-
dent from the ksoftirqd and therefore less disruptive, but, on the other hand, it
increases the system’s context switching rate, adds another layer of abstraction
through threads.

When setting up the kernel space Click, we encountered quite a lot of problems
to get it compiled. Since Click and all its elements are written in C++ and
the Linux kernel in C and Assembler, modifications to the Linux source code
were needed, because i) Click developers did some changes in the networking
device structure and in some Linux network device drivers and ii) due to Click
compatibility, the kernel gets compiled with G++ instead of GCC. The latter
reason also brings other issues to the front, such as different syntax schemes of
G++ when it comes to inline Assembler. Therefore, source code regions that
do not interact with Click were changed, too. Hence, Click ships patches for the
Linux source code and requires a recompilation of the kernel. These patches reach
from Linux 2.2.18 until 2.6.24, but not further. Our first try was to setup an old
2.6.24 kernel on our system. We found out that it is quite problematically to i)
run an old Linux kernel on a modern Debian GNU/Linux due to the lack of some
file systems that are required by the Grub 2 boot loader (namely devtmpfs), ii)
to run an old Linux kernel in combination with an old software distribution, such
as Debian GNU/Linux ’Etchnhalf’ due to the fact that it required drivers for our
DVD drive during Live CD boot or iii) due to a CPU-related kernel panic during
Live CD boot on a modern processor. In fact, we weren’t able to get such an

6.4 Benchmarks 92

old system running on our benchmarking hardware, until we found out after a
mailing list conversation with Click developers, that there is an undocumented
’patchless’ way of getting Click into kernel space. This means, we could build
the Click kernel module without actually patching and recompiling an old Linux
kernel. The latest possible Linux kernel for this method was Linux 2.6.38. We
found out that stripping the debug symbols of the Click kernel module (strip
-g click.ko) was helpful to reduce the image size and finally let Click run in
kernel space, so that we could perform our benchmarks.

During the Click kernel space benchmark, we used the same Click configura-
tions and packet sizes as in user space. We first stumbled upon a phenomenon
that neither we nor the Click developers on the mailing list [101] were able to
explain: our Click setup in kernel space reached a maximum of about 460,000 64
Byte packets per second, which is even less than Click in user space, while at the
same time having context switching rates of about 200,000 context switches per
second. We assume, there is an issue related to Click’s scheduling unit. However,
after finding a different method to resolve this issue [101], by adding an additional
Click element to the end of Click’s processing chain, we reached a maximum of
about 900,000 64 Byte packets per second as presented in figure 6.6. In com-
parison to LANA, this value is quite instable and diverts about 100,000 packets
per second in both directions. In contrast to LANA, we observed that at least
one CPU was on its maximum with an approximate context switching rate of
4,000 context switches per second in Click while in LANA, we observed context
switching rates of about 100 or less context switches per second on a high 64 Byte
packets per second rate. Since LANA runs within ksoftirqd, there was no other
competing kernel thread that needed a constant high scheduling rate. Thus, the
context switching rate could be reduced and at the same time we were able to
process more packets per second.

At the time of Linux 2.2 and 2.4, Click’s own NAPI-like device driver polling
approach seemed to be more successful than the Linux networking subsystem [18],
since NAPI was introduced at a later point in time to reduce the NIC’s interrupt
load. However, by having NAPI on most common networking device drivers,
nowadays it seems that Click’s original approach is rather in competition to the
Linux NAPI threads, so that this could explain the loss in packet per second
performance and the partly odd scheduling or context switching behaviour.

Concluding, we find that our LANA framework is more than twice faster than
Click in user space and is able to process nearly 400,000 64 Byte packets per
second more than Click in kernel space. However, Click was more stable than
LANA when it comes to the number of chained elements respectively functional
blocks as shown in figure 6.7. We assume, the reason for this boils down to the
fact that i) Click has no such abstraction as information dispatch points, since
Click cannot be reconfigured during runtime and hence avoid this additional layer
of abstraction and ii) to the kernel thread versus ksoftirqd trade-off. Further,
we found that LANA is more CPU-friendly than Click even while being able to

6.4 Benchmarks 93

 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

 1.1e+06
 1.2e+06
 1.3e+06
 1.4e+06
 1.5e+06

 1 2 3 4 5 6 7 8 9 10

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Number of FBs or Elements

Click versus LANA, 64 Byte packets

Physical max
Linux max

LANA
Click-userspace

Click-kernelspace

Figure 6.7: Click versus LANA, 64 Byte packets

process a significant higher number of packets per second.

6.4 Benchmarks 94

File simplefwd.hh:

#ifndef CLICK_SIMPLEFWD_HH

#define CLICK_SIMPLEFWD_HH

#include <click/element.hh>

CLICK_DECLS

class SimpleFwd : public Element { public:

SimpleFwd();

~SimpleFwd();

const char *class_name() const { return "SimpleFwd"; }

const char *port_count() const { return "-/-"; }

const char *processing() const { return "a/a"; }

const char *flow_code() const { return "x/y"; }

void push(int, Packet *);

Packet *pull(int);

};

CLICK_ENDDECLS

#endif

File simplefwd.cc:

#include <click/config.h>

#include "simplefwd.hh"

CLICK_DECLS

SimpleFwd::SimpleFwd() { }

SimpleFwd::~SimpleFwd() { }

void SimpleFwd::push(int, Packet *p)

{

output(0).push(p);

}

Packet *SimpleFwd::pull(int)

{

Packet* p = input(0).pull();

if (p == 0) {

return 0;

}

return p;

}

CLICK_ENDDECLS

EXPORT_ELEMENT(SimpleFwd)

ELEMENT_MT_SAFE(SimpleFwd)

Figure 6.8: A simple Click C++ forwarding element, which implements push and
pull that we have written for our benchmark

6.4 Benchmarks 95

6.4.4 LANA versus ANA’s Prototype

Short summary:

• Platform: Linux 3.0

• Test setup: 2 physical machines, direct connection

• Traffic generator: trafgen (appendix section D.1)

• Result: LANA outperforms the ANA prototype significantly; it is about
21 times faster than ANA

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 64
 128

 256
 512

 1024

 1280

 1518

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Packet Size in Bytes (RFC2544)

LANA versus ANA (userspace), Receive and Drop

LANA, 1 FB
LANA, 4 FBs
LANA, 8 FBs

LANA, 10 FBs
ANA-usr, 1 Elem

ANA-usr, 4 Elems

ANA-usr, 8 Elems
ANA-usr, 10 Elems

Figure 6.9: ANA running in user space versus LANA

The last benchmark takes the ANA prototype into account and compares it to
LANA. Similar to Click, ANA can be run from user space as well as from kernel
space. The first benchmark that is shown in figure 6.9 and in figure 6.10 includes
ANA running from user space. Therefore, we were able to run a vanilla Linux
3.0.0 kernel together with a Debian GNU/Linux 6.0.2.1 on both, the traffic source
and the traffic sink. Unlike LANA, Linux or Click, in this scenario we weren’t
able to use the kernel space pktgen on our traffic source, since the ANA prototype
expects a specific packet payload, which cannot be configured with pktgen. For
this benchmark, we have therefore written our own high-performance zero-copy
traffic generator trafgen (appendix section D.1).

To bootstrap the ANA stack on the traffic sink, it needs to run on both ends,
the sink and the source, since information dispatch points are dynamically created

6.4 Benchmarks 96

 1

 10

 100

 1000

 10000

 100000

 1e+06

 64
 128

 256
 512

 1024

 1280

 1518

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Packet Size in Bytes (RFC2544)

LANA versus ANA (userspace), Receive and Drop

LANA, 1 FB
LANA, 4 FBs
LANA, 8 FBs

LANA, 10 FBs
ANA-usr, 1 Elem

ANA-usr, 4 Elems

ANA-usr, 8 Elems
ANA-usr, 10 Elems

Figure 6.10: ANA running in user space versus LANA (same as figure 6.9, but with
logarithmic y-axis)

by the publish subscribe mechanism of ANA. Further, we have developed simple
ANA forwarding bricks for evaluating the ANA framework. Unlike LANA or
Click, where we only needed to develop such a functional block or element once,
in the original ANA, a forwarding brick must be developed for every new element
in the forwarding chain. After setting up ANA on both sides, our procedure
was to sniff the raw packet payload with netsniff-ng -C that was exchanged
between both machines in order to gather valid ANA packets and configure a
trafgen packet including this payload. The results from figure 6.9 show a rather
weak overall performance compared to Click, LANA or Linux.

For instance, on 64 Byte packets, LANA with one functional block is about 21
times faster than ANA running in user space with one functional block. As can be
seen in figure 6.10, where the y-axis has logarithmic scaling, ANA’s performance
dramatically drops on more than one functional block. For instance, having 10
functional blocks in ANA chained together, we only reached about 4,500 64 Byte
packets per second, whereas LANA still processes 1,173,000 packets per second,
which is 260 times more than ANA. Detailed maximum rates compared to the
number of chained functional blocks can be found in figure 6.11. We assume that
an explanation of ANA’s performance mainly resides its design as discussed in
chapter 3. One of the aims in ANA was to design a robust architecture, so that
if one brick crashes due to a malicious behaviour, others will not be interrupted
in processing. Therefore, by running ANA in user space, each brick runs as a
separate process that performs interprocess communication (IPC) with ANA’s

6.4 Benchmarks 97

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1 2 3 4 5 6 7 8 9 10

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Number of FBs or Elements

ANA versus LANA, 64 Byte packets

Physical max Linux max LANA ANA-userspace

Figure 6.11: ANA versus LANA, 64 Byte packets

central MINMEX. For a single incoming network packet, the following scenario
for three chained ANA bricks can be considered: 1) the packet arrives at the
MINMEX first, that was copied from kernel space to user space, 2) via IPC it
is sent to the first brick via the sendto(2) system call, 3) it is received by the
first brick via the recvfrom(2) system call, 4) after having processed parts of
the packet, the first brick sends the network packet to the information dispatch
point of the second brick via the sendto(2) system call, 5) the MINMEX receives
the network packet from the first brick via the recvfrom(2) system call, 6) the
MINMEX looks up the corresponding brick and sends the network packet to the
second brick via the sendto(2) system call, 7) the second brick receives the packet
via the recvfrom(2) system call, 8) again, after having processed the packet, the
second brick sends it back to the MINMEX via the sendto(2) system call, 9)
the MINMEX receives it via recvfrom(2) and sends it to the third ANA brick
through sendto(2), 10) the third ANA brick receives the network packet via
recvfrom(2) and finishes processing.

The described processing chain was just a simplification, but the IPC overhead
for just a single incoming packet seems immense. Thus, ANA in user space results
in such a performance.

For the kernel space benchmarking of ANA, we were trapped with similar issues
that are described in subsection 6.4.3: getting an old Linux distribution running
on our rather modern benchmarking machines. We have therefore decided to
setup a kernel-based virtual machine (KVM [102]) with Intel’s VT hardware

6.4 Benchmarks 98

support. Within our virtual environment we were able to setup an Ubuntu 6.04
that has a Linux kernel, which is supported by ANA. We have developed the
following script to start our virtual machine and to make it successfully visible
to our traffic source via IP masquerading on the host machine:

#!/bin/sh

modprobe tun

modprobe kvm-intel

brctl addbr br0

ifconfig br0 10.0.0.254/24 up

tunctl -t tap0 -b -u root

ifconfig tap0 up 0.0.0.0 promisc

brctl addif br0 eth0

brctl addif br0 tap0

route add -host 10.0.0.1 dev br0

echo "0" > /proc/sys/net/bridge/bridge-nf-call-arptables

echo "0" > /proc/sys/net/bridge/bridge-nf-call-iptables

echo "0" > /proc/sys/net/bridge/bridge-nf-filter-vlan-tagged

echo "0" > /proc/sys/net/bridge/bridge-nf-call-ip6tables

echo "0" > /proc/sys/net/bridge/bridge-nf-filter-pppoe-tagged

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

iptables -A FORWARD -i eth0 -o br0 -j ACCEPT

iptables -A FORWARD -i br0 -o eth0 -j ACCEPT

sleep 1

kvm -hda ./hd.img -m 2G -smp 4 -net nic -net tap,ifname=tap0,script=no \

-cdrom Downloads/ubuntu-6.06.1-desktop-amd64.iso

The virtual machine was configured to have 4 (real) CPUs, 2 GB RAM with
an emulated e1000 NIC through the virtual TAP device tap0 that was bridged
on the host kernel via br0 to eth0. After having fixed build dependencies in the
ANA kernel space build system, we were able to successfully load ANA modules
into the kernel. However, in contrast to the user space ANA, the kernel space
ANA failed to register the vlink module to the MINMEX. Thus, all subsequent
brick modules such as our forwarding functional blocks could not register to the
MINMEX, too, since the dependency of the vlink module has not been found.
Finally, we weren’t able to bring up ANA in kernel space mode.

Concluding, we were only able to benchmark ANA from user space with the
result that our newly developed LANA is about 21 times more efficient regarding
its packet per second rate than the original prototype. Also, when it comes to

6.5 LANA’s Road to 1.4 Mio Packets per Second 99

CPU usage, ANA used up to 100 percent CPU resources even in idle mode when
no incoming or outgoing packet was present, whereas LANA is CPU-sparing due
to the adaptive scheduling behaviour of the ksoftirqd. We have only found one
ANA kernel space functional block benchmark in literature [103] with an overall
best-case result of 366,000 packets per second. Even with this result, LANA is
more than 3.7 times faster compared to its original prototype implementation.

6.5 LANA’s Road to 1.4 Mio Packets per Sec-

ond

 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

 1.1e+06
 1.2e+06
 1.3e+06
 1.4e+06
 1.5e+06

kthr hp

kthr np

kthr cs

kthr ksirq-hrt

kthr ksirq-nrx

Pa
ck

e
ts

 p
e
r

S
e
co

n
d

Used Method

LANA's Road to 1.4 Mio pps, 64 Byte packets

Figure 6.12: LANA’s Road to 1.4 Mio pps: kthr hp (kernel thread, high prior-
ity), kthr np (kernel thread, normal priority), kthr cs (kernel thread, controlled
scheduling), kthr ksirq-hrt (kernel thread, in ksoftirqd execution context through
high-resolution timer), kthr ksirq-nrx (kernel thread, in ksoftirqd execution con-
text through NET RX tasklets)

During the design and implementation of LANA, we did not arrive at a packet
processing rate of approximately 1.4 Mio 64 Byte packets per second immediately.
It took us several stages of re-thinking and successively improving our LANA
back-end through a combination of monitoring the system’s behaviour with the
ifpps (appendix section D.2) tool, when put under pressure through a high
packet load.

As demonstrated in figure 6.12, we came across 5 different back-end mod-
els until we finally found the best solution that is most competitive with the

6.5 LANA’s Road to 1.4 Mio Packets per Second 100

Linux networking subsystem. Our very first approach, namely kthr hp, was a
high-priority per-CPU kernel thread, where our packet processing engines were
triggered from. Each thread had a socket buffer queue assigned to it, where
an upstream scheduling module enqueued an incoming socket buffer from the
network driver side into one of the socket queues i.e., through a round-robin
scheduling method. After performing measurements, we assumed that on a high
packet rate, the performance degradation down to about 700,000 packets per sec-
ond was caused due to a ’starvation’ of the ksoftirqd, since i) context switches
per second increased dramatically to more than 6000 context switches per second
where usual rates reside below 500 context switches per second and ii) the rate
of raised software interrupts for NET RX dropped at the same time to a value of
below 100 NET RX software interrupts per second where usual rates are above
1000 NET RX software interrupts per second.

This leads to the second model kthr np where we have reset the high thread
priority, since the ksoftirqd only runs on a low priority to not disturb important
user space processes. However, the processing rates only improved slightly to
about 750,000 packets per second, since the context switching rate remained at
a constantly high level. Naturally, this is due to the fact that on an otherwise
idle system, only ksoftirqd threads and LANA threads are competing with each
other, since both strive for having more CPU time for packet processing.

We then assumed that an explicit control of preemtiveness and scheduling with
the LANA thread could reduce context switching rates. The result of this ap-
proach improved packet processing rates up to about 900,000 packets per second
which can be seen in kthr cs.

Yet, the LANA threads were still competing with the lower prioritised ksoftirqd

threads, so that our next approach was to eliminate this competition by moving
the execution of LANA’s packet processing engines into the ksoftirqd itself. The
first, rather inelegant idea was to create high-resolution timer tasklets that trig-
ger the packet processing engines within their execution. High-resolution timer
tasklets are periodically handled within the ksoftirqd. Results of this model,
namely kthr ksirq-hrt, did not really improve, even though the context switch-
ing rates relaxed. Besides this, it needed an adaptive algorithm that would trigger
the next execution of the timer tasklet depending on the incoming packet load.

Finally, this lead to our last and most appropriate approach in model kthr
ksirq-nrx, where we directly trigger the packet processing engine within the
NET RX software interrupt context of the ksoftirqd. Thus, we were finally
able to reach packet processing rates of about 1.4 million packets per second.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis we have demonstrated that it is possible to combine three partially
conflicting goals into a future network architecture: i) high flexibility for network
programmers, ii) re-configuration of the network stack at runtime, and iii) high
packet processing rates. However, it is only possible to achieve such an architec-
ture, if great care is taken on its design with regard to principles from chapter 2,
and if great care is taken on low-level implementation details.

We have not only demonstrated that our LANA framework was able to sig-
nificantly outperform the previous ANA prototype implementation, we have also
demonstrated that this framework has a competitive performance to the Linux
kernel network stack with the advantage of high flexibility. We have shown that
our LANA framework is less resource hungry than the original prototype while
having higher throughput rates. Our LANA framework is even significantly faster
than modular research platforms such as MIT’s Click Modular Router.

Furthermore, we alleviated the development of new functional blocks by intro-
ducing basic concepts of object orientation into the framework even despite the
lack of it in the underlying programming language.

A first repository of functional blocks has been implemented and we have
demonstrated that we are able to send and receive network packets through
our PF LANA BSD socket family from user space via our kernel space LANA
framework to the networking device drivers and vice versa. For this purpose,
we have implemented a low-latency voice-over-Ethernet PF LANA application,
that utilizes ALSA and the CELT codec to bidirectionally transfer voice data. A
reconfiguration of the underlying LANA communication stack did not result in a
notable voice data interruption.

With this meta-architecture, we have set the foundation for i) the EPiCS net-
working layer, which needs to flexibly adapt to changing conditions during run-
time, as well as for ii) a new future Internet architecture with a design that allows

101

7.1 Conclusion 102

for new innovations in all network protocol layers.

Next to this final report, the following list shortly summarizes major contributions
of this thesis:

• The design and implementation of LANA’s core machinery. As demon-
strated in section 6.4, LANA is competitive in its processing capabilities
regarding packets per second with the Linux kernel networking subsystem.
Further, LANA is about 21 times faster than the original ANA prototype.
LANA is also more than twice as fast than similar frameworks such as
Click that runs from user space and it also outperforms it from kernel space
by more than 50 percent. Yet, LANA is more resource-sparing than the
original ANA prototype and Click as described in section 6.4.

• Next to this, we have implemented seven functional blocks for our LANA
framework:

– A packet counter functional block that exports its data to procfs,
– A Berkeley Packet Filter functional block that filters network packets,
– A simple forwarding functional block,
– A tee functional block whose purpose is to duplicate network packets,
– A vlink Ethernet functional block that serves as a per networking

device ingress and egress point for the LANA protocol stack,
– A vlink Ethernet functional block that allows for the creation of virtual

Linux Ethernet devices that can be managed with standard Linux tools
and that handle specific vlink-tagged LANA network traffic (similar
as in VLANs),

– A PF LANA BSD socket functional block that allows for the devel-
opment of LANA user space applications by offering standard sys-
tem calls such as socket(2), close(2), recvfrom(2), sendto(2) or
poll(2); buffers are then being copied into the kernel space and pro-
cessed within the LANA packet processing engine. Benchmarks from
section 6.4 show that it has a competitive and partly even slightly
better performance than non-zero-copy PF PACKET applications.

• The development of a voice-over-Ethernet user space sample application
that works on top of ALSA and uses the low-latency CELT audio codec,
Speex echo cancellation, jitter buffers and our PF LANA socket for sending
and receiving data through the LANA protocol stack. We have demon-
strated that LANA is able to bidirectionally transfer real-time voice data,
and that we are able to change the underlying protocol stack during runtime
without voice data interruption.

• The design and implementation of a high-performance user space zero-copy
traffic generator, namely trafgen (appendix chapter D.1), that is able to

7.1 Conclusion 103

generate up to 1.488 Mio 64 Byte packets per second on commodity Gi-
gabit Ethernet hardware, where usual user space traffic generators only
reach about 800,000 64 Byte packets per second. We have used this traffic
generator to perform an evaluation of the original ANA prototype and for
debugging purposes during the development of LANA.

• During the development of trafgen, we have found a potential null-pointer
dereference in the Linux kernel’s implementation of the PF PACKET BSD
socket. We have therefore created a patch [104] [105], which got accepted
by David S. Miller, the Linux networking subsystem maintainer, and is
scheduled for mainline inclusion for upcoming Linux kernel versions.

• The design and implementation of bpfc (appendix chapter D.3), a Berke-
ley Packet Filter compiler that is able to transform syntax as described in
literature [31] into a kernel readable format, that is applied in the Berkeley
Packet Filter virtual machine. This compiler can be seen as the supple-
ment of Eric Dumazet’s Berkeley Packet Filter Just-In-Time compiler [106]
that has recently been included into the mainline kernel for speeding up
the evaluation of filters. The output of bpfc can then be used by the ker-
nel Just-In-Time (JIT) compiler to generate architecture specific machine
opcodes. The bpfc has been built as a support for our LANA BPF func-
tional block, that can be used to filter specific network packets within the
LANA protocol stack. Next to this, bpfc even supports the translation of
undocumented BPF extensions, that are present in Linux kernels. We also
have developed a Vim syntax highlighting file for the BPF syntax [31] in
the VimL scripting language.

• The design and implementation of ifpps (appendix chapter D.2), a top-
like Linux kernel networking statistics monitor. With the help of ifpps, we
were able to track scheduling behaviour of the system in general and of net-
working software interrupts in particular, the networking device interrupt
load as well as transferred packet and byte statistics of a specific networking
device. The knowledge we have gained by using ifpps enabled us to derive
assumptions about the system’s behaviour, which lead to optimizations of
our LANA core machinery implementation (section 6.5).

• The design and implementation of a Linux kernel module that is able to
generate one-time stack traces (appendix chapter D.4) based on the Kprobes
framework of Linux. With the aid of this module, we were able to debug or
track stack frames from the invocation of a specific Linux symbol in order
to examine the packet path described in section 3.1. We then used the
knowledge gained from section 3.1 to find an appropriate interface or egress
and ingress point to the LANA protocol stack.

• We have published a paper and presented a poster of this work at the
ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems 2011 in New York, USA (appendix section A).

7.2 Future Work 104

• We have presented the results of this work at the EPiCS review meeting
of the EU 7th Framework Programme in Brussels, Belgium as part of the
EPiCS work package 4.

• We have presented the results of this work at the Intel European Research
and Innovation Conference 2011 in Dublin, Ireland in the context of network
infrastructures for ’smart connected devices’ in embedded intelligence.

Besides these major contributions, some minor contributions of this work include
things such as debugging code, setting up a Linux kernel cross-reference namely
LinGrok [66], and using this reference to gather knowledge of the packet path
from the device driver layer up to the BSD socket layer and vice versa, since such
information is hardly covered in recent literature.

Minor contributions also include the development of forwarding functional
blocks or elements in the ANA and Click framework, and debugging as well
as exploring code of both frameworks for resolving setup issues.

Last but not least, a minimal raw packet sniffer application for the PF PACKET
socket family and for the PF LANA socket family has been developed for per-
forming benchmarks on both socket families.

7.2 Future Work

Since the LANA core machinery is a meta-architecture with no functionality
regarding packet processing, we aim to complete our current functional block
repository with further protocols that allow for mechanisms such as routing.

Next to this, we plan to research on a mechanism that allows an automatic
configuration of LANA’s functional block stack of both communication entities.
Ideas for such a protocol could be based on the introduction of a qualified func-
tional block namespace that is similar to the namespace of Java packages. There,
an entity could initiate a stack negotiation by sending a specific list of qualified
functional block names including their order in the communication stack that are
needed for a proper communication. After having agreed over the used functional
blocks, they will be initiated on both sides, so that a communication channel can
be established.

Furthermore, (as already mentioned in section 6.4.1) we plan to take up Van
Jacobson’s ideas of network channels [100] to evaluate an improvement of LANA’s
framework performance for larger chains of functional blocks.

Within the EPiCS context, we plan to integrate LANA with ReconOS [107].
This will allow us to offload resource-intensive functional blocks such as encryp-
tion to hardware.

7.3 Acknowledgements 105

7.3 Acknowledgements

At first, I would like to thank Prof. Dr. Bernhard Plattner for the possibility
to write my master’s thesis at the Communication Systems Group of the Swiss
Federal Institute of Technology, Zurich (ETH Zurich).

Furthermore, I am deeply grateful to both of my advisors, Ariane Keller and
Dr. Wolfgang Mühlbauer for their support. During the time of my thesis, I’ve
learned a lot of new and interesting things, had very inspiring discussions and in
general a great time in Switzerland and at the Communication Systems Group.
I am already looking forward to continue my research within this group after
finishing my studies.

Moreover, I would like to thank Prof. Dr.-Ing. Dietmar Reimann from the
HTWK Leipzig and Prof. Dr. Bernhard Plattner from the ETH Zurich for their
supervision of my master’s thesis.

With this master’s thesis I complete my studies in computer science at the
HTWK Leipzig. Therefore, I would like to thank my friends from studying and
work, during my time as a student worker, for particular things and for every-
thing: Tobias Kalbitz, Thomas Reinhardt, Rico Tilgner, Stefan Seering, An-
drea Jazdzewski, Ansgar Jazdzewski, Michael Wünsch, Kerstin Erfurth, Robert
Fritzsche, Jens Hadlich, Emmanuel Roullit, Lars Wächtler, Mathias Lafeldt, In-
gmar Pörner, Steffen Bauch, Falk Morawitz, and all others I forgot to mention.

Last but not least, I would like to thank my girlfriend Katarzyna Czarny and
my parents for their support during my studies as well as the German National
Merit Foundation for providing me two scholarships.

List of Figures

1.1 Basic idea of the traditional, static TCP/IP architecture compared
to a dynamic (L)ANA protocol stack 7

2.1 Not so serious example of software architectural layers on an end
node (from: XKCD, 676, slightly modified). 10

3.1 Overview of the packet ingress path within hardware interrupt
context . 23

3.2 Device drivers receive ring with DMA memory (3c59x.c) 24
3.3 Overview of the packet ingress path within software interrupt context 26
3.4 Packet type for IPv4 packets seen from the kernel structure (af inet.c) 27
3.5 Overview of the packet egress path within system call context . . 28
3.6 ifconfig output of the networking device eth10 30
3.7 Rough summary of the packet egress path within software interrupt

context . 31
3.8 A networking device drivers ndo_start_xmit implementation (3c59x.c) 33
3.9 Netgraph nodes connected via hooks [17]. 34
3.10 Click processing path example with push and pull control flow [18] 37
3.11 x-kernel scheme of passing messages up and down the protocol

stack [16] . 39
3.12 ANA network with four nodes connected to each other 42
3.13 Basic components of ANA’s implementation 42

4.1 Overview of LANA’s architecture 49
4.2 LANA’s functional block module with spawned instances 50
4.3 LANA’s functional block lifetime and interaction with functional

block builder . 52
4.4 LANA’s functional block notification chains 53
4.5 LANA’s packet processing engine that calls receive handler of func-

tional block instances . 55
4.6 LANA’s functional block example binding and processing 56
4.7 LANA’s user space configuration interface 57

5.1 Basic code structure of LANA’s src directory 59

106

LIST OF FIGURES 107

5.2 container_of macro implementation from include/linux/kernel.h 62
5.3 Virtual link subsystem invocation from user space 66
5.4 Simplified view of ingress and egress path of the Ethernet func-

tional block . 74
5.5 Simplified view of ingress and egress path of the Ethernet vlink-

tagged functional block . 75
5.6 Simplified view of ingress and egress path of the PF LANA func-

tional block . 78
5.7 LANA example application: voice-over-Ethernet 80
5.8 LANA voice-over-Ethernet setup between two hosts with runtime

changes in the LANA stack . 80

6.1 Basic benchmarking setup . 83
6.2 Linux versus LANA, 1-10 FBs, increment: 1 FB 85
6.3 Linux versus LANA, 10-50 FBs, increment: 5 FBs 87
6.4 User space BSD socket sniffer: PF LANA versus PF PACKET . . 88
6.5 Click running in user space versus LANA 90
6.6 Click running in kernel space versus LANA 91
6.7 Click versus LANA, 64 Byte packets 93
6.8 A simple Click C++ forwarding element, which implements push

and pull that we have written for our benchmark 94
6.9 ANA running in user space versus LANA 95
6.10 ANA running in user space versus LANA (same as figure 6.9, but

with logarithmic y-axis) . 96
6.11 ANA versus LANA, 64 Byte packets 97
6.12 LANA’s Road to 1.4 Mio pps: kthr hp (kernel thread, high pri-

ority), kthr np (kernel thread, normal priority), kthr cs (kernel
thread, controlled scheduling), kthr ksirq-hrt (kernel thread, in
ksoftirqd execution context through high-resolution timer), kthr
ksirq-nrx (kernel thread, in ksoftirqd execution context through
NET RX tasklets) . 99

C.1 LANA example configuration . 133

D.1 TX_RING buffer used by trafgen 142
D.2 trafgen compared to mausezahn and the kernel space pktgen . . 144
D.3 bpfc phases of code translation 150

List of Abbreviations

ACM Association for Computing Machinery
ALSA Advanced Linux Sound Architecture
ANA Autonomic Network Architecture
ANCS Symposium on Architectures for Networking and Com-

munications Systems
API Application programming interface
ARP Address Resolution Protocol
ATM Asynchronous Transfer Mode
BPF Berkeley Packet Filter
BSD Berkeley Software Distribution
CELT Constrained Energy Lapped Transform
CPU Central processing unit
CRC Cyclic redundancy check
DiffServ Differentiated Services
DMA Direct memory access
DNS Domain Name System
DNSSEC Domain Name System Security Extensions
DPI Deep Packet Inspection
DSCP Differentiated Services Codepoint
EPiCS Engineering Proprioception in Computing Systems
FB Functional Block
FIFO First In, First Out
Gbps Gigabit per second
GCC GNU Compiler Collection
GDB GNU Debugger
GNU ’GNU’s Not Unix!’
GPL General Public License
GRUB Grand Unified Bootloader
GSM Global System for Mobile Communications
HDLC High-Level Data Link Control
HTB Hierarchical Token Bucket
IC Information Channel
IDP Information Dispatch Point
IEEE Institute of Electrical and Electronics Engineers
IPC Inter-process communication
IP Internet Protocol
IPv4 Internet Protocol, version 4
IPv6 Internet Protocol, version 6

108

IRQ Interrupt request
ISO International Organization for Standardization
JIT Just-In-Time
kgdb Kernel GNU Debugger
kgdboe Kernel GNU Debugger over Ethernet
ksoftirq Kernel software interrupt daemon
kthr Kernel thread
KVM Kernel-based Virtual Machine
LAN Local area network
LANA Lightweight Autonomic Network Architecture
Mbps Megabit per second
MINMEX Minimal Infrastructure for Maximal Extensibility
MIT Massachusetts Institute of Technology
MMX Multimedia extension (instruction set)
MSI Message Signaled Interrupts
NAPI New API (driver extension in Linux)
NAT Network address translation
NIC Network interface card
NUMA Non-Uniform Memory Access
OSI Open Systems Interconnection
PCI Peripheral Component Interconnect
PCIe PCI Express
PCI-X PCI-eXtended
PF / AF Protocol family / Address family
POSIX Portable Operating System Interface
PPE Packet Processing Engine
PPP Point-to-Point Protocol
pps Packets per second
procfs Proc filesystem
QoS Quality of Service
RAM Random access memory
RCU Read-copy-update
RDMA Remote direct memory access
RED Random early detection
RFC Request for Comments
SFQ Stochastic fairness queueing
SIMD Single instruction, multiple data
skb Socket buffer
skbuff Socket buffer
SmPL Semantic Patch Language
SMP Symmetric multiprocessing
SoftIRQ Software Interrupt
SSE Streaming SIMD Extensions

109

TCP Transmission Control Protocol
TLB Translation look-aside buffer
UDP User Datagram Protocol
VHDL VHSIC hardware description language
VHSIC Very-high-speed integrated circuits
VLAN Virtual local area network
vlink Virtual link
XTP Xpress Transport Protocol

110

References

[1] “History of IPv6 in Linux.” http://tldp.org/HOWTO/Linux+IPv6-HOWTO/

basic-history-ipv6-linux.html (Aug 11).

[2] Trammell, Brian, “ETH Zurich, Communication Systems Group
Blog: World IPv6 Day.” http://blogs.ethz.ch/csg/2011/07/01/

world-ipv6-day/ (Aug 11).

[3] L. Rizzo and M. Landi, “netmap: memory mapped access to network de-
vices,” in Proceedings of the ACM SIGCOMM 2011 conference on SIG-
COMM, SIGCOMM ’11, (New York, NY, USA), pp. 422–423, ACM, 2011.

[4] “LKML discussion, Packet mmap: TX RING and zero copy.” http:

//www.amailbox.net/mailarchive/linux-netdev/2008/9/2/3168784

(Aug 11).

[5] F. Fusco and L. Deri, “High speed network traffic analysis with commodity
multi-core systems,” in Proceedings of the 10th annual conference on In-
ternet measurement, IMC ’10, (New York, NY, USA), pp. 218–224, ACM,
2010.

[6] David S. Miller, “Linux Multiqueue Networking.” http://vger.kernel.

org/~davem/davem_nyc09.pdf (Aug 11).

[7] T. Herbert, “Software Receive Packet Steering.” http://lwn.net/

Articles/328339/ (Aug 11).

[8] “Linux: TCP Segmentation Offload (TSO).” http://kerneltrap.org/

node/397 (Aug 11).

[9] “NAPI.” http://www.linuxfoundation.org/collaborate/workgroups/

networking/napi (Aug 11).

[10] R. Dingledine, N. Mathewson, and P. Syverson,“Tor: the second-generation
onion router,” in Proceedings of the 13th conference on USENIX Secu-
rity Symposium - Volume 13, SSYM’04, (Berkeley, CA, USA), pp. 21–21,
USENIX Association, 2004.

111

http://tldp.org/HOWTO/Linux+IPv6-HOWTO/basic-history-ipv6-linux.html
http://tldp.org/HOWTO/Linux+IPv6-HOWTO/basic-history-ipv6-linux.html
http://blogs.ethz.ch/csg/2011/07/01/world-ipv6-day/
http://blogs.ethz.ch/csg/2011/07/01/world-ipv6-day/
http://www.amailbox.net/mailarchive/linux-netdev/2008/9/2/3168784
http://www.amailbox.net/mailarchive/linux-netdev/2008/9/2/3168784
http://vger.kernel.org/~davem/davem_nyc09.pdf
http://vger.kernel.org/~davem/davem_nyc09.pdf
http://lwn.net/Articles/328339/
http://lwn.net/Articles/328339/
http://kerneltrap.org/node/397
http://kerneltrap.org/node/397
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi

[11] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.”
http://bitcoin.org/bitcoin.pdf (Aug 11).

[12] “ffff-dns: P2P dns resolution service based on a DHT and ECC.” https:

//github.com/HarryR/ffff-dnsp2p (Aug 11).

[13] Daniel J. Bernstein, “TCP SYN cookies.” http://cr.yp.to/syncookies.

html (Aug 11).

[14] A. Friedlander, A. Mankin, W. D. Maughan, and S. D. Crocker, “Dnssec:
a protocol toward securing the internet infrastructure,” Commun. ACM,
vol. 50, pp. 44–50, June 2007.

[15] Daniel J. Bernstein et. al., “DNSCurve: Usable security for DNS.” http:

//dnscurve.org/ (Aug 11).

[16] L. Peterson, B. Davie, and A. Bavier, “x-kernel Tutorial.” http://www.cs.

arizona.edu/projects/xkernel/www/tutorial.ps (Aug 11).

[17] A. Cobbs, “All About Netgraph.” http://people.freebsd.org/~julian/
netgraph.html (Aug 10).

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000.

[19] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid, A. Keller, and M. May,
“The autonomic network architecture (ANA),” JSAC special issue in Auto-
nomic Communications. under submission.

[20] G. Varghese, Network Algorithmics,: An Interdisciplinary Approach to De-
signing Fast Networked Devices. Morgan Kaufmann, Dec. 2004.

[21] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of wide-area
internet bottlenecks,” SIGMETRICS Perform. Eval. Rev., vol. 31, pp. 316–
317, June 2003.

[22] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating inter-
net bottlenecks: algorithms, measurements, and implications,” SIGCOMM
Comput. Commun. Rev., vol. 34, pp. 41–54, August 2004.

[23] T. E. Levin, C. E. Irvine, C. Weissman, and T. D. Nguyen, “Analysis of
three multilevel security architectures,” in Proceedings of the 2007 ACM
workshop on Computer security architecture, CSAW ’07, (New York, NY,
USA), pp. 37–46, ACM, 2007.

112

http://bitcoin.org/bitcoin.pdf
https://github.com/HarryR/ffff-dnsp2p
https://github.com/HarryR/ffff-dnsp2p
http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html
http://dnscurve.org/
http://dnscurve.org/
http://www.cs.arizona.edu/projects/xkernel/www/tutorial.ps
http://www.cs.arizona.edu/projects/xkernel/www/tutorial.ps
http://people.freebsd.org/~julian/netgraph.html
http://people.freebsd.org/~julian/netgraph.html

[24] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protection,”
SIGOPS Oper. Syst. Rev., vol. 36, pp. 304–316, October 2002.

[25] D. Dalessandro and P. Wyckoff, “Accelerating web protocols using rdma,”
in Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC
’06, (New York, NY, USA), ACM, 2006.

[26] Felix von Leitner, “Scalable Network Programming, Or: The Quest For
A Good Web Server (That Survives Slashdot).” http://bulk.fefe.de/

scalable-networking.pdf (Aug 11).

[27] Hagen Paul Pfeifer, “Epoll and Select Overhead.” http://blog.jauu.net/
2011/01/23/Epoll-and-Select-Overhead/ (Aug 11).

[28] “mmap(2) facility of the PF PACKET socket interface in Linux.”
http://lingrok.org/source/xref/linux-2.6-linus/Documentation/

networking/packet_mmap.txt (Aug 11).

[29] Johann Baudy, “Linux packet mmap to improve transmission process.”
http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap

(Aug 11).

[30] G. Varghese and A. Lauck, “Hashed and hierarchical timing wheels: effi-
cient data structures for implementing a timer facility,” IEEE/ACM Trans.
Netw., vol. 5, pp. 824–834, December 1997.

[31] S. McCanne and V. Jacobson,“The BSD Packet Filter: A New Architecture
for User-level Packet Capture, Winter USENIX conference, Jan., 1993, San
Diego, CA,” 1992.

[32] A. Begel, S. McCanne, and S. L. Graham, “Bpf+: exploiting global data-
flow optimization in a generalized packet filter architecture,” in Proceedings
of the conference on Applications, technologies, architectures, and proto-
cols for computer communication, SIGCOMM ’99, (New York, NY, USA),
pp. 123–134, ACM, 1999.

[33] J. Stone and C. Partridge, “When the crc and tcp checksum disagree,” in
Proceedings of the conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’00, (New York,
NY, USA), pp. 309–319, ACM, 2000.

[34] J. Engel, J. Meneskie, and T. Kocak, “Performance analysis of network
protocol offload in a simulation environment,” in Proceedings of the 44th
annual Southeast regional conference, ACM-SE 44, (New York, NY, USA),
pp. 762–763, ACM, 2006.

113

http://bulk.fefe.de/scalable-networking.pdf
http://bulk.fefe.de/scalable-networking.pdf
http://blog.jauu.net/2011/01/23/Epoll-and-Select-Overhead/
http://blog.jauu.net/2011/01/23/Epoll-and-Select-Overhead/
http://lingrok.org/source/xref/linux-2.6-linus/Documentation/networking/packet_mmap.txt
http://lingrok.org/source/xref/linux-2.6-linus/Documentation/networking/packet_mmap.txt
http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap

[35] R. M. Sanders and A. C. Weaver, “The xpress transfer protocol (xtp), a
tutorial,” SIGCOMM Comput. Commun. Rev., vol. 20, pp. 67–80, October
1990.

[36] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of tcp
processing overheads,” IEEE Communications Magazine, vol. 27, pp. 23–29,
June 1989.

[37] K. Karras, T. Wild, and A. Herkersdorf, “A folded pipeline network pro-
cessor architecture for 100 gbit/s networks,” in Proceedings of the 6th
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems, ANCS ’10, (New York, NY, USA), pp. 2:1–2:11, ACM,
2010.

[38] F. Tam, “On engineering standards based carrier grade platforms,” in Pro-
ceedings of the 2007 workshop on Engineering fault tolerant systems, EFTS
’07, (New York, NY, USA), ACM, 2007.

[39] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: an aid to network processing,” in Pro-
ceedings of the 2005 conference on Applications, technologies, architectures,
and protocols for computer communications, SIGCOMM ’05, (New York,
NY, USA), pp. 181–192, ACM, 2005.

[40] W. Szpankowski, “Patricia tries again revisited,” J. ACM, vol. 37, pp. 691–
711, October 1990.

[41] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Comput. Surv., vol. 37, pp. 238–275, September 2005.

[42] R. G. Beausoleil, “Large-scale integrated photonics for high-performance
interconnects,” J. Emerg. Technol. Comput. Syst., vol. 7, pp. 6:1–6:54, July
2011.

[43] Hagen Paul Pfeifer, “Head Of Line Blocking.” http://blog.jauu.net/

2011/08/23/Head-Of-Line-Blocking/ (Aug 11).

[44] D. Stiliadis and A. Varma, “Efficient fair queueing algorithms for packet-
switched networks,” IEEE/ACM Trans. Netw., vol. 6, pp. 175–185, April
1998.

[45] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, “Infer-
ring internet denial-of-service activity,” ACM Trans. Comput. Syst., vol. 24,
pp. 115–139, May 2006.

114

http://blog.jauu.net/2011/08/23/Head-Of-Line-Blocking/
http://blog.jauu.net/2011/08/23/Head-Of-Line-Blocking/

[46] S. Fischer, O. Kiselyov, and C.-c. Shan, “Purely functional lazy non-
deterministic programming,” SIGPLAN Not., vol. 44, pp. 11–22, August
2009.

[47] B. W. Lampson, “Lazy and speculative execution in computer systems,” in
Proceeding of the 13th ACM SIGPLAN international conference on Func-
tional programming, ICFP ’08, (New York, NY, USA), pp. 1–2, ACM, 2008.

[48] J. Hadi Salim, R. Olsson, and A. Kuznetsov, “Beyond Softnet.” 5th
Annual Linux Showcase and Conference (ALS ’01). pp. 165–172.
http://www.usenix.org/publications/library/proceedings/als01/

full_papers/jamal/jamal.pdf. Retrieved 2011-03-06. The classical
NAPI paper.

[49] R. Sommer and A. Feldmann, “Netflow: information loss or win?,” in Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment,
IMW ’02, (New York, NY, USA), pp. 173–174, ACM, 2002.

[50] D. Comer, “Ubiquitous b-tree,” ACM Comput. Surv., vol. 11, pp. 121–137,
June 1979.

[51] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding ta-
bles for fast routing lookups,” SIGCOMM Comput. Commun. Rev., vol. 27,
pp. 3–14, October 1997.

[52] M. Stonebraker, “Technical perspective: One size fits all: an idea whose
time has come and gone,” Commun. ACM, vol. 51, pp. 76–76, December
2008.

[53] C. Partridge and S. Pink,“Errata: A faster udp,” IEEE/ACM Trans. Netw.,
vol. 1, pp. 754–, December 1993.

[54] “Tag Switching.” http://home.earthlink.net/~hoabut/pages/tag_

switching/tagswitching.html (Aug 11).

[55] “Kernel: likely/unlikely macros.” http://kerneltrap.org/node/4705

(Aug 11).

[56] “GCC, the GNU Compiler Collection.” http://gcc.gnu.org/ (Aug 11).

[57] M. D. Smith, N. Ramsey, and G. Holloway, “A generalized algorithm for
graph-coloring register allocation,” in Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and implementation,
PLDI ’04, (New York, NY, USA), pp. 277–288, ACM, 2004.

[58] E. Corwin and A. Logar, “Sorting in linear time - variations on the bucket
sort,” J. Comput. Small Coll., vol. 20, pp. 197–202, October 2004.

115

http://www.usenix.org/publications/library/proceedings/als01/full_papers/jamal/jamal.pdf
http://www.usenix.org/publications/library/proceedings/als01/full_papers/jamal/jamal.pdf
http://home.earthlink.net/~hoabut/pages/tag_switching/tagswitching.html
http://home.earthlink.net/~hoabut/pages/tag_switching/tagswitching.html
http://kerneltrap.org/node/4705
http://gcc.gnu.org/

[59] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting active
flows on high speed links,” in Proceedings of the 3rd ACM SIGCOMM con-
ference on Internet measurement, IMC ’03, (New York, NY, USA), pp. 153–
166, ACM, 2003.

[60] “Bitmap Allocators.” http://gcc.gnu.org/onlinedocs/libstdc++/

manual/bitmap_allocator.html (Aug 11).

[61] B. K. Bray and M. J. Flynn, “Translation hint buffers to reduce access
time of physically-addressed instruction caches,” in Proceedings of the 25th
annual international symposium on Microarchitecture, MICRO 25, (Los
Alamitos, CA, USA), pp. 206–209, IEEE Computer Society Press, 1992.

[62] D. E. Knuth, Art of Computer Programming, The, Volumes 1-3. Addison-
Wesley Professional, 3 ed., Oct. 1998.

[63] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. The MIT Press, third edition ed., July 2009.

[64] R. Love, Linux Kernel Development - A thorough guide to the design and
implementation of the Linux kernel. Addison Wesley, June 2010.

[65] C. Benvenuti, Understanding Linux Network Internals, A Guided Tour to
Networking on Linux. O’Reilly, Dec. 2005.

[66] “Linux, Git source code, LinGrok X-REF of the linus-tree.” http://

lingrok.org/source/xref/linux-2.6-linus/ (Aug 11).

[67] “Bridging.” http://www.linuxfoundation.org/collaborate/

workgroups/networking/bridge (Aug 11).

[68] D. P. Bovet and M. Cesati, Understanding the Linux Kernel. O’Reilly, Nov.
2005.

[69] M. A. Brown, “Traffic Control Howto, TLDP.” http://tldp.org/HOWTO/

Traffic-Control-HOWTO/index.html (Aug 11).

[70] “Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers.” http://tools.ietf.org/html/rfc2474 (Aug 11).

[71] “Random Early Detection queue.” http://lingrok.org/source/xref/

linux-2.6-linus/net/sched/sch_red.c (Aug 11).

[72] “Hierarchical token bucket, feed tree version.” http://lingrok.org/

source/xref/linux-2.6-linus/net/sched/sch_htb.c (Aug 11).

[73] “Stochastic Fairness Queueing discipline.” http://lingrok.org/source/

xref/linux-2.6-linus/net/sched/sch_sfq.c (Aug 11).

116

http://gcc.gnu.org/onlinedocs/libstdc++/manual/bitmap_allocator.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/bitmap_allocator.html
http://lingrok.org/source/xref/linux-2.6-linus/
http://lingrok.org/source/xref/linux-2.6-linus/
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
http://tools.ietf.org/html/rfc2474
http://lingrok.org/source/xref/linux-2.6-linus/net/sched/sch_red.c
http://lingrok.org/source/xref/linux-2.6-linus/net/sched/sch_red.c
http://lingrok.org/source/xref/linux-2.6-linus/net/sched/sch_htb.c
http://lingrok.org/source/xref/linux-2.6-linus/net/sched/sch_htb.c
http://lingrok.org/source/xref/linux-2.6-linus/net/sched/sch_sfq.c
http://lingrok.org/source/xref/linux-2.6-linus/net/sched/sch_sfq.c

[74] “Netgraph – Graph based kernel networking subsystem, FreeBSD Kernel
Interfaces Manual, Section 4.” http://www.freebsd.org/cgi/man.cgi?

query=netgraph&sektion=4 (Aug 11).

[75] “Netgraph source code, FXR of FreeBSD 9-CURRENT (base/head).”http:
//fxr.watson.org/fxr/source/netgraph/ (Aug 11).

[76] N. C. Hutchinson and L. L. Peterson, “The x-kernel: An architecture for
implementing network protocols,” IEEE Transactions on Software Engi-
neering, vol. 17, pp. 64–76, 1991.

[77] C. Jelger, S. Schmid, and G. Bouabene, “ANA Blueprint Ver-
sion 2.0.” http://www.ana-project.org/deliverables/2008/ana-d1.

9-final.pdf (Aug 11).

[78] “Autonomic Network Architecture - EU Project (2006-2009).” http://www.
ana-project.org (Oct 09).

[79] Felix von Leitner, “Writing Small And Fast Software.” http://www.fefe.

de/dietlibc/diet.pdf (Aug 11).

[80] N. Brown, “Object-oriented design patterns in the kernel, part 1.” http:

//lwn.net/Articles/444910/ (Aug 11).

[81] N. Brown, “Object-oriented design patterns in the kernel, part 2.” http:

//lwn.net/Articles/446317/ (Aug 11).

[82] Daniel J. Bernstein, “Crit-bit trees.” http://cr.yp.to/critbit.html

(Aug 11).

[83] “Linux kernel coding conventions.” http://lingrok.org/source/xref/

linux-2.6-linus/Documentation/CodingStyle (Aug 11).

[84] Free Software Foundation, “GNU General Public License, Version 2.” http:
//www.gnu.org/licenses/gpl-2.0.txt (Aug 11).

[85] Linus Torvalds, “Linux kernel source tree, Tag for Linux 3.0.” https://

github.com/torvalds/linux/tree/v3.0 (Aug 11).

[86] “Git, the fast version control system.” http://git-scm.com/ (Aug 11).

[87] “Lightweight Autonomic Network Architecture.” http://repo.or.cz/w/

ana-net.git (Jul 11).

[88] C. C. Foster, “A generalization of avl trees,” Commun. ACM, vol. 16,
pp. 513–517, August 1973.

117

http://www.freebsd.org/cgi/man.cgi?query=netgraph&sektion=4
http://www.freebsd.org/cgi/man.cgi?query=netgraph&sektion=4
http://fxr.watson.org/fxr/source/netgraph/
http://fxr.watson.org/fxr/source/netgraph/
http://www.ana-project.org/deliverables/2008/ana-d1.9-final.pdf
http://www.ana-project.org/deliverables/2008/ana-d1.9-final.pdf
http://www.ana-project.org
http://www.ana-project.org
http://www.fefe.de/dietlibc/diet.pdf
http://www.fefe.de/dietlibc/diet.pdf
http://lwn.net/Articles/444910/
http://lwn.net/Articles/444910/
http://lwn.net/Articles/446317/
http://lwn.net/Articles/446317/
http://cr.yp.to/critbit.html
http://lingrok.org/source/xref/linux-2.6-linus/Documentation/CodingStyle
http://lingrok.org/source/xref/linux-2.6-linus/Documentation/CodingStyle
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/gpl-2.0.txt
https://github.com/torvalds/linux/tree/v3.0
https://github.com/torvalds/linux/tree/v3.0
http://git-scm.com/
http://repo.or.cz/w/ana-net.git
http://repo.or.cz/w/ana-net.git

[89] P. E. McKenney and J. Walpole, “Introducing technology into the linux
kernel: a case study,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 4–17, July
2008.

[90] J. Triplett, P. E. McKenney, and J. Walpole, “Scalable concurrent hash
tables via relativistic programming,” SIGOPS Oper. Syst. Rev., vol. 44,
pp. 102–109, August 2010.

[91] Adam Langley, “Crit-bit Trees.” https://github.com/agl/critbit/raw/
master/critbit.pdf (Aug 11).

[92] M. Tim Jones, “Anatomy of the Linux slab allocator.” http://www.ibm.

com/developerworks/linux/library/l-linux-slab-allocator/ (Aug
11).

[93] “Xiph celtclient.c.” http://git.xiph.org/?p=celt.git;a=tree;f=

tools;h=0ab3f7d5db0677ec105434f2dec030c4d13707fe;hb=master

(Aug 11).

[94] “Advanced Linux Sound Architecture (ALSA) project.” http://www.

alsa-project.org/main/index.php/Main_Page (Aug 11).

[95] “Speex: a free codec for free speech.” http://www.speex.org/ (Aug 11).

[96] “CELT ultra-low delay audio codec.” http://www.celt-codec.org/ (Aug
11).

[97] “Test Anything Protocol.” http://testanything.org/ (Aug 11).

[98] Bradner, S. and McQuaid, J., “Benchmarking Methodology for Network
Interconnect Devices.” http://tools.ietf.org/html/rfc2544 (Aug 11).

[99] “Useful kernel and driver performance tweaks for
your Linux server.” http://timetobleed.com/

useful-kernel-and-driver-performance-tweaks-for-your-linux-server/

(Aug 11).

[100] V. Jacobson, “Van Jacobson’s network channels.” http://www.lemis.com/
grog/Documentation/vj/lca06vj.pdf (Aug 11).

[101] “Click mailing list: insmod: error inserting ’/usr/local/lib/click.ko’: -
1 Cannot allocate memory.” http://www.mail-archive.com/click@

amsterdam.lcs.mit.edu/msg05335.html (Aug 11).

[102] “Linux Kernel Based Virtual Machine.” http://www.linux-kvm.org/

page/Main_Page (Aug 11).

118

https://github.com/agl/critbit/raw/master/critbit.pdf
https://github.com/agl/critbit/raw/master/critbit.pdf
http://www.ibm.com/developerworks/linux/library/l-linux-slab-allocator/
http://www.ibm.com/developerworks/linux/library/l-linux-slab-allocator/
http://git.xiph.org/?p=celt.git;a=tree;f=tools;h=0ab3f7d5db0677ec105434f2dec030c4d13707fe;hb=master
http://git.xiph.org/?p=celt.git;a=tree;f=tools;h=0ab3f7d5db0677ec105434f2dec030c4d13707fe;hb=master
http://www.alsa-project.org/main/index.php/Main_Page
http://www.alsa-project.org/main/index.php/Main_Page
http://www.speex.org/
http://www.celt-codec.org/
http://testanything.org/
http://tools.ietf.org/html/rfc2544
http://timetobleed.com/useful-kernel-and-driver-performance-tweaks-for-your-linux-server/
http://timetobleed.com/useful-kernel-and-driver-performance-tweaks-for-your-linux-server/
http://www.lemis.com/grog/Documentation/vj/lca06vj.pdf
http://www.lemis.com/grog/Documentation/vj/lca06vj.pdf
http://www.mail-archive.com/click@amsterdam.lcs.mit.edu/msg05335.html
http://www.mail-archive.com/click@amsterdam.lcs.mit.edu/msg05335.html
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page

[103] A. Keller, “The ANA Project: Development of the ANA-Core Software,”
Master’s thesis, Communication Systems Group, ETH Zurich, Gloriastrasse
35, 8092 Zürich, Switzerland, 2007.

[104] D. Borkmann, “Linux Kernel Netdev: [PATCH] af packet:
tpacket destruct skb, deref skb after BUG ON.” http://lists.

openwall.net/netdev/2011/10/09/24 (Aug 11).

[105] D. Borkmann, “Linux Kernel Netdev: [PATCH] af packet: remove unnec-
essary BUG ON() in tpacket destruct skb.” http://www.spinics.net/

lists/netdev/msg176599.html (Aug 11).

[106] Eric Dumazet, “BPF JIT compiler for x86.” http://lingrok.org/source/
xref/linux-2.6-linus/arch/x86/net/bpf_jit_comp.c (Aug 11).

[107] “ReconOS, A programming model and operating system for reconfigurable
hardware.” http://reconos.de/ (Aug 11).

[108] “Linux patch for the Kernel Source Level Debugger (kgdb) and the
Kernel Source Level Debugger over Ethernet (kgdboe).” http://kgdb.

linsyssoft.com/intro.htm (Aug 11).

[109] “netsniff-ng toolkit.” http://www.netsniff-ng.org/ (Aug 11).

[110] G. Muller, Y. Padioleau, J. L. Lawall, and R. R. Hansen, “Semantic patches
considered helpful,”SIGOPS Oper. Syst. Rev., vol. 40, pp. 90–92, July 2006.

[111] Y. Padioleau, R. R. Hansen, J. L. Lawall, and G. Muller, “Semantic
patches for documenting and automating collateral evolutions in linux de-
vice drivers,” in Proceedings of the 3rd workshop on Programming languages
and operating systems: linguistic support for modern operating systems,
PLOS ’06, (New York, NY, USA), ACM, 2006.

[112] Y. Padioleau, J. L. Lawall, and G. Muller, “Understanding collateral evolu-
tion in linux device drivers,” in Proceedings of the 1st ACM SIGOPS/Eu-
roSys European Conference on Computer Systems 2006, EuroSys ’06, (New
York, NY, USA), pp. 59–71, ACM, 2006.

[113] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in linux: ten years later,” SIGARCH Comput. Archit. News, vol. 39,
pp. 305–318, March 2011.

[114] “Coccinelle, a program matching and transformation engine which provides
the Semantic Patch Language (SmPL).” http://coccinelle.lip6.fr/

(Aug 11).

119

http://lists.openwall.net/netdev/2011/10/09/24
http://lists.openwall.net/netdev/2011/10/09/24
http://www.spinics.net/lists/netdev/msg176599.html
http://www.spinics.net/lists/netdev/msg176599.html
http://lingrok.org/source/xref/linux-2.6-linus/arch/x86/net/bpf_jit_comp.c
http://lingrok.org/source/xref/linux-2.6-linus/arch/x86/net/bpf_jit_comp.c
http://reconos.de/
http://kgdb.linsyssoft.com/intro.htm
http://kgdb.linsyssoft.com/intro.htm
http://www.netsniff-ng.org/
http://coccinelle.lip6.fr/

[115] “LAN Ethernet Maximum Rates, Generation, Capturing and Monitoring.”
http://wiki.networksecuritytoolkit.org/nstwiki/index.php/LAN_

Ethernet_Maximum_Rates,_Generation,_Capturing_%26_Monitoring

and http://blog.cryptoism.org/1318763742.html (Aug 11).

[116] H. Haas, “Mausezahn Traffic Generator.” http://www.perihel.at/sec/

mz/ (Aug 11).

[117] Robert Olsson et. al., “pktgen, the Linux kernel packet generator.” http://
lingrok.org/source/xref/linux-2.6-linus/net/core/pktgen.c (Aug
11).

[118] “libnet-dev project.” http://libnet-dev.sourceforge.net/ (Aug 11).

[119] “netsniff-ng toolkit.” http://netsniff-ng.org (Jul 11).

[120] “tcpdump and libpcap.” http://www.tcpdump.org/ (Aug 11).

[121] “IPTraf, IP Network Monitoring Software.” http://iptraf.seul.org/

(Aug 11).

[122] “Ncurses Library.” http://www.gnu.org/software/ncurses/ncurses.

html (Aug 11).

[123] “Linux kernel BPF virtual machine.” http://lingrok.org/source/xref/

linux-2.6-linus/net/core/filter.c (Aug 11).

[124] “tcpdump filter sheet.” http://www.cs.ucr.edu/~marios/

ethereal-tcpdump.pdf (Aug 11).

[125] “tcpdump, VLAN Q-in-Q or VLAN || VLAN filters not working.” http:

//article.gmane.org/gmane.network.tcpdump.devel/5380 (Aug 11).

[126] Jonathan Corbet, “A JIT for packet filters.” http://lwn.net/Articles/

437981/ (Aug 11).

[127] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques,
and tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1986.

[128] N. Wirth, Compiler Construction. Addison-Wesley Professional, 1 ed., Oct.
1996.

[129] “flex: The Fast Lexical Analyzer.” http://flex.sourceforge.net/ (Aug
11).

[130] “Bison - GNU parser generator.” http://www.gnu.org/s/bison/ (Aug
11).

120

http://wiki.networksecuritytoolkit.org/nstwiki/index.php/LAN_Ethernet_Maximum_Rates,_Generation,_Capturing_%26_Monitoring
http://wiki.networksecuritytoolkit.org/nstwiki/index.php/LAN_Ethernet_Maximum_Rates,_Generation,_Capturing_%26_Monitoring
http://blog.cryptoism.org/1318763742.html
http://www.perihel.at/sec/mz/
http://www.perihel.at/sec/mz/
http://lingrok.org/source/xref/linux-2.6-linus/net/core/pktgen.c
http://lingrok.org/source/xref/linux-2.6-linus/net/core/pktgen.c
http://libnet-dev.sourceforge.net/
http://netsniff-ng.org
http://www.tcpdump.org/
http://iptraf.seul.org/
http://www.gnu.org/software/ncurses/ncurses.html
http://www.gnu.org/software/ncurses/ncurses.html
http://lingrok.org/source/xref/linux-2.6-linus/net/core/filter.c
http://lingrok.org/source/xref/linux-2.6-linus/net/core/filter.c
http://www.cs.ucr.edu/~marios/ethereal-tcpdump.pdf
http://www.cs.ucr.edu/~marios/ethereal-tcpdump.pdf
http://article.gmane.org/gmane.network.tcpdump.devel/5380
http://article.gmane.org/gmane.network.tcpdump.devel/5380
http://lwn.net/Articles/437981/
http://lwn.net/Articles/437981/
http://flex.sourceforge.net/
http://www.gnu.org/s/bison/

[131] D. E. Knuth, “On the translation of languages from left to right,” Informa-
tion and Control, vol. 8, pp. 607–639, October 1965.

[132] William Cohen, “Gaining insight into the Linux kernel with Kprobes.”
http://www.redhat.com/magazine/005mar05/features/kprobes/ (Aug
11).

[133] S. Goswami, “An introduction to KProbes.” http://lwn.net/Articles/

132196/ (Aug 11).

[134] “Kprobes documentation.” http://lingrok.org/source/xref/linux-2.

6-linus/Documentation/kprobes.txt (Aug 11).

[135] “Linux event notification chains.” http://lingrok.org/source/xref/

linux-2.6-linus/kernel/notifier.c (Aug 11).

121

http://www.redhat.com/magazine/005mar05/features/kprobes/
http://lwn.net/Articles/132196/
http://lwn.net/Articles/132196/
http://lingrok.org/source/xref/linux-2.6-linus/Documentation/kprobes.txt
http://lingrok.org/source/xref/linux-2.6-linus/Documentation/kprobes.txt
http://lingrok.org/source/xref/linux-2.6-linus/kernel/notifier.c
http://lingrok.org/source/xref/linux-2.6-linus/kernel/notifier.c

Appendix A

Publication ’Efficient
Implementation of Dynamic
Protocol Stacks’ at the ANCS
2011

We have presented our work at the ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS) on October 3-4, 2011 in New
York, USA.

There, we have participated in a poster session which is a forum for researchers
to showcase and discuss their work to others. The attached paper has been pub-
lished in the conference proceedings and summarizes the contents of our poster.

122

Efficient Implementation of Dynamic Protocol Stacks

Ariane Keller
ETH Zurich, Switzerland

ariane.keller@tik.ee.ethz.ch

Daniel Borkmann
ETH Zurich, Switzerland
HTWK Leipzig, Germany

dborkma@tik.ee.ethz.ch

Wolfgang Mühlbauer
ETH Zurich, Switzerland

muehlbauer@tik.ee.ethz.ch

ABSTRACT
Network programming is widely understood as program-
ming strictly defined socket interfaces. Only some frame-
works have made a step towards real network programming
by decomposing networking functionality into small modu-
lar blocks that can be assembled in a flexible manner. In
this paper, we tackle the challenge of accommodating 3 par-
tially conflicting objectives: (i) high flexibility for network
programmers, (ii) re-configuration of the network stack at
runtime, and (iii) high packet forwarding rates. First ex-
periences with a prototype implementation in Linux suggest
little performance overhead compared to the standard Linux
protocol stack.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design

General Terms
Design, Experimentation, Performance

Keywords
Network architecture, flexible network stacks, Future Inter-
net experimentation, performance

1. INTRODUCTION
Beyond doubt, the Internet has grown out of its infancy

and has become a critical infrastructure for private and busi-
ness applications. Its success is largely due to the plethora
of transport media it uses and to the rich set of network ap-
plications it offers. Yet, network programming is still mainly
about programming sockets that form a strictly defined in-
terface between the networking (TCP/IP) and the actual
application part (Facebook, VoIP, etc.). What if design-
ers of network applications could even tailor the networking
functionality to their needs? We can just speculate about
the resulting innovations.

Nowadays, changes in the configuration of a protocol stack
usually require applications or even the operating system to
be restarted. The need for changing the protocol stack can
arise if networking functionality needs to be patched, if the
used encryption method is not considered safe anymore, or
when privacy concerns change. Ideally, applications should
not be affected by such changes. Therefore, we advocate
run time reconfigurable protocol stacks. For example, such

protocol stacks can be useful for self-star properties in com-
puting, since they provide an algorithm that configures and
adapts the protocol stack autonomously.
Similar objectives were also followed by active network-

ing [3], the Click modular router project[4], or OpenFlow [5],
etc. Yet, we are not aware of any research that has achieved
the following three partially conflicting goals:

1. Simple integration and testing of new protocols on end
nodes on all layers of the protocol stack.

2. Runtime reconfiguration of the protocol stack in order
to allow for even bigger flexibility.

3. High performance packet forwarding rates.
In this paper, we propose the Lightweight Autonomic Net-

work Architecture (LANA). Our architecture borrows ideas
from ANA [2], where network functionality is divided into
functional blocks (FB) that can be combined as required.
Each FB implements a protocol such as IP, UDP, or con-
tent centric routing. ANA does not impose any protocols
to be used. Rather it provides a framework that allows
for the flexible composition and recomposition of FBs to
a protocol stack. This allows for the experimentation with
protocol stacks that are not known by today’s standard op-
erating systems, and it allows for the optimization of proto-
col stacks at runtime without communication tear down or
application support. The existing implementation of ANA
shows the feasibility of such a flexible architecture but suffers
sever performance issues. In contrast to ANA, the proposed
LANA architecture relies on a message passing by reference
scheme, minimizes the number of threads, and uses opti-
mized packet processing structures provided by the Linux
kernel. Surprisingly, our first experiences with a prototype
implementation suggest that we can offer comparable flex-
ibility as ANA, but at packet forwarding rates comparable
to those of the standard Linux networking stack.

2. LANA: APPROACH
Generally, the LANA network system is built similarly to

the network subsystem of the Linux kernel. Applications can
send and transmit packets via the BSD socket interface. The
actual packet processing is done in a packet processing engine
(PPE) in the kernel space. An overview of the architecture
is presented in Figure 1.
The hardware and device driver interfaces are hidden from

the PPE behind a virtual link interface, which allows for a
simple integration of different underlaying networking tech-
nologies such as Ethernet, Bluetooth or InfiniBand.
Each functional block is implemented as a Linux kernel

module. Upon module insertion a constructor for the cre-

2011 Seventh ACM/IEEE Symposium on Architectures for Networking and Communications Systems

978-0-7695-4521-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ANCS.2011.19

83

Device Driver

Applications

PPE

FB_1

FB_n

Virtual Link LayerFP_d

userspace
kernelspace

BSD Socket Interface
FP_s

Figure 1: Packet flow in LANA

ation of an instance of the FB is registered with the LANA
core. Upon configuration of the protocol stack the instances
of the FBs are created. The instances register a receive func-
tion with the PPE. This function is called when a packet
needs to be processed.

Functional blocks can either drop a packet, forward a
packet to either ingress or egress direction, or duplicate a
packet. After having processed a packet, the FB returns the
identifier of the next FB that should process this packet.
In addition, FBs belonging to the virtual link interface will
queue the packets in the network drivers transmit queue and
FBs communicating with BSD sockets will queue the packets
in the sockets receive queue.

The PPE is responsible for calling one FB after the other
and for queuing packets that need to be processed.

2.1 Implementation
The protocol stack can be configured from user space with

the help of a command line tool. The most important com-
mands are summarized below.

• add, rm: Adds (removes) an FB from the list of avail-
able FBs in the kernel.

• set: sets properties of an FB with a key=value se-
mantic.

• bind, unbind: Binds (unbinds) an FB to another FB
in order to be able to send messages to it.

• replace: Replaces one FB with another FB. The con-
nections between the blocks are maintained. Private
data can either be transferred to the new block or
dropped.

Within the Linux kernel the notification chain framework
is used to propagate those configuration messages to the
individual FBs.

The current software is available under the GNU Gen-
eral Public License from [1]. In addition to the framework,
it also includes five functional blocks: Ethernet, Berkeley
Packet Filter, Tee (duplication of packets), Packet Counter
and Forward (an empty block that forwards the packets to
another block). The framework does not need any patching
of the Linux kernel but it requires a new Linux 3.X kernel.

2.2 Improving the Performance
We have evaluated different options for the integration of

the PPE with the Linux kernel. We summarize our insights
to provide guidance for researchers who apply fundamental
changes on the Linux protocol stack.

We compared the maximum packet reception rate of the
Linux kernel while not doing any packet processing with
LANA. In LANA packets are forwarded between three FBs
that do only packet forwarding.

• One high priority LANA thread per CPU achieves ap-
prox. half the performance of the default Linux stack.

Mechanism Performance
Kernel threads (high priority) 700.000
Kernel threads (normal priority) 750.000
Kernel threads (controlled scheduling) 900.000
Execution in ksoftirqd 1.300.000
Linux kernel networking stack 1.380.000

Table 1: Performance evaluation in pps with 64 Byte
packets. (Intel Core 2 Quad Q6600 with 2.40GHz,
4GB RAM, Intel 82566DC-2 NIC, Linux 3.0rc1)

The performance degradation is due to ’starvation’ of
the software interrupt handler (ksoftirqd). Changing
the priority of the LANA thread only slightly increases
the throughput.

• Explicit preemption and scheduling control achieves
approx. two third of the performance of the default
stack. The performance degradation is due to schedul-
ing overhead.

• Execution of the PPE in ksoftirqd context achieves
approx. 95% of the performance of the default stack.

The corresponding numbers are listed in Table 1.

3. CONCLUSIONS AND FUTURE WORK
We described how to implement a flexible protocol stack

with similar performance as the default Linux stack. Its
flexibility allows to include and test protocols, yet to be de-
veloped, and to change the protocol stack at runtime. In
contrast to TCP/IP, our proposed solution allows to tailor
the networking layer for the needs of a particular networking
situation. In the short-term, we will compare LANA perfor-
mance achieved in real scenarios with other systems (e.g.,
default Linux stack, Click router, etc.). In the mid-term, we
plan to work on mechanisms that automatically configure
protocol stacks based on the needs of applications and net-
works. In the long-term, we envisage a system that requires
less configuration as compared to today’s networks and that
is able to adapt itself to changing network conditions.

4. ACKNOWLEDGMENTS
This research has received funding from the European

Union 7th Framework Programme (grant no257906).

5. REFERENCES
[1] Lightweight Autonomic Network Architecture.

http://repo.or.cz/w/ana-net.git (Jul 11).

[2] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid,
A. Keller, and M. May. The autonomic network
architecture (ANA). Selected Areas in Communications,
IEEE Journal on, 28(1):4 –14, Jan. 2010.

[3] A. T. Campbell, H. G. De Meer, M. E. Kounavis,
K. Miki, J. B. Vicente, and D. Villela. A survey of
programmable networks. SIGCOMM Comput.
Commun. Rev., 29(2):7–23, 1999.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. Kaashoek. The click modular router. ACM Trans.
Comput. Syst., 18(3):263–297, 2000.

[5] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38:69–74, March 2008.

84

Appendix B

Task Description

125

Institut für
Technische Informatik und
Kommunikationsnetze

Master Thesis

Lightweight implementation of ANA
Daniel Borkmann

Advisor: Ariane Keller, ariane.keller@tik.ee.ethz.ch
Co-Advisors: Wolfgang Mühlbauer, wolfgang.muehlbauer@tik.ee.ethz.ch

Professor: Prof. Dr. Bernhard Plattner, ETH Zurich, plattner@tik.ee.ethz.ch
Professor: Prof. Dr.-Ing. Dietmar Reimann, HTWK Leipzig,

reimann@imn.htwk-leipzig.de

Duration: 6 months (PrüfO-INM, 04 November 2009).

1 Introduction

This master thesis is in the context of the EPiCS project. The goal of the EPiCS project is to lay
the foundation for engineering the novel class of proprioceptive computing systems. Proprioceptive
computing systems collect and maintain information about their state and progress, which enables self-
awareness by reasoning about their behaviour, and self- expression by effectively and autonomously
adapting their behaviour to changing conditions. Concepts of self-awareness and self-expression are
new to the domains of computing and networking; the successful transfer and development of these
concepts will help create future heterogeneous and distributed systems capable of efficiently responding
to a multitude of requirements with respect to functionality and flexibility, performance, resource usage
and costs, reliability and safety, and security.

In this thesis we focus on the networking aspect of EPiCS. EPiCS uses the network architecture
developed in the ANA project as a basis. The ANA network architecture is a novel architecture that
enables flexible, dynamic, and fully autonomous formation of network nodes. While in the ANA project
the focus was on developing this architecture in the EPiCS project the focus is on porting this architecture
to embedded systems that consist of programmable hardware and software parts and to enhance ANA
with some algorithms that adapt the current implementation to provide optimal performance.

The objective of this master thesis is to assess the ANA architecture and its current implementation
with respect to suitability for use on embedded devices. Basic functionality should be identified and
implemented with respect to resource limitations and performance of embedded systems.

2 Assignment

This assignment aims to outline the work to be conducted during this thesis. The assignment may need
to be adapted over the course of the project.

2.1 Objectives

The goal of this master thesis is to develop a lightweight ANA architecture and implementation. The
developed architecture has to follow the basic ANA principles while the implementation has to signifi-
cantly outperform the previous implementation. The first step will be to identify the critical parts of
the ANA architecture and to combine them in a new architecture. In the second step this architecture
will be implemented. The main part of this implementation should be in the Linux Kernel space. In the
third step the performance will be evaluated.

1

2.2 Tasks

This section gives a brief overview of the tasks the student is expected to perform towards achieving the
objective outlined above. The binding project plan will be derived over the course of the first three weeks
depending on the knowledge and skills the student brings into the project.

2.2.1 Familiarization

• Study the available literature on ANA [1, 2, 3].

• Setup a Linux machine on which you want to do your implementation, consider to use a vmware.

• In collaboration with the advisor, derive a project plan for your master thesis. Allow time for the
design, implementation, evaluation, and documentation of your software.

2.2.2 Architecture and software design

• Determine the basic functionality of ANA.

• Determine whether the ANA-API still can be used or determine why not. If not, determine a new
API.

• Split the functionality between Linux user and Linux Kernel space.

• Design the kernel space, the interface between user space and kernel space, and the user space part.
The design should be extensible with respect to more advanced ANA functionality.

• Design a basic scenario that shows that your implementation follows the ANA principles.

• Think about possible test scenarios.

• Optional: Add some more advanced ANA functionality.

• Optional: Design an interface that allows to receive packets from ReconOS. [4, 5]

2.2.3 Implementation

• Determine an appropriate version control system. The EPiCS project is hosted at github. You
might want to put your code in the same repository.

• Use the Linux kernel coding style.

• Implement your design.

• Provide a simple script that shows how your design can be loaded and how packets can be exchanged
between different modules.

• Optional: Implement some more advanced ANA functionality.

• Optional: Implement the interface to ReconOS.

2.2.4 Validation

• Validate the correct operation of your implementation.

• Check the resilience of the implementation, including its configuration interface, to uneducated
users.

2.2.5 Evaluation

• Do a performance evaluation of your implementation.

• Optional: Determine the bottlenecks of your implementation.

• Optional: Do a performance comparison between packet forwarding for different combinations of
hardware, Kernel space and User space.

2

2.2.6 Documentation

• Appropriate source code documentation.

• Write a step-by-step how to for starting your code and for some simple packet exchange between
different modules.

• Write a documentation about the design, implementation and validation of the lightweight ANA
implementation.

3 Milestones

• Provide a ”project plan” which identifies the mile stones.

• Two intermediate presentations: Give a presentation of 10 minutes to the professor and the advisors.
In this presentation, the student presents major aspects of the ongoing work including results,
obstacles, and remaining work.

• Final presentation of 15 minutes in the CSG group meeting, or, alternatively, via teleconference.
The presentation should carefully introduce the setting and fundamental assumptions of the project.
The main part should focus on the major results and conclusions from the work.

• Masterseminar: Intermediate presentation and discussion at HTWK Leipzig. (StudO-INM, 4
November 2009).

• Masterkolloquium at HTWK Leipzig. Presentation of 30 minutes of the master thesis with a
question session of at most 60 minutes. (PrüfO-INM, 4 November 2009).

• Any software that is produced in the context of this thesis and its documentation needs to be
delivered before conclusion of the thesis. This includes all source code and documentation. The
source files for the final report and all data, scripts and tools developed to generate the figures of
the report must be included. Preferred format for delivery is a CD-R.

• Final report. The final report must contain a summary, the assignment, the time schedule and
the Declaration of Originality. Its structure should include the following sections: Introduction,
Background/Related Work, Design/Methodology, Validation/Evaluation, Conclusion, and Future
work. Related work must be referenced appropriately.

4 Organization

• Student and advisor hold a weekly meeting to discuss progress of work and next steps. The student
should not hesitate to contact the advisor at any time. The common goal of the advisor and the
student is to maximize the outcome of the project.

• The student is encouraged to write all reports in English; German is accepted as well.

• The core source code will be published under the GNU general public license.

5 References

[1] ANA Core Documentation: All you need to know to use and develop ANA software.
[2] ANA Blueprint: D.1.9 ANA Blueprint Update, D.1.9b Description of the low-level machinery of ANA
[3] http://www.ana-project.org
[4] http://www.epics-project.eu
[5] http://www.reconos.de

3

Appendix C

Getting Started with LANA

This chapter presents a short tutorial for building the Linux kernel, LANA mod-
ules and the LANA example application, for loading LANA into the kernel and
for developing own functional blocks.

This tutorial assumes that you are using Debian GNU/Linux 6.0. The basic set
of tools that are needed can be obtained via apt-get with the following packages:

• build-essential (a Debian meta-package containing basic utilities and
libraries for building software like gcc, make, g++, coreutils, bsdutils,
util-linux, sed, tar and others)

• gdb (the GNU debugger)

• libncurses5 and libncurses5-dev (the graphical ncurses library, needed
for ifpps)

• git (the distributed version control system [86])

• grub or grub2 (a system boot loader, grub2 is default on most installations)

• vim, uemacs or similar (a command-line text editor)

• minicom (terminal emulation and text-based modem, for remote debugging
via RS232)

• coccinelle (a semantic patching tool for C)

• flex (a fast lexical analyzer generator, needed for bpfc)

• bison (a parser generator that is compatible with YACC, needed for bpfc)

• libcelt0-0 and libcelt-dev (CELT codec, needed fot the LANA appli-
cation)

• libspeexdsp1 and libspeexdsp-dev (Speex DSP, needed fot the LANA
application)

• libasound2 and libasound2-dev (ALSA lib, needed fot the LANA appli-
cation)

Optionally, it might be useful to port the Kernel Source Level Debugger (kgdb)
and the Kernel Source Level Debugger over Ethernet (kgdboe) without too much

129

efforts from [108] for kernel debugging to the latest Linux release, since Linux
explicitly avoids shipping a debugger within the kernel.

C.1 Building Linux and LANA

First of all, the kernel sources of Linus Torvald’s Git tree are obtained with the
command

git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux-2.6.git

cd linux-2.6/

git checkout v3.0

and then built with:

make menuconfig

Within menuconfig you can optionally enable kernel hacking options, the inclu-
sion of needed drivers, other subsystems and more. If you are not sure what you
need to choose here, simply exit the menu and save the default kernel configura-
tion file (.config).

make -j4 && make modules -j4

Afterwards, an initial ramdisk is needed which is a temporary file system used
for booting up the Linux kernel. It can be created by the following steps:

make install && make modules_install

cd /boot/

mkinitramfs -o initrd.img-3.0.0 3.0.0

Note that the version 3.0.0 is just an example and can be different in some cases
on your machine. And on the last step, the boot loader needs to be updated to
recognize the newly created ramdisk:

update-grub

We can then boot into the new kernel:

reboot

130

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

Note that you also might want to deactivate quiet from the kernel command-line,
in order to see printk outputs during the boot process. Edit /etc/default/grub
and remove it from the command-line with GRUB_CMDLINE_LINUX_DEFAULT=""

and do an update-grub afterwards.

After the reboot, the LANA repository can then be fetched via Git with the
command

git clone git://repo.or.cz/ana-net.git

and compiled through the following steps:

cd ana-net/src

make

cd ../usr

make

cd ../app

make

LANA’s kernel modules can be found in src/, user space tools in usr/ and the
LANA example application has been built in app/.

In case your ALSA kernel drivers have a newer version (cat /proc/asound/version)
than the user space libraries and utilities, you eventually might want to rebuild
ALSA’s user space software:

git clone git://git.alsa-project.org/alsa-lib.git

git clone git://git.alsa-project.org/alsa-plugins.git

git clone git://git.alsa-project.org/alsa-utils.git

git clone git://git.alsa-project.org/alsa-tools.git

The corresponding release tag can be found within the source directory by listing
the Git tags with git tag -l and checking out the one, that corresponds to
/proc/asound/version. Each source directory has an Automake build system
with a configure script. A simple test of ALSA can be performed by capturing
sound via arecord and replay the resulting sound file with aplay.

C.2 Remote Debugging of LANA

If kgdb or kgdboe is not present on the system, it can be useful to redirect kernel
messages to a RS232-compliant serial port for monitoring and debugging pur-
poses on a remote machine. Just add

131

git://repo.or.cz/ana-net.git

console=/dev/ttyS0,9600n8

to the kernel command-line, like:

vim /boot/grub/menu.lst

menuentry ’ Debian/Linux 3 . 0 . 0 ’ −−class debian −−class gnu−l i nux
−−class gnu −−class os {

insmod part msdos
insmod ext2
s e t root=’ (hd0 , msdos6) ’
s earch −−no−f l oppy −−f s−uuid −−s e t <...>
l i nux / boot /vmlinuz −3.0 .0 root=UUID=<...> ro conso l e=/dev/ ttyS0 ,9600 n8
i n i t r d / boot / i n i t r d . img−3.0 .0

}

If you also intend to redirect the tty output of your development system to the
serial port, add the following to the /etc/inittab:

s0:2345:respawn:/sbin/agetty -L ttyS0 9600 vt100

Both configurations assume that ttyS0 is present as a serial port device. This
can be checked on a running kernel with:

dmesg | grep tty

If you have rebooted the kernel for applying the new configuration, the remote
machine can then use minicom with the serial port settings of 9600 bit/s, N (no
parity), 8 (data bits), 1 (stop bit) and flow control turned off to print out console
messages of the development machine.

C.3 Setup of LANA Modules

Within this section, a simple LANA stack according to figure C.1 is being con-
figured. This particular example receives incoming packets on an fb_eth block
that forwards them to an fb_tee block, which spawns a copy of the packet to
fb3 and to fb5, both of type fb_bpf. fb3 shall accept IPv4 typed packets and
fb5 only ARP typed packets. If packets pass the BPF blocks, then a per-CPU
counter is going to accumulate statistics for IPv4 respectively ARP in fb4 and
fb6.

First of all, after building the modules, the LANA core kernel module is being
loaded to the kernel via insmod:

132

Figure C.1: LANA example configuration

insmod lana.ko

The kernel will then print a message that LANA has been loaded successfully:

dmesg shows:

[111608.202549] [lana] bootstrapping core ...

[111608.203050] [lana] core up and running!

Afterwards, we need to load all kernel modules for this example via insmod, too:

insmod fb_eth.ko

insmod fb_bpf.ko

insmod fb_tee.ko

insmod fb_counter.ko

Now none of the loaded functional blocks are active, yet. They have only been
registered to a functional block builder with a constructor and destructor as well
as a type identifier. To add instances of these functional blocks into the LANA
stack, do the following:

vlink ethernet hook eth0

fbctl add fb2 tee

fbctl add fb3 bpf

fbctl add fb4 counter

fbctl add fb5 bpf

fbctl add fb6 counter

Now cat /proc/net/lana/fblocks shows functional block instances that are
currently present in LANA with information about the name of the instance, its
type, its kernel address, its information dispatch point, its reference count and

133

a list of bound or subscribed information dispatch points of functional blocks
(empty at the beginning since nothing has been bound):

eth0 vlink ffff88007e6ee000 1 1 []

fb2 tee ffff88007e73c000 2 1 []

fb3 bpf ffff88007e749000 3 1 []

fb4 counter ffff88007e6ee0c0 4 1 []

fb5 bpf ffff88007e7490c0 5 1 []

fb6 counter ffff88007e6ee180 6 1 []

A cat /proc/net/lana/ppe shows per-CPU statistics about the packet process-
ing engine of LANA with information about the number of received packets that
entered the packet processing engine, total bytes of the packets, the number of
invocations of functional block handler, the number of timer calls, the number of
timer calls that were scheduled on the wrong CPU, and the length of the packet
processing engine’s backlog queue:

CPU0: 858 54837 0 3453 0 0

CPU1: 846 53536 0 2435 0 0

CPU2: 828 55750 0 2354 0 0

CPU3: 818 55813 0 3334 0 0

The next step before binding functional blocks is to create Berkeley Packet Filter
programs that will be translated by bpfc (Appendix D.3 1) to a kernel readable
bytecode format which can be piped into the BPF functional block for filter con-
figuration:

vim arp.bpf with (comments start with the ; character):

ldh #proto ; Load packets Ethernet type field into accumulator

jeq #0x806,L1,L2 ; Compare with Ethernet type for ARP

L1: ret #0xfffff ; Accept packet

L2: ret #0 ; Drop packet

and

vim ipv4.bpf with:

ldh #proto ; Load packets Ethernet type field into accumulator

jeq #0x800,L1,L2 ; Compare with Ethernet type for IPv4

1Note that there is also a Vim syntax highlighting file that has been developed in this work.
It is part of the netsniff-ng Git repository [109].

134

L1: ret #0xfffff ; Accept packet

L2: ret #0 ; Drop packet

The resulting program can be checked by bpfc if the verbose mode is switched on:

bpfc -Vi arp.bpf will show:

*** Generated program:

(000) ldh [-4096]

(001) jeq #0x806 jt 2 jf 3

(002) ret #1048575

(003) ret #0

*** Validating: is valid!

*** Result:

{ 0x28, 0, 0, 0x0000000c },

{ 0x15, 0, 1, 0x00000806 },

{ 0x6, 0, 0, 0x000fffff },

{ 0x6, 0, 0, 0x00000000 },

Now, the resulting code can be piped into the BPF functional blocks with:

bpfc ipv4.bpf > /proc/net/lana/fblock/fb3

bpfc arp.bpf > /proc/net/lana/fblock/fb5

The kernel will acknowledge the filter by printing out a message (dmesg):

[177784.217556] [fb3::bpf] Parsed code:

[177784.217563] [fb3::bpf] 0: c:0x28 jt:0 jf:0 k:0xfffff000

[177784.217566] [fb3::bpf] 1: c:0x15 jt:0 jf:1 k:0x800

[177784.217570] [fb3::bpf] 2: c:0x6 jt:0 jf:0 k:0xfffff

[177784.217573] [fb3::bpf] 3: c:0x6 jt:0 jf:0 k:0x0

[177784.217581] [fb3::bpf] Filter injected!

[177788.929628] [fb5::bpf] Parsed code:

[177788.929634] [fb5::bpf] 0: c:0x28 jt:0 jf:0 k:0xfffff000

[177788.929638] [fb5::bpf] 1: c:0x15 jt:0 jf:1 k:0x806

[177788.929641] [fb5::bpf] 2: c:0x6 jt:0 jf:0 k:0xfffff

[177788.929644] [fb5::bpf] 3: c:0x6 jt:0 jf:0 k:0x0

[177788.929652] [fb5::bpf] Filter injected!

Now the functional blocks can be bound together in the LANA stack:

fbctl bind fb2 eth0

fbctl bind fb3 fb2

135

fbctl bind fb5 fb2

fbctl bind fb4 fb3

fbctl bind fb6 fb5

Again, the result can be seen in dmesg

[178962.252897] [fb2::tee] port egress bound to IDP1

[178962.252902] [eth0::vlink] port ingress bound to IDP2

[179000.733011] [fb3::bpf] port egress bound to IDP2

[179000.733016] [fb2::tee] port ingress bound to IDP3

[179005.940999] [fb5::bpf] port egress bound to IDP2

[179005.941004] [fb2::tee] port ingress bound to IDP5

[179039.581172] [fb4::counter] port egress bound to IDP3

[179039.581181] [fb3::bpf] port ingress bound to IDP4

[179048.013100] [fb6::counter] port egress bound to IDP5

[179048.013106] [fb5::bpf] port ingress bound to IDP6

and also in the dependency list of each functional block in /proc/net/lana/fblocks:

eth0 vlink ffff88006c0ad180 1 4 [2]

fb2 tee ffff88006c0ad0c0 2 10 [5 3 1]

fb3 bpf ffff88006c13b000 3 7 [4 2]

fb4 counter ffff88006c13b0c0 4 4 [3]

fb5 bpf ffff88006c13b180 5 7 [6 2]

fb6 counter ffff88006c13b240 6 4 [5]

Now, counter data can be fetched with cat via /proc/net/lana/fblock/fb4

and /proc/net/lana/fblock/fb6. The output of both files show two numbers,
the packet count and the accumulated byte count.

To remove LANA from the system, we need to unbind all functional blocks first,
then we remove the instances, and finally we can remove the kernel modules:

fbctl unbind fb6 fb5

fbctl unbind fb4 fb3

fbctl unbind fb5 fb2

fbctl unbind fb3 fb2

fbctl unbind fb2 eth0

vlink ethernet unhook eth0

fbctl rm fb2

fbctl rm fb3

fbctl rm fb4

fbctl rm fb5

136

fbctl rm fb6

rmmod fb_eth.ko

rmmod fb_bpf.ko

rmmod fb_tee.ko

rmmod fb_counter.ko

rmmod lana.ko

C.4 Functional Block Development

If you intend to develop a new functional block, it is recommended that you are
already familiar with kernel development, have a basic understanding of tech-
niques like RCU, when to use which locking mechanisms and about per-CPU
data structures.

There is also a freely available book about parallel programming written by
the Linux kernel developer Paul McKenney that can be gathered via Git:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.

git

The usual way to start developing a new LANA functional block is to make a
copy of src/fb_dummy.c since this is the simplest possible functional block of
LANA. Replace all the fb_dummy_* functions to appropriate named ones.

Here, we use to call the new functional block fb_myblock. The most impor-
tant functions of fb_myblock are fb_myblock_ctor and fb_myblock_dtor which
are constructor respectively destructor functions of struct fblock_factory -

fb_myblock_factory, which are called upon the request of a new instance of
a functional block of type myblock. Next to the constructor and destructor,
fb_myblock_netrx and fb_myblock_event should be implemented as well. The
code from the dummy functional block gives an example and starting point on
how these four functions can be implemented.

For instance, the dummy block receive function (fb_myblock_netrx) can sim-
ply forward a socket buffer to the next bound block:

struct fb myblock pr iv {
i dp t port [2] ;
s e q l o c k t l ock ;

} ;

stat ic int fb myblock netrx (const struct f b l o c k ∗ const fb ,
struct s k b u f f ∗ const skb ,
enum path type ∗ const d i r)

{

137

git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

int drop = 0 ;
unsigned int seq ;
struct fb myblock pr iv percpu ∗ f b p r i v cpu ;

fb p r i v cpu = t h i s c p u p t r (r cu de r e f e r enc e raw (fb−>pr i va t e da ta)) ;
#ifde f DEBUG

pr intk (”Got skb on %p on ppe%d !\n” , fb , smp proces so r id ()) ;
#endif

pre fetchw (skb−>cb) ;
do {

seq = read seqbeg in (& fb pr iv cpu−>l o ck) ;
w r i t e n e x t i d p t o s k b (skb , fb−>idp , fb pr iv cpu−>port [∗ d i r]) ;
i f (fb pr iv cpu−>port [∗ d i r] == IDP UNKNOWN)

drop = 1 ;
} while (r e a d s e q r e t r y (&fb pr iv cpu−>lock , seq)) ;
i f (drop) {

k f r e e s k b (skb) ;
return PPE DROPPED;

}
return PPE SUCCESS;

}

Here, CPU-local private data of this functional block instance is being fetched
by a RCU dereference within rcu_read_lock held through the packet process-
ing engine. This private data reads out the next IDP number of a functional
block under a CPU-local sequential lock, which is lock-free under a x86_64 ar-
chitecture. The IDP is then written into the socket buffer’s private data area via
write_next_idp_to_skb. If no subsequent IDP has been set, then the socket
buffer is freed and a PPE_DROPPED is given to the packet processing engine. Oth-
erwise, the function returns with PPE_SUCCESS and the packet processing engine
calls the next functional block handler according to the encoded IDP of the skb.

C.5 LANA Development with Coccinelle

Together with the LANA source code, a folder called sem/ is being shipped. This
folder contains programs under the GPL version 2 that mostly have been taken
from the Linux kernel source. These programs are written in SmPL (Semantic
Patch Language) and can be interpreted by Coccinelle. More information about
Semantic Patches and Coccinelle can be found in Lawall et al. [110], [111], [112]
and [113].

SmPL has been designed to make collateral code changes in C more easy by
developing a semantic matching and transformation engine that generates auto-
matically patches in C, if a given match has been detected in a specified code
base[114].

The main purpose for its usage in the development of LANA is to find errors
in the code base of LANA or to semi-automatically review the code quality of

138

the implemented kernel modules.
Some general use cases that are also applicable for LANA are the following

(mentioned files are from sem/):

• kfree.cocci: finds a memory use after kfree

• kzalloc-simple.cocci: uses kzalloc rather than kmalloc followed by
memset with 0

• double lock.cocci: finds possible double locks

• flags.cocci: finds nested lock+irqsave functions that use the same flags
variables

• mini lock.cocci: finds possible missing unlocks

• doubleinit.cocci: finds duplicate field initializations

• notnull.cocci: detects NULL tests that can only be reached when the value
is known not to be NULL

• deref null.cocci: detects a variable that is dereference under a NULL test
even though it is know to be NULL

• drop kmalloc cast.cocci: finds casts after (void *) values returned by
kmalloc, since this is useless

Consider the following faulty C code:

#include <s t d i o . h>
#include <s t d l i b . h>

struct f oo {
int bar ;

} ;

int main (void)
{

struct f oo ∗ f = mal loc (s izeof (∗ f)) ;
i f (f == NULL) {

return f−>bar ;
}
return 0 ;

}

If spatch is run against this C file by using the SmPL script deref_null.cocci,
it will report an error that f is dereferenced even though f is known to be NULL:

spatch -D report -local_includes -out_place -sp_file null/deref_null.cocci

test.c

spatch will then complain:

139

init_defs_builtins: /usr//share/coccinelle/standard.h

HANDLING: test.c

test.c:12:12-15: ERROR: f is NULL but dereferenced.

To build the latest Coccinelle version under Debian GNU/Linux, the following
packages must be installed first:

apt-get install ocaml-native-compilers ocaml-findlib libpycaml-ocaml-dev

libsexplib-camlp4-dev menhir libmenhir-ocaml-dev

Afterwards, within the LANA repository root directory, the following commands
under root build and install the latest version of Coccinelle:

cd sem/

make spatch

As a non-priviledged user, the LANA source folder can then be checked with
a basic set of SmPL scripts with:

make

140

Appendix D

LANA-derived Development
Utilities

During the process of implementation, validation and performance evaluation of
LANA, we have implemented several utilities that facilitate the development of
LANA from different aspects. These development utilities are shortly presented
in this chapter.

D.1 High-Performance Zero-Copy Traffic Gen-

erator

For performance evaluation and LANA debugging purposes, we have imple-
mented a fast zero-copy traffic generator, named trafgen. trafgen utilizes the
PF_PACKET (packet(7)) socket interface of Linux which postpones complete con-
trol over packet data and packet headers into the user space. Since Linux 2.6.31, a
new PF_PACKET extension has been added into the mainline kernel that is known
under the term zero-copy TX_RING [4].
TX_RING is a ring buffer with virtual memory that is directly mapped into both

address spaces (figure D.1). Thus, kernel space and user space can access this
buffer without needing to perform system calls or additional context switches and
without needing to copy buffers between address spaces. The TX_RING buffer is
configurable in size and each ring buffer slot has a header with control information
such as a status flag. The status flag provides information about the current usage
of the slot. Thus, (i) the kernel knows if this slot is ready for transmission and
(ii) the user space knows whether the current slot can be filled with a new packet.

If the kernel is triggered to process the TX_RING data, it allocates a new socket
buffer structure for each filled ring slot, sets the TX_RING pages of the current
slot as data fragments, and finally calls dev_queue_xmit for transmission (section
3.1.2).

For using the TX_RING with high-speed packet rates, network device drivers

141

should have NAPI (section 3.1.1) enabled to perform interrupt load mitigation.
In trafgen, every 10 microseconds (default, can be changed via command line
option), a real-time timer calls sendto(2) in order to trigger the kernel for pro-
cessing frames of the TX_RING.

Via command line option, trafgen can also be bound to run on a specific CPU.
Thus, overhead of process and cache-line migration is avoided, if the Linux process
scheduler decides to migrate trafgen to a different CPU. Further, if trafgen is
bound to a specific CPU, it automatically migrates the NIC’s interrupt affinity
to the bound CPU, too. This is done in order to avoid cache-line migration to
the NIC’s interrupt CPU, hence, to keep data CPU local.

The TX_RING size can also be configured via command line option with values
ranging from megabytes to gigabytes. Furthermore, trafgen makes use of our
own assembler-optimized memcpy for x86/x86 64 architectures with MMX regis-
ters in order to speed up copying the generated packet template into the TX_RING
slot.

Figure D.1: TX_RING buffer used by trafgen

By exploiting the TX_RING for transmission, small-sized packet rates with ap-
prox. 1.25 mio pps were generated by trafgen on an Intel Core 2 Quad CPU
with 2.40 GHz, 4 GB RAM and an Intel 82566DC-2 Gigabit Ethernet card (figure
D.2). trafgen was bound to a single CPU and trafgen’s CPU interrupt migra-
tion was activated, thus NIC interrupts were received on the same CPU on which
trafgen was bound to. An identical machine was used for packet reception,
both machines were directly connected and ifpps (section D.2) was used on the
receive-side for measurement. Since we have already published the source code

142

of trafgen, we attracted users to perform further benchmarks with trafgen on
their hardware. We found out that the results heavily depend on the used Gigabit
Ethernet adapter. For instance, Ronald W. Henderson wrote a Wiki article [115]
about our trafgen where he reached the physical line rate of 1.488 mio 64 Byte
pps.

With our test setup, we have compared trafgen with two other packet gener-
ators, namely mausezahn [116] and pktgen [117]. mausezahn is a fast user space
packet generator that uses libnet [118], a framework for low-level network packet
construction. The second traffic generator is pktgen, which is part of the Linux
mainline kernel and resides in the core of the networking subsystem.

In contrast to trafgen and mausezahn, pktgen must be configured via procfs.
pktgen’s configuration options are limited to basic protocols like IPv4 or IPv6.
As a transport layer protocol, only UDP is supported and packet payload cannot
be configured at all. Figure D.2 shows that even for small packets, the kernel
space pktgen is able to transmit up to 1.38 mio pps.

The kernel source code shows that one packet copy can be avoided in com-
parison to trafgen. In case of trafgen, the kernel does not copy the TX_RING

slot data to skb->data, but sets data pages as socket buffer fragments. Hence,
in dev_hard_start_xmit the buffer might need to linearize its fragments in
some cases through __skb_linearize (section 3.1.2) to DMA-capable memory.
pktgen on the contrary can directly allocate an already linearized and DMA-
capable buffer, thus this can be the cause of trafgen’s performance penalty.

However, trafgen is still up to 40 percent faster than mausezahn with the ben-
efit of having more degrees of freedom regarding packet configuration in contrast
to pktgen. On larger packet sizes, all three traffic generators have a similar pps
performance in the test setup. We assume that this is mainly due to hardware
and bandwidth limitations of the underlying system. On better equipped systems
with e.g. 10 Gigabit Ethernet, we assume that the order of performance of the
benchmarked tools looks similar to the part with smaller sized packets.

Next to the TX_RING, trafgen has a second working mode that allows the
definition of inter-packet departure times, which is mainly used for debugging
purposes in LANA. This method invokes system calls and the copy of packet
buffers for transmission, since inter-packet departure times are not supported
by the TX_RING. This is also realized using PF_PACKET sockets, but instead of
allocating a TX_RING, packets are directly transmitted with sendto(2).

Furthermore, trafgen provides its own packet configuration language. By
this, multiple packets can be defined in a single packet configuration file, where
packet headers and packet payload are specified byte-wise. Within such a packet
configuration, there can be elements like counter or random number generators,
thus e.g. bytes of a source MAC address can be randomized or incremented.
trafgen is published under the GNU GPL version 2 and has been added into

the netsniff-ng toolkit [119]. trafgen does not need any libraries except libc and
can be built and installed with:

143

 100000

 200000

 400000

 800000

 1e+06

 1.2e+06

 1.4e+06

 64
 250

 500
 750

 1000

 1500

Tr
a
n
sm

it
te

d
 P

a
ck

e
ts

 p
e
r

S
e
co

n
d

Packet Size in Bytes

Comparison of Traffic Generators

trafgen mausezahn pktgen

Figure D.2: trafgen compared to mausezahn and the kernel space pktgen

git clone git://repo.or.cz/netsniff-ng.git

cd netsniff-ng/src/trafgen

make && make install

The netsniff-ng toolkit also ships an example packet configuration file that can
be used for high-speed transmissions:

trafgen -dev eth0 -conf ../trafgen.txf -bind 0

Further command line attributes are explained in trafgen -h.
Future work on trafgen will include a Cisco-like telnet front-end tgsh for a

more user-friendly packet configuration and network device management. There,
packets with LANA-specific protocols as well as traditional Internet protocols can
be configured. Further, multiple user logins and network device statistics will be
supported, thus trafgen can be used on a traffic generator appliance.

D.2 Top-like Kernel Networking Statistics

For measurement purposes, we have implemented a tool called ifpps, which
periodically provides top-like networking and system statistics from the kernel.
ifpps gathers its data directly from procfs files and does not apply any user

144

space monitoring libraries such as libpcap [120] which is used in tools like iptraf

[121], for instance.
The main idea behind ifpps is to apply principles from section 2.2.1 in or-

der to be able to have more accurate networking statistics under a high packet
load. For instance, consider the following scenario: two directly connected Linux
machines with Intel Core 2 Quad Q6600 2.40GHz CPUs, 4 GB RAM, and an In-
tel 82566DC-2 Gigabit Ethernet NIC are used for performance evaluation. One
machine generates 64 Byte network packets by using the kernel space packet
generator pktgen with a maximum possible packet rate. The other machine dis-
plays statistics about incoming network packets by using i) iptraf and ii) ifpps.
iptraf, that incorporates libpcap, shows an average packet rate of 246,000 pps
while on the other hand ifpps shows an average packet rate of 1,378,000 pps.
Hence, due to copying packets and deferring statistics creation into user space, a
measurement error of approx. 460 per cent occurs.

Tools like iptraf, for instance, display much more information such as TCP
per flow statistics (therefore the use of libpcap), which we have not implemented
in ifpps because overall networking statistics are in our focus. The principle
P1 in our case is applied by avoiding collecting network packets in user space
for statistics creation. Further, principle P2 means that we let the kernel calcu-
late packet statistics, for instance, within the network device drivers. With both
principles applied, we fetch network driver receive and transmit statistics from
procfs. Hence, the following files are of interest for ifpps:

• /proc/net/dev: network device receive and transmit statistics

• /proc/softirqs: per CPU statistics about scheduled NET_RX and NET_TX

software interrupts (section 3.1)

• /proc/interrupts: per CPU network device hardware interrupts

• /proc/stat: per CPU statistics about time (in USER_HZ) spent in user,
system, idle, and IO-wait mode

• /proc/meminfo: total and free memory statistics

Every given time interval (t, default: t = 1s), statistics are parsed from procfs
and displayed in an ncurses-based [122] screen. An example ifpps output of
ifpps eth0 looks like the following:

Kernel net / sys s t a t i s t i c s for eth0

RX: 0 .003 MiB/ t 20 pkts / t 0 drops / t 0 e r r o r s / t
TX: 0 .000 MiB/ t 2 pkts / t 0 drops / t 0 e r r o r s / t

RX: 226.372 MiB 657800 pkts 0 drops 0 e r r o r s
TX: 12 .104 MiB 101317 pkts 0 drops 0 e r r o r s

145

SYS : 2160 cs / t 43.9% mem 1 running 0 iowa i t

CPU0: 0.0% usr / t 0.0% sys / t 100.0% i d l / t 0.0% iow/ t
CPU1: 0.0% usr / t 0.5% sys / t 99.5% i d l / t 0.0% iow/ t
CPU2: 0.5% usr / t 0.0% sys / t 99.5% i d l / t 0.0% iow/ t
CPU3: 4.9% usr / t 0.5% sys / t 94.6% i d l / t 0.0% iow/ t

CPU0: 7 i r q s / t 7 s o i r q RX/ t 0 s o i r q TX/ t
CPU1: 8 i r q s / t 8 s o i r q RX/ t 0 s o i r q TX/ t
CPU2: 3 i r q s / t 3 s o i r q RX/ t 0 s o i r q TX/ t
CPU3: 3 i r q s / t 4 s o i r q RX/ t 0 s o i r q TX/ t

CPU0: 158842 i r q s
CPU1: 158704 i r q s
CPU2: 159393 i r q s
CPU3: 158710 i r q s

The first two lines display received and transmitted MiB, packets, dropped
packets, and errors for the network device eth0 within a given time interval t.
The next two lines show their aggregated values since boot time. Moreover, the
line starting with SYS shows context switches per t seconds, current memory
usage, currently running processes and processes waiting for I/O to complete.
Furthermore, ifpps displays per CPU information about CPU percentage spent
executing in user mode, kernel mode, idle mode and I/O wait mode. Next to
this, per CPU hardware and software interrupts are shown. Displayed hardware
interrupts are only hardware interrupts that were caused by the networking device
eth0. Software interrupts are not further distinguished by devices, thus only per
CPU receive and transmit overall statistics are provided. However, the last lines
show aggregated eth0 hardware interrupts since boot time.

Especially the knowledge gathered by monitoring the system’s runtime be-
haviour regarding hardware and software interrupts, context switches and receive
statistics helped in performance optimization experiments with LANA’s packet
processing engine as described in section 6.5.
ifpps is published under the GNU GPL version 2 as an extension to the

netsniff-ng toolkit [119] and can be built and installed with:

git clone git://repo.or.cz/netsniff-ng.git

cd netsniff-ng/src/ifpps

make && make install

Furthermore, ifpps supports setting the network adapter into promiscuous mode
by applying option -promisc, i.e. ifpps -dev eth0 -promisc.

146

D.3 Berkeley Packet Filter Compiler

Within this work, we have developed a Berkeley Packet Filter (BPF) compiler
for LANA’s BPF functional block. Berkeley Packet Filters as described in liter-
ature [31] are small assembler-like programs that can be interpreted by a virtual
machine within the Linux (or *BSD) kernel [123]. Their main application is to
filter out packets on an early point in the receive path as described in the prin-
ciple of early demultiplexing in 2.1.1. However, the operating system kernel can
only work with an array of translated mnemonics that operate on socket buffer
memory. The canonical format of such a single translated instruction is a tuple
of Bit fields of opcode, jt, jf and k and looks like:

opcode:16 jt:8 jf:8
k:32

Here, opcode is the numerical representation of an instruction and has a width
of 16 Bit, jt and jf are both jump offset fields (to other instruction tuples) of 8
Bit width each and k is an optional instruction-specific argument of 32 Bit. The
BPF virtual machine construct consists of a 32 Bit accumulator register, of a 32
Bit index register and of a so-called scratch memory store that can hold up to 16
32 Bit entries. How each component can be used is described later in this section.

Since writing filter programs in this numerical format by hand is error-prone
and needs lots of efforts, it is only obvious to have a compiler that translates
McCanne et al.’s [31] syntax into the canonical format. To our knowledge, the
only available compiler is integrated into libpcap [120] and can be accessed by
tools like tcpdump for instance:

tcpdump -i eth10 -dd arp

{ 0x28, 0, 0, 0x0000000c },

{ 0x15, 0, 1, 0x00000806 },

{ 0x06, 0, 0, 0x0000ffff },

{ 0x06, 0, 0, 0x00000000 },

This example demonstrates how a simple filter looks like, that can be used for
ARP-typed packets. While we believe that tcpdumps filter syntax [124] might be
appropriate for most simple cases, it does not provide the full flexibility and ex-
pressiveness of the BPF syntax from [31] as stated in discussions on the tcpdump-
workers mailing list [125]. To our knowledge, since 1992 there is no such compiler
available that is able to translate from McCanne et al.’s syntax [31] into the canon-
ical format. Even though the BPF paper is from 1992, Berkeley Packet Filters are
still heavily used nowadays. Up to the latest versions of Linux, the BPF language
is still the only available filter language that is supported for sockets in the kernel.
In 2011, the Eric Dumazet has developed a BPF Just-In-Time compiler for the

147

Linux kernel [106]. With this, BPF programs that are attached to PF PACKET
sockets (packet(7)) are directly translated into executable x86/x86 64 or Pow-
erPC assembler code in order to speed up the execution of filter programs. A first
benchmark by Eric Dumazet showed that 50 ns are saved per filter evaluation on
an Intel Xeon DP E5540 with 2.53 GHz clock rate [126]. This seems a small time
interval on the first hand, but it can significantly increase processing capabilities
on a high packet rate.

In order to close the gap of a BPF compiler, we have developed a compiler
named bpfc that is able to understand McCanne et al.’s syntax and semantic.
The instruction set of [31] contains the following possible instructions:

Instr. Addressing Mode Description
Load Instructions

ldb [k] or [x + k] Load (unsigned) byte into accumulator
ldh [k] or [x + k] Load (unsigned) half word into accumulator
ld #k or #len or Load (unsigned) word into accumulator

M[k] or [k] or [x + k]

ldx #k or #len or Load (unsigned) word into index register
M[k] or 4*([k]&0xf)

Store Instructions
st M[k] Copy accumulator into scratch memory store
stx M[k] Copy index register into scratch memory store

Branch Instructions
jmp L Jump to label L (in every case)
jeq #k,Lt,Lf Jump to Lt if equal (to accu.), else to Lf

jgt #k,Lt,Lf Jump to Lt if greater than, else to Lf

jge #k,Lt,Lf Jump to Lt if greater than or equal, else to Lf

jset #k,Lt,Lf Jump to Lt if bitwise and, else to Lf

ALU Instructions
add #k or x Addition applied to accumulator
sub #k or x Subtraction applied to accumulator
mul #k or x Multiplication applied to accumulator
div #k or x Division applied to accumulator
and #k or x Bitwise and applied to accumulator
or #k or x Bitwise or applied to accumulator
lsh #k or x Left shift applied to accumulator
rsh #k or x Right shift applied to accumulator

Return Instructions
ret #k or a Return

Miscellaneous Instructions
tax Copy accumulator to index register
txa Copy index register to accumulator

148

Next to this, mentioned addressing modes have the following meaning [31]:

Mode Description
#k Literal value stored in k

#len Length of the packet
x Word stored in the index register
a Word stored in the accumulator
M[k] Word at offset k in the scratch memory store
[k] Byte, halfword, or word at byte offset k in the packet
[x + k] Byte, halfword, or word at the offset x+k in the packet
L Offset from the current instruction to L

#k,Lt,Lf Offset to Lt if the predicate is true, otherwise offset to Lf

4*([k]&0xf) Four times the value of the lower four bits of the byte at
offset k in the packet

Furthermore, the Linux kernel has undocumented BPF filter extensions that
can be found in the virtual machine source code [123]. They are implemented as
a ’hack’ into the instructions ld, ldh and ldb. As negative (or, in unsigned ’very
high’) address offsets cannot be accessed from a network packet, the following
values can then be loaded into the accumulator instead (bpfc syntax extension):

Mode Description
#proto Ethernet protocol
#type Packet class1, e.g. Broadcast, Multicast, Outgoing, ...
#ifidx Network device index the packet was received on
#nla Load the Netlink attribute of type X (index register)
#nlan Load the nested Netlink attribute of type X (index register)
#mark Generic packet mark, i.e. for netfilter
#queue Queue mapping number for multiqueue devices
#hatype Network device type2 for ARP protocol hardware identifiers
#rxhash The packet hash computed on reception
#cpu CPU number the packet was received on

A simple example on how BPF works is demonstrated by retrieving the pre-
vious example of an ARP filter. This time, it is written in BPF language, that
bpfc understands:

ldh [12]

jeq #0x806,L1,L2

L1: ret #0xfffff

L2: ret #0

Here, the Ethernet type field of the received packet is loaded into the accumulator
first. The next instruction compares the accumulator value with the absolute

149

value 0x806, which is the Ethernet type for ARP. If both values are equal, then
a jump to the next instruction plus the offset in jt will occur, otherwise a jump
to the next instruction plus the offset in jf is performed. Since this syntax hides
jump offsets, a label for a better comprehensibility is used instead. Hence, if both
values are equal, a jump to L1, else a jump to L2 is done. Instructions on both
labels are return instructions, thus the virtual machine will be left. The difference
of both lines is the value that is returned. The value states how many bytes of
the network packet should be kept for further processing. Therefore a value of 0
drops the packet entirely and a value larger than 0 keeps and eventually truncates
the last bytes of the packet. Truncating is only done if the length of the packet
is larger than the value that is returned by ret. Else, if the returned value is
larger than the packet size such as 0xfffff Byte, then the packet is not being
truncated by the kernel.

For the BPF language, we have implemented the bpfc compiler in a typical
design that can be found in literature [127] or [128]. There, the sequence of
characters is first translated into a corresponding sequence of symbols of the
vocabulary or also named token of the presented BPF language. Its aim is to
recognize tokens such as opcodes, labels, addressing modes, numbers or other
constructs for later usage. This early phase is called lexical analysis (figure D.3).
Afterwards, the sequence of symbols is transformed into a representation that
directly mirrors the syntactic structure of the source text and lets this structure
easily be recognized [128]. This process is called syntax parsing and is done with
the help of a grammar for the BPF language, that we have developed. After
this phase, the bpfc compiler performs code generation, which translates the
recognized BPF instructions into the numerical representation that is readable
by the kernel.

Figure D.3: bpfc phases of code translation

We have implemented bpfc in C as an extension for the netsniff-ng toolkit
[119]. The phase of lexical analysis has been realized with flex [129], which is a
fast lexical analyzer. There, all vocabulary of BPF is defined, partly as regular
expressions. flex will then generate code for a lexical scanner that returns found
tokens or aborts on syntax errors. The phase of syntax parsing is realized with
GNU bison [130], which is a Yacc-like parser generator that cooperates well with
flex. Bison then converts a context-free grammar for BPF into a deterministic
LR parser [131] that is implemented in C code. There, a context-free grammar
is a grammar in which every production rule is of nature M → w, where M is
a single nonterminal symbol and w is (i) a terminal, (ii) a nonterminal symbol

150

or (iii) a combination of terminals and nonterminals. In terms of flex and
bison, terminals represent defined tokens of the BPF language and nonterminals
are meta-variables used to describe a certain structure of the language, or how
tokens are combined in the syntax. In the code generation phase, bpfc replaces
the parsed instructions by their numerical representation. This is done in two
stages. The first stage is an inline replacement of opcode and k. Both jump
offsets jt and jf are ignored and left to 0 in the first stage. However, recognized
labels are stored in a data structure for a later retrieval. Then, in the second
code generation stage, BPF jump offsets for jt and jf are calculated.
bpfc also has an optional code validation check. Thus, after code generation,

basic checks are performed on the generated instructions. This includes checking
of jump offsets, so that jumps to non-existent instructions are prevented, for
instance.

The source code of bpfc is released under the GNU GPL version 2, it can be
fetched via Git and built with the following commands:

git clone git://repo.or.cz/netsniff-ng.git

cd netsniff-ng/src/bpfc

make && make install

In order to use bpfc, the ARP example can be copied into a text file that is
handed over as an command-line argument:

bpfc arp.bpf

{ 0x28, 0, 0, 0x0000000c },

{ 0x15, 0, 1, 0x00000806 },

{ 0x6, 0, 0, 0x000fffff },

{ 0x6, 0, 0, 0x00000000 },

Here, bpfc directly outputs the generated code and internally performs code val-
idation in non-verbose mode. For debugging purposes, bpfc can also be used
verbosely:

bpfc -Vi arp.bpf

*** Generated program:

(000) ldh [12]

(001) jeq #0x806 jt 2 jf 3

(002) ret #1048575

(003) ret #0

*** Validating: is valid!

*** Result:

{ 0x28, 0, 0, 0x0000000c },

{ 0x15, 0, 1, 0x00000806 },

151

{ 0x6, 0, 0, 0x000fffff },

{ 0x6, 0, 0, 0x00000000 },

D.4 Linux Kernel One-time Stacktrace Module

The Linux one-time stack trace (otst) module that we have developed within
this work can be used to generate kernel stack traces during runtime for debug-
ging purposes. A stack trace can be seen as a runtime summary of active stack
frames. With the help of a short fictitious example, the use of stack traces is
demonstrated. Consider the following pseudo code:

void bar (void) void f oo (void)
{ {
} bar () ;

bart () ;
void bart (void) }
{

p r i n t f (”42\n”) ; int main (void)
} {

f oo () ;
return 0 ;

}

If we now would like to see all active stack frames during runtime from within
the function bart, we trigger a stack trace just before the printf call. The
content of the stack during runtime would look like []→ [main]→ [main, foo]→
[main, foo, bar] → [main, foo] → [main, foo, bart] → stack trace triggered.
Thus, we are able to see, that bart was called by foo which was called by main.

This example is quite clear regarding calling context. However, the function call
context in the Linux kernel is not that obvious. Since none of the current literature
describes the Linux 3.0 networking subsystem clearly, we have developed a Linux
kernel module that can generate stack traces for arbitrary kernel symbols. We
have used this and in addition a cross reference of the latest Linux Git repositories
that we have set up for this work at http://lingrok.org/ in order to examine
the Linux network stack, which is described in section 3.1.

The runtime stack traces that can be generated by our kernel module apply
a technique that is called Kprobes [132], [133]. The idea of Kprobes is to en-
able dynamically breaking into any kernel routine non-disruptively [134]. There,
almost any kernel code address can be trapped with a given handler for the break-
point. Three different types can be applied in Kprobes: kprobes, jprobes and
kretprobes. kprobes can be inserted on any instruction, jprobes is inserted at
the entry of a kernel function and further provides access to function arguments
and last but not least kretprobes is inserted on the return of functions [134].

152

http://lingrok.org/

Our kernel module makes use of kprobes, so that only the concept of kprobes

is further described in this section with reference to [134].
When a kprobes is registered, Kprobes makes a copy of the probed instruction

and replaces the first bytes of the instruction with a breakpoint instruction such
as int3 on architectures like x86 64. If the CPU invokes the probed instruction,
it hits a breakpoint instead. By doing a trap, CPU registers are saved and the
control is passed to Kprobes. Kprobes first executes user-registered handlers as
pre_handler with the help of Linux notification chains [135]. After all regis-
tered handlers have been invoked, Kprobes single-steps its copy of the probed
instruction and executes user-registered handlers as post_handlers. Hereafter,
the kernel resumes normal execution.

In our Linux one-time stack trace module, the stack trace is thrown as a
pre_handler and the kprobes is disabled within the post_handler, since it
should only be invoked on the first call of the probed instruction. To have an
easy usage, we have implemented an interface to procfs. Thus, arbitrary kernel
symbols can be written to a procfs driver file that triggers the registration of a
kprobes for the given kernel symbol.

Therefore, a symbol can be written to the procfs-file /proc/driver/otst like:

echo -n "netif_rx" > /proc/driver/otst

Hence, on the next call to the function netif_rx, a stack trace is being gen-
erated once, thus one is able to see the calling context of the specified function.
More than one function can be traced at a time. All currently probed functions
can be shown with:

cat /proc/driver/otst

Our source code of otst is licensed under the GNU GPL version 2 and can be
obtained via Git with:

git clone git://repo.or.cz/otst.git

cd otst/

make

insmod otst.ko

An example output for the symbol netif_rx looks like:

[83 . 267411] o t s t : one−time s t a c k t r a c e d r i v e r loaded !
[95 . 591140] o t s t : symbol n e t i f r x r e g i s t e r e d !
[121 .770022] o t s t : t r i g g e r e d s t a c k t r a c e for symbol n e t i f r x at

0 x f f f f f f f f 8 1 4 c 0 0 5 0 :
[121 .770027] Pid : 0 , comm: kworker /0 :1 Not ta in t ed 3.0.0− rc1+ #3
[121 .770030] Ca l l Trace :

153

git://repo.or.cz/otst.git

[121 .770033] <#DB> [< f f f f f f f f a 0 0 2 8 3 8 b >] o t s t h a n d l e r+0x2b/0x30 [o t s t]
[121 .770047] [< f f f f f f f f 8 1 5 b a 4 a 7 >] agg r pre hand l e r+0x57/0xb0
[121 .770053] [< f f f f f f f f 8 1 4 c 0 0 5 0 >] ? n e t r x a c t i o n+0x2e0 /0 x2e0
[121 .770057] [< f f f f f f f f 8 1 5 b 9 6 0 c >] k p r o b e e x c e p t i o n s n o t i f y+0x3 fc /0 x460
[121 .770062] [< f f f f f f f f 8 1 5 b a 1 6 6 >] n o t i f i e r c a l l c h a i n +0x56/0x80
[121 .770067] [< f f f f f f f f 8 1 5 b a 1 c a >] a t o m i c n o t i f i e r c a l l c h a i n +0x1a/0x20
[121 .770071] [< f f f f f f f f 8 1 5 b a 1 f e >] n o t i f y d i e+0x2e /0x30
[121 .770075] [< f f f f f f f f 8 1 5 b 7 2 6 3 >] do in t3+0x63/0xd0
[121 .770079] [< f f f f f f f f 8 1 5 b 6 a 8 8 >] i n t3+0x28/0x40
[121 .770083] [< f f f f f f f f 8 1 4 c 0 0 5 1 >] ? n e t i f r x +0x1/0 x190
[121 .770086] <<EOE>> <IRQ> [< f f f f f f f f 8 1 4 c 0 3 5 2 >] ? n e t i f r x n i +0x12/0x30
[121 .770094] [< f f f f f f f f 8 1 4 f 6 9 b 9 >] ip dev loopback xmit+0x79/0xa0
[121 .770098] [< f f f f f f f f 8 1 4 f 7 9 3 0 >] ip mc output+0x250 /0 x260
[121 .770102] [< f f f f f f f f 8 1 4 b 1 3 5 3 >] ? a l l o c s k b+0x83/0 x170
[121 .770106] [< f f f f f f f f 8 1 4 f 6 a 0 9 >] i p l o c a l o u t+0x29/0x30
[121 .770111] [< f f f f f f f f 8 1 5 2 8 a e b >] i gmp send report+0x1db/0 x210
[121 .770117] [< f f f f f f f f 8 1 0 8 7 d 7 8 >] ? s ched c lock cpu+0xb8/0 x110
[121 .770121] [< f f f f f f f f 8 1 5 2 9 3 8 0 >] i gmp t imer exp i re+0x100 /0 x130
[121 .770125] [< f f f f f f f f 8 1 0 4 e 2 e 2 >] ? s c h e d u l e r t i c k+0x132 /0x2b0
[121 .770130] [< f f f f f f f f 8 1 0 6 e 8 a a >] r u n t i m e r s o f t i r q+0x16a /0 x390
[121 .770134] [< f f f f f f f f 8 1 5 2 9 2 8 0 >] ? ip mc destroy dev+0x80/0x80
[121 .770139] [< f f f f f f f f 8 1 0 2 8 3 0 d >] ? l a p i c n e x t e v e n t+0x1d/0x30
[121 .770144] [< f f f f f f f f 8 1 0 6 5 7 7 f >] d o s o f t i r q +0xbf /0 x200
[121 .770148] [< f f f f f f f f 8 1 0 8 5 9 6 7 >] ? h r t i m e r i n t e r r u p t+0x127 /0 x210
[121 .770153] [< f f f f f f f f 8 1 5 b f 5 1 c >] c a l l s o f t i r q +0x1c /0x30
[121 .770157] [< f f f f f f f f 8 1 0 0 d 2 e 5 >] d o s o f t i r q+0x65/0xa0
[121 .770161] [< f f f f f f f f 8 1 0 6 5 5 9 5 >] i r q e x i t +0xb5/0 xc0
[121 .770165] [< f f f f f f f f 8 1 5 b f e 5 e >] smp ap i c t imer in t e r rupt+0x6e /0x99
[121 .770170] [< f f f f f f f f 8 1 5 b e c d 3 >] a p i c t i m e r i n t e r r u p t+0x13/0x20
[121 .770172] <EOI> [< f f f f f f f f 8 1 0 1 3 e 1 d >] ? mwait id le+0xad/0 x1c0
[121 .770180] [< f f f f f f f f 8 1 5 b a 1 c a >] ? a t o m i c n o t i f i e r c a l l c h a i n +0x1a/0x20
[121 .770185] [< f f f f f f f f 8 1 0 0 b 0 b 7 >] c p u i d l e+0xb7/0 x110
[121 .770190] [< f f f f f f f f 8 1 5 a e 4 a 1 >] s t a r t s e c o n d a r y+0x1c0 /0 x1c7
[174 .500038] o t s t : symbol n e t i f r x u n r e g i s t e r e d !

154

Appendix E

Time Schedule

Working period: March 2011 - December 2011 (42 Weeks, 10 Months)

Schedule (note that parts can be overlapping):

1. Introduction, Analysis and Design (distributed between March 2011 - June
2011)

• Introductory Reading: 2 Weeks
• Setup of Work Environment: < 1 Week
• ANA Compilation and Test Run: < 1 Week
• Development and Test of own Brick: < 1 Week
• Determine Basic Functionality: 3 Weeks
• Architecture Design: 2 Months

2. Implementation (distributed between April 2011 - November 2011)

• Core Framework Implementation and Optimization: 6 Weeks
• User space Configuration Utilities: 1 Week
• Example Application: 2 Weeks
• Functional Block Development: 4 Weeks
• Traffic Generator Development: 2 Weeks
• Statistic Monitoring Tool: 2 Weeks
• Berkeley Packet Filter Compiler: 1.5 Weeks
• Stack trace Module: < 1 Week
• Testing Debugging of Software: 3 Months

3. Documentation (distributed between March 2011 - December 2011)

• Literature Study: 4 Months
• Performance Evaluation: 4 Weeks
• Final Report: 5 Months (August 2011 - December 2011)
• 3 Intermediate (2 times at ETH Zurich, one at HTWK Leipzig) and

2 Final Presentations (one at ETH Zurich, one at HTWK Leipzig): 5
Weeks

155

Appendix F

Content of the Attached CD

The following content can be found on the attached CD:

• The final report of this master’s thesis in Portable Document Format

• The publication and poster from the ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems 2011 in Portable
Document Format and as LATEX source code

• All of the LANA source code for Linux

• Source code of the netsniff-ng toolkit for Linux that include tools from D

156

Appendix G

Declaration of Originality /
Eidesstattliche Versicherung

Ich erkläre hiermit, dass ich diese an der HTWK Leipzig verfasste Masterarbeit
selbstständig ohne Hilfe Dritter und ohne Benutzung anderer als der angegebenen
Quellen und Hilfsmittel verfasst habe. Alle den benutzten Quellen wörtlich oder
sinngemäß entnommenen Stellen sind als solche einzeln kenntlich gemacht.

Zurich, January 24th, 2012

157

	 Introduction
	Motivation
	Aims of this Thesis
	Outline

	 Design Concepts of Network Architectures
	Network Bottlenecks
	Bottlenecks on End Nodes
	Bottlenecks on Intermediate Nodes

	Fifteen Implementation Principles
	Systems Principles
	Principles for Modularity with Efficiency
	Principles for Speeding up Routines

	 Related Work
	Linux Kernel Networking Subsystem
	Packet Path in Ingress Direction
	Packet Path in Egress Direction

	FreeBSD's Netgraph Project
	Click Modular Router Project
	x-kernel Project
	Autonomic Network Architecture

	 Architecture
	The Big Picture
	Components
	Functional Blocks
	Functional Block Builder
	Functional Block Notifier
	Functional Block Registry
	Packet Processing Engine
	Virtual Link Layer
	BSD Socket Layer
	User Space Configuration Interface
	Controller

	 Implementation
	Basic Structure and Conventions
	Core Module and Extensions
	Crit-Bit Extension
	Socket Buffer and IDP Extension
	Virtual Link Extension
	Functional Block, Notifier, Registry and Builder Extension
	Packet Processing Engine Extension
	User-Interface Extension

	User Space Configuration Tools
	Functional Block Modules
	Ethernet, Simple
	Ethernet, Vlink-tagged
	Berkeley Packet Filter
	Tee
	Counter
	Forwarding
	PF_LANA BSD Socket

	Example Application

	 Performance Evaluation
	Functional Verification
	Measurement Platform
	Measurement Methodology
	Benchmarks
	LANA versus Linux and LANA's Scalability
	LANA's PF_LANA versus Linux's PF_PACKET Socket
	LANA versus Click Modular Router
	LANA versus ANA's Prototype

	LANA's Road to 1.4 Mio Packets per Second

	 Conclusion and Future Work
	Conclusion
	Future Work
	Acknowledgements

	List of Figures
	List of Abbreviations
	References
	 Publication 'Efficient Implementation of Dynamic Protocol Stacks' at the ANCS 2011
	 Task Description
	 Getting Started with LANA
	Building Linux and LANA
	Remote Debugging of LANA
	Setup of LANA Modules
	Functional Block Development
	LANA Development with Coccinelle

	 LANA-derived Development Utilities
	 High-Performance Zero-Copy Traffic Generator
	 Top-like Kernel Networking Statistics
	 Berkeley Packet Filter Compiler
	 Linux Kernel One-time Stacktrace Module

	 Time Schedule
	 Content of the Attached CD
	 Declaration of Originality / Eidesstattliche Versicherung

