
Institut für
Technische Informatik und
Kommunikationsnetze

Matthias J. Egli

Security assessment of infection
incidents in the ETH university
campus

Master Thesis MA-2011-03
March 2011 to September 2011

Supervisor: Elias Raftopoulos
Co-Supervisor: Dr. Xenofontas Dimitropoulos
Professor: Bernhard Plattner

Abstract

Infections of the end user’s IT systems have become a lucrative goal for cybercriminals. Many
types of malware are used and constantly multiple new variants are developed with increas-
ingly stealthier behavior. As a consequence, the task to detect the diverse types of malware is
becoming progressively harder.
In this master thesis a framework which collects and correlates signs of infections was devel-
oped. Multiple sources of security relevant informations were analyzed and used to provide
forensic evidence of high confidence.

The Intrusion Detection System SNORT provided the basic informations about suspi-
cious behavior of a host. This information was enriched by querying blacklists and a web search
engine about the contacted hosts in the Internet. The operating system and running services
on the host were detected through network scans. All features were made available through a
web-based security dashboard. An automated classification based on a decision tree enabled
the quick analysis of new incidents.

During two periods of 41 and 7 consecutive days 316 suspicious hosts were assessed.
31 Trojan infected hosts, 136 Spyware infections and 124 clean hosts were found. The
remaining 25 cases remained unknown. In 51% of the cases two methods and in 20% of the
cases 3 methods had to be combined to guarantee high confidence in the classification of a
suspicious host. The automated classification could correctly analyze 83% of all infections.
A labeled data set of security incidents based on realistic traffic from a medium sized network
was created and can be used for future research.

Concluding, the combination of multiple methods to reliably infer an infection is neces-
sary in most cases. Classification algorithms can help to classify many incidents, but their
success rate is too low for a fully automated security assessment.

Acknowledgments

First I would like to thank my tutor Elias Raftopoulos for the many hours he invested in my
master thesis. His input and the constant availability to discuss any interesting problem were
greatly appreciated. I would also like to thank the people who gave me insightful comments and
input: Dr. Xenofontas Dimitropoulos, David Gugelmann and Hubert Ritzdorf. To Brian Trammell,
Dominik Schatzmann and Prof. Eduard Glatz my thanks for providing the many helpful tools
and access to valuable data.

Lastly I would like to thank my parents. Enabling me to study all this time and providing
help whenever it was needed was invaluable. I am honored to be able to dedicate this thesis to
them.

Contents

1 Introduction 1
1.1 IT Security and Threats . 1
1.2 Motivation and Problem Statement . 2
1.3 Goals . 3
1.4 Structure of Thesis . 4
1.5 Related Work . 4

2 State of the Art in Security Incident Evaluation 5
2.1 Host based methods . 5

2.1.1 Anti-virus / Anti-spyware . 5
2.1.2 Personal Firewalls . 6
2.1.3 Software Inspectors . 7
2.1.4 Forensic Tools . 8

2.2 Network Based Methods . 9
2.2.1 Intrusion Detection Systems (IDS) . 9
2.2.2 Host Scanning . 11
2.2.3 Vulnerability Scanner . 13
2.2.4 IP Traffic Data - NetFlow . 15
2.2.5 Network Firewall . 17

2.3 Information Gathering . 19
2.3.1 Security Log File Analysis . 19
2.3.2 Public Vulnerability Resources . 21
2.3.3 Blacklists and Malware Trackers . 22

3 Methodology 23
3.1 Environment . 23
3.2 Feature Extraction . 24

3.2.1 Intrusion Detection System Snort . 24
3.2.2 Vulnerability Scanner OpenVAS . 27
3.2.3 Blacklists . 28
3.2.4 Nmap Network Mapper . 31
3.2.5 DNS host name . 33
3.2.6 Google Automatic Querying . 34

3.3 Feature Correlation . 37
3.3.1 Classification Algorithms . 37
3.3.2 Implementation . 42

4 Host State Assessment 44
4.1 Back end with Python and Flask . 44

4.1.1 External Modules . 44
4.1.2 Architecture . 45

4.2 Web front end . 47

i

CONTENTS

5 Results 49
5.1 Overview . 49
5.2 Security incidents . 50

5.2.1 Incident Classes . 51
5.2.2 Bot Infections . 51
5.2.3 Common False Positives . 52
5.2.4 Infected Clients behind Servers . 53

5.3 Method Evaluation . 54
5.3.1 IDS SNORT . 55
5.3.2 Search Engine Google . 55
5.3.3 Network Scanner Nmap . 55
5.3.4 Blacklists . 56

5.4 Feature correlation and classification . 57
5.4.1 Extracted Features . 57
5.4.2 C4.5 Decision Tree . 58
5.4.3 Comparison to other classification algorithms 61

6 Discussion and Future Work 62
6.1 Discussion . 62

6.1.1 Security Incidents . 62
6.1.2 Automated Analysis . 63

6.2 Future work . 64

7 Conclusion 65

A Original Task 66

B Nmap Top 50 most often used ports 69

C OpenVAS example output 70

D Features used for automated Classification 75

E Keywords used to generate Tags 78

Bibliography 79

ii

List of Figures

2.1 Avira Antivir Virus found Warning . 5
2.2 Windows Defender - anti-spyware Warning . 6
2.3 Windows Firewall - Request for Internet Access of new program 6
2.4 Vulnerable Software on an End-Host - Secunia PSI 7
2.5 Encase Forensics searching a hard-drive for textfiles 8
2.6 Intrusion Detection System SNORT - Logo . 9
2.7 Network Scanner nmap - Logo . 11
2.8 Vulnerability Scanner OpenVAS - Logo . 13
2.9 Example Output of OpenVAS v4.0 - Part of the detailed HTML output of a host

with a severe vulnerabilities . 14
2.10 Capturing of IP traffic data using NetFlow . 15
2.11 A network based firewall controlling the traffic between the Internet and the local

network . 17
2.12 Syslog-NG - a popular open-source log daemon 19
2.13 Google and ThreatExpert Logos . 21
2.14 Shadowserver Logo . 22

3.1 Overview of Snort infrastructure: Sensor, Storage and Analysis 24
3.2 Process of extracting significant features from Snort logs 26
3.3 Overview of the vulnerability scanning process with OpenVAS 27
3.4 Used blacklists: apews.org, dshield.org, emergingthreats.org, shadowserver.org

and urlblacklist.com . 28
3.5 Process of checking for hits in blacklists . 30
3.6 Example of a Nmap scan and the extracted features 32
3.7 Information retrieval about malicious activity using Google Search Engine 34
3.8 Naive Bayesian network extracted from security incidents from June 2011 - re-

duced to 5 features . 38
3.9 Tree augmented naive Bayesian network extracted from security incidents from

June 2011 - reduced to 5 features . 39
3.10 C4.5 decision tree extracted from security incidents from June 2011 - reduced to

5 features . 41
3.11 Process of classification using Weka and the J48 classification algorithm 43

4.1 Debugger view of the embedded web server in Flask 45
4.2 Overview of the architecture employed in the back end 46
4.3 Screen shot of the web front ends main page, showing the form to create a new

case and the decision tree . 47
4.4 Screen shot of the web front ends feature extraction page. All features for the

investigated IP are already extracted. 48
4.5 Screen shot of the web front ends search engine interface. 48

5.1 Combined methods and the percentage of suspicious cases categorized by the
combination . 54

5.2 Decision tree generated from 114 classified incidents from one week in June
2011 - confidence level 0.076 . 59

iii

List of Tables

3.1 Example of collected features and the corresponding classification 37

5.1 Types of identified security incidents in period April-May 2011 and in one week in
June 2011 . 51

5.2 Number of times a security feature extraction method was necessary to infer if an
infection occurred - taken from 74 incidents analyzed in April and May 2011 . . . 54

5.3 Types of identified security incidents in period June 2011 57
5.4 Confusion matrix of classified hosts - Based on the J48 implementation of the

C4.5 algorithm - Training and testing on the same dataset 60
5.5 True and False Positive Rate for the C4.5 decision tree 60
5.6 False Positive Rates for several classification algorithms based on 10-fold strati-

fied cross-correlation - security incidents from June 2011 61
5.7 True Positive Rates for several classification algorithms based on 10-fold stratified

cross-correlation - security incidents from June 2011 61

iv

Listings

2.1 Example output as given by the SNORT IDS . 10
2.2 Output of a nmap scan of a single host . 12
2.3 Example of several flows, processed by Silk. The IP-Adresses have been ran-

domized . 16
2.4 Example of an IP blocked by several perimeter firewalls in a campus network -

taken from ETH Komcenter List of blocked IPs 18
2.5 Failed SSH login attempt as reported in the auth.log file 20
3.1 Features found by the feature analyzer for a suspicious server 25
3.2 Blacklist hits for outgoing connections of a host 29

v

Chapter 1

Introduction

1.1 IT Security and Threats

Security in the domain of Information Technology (IT) is quickly moving from the realms of
computer specialists (often called hackers) into the life of everyone. IT related threats become
ubiquitous. Governments or government-sponsored groups attack companies [1]. Spam is sent
to almost every e-mail address. Lately political activists, helped by skilled IT security specialists,
take down websites [2], change their content [3] or publish classified information [4]. End-users
are becoming a target, e.g. because of published password-databases [5] and password reuse.
An end-user using the same password for the Playstation (a gaming device) and PayPal (a
popular online payment service) is a likely target.

Protecting against these security threats becomes a highly challenging task. Not long
ago the usage of an antivirus program was considered to be adequate. After the spread of
worms, infecting millions of PCs in days, firewalls were advocated as a good line of defense.
Nowadays the browser and the software used to view content downloaded from the web is the
main point of attack. The popular “golden rule” is to keep the system and all programs updated
all the time. While the former steps involved installing additional software only once, the new
methodology forces the end-user to be always on guard. The past has shown that end-users
are already overwhelmed by the complexity of computer programs, and excessive warnings
about update requests for all kind of programs every few days will only add to the confusion.

When end-users are not capable of protecting their systems all the time against fast-
moving and changing threats, the importance of a system detecting infected clients raises.
These systems are called Intrusion Detection Systems (IDS). Such a system is comparable to
an automatic fire alarm.
The challenge in these systems is the high degree of mutability and stealthiness of mod-
ern malware. Just as the immune system of humans is constantly learning and adjusting,
these systems must be trained and adjusted to know what they have to look for. Unlike the
human immune system, these systems are still not specific enough and as a consequence of-
ten configured in such a way as to raise an alarm for everything looking even slightly suspicious.

The problem of infected computers is not someone else’s problem any more. Infected
computers are used to commit computer crimes without the knowledge of the owner. In the

1

1.2 Motivation and Problem Statement

best case, the user will be notified by his Internet provider. In a bad case, he is notified by his
bank because his bank account is empty, or in the worst case by the police suspecting him to
be part of an illegal operation.

1.2 Motivation and Problem Statement

Our primary motivation for this work is the necessity to detect security incidents in an IT infras-
tructure. For a network administrator, it is important to keep his1 network operational. Having
users in the network with infected PCs, he risks network problems e.g. caused by quickly spread-
ing or scanning malware. As a consequence other networks may start to block traffic from the
network, thereby interrupting access for all users of the infected network.
Reliably detecting malware is very hard. If every suspicious activity in a network is inspected,
most cases will be false alarms. Malware is getting very good at disguising its activities. To be
effective, malware detectors have to be sensitive to general suspicious behavior as it becomes
very hard to track the abundance of different types of malware. This results in a very high
number of alarms without an infection of the suspicious host.

Computer systems and network components usually collect an abundance of information
which can theoretically be exploited to detect security problems and ultimately improve the
IT security. However security sensors are normally configured to log a warning even if the
underlying reason is only slightly suspicious as not to miss any potential malicious activity.
For the ETH campus, this results in more than 3 million alerts on a normal day from the
Intrusion Detection System (IDS) alone. On a busy day, the number can be more than ten
times higher, reaching 38 million alerts. In addition, there are alerts from firewalls, web servers,
proxy-servers, DNS servers, mail servers · · · . Far less than 1% of all “security incidents” are
significant.

Filtering and cross-correlating this information is a way to handle the huge amount of
data. By combining different methods, false positives can be filtered. The focus of the admin-
istrators can be put on the most severe cases where multiple sensors provide signs of an
infection.
An example of such a situation is a host which triggers suspicious traffic because of a spelling
error. Web browsers identify themselves in the User-Agent string. An IDS watches for wrongly
spelling errors in this string and finds a host contacting multiple other hosts in the Internet
pretending to be the Mozila browser instead of the correctly spelled Mozilla browser. We then
check a number of blacklists to find if suspicious contacts to known malicious hosts exist. The
blacklist finds one host which belongs to the Russian Business Network (RBN), a known network
often involved in sending unwanted E-Mail advertising and other malicious activity. We use a
search engine to check if we can find more information about the suspicious external host. No
hits referring to malware are found, but the search engine is reporting connections to Peer-to-
Peer File Sharing (P2P) networks. A check for the hostname of the suspicious external host
shows that it belongs to the popular file sharing platform thepiratebay.com. We conclude that
the suspicious host in our network is using an anonymization tool which changes the User-
Agent string to access this page. The host is likely not infected, as there is another plausible
explanation for the generated alarms.

1The male expression is used only for readability reasons, both female and male persons are implicitly addressed

2

1.3 Goals

This example explains our motivation to combine multiple approaches to filter out as many false
positives as possible. This enables the IT department to focus on the serious cases of infections.

An efficient handling of the security incidents is needed to help the network and security
administrators in their daily work. Repetitive work has to be avoided since it demotivates and
ultimately de-sensibilizes the employee. Instead the knowledge of the underlying techniques
and methods of security incidents has to be built up. Only by understanding the reasons why
an an automated system has come to a specific conclusion can a human adjust and refine the
system. New threats with new attack patterns are emerging daily, and only a flexible system
can cope with the demands.

The security research community is hindered by the lack of labeled data sets of security
incidents. Such a data set should ideally contain very realistic traffic and at the same time a list
of infections in the network and the timespan in which these infections were active.
Generating this data is very time consuming. It is still worth the effort, as this labeled data set
can be used to measure the performance of many new malware detectors. We try to provide
such a data set in the hope that it will be beneficial for future research.

1.3 Goals

The first goal of this work is to identify, classify and evaluate the sources of information about
computer security. By manually evaluating the usefulness of the sources described in the
problem statement, promising methods should be identified.

In the next step, these methods should be automated. An infrastructure will be built in
which a computer system can automatically collect the required information. The system must
collect and store information about ongoing and past infections to provide highly significant
forensic evidence. A software middleware must be provided which will power the user interface
frontend used by a network administrator. This middleware should be a modular and flexible to
allow to easily extend the functionality.

A visualization tool that will operate as a dashboard should be developed. It will provide
the security operator with all the information required in order to investigate suspicious nodes.
The data processed by the middleware is displayed in an intuitive way, enabling the operator to
further dive into the details of a specific problem.

The final goal is to assess suspicious hosts found in the network of the university. The
state of these hosts should be identified to classify them either as being infected or as being
clean. Additional information like the time span of the infection and reasons for the drawn
conclusion further increase the usability of this data set. A practical application which should be
done during the thesis is the assessment of a new method to detect security incidents based
on SNORT data.

3

1.4 Structure of Thesis

1.4 Structure of Thesis

The thesis is structured in the following way: In Chapter 2 the state of the art in detecting
security incidents is presented, with a focus on network based detection methods. In Chapter 3
the methodology is described in 3 parts: the first part describes new and existing tools to extract
information (features) about the behavior of the suspicious host. In the second part the features
are correlated with an interpretable classification method. In the third part the type of infection is
inferred based on the extracted features. In Chapter 4 we describe the implementation details of
the developed security assessment platform. The results of the evaluation of the data collected
during a 5 week period are presented in Chapter 5. A discussion of the results and promising
future work is described in Chapter 6. Finally the conclusion and the main findings are presented
in Chapter 7.

1.5 Related Work

A rich variance of literature exists for IT security. The following books give an overview of
methods useful to find infections in an IT environment: “End-to-End Network Security: Defense-
in-Depth” by Omar Santos [6] focuses on proactive security, but also handles network forensics.
“Network Security Assessment: Know Your Network” by Chris McNab [7] provides a highly
useful overview of tools, weaknesses and strengths of the tools and has the goal to provide a
systematic way to network security assessments.

Providing a unified interface to collect and correlate security informations from various
sources is the goal of the Security Event Manager (SIEM) Alientvaults [8]. An open source
version (OSSIEM [9]) exists, which has all features of the commercial edition except for a
storage system for the forensic data. It is used in multiple networks. OSSIEM helps to visualize
all the activities going on in your network, but the correlation engine needs to be manually
configured by the network administrator. Our approach focuses on automated correlation and
can be used to extract rules for OSSIEM correlation.

Using SNORT [10] to find security incidents is the topic of many publications. A master
thesis focusing on Extrusion Detection with SNORT was done by Cécile Lüssi in 2008:
“Signature-based Extrusion Detection”[11]. A behavior-based approach is suggested to filter
the high number of false positives. In this thesis SNORT is used as a source of extrusion data
(outbound contacted IPs and ports) for further analysis. The prior task of finding suspicious
hosts in this huge set of data is not part of this thesis. The primary used method of extraction
is described in Elias Raftopoulos work on “Detecting, Validating and Characterizing Computer
Infections from IDS Alerts” [12]. A part of this master thesis was dedicated to validate the
results achieved by this detection method.

The generation of a labeled data set to test intrusion detection systems was, to the best
of my knowledge, only done once before: in 1999 and 2000 by DARPA [13]. In this work
background traffic and several attacks were simulated and recorded. The recorded traffic could
then be used as input for tests and evaluations of IDS systems. However the artificial generation
of the traffic and the nowadays unused attack patterns received a lot of criticism [14].

4

Chapter 2

State of the Art in Security Incident
Evaluation

Multiple tools are available to reconstruct the way an intruder managed to break into the net-
work and to infect computers (Forensics). In the following the important tools will be described.
We will focus on the network based intrusion detection methods, since a direct access to the
infected hosts is very often not possible. The major goal of the subsequent description and the
corresponding examples is to clarify whether a system was infected. To accomplish this, we
focus on outbound traffic, originating from potentially infected hosts inside the network.

2.1 Host based methods

For all Host-based methods either a pre-installed program or physical access to the PC is
needed. Although this was not possible in the current analysis, the host-based methods are
listed nevertheless in order to give a complete overview.

2.1.1 Anti-virus / Anti-spyware

Figure 2.1: Avira Antivir Virus found
Warning

The most common type of host-based protection
is an anti-virus program. This kind of protection is
almost exclusively deployed on MS Windows based
operating systems. The antivirus program constantly
scans for suspicious byte signatures in the files by
comparing them to a signature database. These
signature databases are normally updated daily to
incorporate new viruses. If a program or file is found
on the computer which triggers one of the signatures,
access to this program is blocked and the user is
warned. The signatures are highly specific, resulting
in almost no false positives (i.e there are no warnings
of a virus when there is no actual infection). The
reason is that triggering a warning on benign software
can have serious consequences [15]. The downside
is that it is relatively easy to evade the anti-virus

5

2.1 Host based methods

program: by changing the malware only slightly, it wont be detected any more. Nowadays
modern malware can change its appearance dynamically, therefore making a detection very
difficult. Consequently the detection rate of virus scanners tend to drop recently.

Figure 2.2: Windows Defender - anti-
spyware Warning

A virus is a software which was installed in an obvi-
ously malicious way, used to commit computer crimes
like attacking websites or sending spam E-Mails.
There is another class of malware , called spyware
. The user has installed it accidentally without know-
ing that the software will report the users activity to a
company, which will make profit by offering customer-
tailored advertising. Such spyware misses features of
a virus like the self-replication functionality. Neverthe-
less, it is considered malicious by many users.
To find and remove this kind of software, anti-spyware
is deployed. An example of the most commonly used

anti-spyware can be seen on the left. This kind of software is also highly specific, but the chal-
lenge is drawing the line between benign software (e.g. if a user wants to be tracked to receive
other benefits) and unwanted software. From an IT security perspective, this software is not
problematic, but from the point of view of a company, which does not want its employees to be
watched by an external party, these programs are clearly malicious.

Benefit

It would be very helpful to have a central location, where all anti-virus or anti-spyware reports
from the different computers are collected. Because of its low false positive rate, a virus found
by an anti-virus engine is a very good indication of a security incident. The lack of such an in-
frastructure for the fixed PCs and the impossibility of creating such an infrastructure for privately
owned mobile student/employee laptops means that we cannot use this option. And even if such
an infrastructure would exist, it would not catch new malware which spreads actively.

2.1.2 Personal Firewalls

Figure 2.3: Windows Firewall - Request
for Internet Access of new program

Firewalls control the access from and to the network.
They can be deployed at different levels of the network
infrastructure, e.g. on the end-host or in the routers
connecting countries like in the case of the “Great Chi-
nese Firewall”. Here we focus on the end-host based
firewalls.
Firewalls are based on rules defining which program or
port may be accessed from which part of the network.
Programs which are only needed in the local network,
like file sharing or printing services, can be blocked for
external hosts so that the access from the Internet is
not possible. Firewall rules are highly diverse, ranging
from a “Drop all” (nobody may connect from the inter-

net) to a “Allow all” policy.

6

2.1 Host based methods

A warning is logged whenever programs violate a firewall rule (e.g. someone trying to connect
to the printer service from the Internet). In addition, good firewalls can detect common malicious
activity like end-host scanning , which are used to find services which can be attacked. Another
interesting feature of firewalls is their ability to find programs on the end-host which are trying to
connect to other PCs even if they shouldn’t do so.
Firewalls come with their own set of problems: they have to be configured manually and a
good configuration requires the knowledge of all programs which need to communicate with the
internet. Often the “solution” of a problematic internet connection is to disable the firewall. P2P
programs like BitTorrent or Skype also engage in scanning to find other users. They can cause
false positive signals.

Benefit

Personal firewalls on an end-user system are very useful to fight against many worms. It can be
used to detect break-out attempts by newly installed malware, at least as long as the malware
does not affect the locally installed firewall (i.e if the malware couldn’t gain administrative rights).
In general personal firewalls are of little use for assessing if a successful infection was done,
as malware can circumvent these firewalls. They need to be manually configured on a per-host
basis, which is error-prone. A more promising method is to use network based firewalls which
are immune to local malware. They are also capable to detect scans which are not limited to
one host.

2.1.3 Software Inspectors

Figure 2.4: Vulnerable Software on an
End-Host - Secunia PSI

Nowadys (2011) end-users must ensure to always
have updated software installed on their PC. Without
(and sometimes even with) the latest security patches,
surfing in the internet can be dangerous. Drive-by
downloads are becoming the dominant way of mal-
ware to infect PCs. Drive-by downloads is a term re-
ferring to automatically download and sometimes in-
stall programs when surfing the web. Often social en-
gineering is used to trick the user into installing a cer-
tain program.
Fortunately so called software inspectors exist which
automatically check the installed versions of programs
on a PC and warn if a dangerous security hole is
known to exist in a program.
This software is often used in managed environments
such that system administrators can keep track over

all installed programs and centrally start an update without the need to walk by each client PC.
The logs can be used to cross-correlate against other malware signatures. If a malware is known
to propagate using a certain program (e.g. Adobe Flash), but the program was never installed
on the PC, an alarm from this malware is likely a false positive.

7

2.1 Host based methods

Benefit

Logfiles from software inspectors can help in evaluating the security state of a system and to
reduce the false positive rate by cross-correlation. They are mainly used in incident prevention.
After having identified a successful attack against a certain software these logfiles can help in
quickly identifying other vulnerable systems. However beyond their cross-correlation capabilities
their potential in checking if a PC is infected is limited.

2.1.4 Forensic Tools

Figure 2.5: Encase Forensics search-
ing a hard-drive for textfiles

After a computer was infected and the infection was
detected, it is time for the forensic analysis. These
tools investigate the hard-drive and, if possible, also
the volatile RAM memory usually after having saved
a bit-wise copy of data from the infected system to ex-
ternal media. They also try to identify processes which
hide from the normal process manager and they look
for suspicious in these processes.
A thorough forensic investigation is very difficult and
expensive. It is only done for serious incidents.
Forensic analysis in an automated fashion is done by
programs like ThreatExpert [16]. By taking a snapshot
of the system before infection and comparing it to the
situation after the program was started, the behavior

can be analyzed.

Benefit

Forensic analysis is a difficult and manual task. While it can give highly interesting inside into
the way a malware operates, the benefit is greatly out-weighted by the cost. Automatic forensic
analysis to investigate suspicious programs on the other hand is efficient and used actively.

8

2.2 Network Based Methods

2.2 Network Based Methods

Network based methods to find security incidents are based on the analysis of the network traffic
from the end-host. The advantage of this approach is that no individual software on the end
system is needed in order to collect the data. In addition, by watching a much bigger population,
anomalies in the communication between the end-hosts can be found.
However network based methods also have their disadvantages. Encrypted network traffic is
problematic for network based systems since the analysis of the content (payload) of the traffic
is not possible. Malware which is spreading slowly and carefully can easily hide in the back-
ground traffic. On the other side benign software can show malicious signs, e.g. by searching
too aggressively for other hosts using the same software, or by causing a high load on the
network.
In the following the different methods of network based methods to find infected hosts are dis-
cussed. An example of the output of the method is given, and the advantages and disadvantages
are discussed.

2.2.1 Intrusion Detection Systems (IDS)

Figure 2.6: Intrusion Detection System
SNORT - Logo

Network based intrusion detection is based on event
monitoring in computer networks. The events are gen-
erated by analyzing the network traffic for signatures of
possible incidents. These signatures can have differ-
ent causes: they describe security critical patterns in
network traffic, unacceptable or unwanted usage pat-
terns or simply bad security practices.
An example of a security critical pattern is the request
to download a software from a website already known
to distribute malware. Unacceptable or unwanted traf-

fic can be peer-to-peer (P2P) traffic which is often used for illegal file sharing. Another case of
unwanted traffic can be the usage of services like Skype. Examples of bad security practices
are: a request to a page with an old or insecure encryption method or the transfer of passwords
in unencrypted channels.
The task of an IDS is to [17]:

1. Identify possible security incidents

2. Log the security incident in a suitable form

3. Report the incident to a security administrator

A special version of an IDS is an IPS: Intrusion Prevention System. In addition to logging sus-
picious traffic passively, it actively changes network traffic or configurations of other network
devices like firewalls to make attacks inefficient.
IDS are widely used and a part of many network security strategies [17]. The most often
used system is the open source program SNORT [10]. Two rulesets are deployes at the
SNORT sensor in our network: The Sourcefire[18] ruleset from the developing company and
the EmergingThreats[19] ruleset from the open source community project. For both rulesets
commercial and free editions are available. The commercial rulesets usually offer more recent
signature patterns and are stronger focused on malware.

9

2.2 Network Based Methods

[∗∗] [1 :2012686:1] ET TROJAN SpyEye Checkin vers ion 1.3 .25 or l a t e r [∗∗]
[C l a s s i f i c a t i o n : A Network Tro jan was detected] [P r i o r i t y : 1]
06/26−23:09:36.012392 129.132.X .Y:1052 −> 91.211.A .B:80
TCP TTL:62 TOS:0 x0 ID :60960 IpLen :20 DgmLen:646 DF
∗∗∗AP∗∗∗ Seq : 0x3E928BAE Ack : 0x32A8617A Win : 0xFF3C TcpLen : 20

[∗∗] [1 :2010144:5] ET P2P Vuze BT UDP Connection (5) [∗∗]
[C l a s s i f i c a t i o n : P o t e n t i a l Corporate Pr ivacy V i o l a t i o n] [P r i o r i t y : 1]
06/27−00:09:58.405053 129.132.X .Y:11797 −> 62.149.A .B:3395
UDP TTL:126 TOS:0 x0 ID :13318 IpLen :20 DgmLen:44
Len : 16

[∗∗] [1 1 9 : 1 9 : 1] (h t t p_ i nspec t) LONG HEADER [∗∗]
[C l a s s i f i c a t i o n : P o t e n t i a l l y Bad T r a f f i c] [P r i o r i t y : 2]
06/27−08:01:19.725972 129.132.X .Y:1486 −> 83.140.A .B:80
TCP TTL:124 TOS:0 x0 ID :52142 IpLen :20 DgmLen:1294 DF
∗∗∗AP∗∗∗ Seq : 0xDBE35365 Ack : 0x804848CB Win : 0xFB0F TcpLen : 20

Listing 2.1: Example output as given by the SNORT IDS

More popular experimental rulesets like the Bleedingsnort rules [20] exist. Multiple security com-
panies use adjusted SNORT rules in their infrastructure based on security incidents which they
discovered internally.
The main problem of today’s IDS systems is the high number of false positives. An alarm raised
by an IDS is in 99% of all cases a false alarm. The reason is not in unspecific or wrong rules,
but in rules for all kind of anomalies.
Therefore it is necessary to append a compute intensive post-processing phase to the first alarm
generating phase. The alarms are filtered, correlated and subjected to anomaly detection. Often
an IDS is used in a system with a specific purpose, such that all traffic not fitting into this pattern
(e.g. a webserver should only serve webpages and normally does not chat with other internet
users) can be detected. In those cases the high number of rules is an advantage.

Example Output

In 2.1 an example of 3 logs is given. The first log is triggered by a rule describing the behavior
of a Trojan (a self-replicating computer program trying to steal user information and attack other
systems). The second incident origins from a rule that describes a policy Violation: The host
used a well-known program to access the Bit Torrent P2P network. The last log refers to one of
many pre-processing warnings: If the content of a network transmission does not follow certain
rules (in this case it is too large), SNORT will stop processing the data packet and throw a
warning.

Benefit

Intrusion Detection Systems are an important part of many network security strategies. Often
an IDS is the first system to raise an alarm. Afterwards, several other systems are used to find
additional information about the incident to reduce the high number of false positives. While an
IDS alone is useless because of the extreme number of false positives, it can be very beneficial
after an incident was detected for forensic purposes. Together with an IPS it can make life
much harder for intruders. By writing new rules, a security administrator can incorporate attack
patterns which were newly detected.

10

2.2 Network Based Methods

2.2.2 Host Scanning

Figure 2.7: Network Scanner nmap -
Logo

A port scanner is used to identify services and open
ports on hosts in the network. The application, such as
a webserver (e.g. Apache) or a Voice-over-IP applica-
tion like Skype can be identified in this way. It is good
practice to run these scans in the network of an orga-
nization to get an idea on what is going on in the net-
work and to find potentially vulnerable services. The
output of the scans can be used for penetration test-
ing, where one tries to exploit known security holes in
the services.
Scanners operate by opening a connection to the
port of a specific server. Because of the three-way-
handshake of a TCP-connection a service listening on

a specific port should answer such a request. If no service is active on the scanned port, the
TCP protocol defines that a packet should be returned indicating that there is no service listen-
ing on that port. This behavior is often changed by firewalls in order to make scanning more
difficult.
In addition to scanning for available services on a host, the information can be used to identify
the operating system. Certain ports like TCP 135,139 or 445 are typical for a host running
MS Windows (or Linux with the Samba service enabled). Other indicators are the TCP packet
sequence “random” number generation or delays between packets. Combining these signatures
is called OS fingerprinting and used by many scanners. Of course this OS scanning can be
tricked by systems answering as if they were another system. By using multiple signatures, the
detection success rate can be increased. OS fingerprinting on the service level is called Service
Identification. The easiest, but also most unreliable, way to identify a service is by looking up
the list of common ports as assigned by the IANA [21]. If for example an open TCP port 80 is
found, the scanner will report that a webserver was found. Of course this can be easily forged,
e.g. by Skype which tries to use port 80 for incoming connections as many firewalls do not block
access to this port. To increase the reliability of the service identification, a scanner compares
the response of the service to a database of known responses. In addition it can use a strategy
called “Banner Grabbing” in which the scanned application reports its name and sometimes
even the version of the software back to the scanner.
One of the most popular tool to scan a network or a host is the open-source program nmap
[22]. It supports all the mentioned scanning techniques. Additional features are firewall evasion
(SYN/FIN and XMas scans) and stealth scans. An example of its output is given below. It will not
give vulnerability informations, which is the next step in a security assessment, but it identifies
the services which need to be scanned by a vulnerability scanner (see 2.2.3).

Example Output

Nmap is used to scan whole networks for active hosts and, once an active host was found,
it is used for an in-depth scan of the host. In this case (see 2.2), a single host was scanned
thoroughly using OS fingerprinting and Service Identification. The analyzed host is a Mac OS X
server, hosting multiple services like a mail-server (Postfix), IMAP & POP3 servers to distribute
mail to clients (Cyrus imapd & pop3sd), a fileserver (Samba) and other services used in a or-
ganization (LDAP, KeyServer). The gained knowledge is used in two ways: It helps the security

11

2.2 Network Based Methods

S t a r t i n g Nmap 5.21 (h t t p : / / nmap . org) a t 2011−05−13 12:46 CEST
Nmap scan r e p o r t f o r xxx . ethz . ch (129.132. x . y)
Host i s up (0.00071 s la tency) .
Not shown : 64956 f i l t e r e d por ts , 551 closed por t s
PORT STATE SERVICE VERSION
21/ tcp open f t p Mac OS X Server f t p d
25/ tcp open smtp P o s t f i x smtpd
80/ tcp open h t t p ?
106/ tcp open pop3pw ApplePasswordServer pop3 password change daemon 10 .4 .5 .0
110/ tcp open pop3 Cyrus pop3d 2.2 .12 (Mac OS X 10 .4 .8)
139/ tcp open netb ios−ssn Samba smbd 3.X (workgroup : GEOBOT)
143/ tcp open imap Cyrus imapd 2.2 .12 (Mac OS X 10 .4 .8)
311/ tcp open s s l / h t t p Apple Server Moni tor h t t p i n t e r f a c e
389/ tcp open ldap OpenLDAP 2 . 2 .X
407/ tcp open t imbuktu?
445/ tcp open netb ios−ssn Samba smbd 3.X (workgroup : GEOBOT)
548/ tcp open afp Apple AFP (name : Geoserver ; p ro toco l 3 . 2 ; Mac OS X 10.3 − 10.5)
591/ tcp open h t t p WebCompanion h t tpd 6.0 v3 (Fi leMakerPro 6.0 v4)
625/ tcp open apple−xsrv r−admin?
636/ tcp open s s l / l dapss l ?
749/ tcp open rpcb ind
993/ tcp open s s l / imap Cyrus imapd
995/ tcp open s s l / pop3 Cyrus pop3sd
3168/ tcp open unknown
3283/ tcp open n e t a s s i s t a n t ?
3659/ tcp open pop3pw ApplePasswordServer pop3 password change daemon 10 .4 .5 .0
5003/ tcp open f i l emake r ?
5900/ tcp open vnc Apple remote desktop vnc
8000/ tcp open h t t p Apache h t tpd 1.3 .41 ((Darwin) mod_jk / 1 . 2 . 6 DAV/ 1 . 0 . 3 mod_ssl / 2 . 8 . 3 1 OpenSSL / 0 . 9 . 7 l PHP/ 4 . 4 . 9)
8100/ tcp open h t t p Apache h t tpd 1.3 .41 ((Darwin) mod_jk / 1 . 2 . 6 DAV/ 1 . 0 . 3 mod_ssl / 2 . 8 . 3 1 OpenSSL / 0 . 9 . 7 l PHP/ 4 . 4 . 9)
9494/ tcp open s s l / unknown
19283/ tcp open sassaf ras Sassafras Key Server
Device type : WAP
Running (JUST GUESSING) : L inksys embedded (89%)
Aggressive OS guesses : L inksys BEFW11S4 WAP (89%)
No exact OS matches f o r host (t e s t cond i t i ons non−i d e a l) .
Serv ice I n f o : Host : xxx . ethz . ch ; OS: Mac OS X

OS and Serv ice de tec t i on performed . Please r e p o r t any i n c o r r e c t r e s u l t s a t h t t p : / / nmap . org / submit / .
Nmap done : 1 IP address (1 host up) scanned i n 245.52 seconds

Listing 2.2: Output of a nmap scan of a single host

analyst to classify alerts coming from this machine as he knows its purpose. An alarm triggered
by this server is often originating from a client who is using a service on this server. The second
use of this information is to feed a vulnerability scanner with this information to discover vulnera-
ble services on this server. Vulnerability scanners are often also capable of scanning a network,
but nmap outperforms them in accuracy and speed.

Benefit

If a scan was successful (the host did reply at least on some open ports), it is a reliable source
of information about the purpose of the host. A client will typically have almost no open ports
beside those used for File-Sharing in the local network. A server has to reply on the services
which it is offering, else no one can reach the service. This information will be forwarded to a
vulnerability scanner whenever a vulnerable service is suspected. The main advantage in using
networks scanners is the cross correlation capability. Many false positives can be filtered if the
purpose of the server is known (e.g. a DNS-Server contacting blacklisted IPs often just replies
to DNS-Queries coming from these IPs). On the other hand, alerts which should not be possible
from such a host (like a webserver which connects to a P2P network) are more severe and need
to be highlighted, even if they normally would be discarded.
A negative scan result (no open ports, perhaps even no answer) does not necessarily mean that
there is no host at this IP address. Many PCs which are only used as clients are employing a
personal firewall which blocks all access to the machine. In that case network scanning can not
provide any insight into the host. In such a case other data sources, like collected traffic (e.g. by
NetFlow) have to be used.

12

2.2 Network Based Methods

2.2.3 Vulnerability Scanner

Figure 2.8: Vulnerability Scanner
OpenVAS - Logo

Vulnerability scanning can perform similar tasks as
network scanning: Find active hosts and services run-
ning on these hosts. In addition they try to find vul-
nerabilities in these services. Often they accept the in-
put from network scanning to speed up the process.
By comparing the information received from the scan
(operating System, active services) to a database of

known insecure services, vulnerabilities are disclosed. Vulnerabilities can then be forwarded to
“Penetration Testing Frameworks” where an actual exploit of the security hole can be performed.
Some vulnerability scanners can automate this process.
Vulnerability scanners can scan a network or individual hosts. If possible, they can also scan
the host by connecting to it with provided credentials, in the ideal case even with administrative
rights. This scenario is useful if multiple persons have access to a host and are able to run
services on it. Internal scanning from the host itself can be much quicker and more reliable. In
addition policy violations can be detected both for internal and external scanning methods, e.g.
someone providing a forbidden public FTP-server for file sharing.
If a vulnerability is found, ways to mitigate the problem are displayed if available. Further details
about the vulnerability are referenced, such as the the date, since when the vulnerability is
known, its severity and the availability of proof-of-concept code to exploit the vulnerability. The
severity refers to the threat level as perceived by the designers of the vulnerability scanner.
These threat levels have to be taken with care, as they can be misleading. E.g. by combining
multiple low-severity vulnerabilities a skilled attacker can create a much higher threat. Or a
seemingly strong threat from a public writable folder is in fact no real problem, since it is only
accessible from the internal network and is used there on purpose.
The problems of vulnerability scanning is their potential disruptive behavior. They produce a lot
more traffic than network scanners because they try to exploit a lot of different vulnerabilities
for the same service. Some of the tests cause the service being scanned to crash. In that case
a severe vulnerability is found, but also harm was done by finding the vulnerability. Sometimes
the scanners cause a high number of false positives, e.g. if a patched system still reports an old
version number. In general, even though these scanners provide a thorough and detailed output,
they cannot assess the security state of a whole network. However they highlight interesting
points of attack and may point out some serious security holes in a network.

Example Output

Vulnerability Scanners can give output in multiple forms, e.g. as executive-style reports of the
overall network security, a detailed HTML document with all discovered vulnerabilities or a ma-
chine readable XML file. The example shown in Figure 2.9 is a part of the html output produced
by OpenVAS v4.0, describing a severe (high risk) vulnerability which was found during a scan.
The vulnerability refers to PHP, a script language used mainly to create webpages. The severity
is high because an attacker can execute any code, possibly reading confidential data on the
webserver or using it to attack other computers. Several other services with medium and high
vulnerabilities exist.
In this case the vulnerabilities were discovered because the webserver reported the usage of
an old version of PHP. Further tests showed that the webserver was not vulnerable because
patches against the described vulnerability were deployed. These patches do not increase the

13

2.2 Network Based Methods

Figure 2.9: Example Output of OpenVAS v4.0 - Part of the detailed HTML output of a host with
a severe vulnerabilities

version number, they only fix the actual problem. The vulnerability was discovered in 2007 (CVE-
2007-1701), this scan was done in 2011. Old security vulnerabilities found during a scan are
often patched.

Benefit

Vulnerability scanning is beneficial in giving a quick overview of the available points of attack.
Without considering other problems in the network, they point to problems. As external attackers
often use the same techniques, security problems discovered by vulnerability scanning should
be a top priority.
For inferring if a host is infected, this technique is seldom useful. Most malware spreads by ex-
ploiting bugs in applications on end hosts which can not be detected by a vulnerability scanner.
If a host shows signs of being infected by a worm1, a scan showing if the attacked service exists
on the host can be an important clue.
We did not discover any worm outbreaks during the period we evaluated and because these
kind of malware is not dominant any more, vulnerability scanner are also not so important in
extrusion detection.

1A worm is a special kind of malware which automatically spreads by attacking vulnerable services which can be
accessed remotely

14

2.2 Network Based Methods

2.2.4 IP Traffic Data - NetFlow

Internet

Organisation
Network

NetFlow
Collector

Boarder
Router

Figure 2.10: Capturing of IP traffic data
using NetFlow

The Internet is based on the IP protocol (Internet Pro-
tocol). This protocol uses a packet-switched approach
to deliver information. The source and destination and
size of each packet can be recorded at the gateway
routers which forward the packets. Often an account-
ing of the packet traffic is done in order to keep track of
the resource usage by different customers and to bill
them accordingly.
A lot of network research focuses on the analysis of
this data. Cisco implemented the NetFlow v5 stan-
dard which is also widely used by other big network
hardware manufacturers. NetFlow is a format in which
the traffic information is exported from the routers to
so called NetFlow collectors. It is the quasi-standard
and NetFlow is therefore often used as a synonym for
IP traffic data. The IETF (Internet Engineering Task
Force) together with the main hardware vendors is de-
veloping the next standard format IPFIX [23] which will
be used for IPv6 and other enhancements of the IP

protocol.
Using NetFlow data the behavior of a host can be investigated without the need to scan it.
However the actual payload is not captured for performance and storage capacity reasons,
making deeper packet inspection as done by IDS systems impossible. The positive side effect
is that encryption does not provide a problem, as the IP header is normally not encrypted. In
the past a lot of anomaly detection was done with the help of NetFlow data. Worm outbreaks or
network scans can be discovered by measuring the entropy in NetFlow data [24]. This allows
to also discover client services which are otherwise difficult to detect by scanning (like Skype)
[25]. Recent research done by Prof. Glatz demonstrates the usability of one-way flows to detect
malicious activity. We will look into that topic in a later chapter.
The problem in using NetFlow data is the acquisition and handling of the data. Even for small
networks, the size of NetFlow data can be substantial. When using sampled NetFlow data (every
n’th packet is reported), the correct numbers must be interpolated, which can be tricky or error-
prone. In addition, when using NetFlow data one has to be very careful with data protection as
the privacy of the user can be violated by this data.

Example Output

The example shown in 2.3 is a list of flows with randomized IP addresses (randomized for
privacy reasons). Each connection between two hosts in the network which passes the border
router is recorded. The output shows that a lot of connections are using port 123 and the UDP
protocol (pro = 17). This port is used by a time synchronizing service. While some connections
carry a lot of packets and bytes (e.g. the first in the list), others are just consisting of one packet.
This kind of traffic is often seen when a host scans other hosts.
For a serious analysis of the behavior of a host the data from this host must be filtered out
of the complete traffic and subsequently the traffic has to be analyzed using several statistical
methods. Algorithms exist to search for scanners, heavy hitters (users who use an unusual

15

2.2 Network Based Methods

sIP | dIP | sPor t | dPort | pro | packets | bytes | f l a g s | sTime | dur |
114.48.192.231| 59.32.109.134| 123| 123| 17| 211| 16036| |2011/06/20T00 :00 :17 .207 | 3529.424|
114.48.192.231| 59.32.109.134| 4002| 123| 17| 2 | 152| |2011/06/20T00 :27 :08 .473 | 0 .411|
114.48.192.231| 59.32.109.134|22321| 123| 17| 2 | 152| |2011/06/20T00 :51 :57 .054 | 0 .035|
114.48.192.231| 59.32.109.134|34039| 123| 17| 2 | 152| |2011/06/20T00 :02 :22 .656 | 0 .379|
114.48.192.231| 59.32.109.134|65535| 123| 17| 227| 17252| |2011/06/19T23 :59 :56 .479 | 3596.258|
114.48.192.231| 59.32.100.112| 3 | 0 | 1 | 1 | 56| |2011/06/20T00 :02 :10 .174 | 0 .000|

66 .48 .83 .219 | 59.32.109.134| 123| 123| 17| 9 | 684| |2011/06/20T00 :19 :51 .783 | 241.297|
66 .206 .64 .9 | 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :14 :47 .428 | 0 .000 |
66 .206 .64 .9 | 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :31 :50 .699 | 0 .000 |
66 .206 .64 .9 | 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :48 :54 .545 | 0 .000 |

66.159.75.149| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :06 :15 .101 | 0 .000 |
66.159.75.149| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :23 :19 .467 | 0 .000 |
66.159.75.149| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :40 :23 .495 | 0 .000 |
66.159.75.149| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :57 :26 .958 | 0 .000 |
66.182.192.41| 59.32.109.134| 123| 123| 17| 56| 4256| |2011/06/20T00 :00 :47 .026 | 3534.544|
66.182.109.54| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :09 :54 .534 | 0 .000 |
66.182.109.54| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :26 :57 .631 | 0 .000 |
66.182.109.54| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :44 :02 .423 | 0 .000 |
66.182.11.144| 59.32.109.134|40324| 123| 17| 1 | 76| |2011/06/20T00 :12 :20 .735 | 0 .000 |
66.182.11.144| 59.32.109.134|46731| 123| 17| 1 | 76| |2011/06/20T00 :14 :20 .416 | 0 .000 |
66.182.11.144| 59.32.228.184|64888|51413| 17| 1 | 126| |2011/06/20T00 :55 :42 .966 | 0 .000 |
66.182.94.141| 59.32.175.8|14932|19588| 17| 1 | 59| |2011/06/20T00 :36 :52 .822 | 0 .000 |

66.182.142.142| 59.32.109.134| 8 | 0 | 1 | 273| 22932| |2011/06/19T23 :59 :41 .284 | 3591.433|
66.182.202.243| 59.32.173.206|58618| 80| 6 | 6 | 372| |2011/06/20T00 :02 :53 .551 | 15.616|
66.182.103.108| 59.32.109.134|32769| 123| 17| 1 | 76| |2011/06/20T00 :23 :48 .951 | 0 .000|
66.182.103.108| 59.32.109.134|32771| 123| 17| 1 | 76| |2011/06/20T00 :50 :59 .674 | 0 .000|

66.182.35.175| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :11 :56 .849 | 0 .000 |
66.182.35.175| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :29 :00 .392 | 0 .000 |
66.182.35.175| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :46 :04 .379 | 0 .000 |
66.182.209.54| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :01 :07 .194 | 0 .000 |
66.182.209.54| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :18 :11 .333 | 0 .000 |
66.182.209.54| 59.32.109.134| 123| 123| 17| 1 | 76| |2011/06/20T00 :35 :15 .195 | 0 .000 |

Listing 2.3: Example of several flows, processed by Silk. The IP-Adresses have been random-
ized

high amount of bandwidth) or denial-of-service conducting users. The implementation of these
methods is challenging and time-consuming, as no ready-to-use framework exists so far. It was
not done as part of this thesis.

Benefit

NetFlow data can both give interesting insight into a whole network and insight into the activities
of a single host. It is possible to tell which services in the network have been used by the
computer at any time, which however raises problems with data privacy laws. If the problems
with data acquisition and data storage have been solved, NetFlow data is very powerful for
forensic analysis. The problem is in finding the needle in the haystack. A single host can, e.g.
by taking part in a P2P network, communicate with thousands of other hosts in the Internet.
Finding the one malicious host in all of these IPs is almost impossible.
IP traffic data can give strong hints about malicious activity if an automatic way of extracting
interesting information about a host is in place, e.g. by characterizing the amount of scanning
done by this host. The downside are the very high storage and compute resources needed,
which make a real-time analysis almost impossible.

16

2.2 Network Based Methods

2.2.5 Network Firewall

Internet

Internal
Network

Network
Firewall

Figure 2.11: A network based firewall
controlling the traffic between the Inter-
net and the local network

Firewalls in a network are the gatekeepers and a first
line of defense against intruders. A firewall controls the
flow of network traffic between two hosts on opposite
sides of the firewall. They are deployed at the borders
of a network. This can be at the place where the net-
work is connected to the Internet or between smaller
networks inside an organization.
Firewalls help to prevent attacks using lower network
layers than the application layer. Firewalls do not filter
content, but only the connection itself. A typical use
case is to prohibit access to any internal host except
to hosts providing a public service which should be
reachable from the Internet e.g. a webserver. These
exceptions are normally configured manually. Often
firewalls put no restrictions on outgoing traffic (traffic
originating from the internal network), but in environ-
ments with high security demands (like banks) the out-
going traffic may be heavily restricted as well.
Modern firewalls can detect many low-level attacks
against an infrastructure. If too many unsuccessful
connection attempts from a single IP address occur,
this IP address is blocked from further access to the

whole network. New worm outbreaks can be detected and blocked automatically. Connections
which carry a very high amount of traffic can be throttled to ensure a fair-usage policy.
While firewalls played a major role in fighting against intruders in the past (being a popular IT
security topic in movies till today), the attacks have moved on from the network layer to the
application layer. These kind of attacks cannot be detected or prevented by firewalls.

Example Output

The example of a log from a firewall (see 2.4) shows an external IP address which is blocked,
because it connected to multiple internal IP addresses, searching for SSH servers (port 22).
This alert was triggered because the attacker built up many connections to SSH servers which
have been blocked at various points in the infrastructure. An automatic temporary block of this
IP address was issued by correlating the results from multiple firewalls. Time-limited automatic
blocks are important to reduce the number of support tickets which have to be handled by the
IT support group. Often an attacker is a victim himself, being infected by a Trojan. In networks
used for dialup-connections IP addresses change frequently. If an IP address continues to be
blocked for a very long time, innocent users will also be affected by inheriting the IP address
from an attacker.

Benefit

Firewall logs can be used to find attackers and track the connections they initiated in the network.
Scan activities originating within the organization’s network are also detected, giving a very
strong indication that an infection or other malicious user activity took place.

17

2.2 Network Based Methods

<record i d ="0" >
<blocked_ip >31.3. x . y </ blocked_ip >
< b l o c k i e r t _ s e i t >2011−08−28 12:06 </ b l o c k i e r t _ s e i t >
< b l o c k i e r t _ b i s >2011−08−28 16:00 </ b l o c k i e r t _ b i s >
<block_reason >

IP : 3 1 . 3 . x . y Number o f En t r i es:5170−−−−−−−−−−−−−−−−head −−−−−−−−−−−>Aug 28 12
: 03 : 47 fw−mavt1−a . ethz . ch %FWSM−5−106100 : access−l i s t acl_mdc_outside
_access_1 denied tcp outs ide / 31 .3 . x . y (50849) −> i n s i d e / 129.132.0.99 (22)
h i t−cnt 1 (f i r s t h i t) [0 xf60d7cc2 , 0x0] Aug 28 12 : 03 : 47 fw−mavt1−a . ethz . ch

%FWSM−5−106100 : access−l i s t acl_mdc_outside _access_1 denied tcp outs ide /
31 .3 . x . y (50849) −> i n s i d e / 129.132. x . y (22) h i t−cnt 1 (f i r s t h i t) [0 xfd62fe47 ,
0x0] Aug 28 12 : 03 : 47 fw−mavt1−a . ethz . ch %FWSM−5−106100 : access−l i s t
acl_mdc_outside _access_1 denied tcp outs ide / 31 .3 . x . y (50849) −> i n s i d e /
129.132. x . y (22) h i t−cnt 1 (f i r s t h i t) [0 xf60d7cc2 , 0x0]−−−−−−−−−−−−−−−−t a i l

−−−−−−−−−−−>Aug 28 12 : 03 : 52 asa−fw−sp ino f f−a . ethz . ch %ASA−4−106023 : Deny
tcp src ou ts ide : 31 .3 . x . y / 50849 dst i n s i d e : 129.132. x . y / 22 by access−group
" acl_mdc_outside _access_1 " [0 x8f24b0de , 0xf4a33758] Aug 28 12 : 03 : 52
asa−fw−sp ino f f−a . ethz . ch %ASA−4−106023 : Deny tcp src ou ts ide : 31 .3 . x . y / 50849
dst i n s i d e : 129.132. x . y / 22 by access−group " acl_mdc_outside _access_1 "
[0 x8f24b0de , 0xf4a33758] Aug 28 12 : 03 : 52 asa−fw−sp ino f f−a . ethz . ch
%ASA−4−106023 : Deny tcp src ou ts ide : 31 .3 . x . y / 50849 dst i n s i d e : 129.132. x . y
/ 22 by access−group " acl_mdc_outside _access_1 " [0 x8f24b0de ,
0xf4a33758] 3 1 . 3 . x . y 1Blocked u n t i l : 28−08−2011 16:00

</ block_reason >
</ record >

Listing 2.4: Example of an IP blocked by several perimeter firewalls in a campus network - taken
from ETH Komcenter List of blocked IPs

Firewalls are not effective against application level attacks. As most malware today uses appli-
cation vulnerabilities and is distributed using drive-by-downlaods, firewalls provide only a limited
protection. Infected PCs in the internal network are often not affected by firewalls as they allow
internal traffic to pass unhindered. Only the most aggressive and intrusive users are found this
way. Nowadays, most malware tries to be stealthy, making the detection by firewalls very hard.

18

2.3 Information Gathering

2.3 Information Gathering

When the host- or network-based methods cannot identify an infection, other sources have to be
used. As many different systems in a network are keeping logs about their activities, extracting
relevant information for these logs can be helpful. Malware is a global problem, and most likely
multiple organizations are affected by an attacker or a certain type of malware. Using public
blacklists or information published by other organizations in the Internet can help to classify and
evaluate an infection.

2.3.1 Security Log File Analysis

Figure 2.12: Syslog-NG - a popular
open-source log daemon

A log records events triggered by an application. The
logs don’t have to be security-related (and most of
the time they aren’t). Beside the logs discussed be-
fore (from firewalls, IDS systems or antivirus engines),
applications and services keep track of their activities
in log files. Analyzing these log-files can give an in-
teresting inside into activities of the service. Common
types of log-files are access logs , keeping track of
who used a service at which time, error logs, reporting
application warnings and errors and general activity/s-

tatus logs informing about a result of an operation.
In the following we will focus on logs which can help in finding out if a security incident has
occurred. The logs from the following services are useful for this purpose:

• DNS Server Logfiles - disclose the actual source of a potentially malicious DNS query

• Web Proxy Logfiles - disclose the actual source of a request for a malicious website

• SSH Access Logfiles - show unsuccessful attempts to authenticate as well as the used
usernames

• Host OS Logfiles - crashing programs (possibly attacked by malware) and the Host OS
firewall can give hints at successful attacks.

Because of privacy concerns access to these logs is problematic. There is no standard log
format, making an individual handling of each log a necessity. Log files are generated at multiple
points in a network and must be collected and centrally stored. This not only helps to analyze
them, but is also an important best practice for enabling forensic analysis after an incident was
discovered. Logfiles from infected PCs have to be handled with care as the information in these
logs can be forged , e.g. a trojan will normally hide logins from the attacker in the local logs.

Example Output

An example of a logfile output can only give a very small input into the world of log files. In the
example shown in 2.5 a failed login attempt using the SSH (Secure Shell) protocol is displayed.
It is generated on the host where the failed login attempt occured. Logs are generally saved in
a textual form which can be directly parsed, but sometimes a binary format is used. Other logs
are saved in a database, allowing for fast queries on the data.

19

2.3 Information Gathering

Aug 28 17:07:34 pc−10082 sshd [22991] : I n v a l i d user t e s t from 84.73. x . y
Aug 28 17:07:34 pc−10082 sshd [22991] : Fa i led none f o r i n v a l i d user t e s t from 84.73. x . y po r t 2531 ssh2
Aug 28 17:07:35 pc−10082 sshd [22991] : pam_unix (sshd : auth) : check pass ; user unknown
Aug 28 17:07:35 pc−10082 sshd [22991] : pam_unix (sshd : auth) : a u t h e n t i c a t i o n f a i l u r e ; logname= uid=0 euid=0 t t y =ssh ruser= rhos t=84−73−x−y . d c l i e n t . hispeed . ch
Aug 28 17:07:35 pc−10082 sshd [22991] : pam_winbind (sshd : auth) : g e t t i n g password (0 x00000388)
Aug 28 17:07:35 pc−10082 sshd [22991] : pam_winbind (sshd : auth) : pam_get_item returned a password
Aug 28 17:07:38 pc−10082 sshd [22991] : Fa i led password f o r i n v a l i d user t e s t from 84.73. x . y po r t 2531 ssh2

Listing 2.5: Failed SSH login attempt as reported in the auth.log file

Benefit

An infrastructure which collects, converts and stores important logfiles centrally is a very pow-
erful tool. Beside their usage to find security incidents, they also point at other failures like
hardware problems or buggy software. Logs can be used to escalate otherwise less important
security warnings, e.g. if a scanner trying to gain access to a system is finally succesful. In that
case an IDS will not give any more warnings (as a “correct” connection was established), but by
watching for anomalies in the logs created by the machine, malicious activity can be uncovered.
The main challenge is the automatic analysis of the log files. A very good filter and correlation
engine must be used. Log files will generate an abundance of information, and it is very hard to
filter for relevant alerts without missing critical alerts.
When a specific use case must be analyzed, the analysis of logs can be much easier than
described before. For example, if for a DNS server the querying client in the internal network
should be determined, this can be done in a straight-forward matter.

20

2.3 Information Gathering

2.3.2 Public Vulnerability Resources

Figure 2.13: Google and ThreatExpert
Logos

Vulnerability resources are informations available to
(paying) administrators which help to classify a mal-
ware. Multiple forms exist: they can analyze malware
automatically; they have informations about the be-
havior and ways of distribution of malware; they know
who is distributing malware; they know which kind of
malware is especially active. Today this information
is mostly used to support the security administrator
on his (manual) task of inferring what is going on in
his network. In the following paragraph an overview of
several often used freely available sources of informa-
tion is presented.

ThreatExpert [16] is an automated free malware analyzer. Similar services are offered by GFI
Sandbox (formerly knows as CWsandbox) [26] and Comodo Instant Malware Analysis [27]. A
executable file can be transmitted, which will be executed and closely watched. ThreatExpert
claims to be able to analyze malware in 2-3 minutes, which is considerably faster than a manual
analysis needs. The results are archived and can be searched. Among other features (opened
Files, hits by virus scanners, registry entries) the contacted IP addresses are logged. This in-
formation can help to build blacklists or classify the outgoing connections of suspicious hosts. A
subcategory of these vulnerability scanners are the virus scanner services (e.g. VirusTotal). Of-
ten multiple virus engines are used to check a file. Another subcategory are the URL checkers
(like http://www.ipvoid.com/) which do not scan an executable file, but a suspicious page which
is trying to use browser related vulnerabilities.
Robtex [28] is a page combining multiple tools used to get information about an IP address or
a domain. It also features a service which checks in multiple blacklists for the occurrence of an
IP address.
CVE [29] (Common Vulnerabilities and Exposures) is a list of known public vulnerabilities in
applications. Several other pages exist offering similar services. In general a description of the
problem and the affected software version is published. Sometimes also a proof-of-concept
code to test the vulnerability is provided.
Google is the market leader for web search engines (2011). Google offers application program-
ming interfaces (APIs) to automatically search the web using their search engine. By searching
for IP addresses of suspicious hosts or observed strings sent by malware a fast overview of the
results received by other administrators in the world can be done. In addition Google by design
also searches the resources mentioned before and can shorten the process of finding relevant
information. The process can be automated, as first described by Ionut Trestian et al [30].

Benefit

Public malware information is an essential part of the whole analysis process. It is impossible
to classify and watch suspicious files manually. Also the process often involves a manual part
where the information has to be analyzed by a human, it can be automatized. We will show how
this can be achieved in Chapter 3.

21

2.3 Information Gathering

2.3.3 Blacklists and Malware Trackers

Figure 2.14: Shadowserver Logo

Blacklists are a list of IP addresses, networks or do-
mains which are used to distribute malware, send
spam mails or attack other hosts. Often the sources
for their data are firewall logs from multiple organiza-
tions. The back-tracking of the source of spam e-mails
allows to create dedicated e-mail-spam blacklists. An-
other source of blacklist data are so called honeypots.

These are hosts which are deliberately set up in vulnerable way in order to be infected by mal-
ware. The hosts are then used to watch closely what the malware is doing in order to find the
sources or command channels which it is using.
Malware trackers are projects often specialized on a single kind of malware [31] [32]. Shad-
owServer [33] is an example of a project where multiple botnets are tracked. They aggregate
information from own information sources like honeypots with information from other sources
about malware and reconstruct the network behind the malware. Modern malware is controlled
by distributed command and control (C&C) servers. From these servers an attacker is control-
ling what the infected PCs should do. Malware trackers provide blacklists so that organizations
can block the access to these servers. In addition, they help the people responsible for a network
to find C&C servers within their network so that they can be removed.

Benefit

Botnet trackers can give a highly interesting inside into the darker side of the Internet. If com-
munication with hosts known to host a C&C server is recorded, this is a strong sign of malicious
activity. Unless a scanning service like Skype or a P2P client is responsible for this communica-
tion pattern, the host is likely infected.
Blacklists, on the other hand, are often misleading [34]. The reasons behind an entry in a black-
list are often not known and because IP addresses often stay quite long inside a blacklist, they
tend to be outdated. In a huge network with a lot of traffic it is not uncommon that a lot of con-
tacted external IP addresses are found on some blacklist without involving a security incident.

22

Chapter 3

Methodology

Extraction and correlation of the highly diverse signatures of an infection is a complex task.
Multiple tools have to be combined and a consistent framework has to be built which is used to
assess the incident. In the following sections the tools and methods used in this thesis will be
presented. In addition a promising new detection method is presented which focuses on one-
way flows in which the contacted host does not reply. Finally the framework used for correlation
and automatic extraction of relevant security features is presented.
The focus in this thesis is on extrusion detection and the assessment of a successful infection.
Extrusion detection promises to be more accurate as an attack triggering an alert is often unsuc-
cessful and results in a false positive. Alerts originating from the internal network are statistically
more significant as they indicate a successful infiltration of the internal node. For this reason we
do not consider alerts from external traffic.

3.1 Environment

The setting for this thesis is a medium sized university network at the Swiss Federal Institute
of Technology ETH Zurich. More than 25.000 students and employees [35] used this network
in 2010. In total 2.35 Petabytes were transferred to or from the Internet in 2010, using more
than 30.000 cable-based Internet connections and more than 1300 wireless access points [36].
There is no public anonymous guest access and each endpoint can be tracked back to an
organization or individual. Students and employees can remotely connect to the network using
VPN1 from public access points all over Switzerland or from their homes.
To detect security incidents, the Snort IDS is deployed. The system filters all incoming and
outgoing traffic to the Internet. Firewalls are deployed at the border of each subnet and track
incidents individually. Each firewall is configured based on the needs of the protected subnet.
Some firewalls allow all traffic to pass, others block all incoming traffic. Offending IP addresses
both from inside or outside the network are automatically blocked. The NetFlow data is analyzed
to find suspicious activities.
Multiple different environments exist within the network. There is a centrally managed environ-
ment, in which Unix and Windows based clients are managed. Other environments are man-
aged by the individual users. The biggest individually managed network is the public docking
network used by students with their private laptops. The central infrastructure is managed by
the Informatik Dienste (ID), the university’s IT group. Departments and institutes have their own

1Virtual Private Network - a technology using an encrypted channel to tunnel into the internal network

23

3.2 Feature Extraction

IT support groups (ISGs). The size and services offered by these ISGs varies a lot, making the
overall network a very heterogeneous environment.
The huge variance of users, ranging from technically skilled security researchers to students
using their laptops mainly for communication in social networks, presents a very interesting field
to study security incidents.

3.2 Feature Extraction

The first step in a security assessment is to collect, filter and convert the data from the security
sensors. We used 6 different sensors: The intrusion detection system Snort , the vulnerability
scanner OpenVAS, blacklists from various sources, the network scanner nmap, the dig tool for
DNS services and finally automatic queries to Google.

3.2.1 Intrusion Detection System Snort

Snort
Sensor

File
Server

compressed
data

1 week
SNORT logs
complete network

Feature
Analyzer

Webpage

Security
Administrator

Figure 3.1: Overview of Snort infras-
tructure: Sensor, Storage and Analysis

Snort is the primary source of information about in-
fected hosts. In the network Snort sensors are de-
ployed at the gateway routers connecting the network
to the Internet. They filter all incoming and outgoing
traffic from the university network. The sensors are
routinely used by the Informatik Dienste to find infec-
tions in the network. In addition the data is provided to
researchers by copying it into the Scylla Cluster2

A new method to detect infections in Snort IDS data
[12] allows to discover the hosts which are suspected
to be vulnerable. All alerts generated by outgoing com-
munications are evaluated in order to assess indepen-
dently if these hosts are infected. In figure 3.1 the gen-
eral process is visualized, while in 3.2 the detailed ex-
traction of the features is visualized.
In the first step, a full week of compressed Snort alerts
from all hosts in the network is read from the central
storage server. We are only interested in alerts which
are triggered by outgoing traffic from the single host
which should be evaluated. To filter these alerts, the
Linux tool grep is used, which excels at the quick anal-
ysis of ASCII encoded text files. The limiting factor for
this pre-processing step is the speed of the grep tool,

while the data decompression is done in parallel on another processing core with 50% of grep’s
CPU requirements. It is more efficient to work with compressed data, since the mean com-
pression factor is about a factor of ten, allowing to uncompress the data faster than to read
uncompressed data. On the system used for development& testing3 the pre-processing step
took 7.1 minutes, extracting data of a full week (3.1 Gb gzip compressed) from a single host.
This process can be parallelized easily if the source data is split and analyzed in parallel, but
since this wasn’t a bottleneck in the whole analysis process no further optimization was pursued.

2The Scylla Cluster is a group of powerful servers used for scientific research at the ETH Zurich
3Intel Core 2 Quad 2.4GHz with 4GB Ram

24

3.2 Feature Extraction

dst−i p : 91.211.117.70 (26%)
dst−po r t : 53 (100%)
i n f e c t i o n−t ime : 06−19 23:00:53 −> 06−20 14:55:13
snor t : 2400001 (822 , 99%) [ET RBN Known Russian Business Network IP UDP (126)]
src−po r t : HIGH (100%)
t o p a l e r t−count : 822
t o p a l e r t s : 2400001 [ET RBN Known Russian Business Network IP UDP (126)]

Listing 3.1: Features found by the feature analyzer for a suspicious server

After pre-processing the data analysis phase starts. The data is transferred to the analyzer using
a webfrontend4. The data is then analyzed by a Python script which sequentially reads all lines
of the log file. Snort alerts are converted into objects of a Snort python class. After conversion
the following features are extracted:

• Frequently contacted hosts (>10% of all alerts reaching out to this host)

• Frequently contacted destination ports (>10% of all alerts going out to this port)

• Frequently used source ports (>10% of all alerts originating from this port)

• Count of alerts by Snort alert class (classes are “compromised”, “attack”, “scan” and “pol-
icy”, taken from [12])

• Infection duration, the time in hours between the first and the last severe Snort alert

• Occurrence of severe alerts: If an alert with high priority from the “compromised” class is
found, its ID is reported as a feature

• Total count of all severe alerts

The features are stored in a SQLite database as a readable textual representation which can
be displayed on a security administrators management console or on the webfrontend without
the need of further conversion steps.

Example

In this example several connections from a server to the Russian Business Network (RBN), a
network often used by computer criminals, were recorded. One single IP address is frequently
related to these Snort alerts. Manual inspection confirms that this IP address (91.211.117.70)
belongs to a DNS server inside the RBN. Almost all Snort alerts are referring to a communication
with the RBN. The source port of all alerts is port 53, which is normally used by DNS.
After checking the hostname of the server we confirmed that this is a frequently used DNS
caching server. All the DNS requests apparently originating from this host are triggered by other
clients. It can be assumed that this host is not infected, but that the clients using this host are
showing suspicious activity.
Listing 3.1 shows the features as they are reported by our feature detector.

4The details of the framework are described in chapter 4

25

3.2 Feature Extraction

Single Host
Outgoing Alerts

1 Week SNORT logs
Full Network

ASCII

Python Script
"oneip.py LOGFOLDER HOSTIP"

Feature
Detector

Via Web-Frontend

external IP
external Port

if # Alerts(dest IP or dest port) / # Total Alerts > 10%

internal Port if # Alerts(src port) / # Total Alerts > 10%

Alerts
in SNORT-class

if # Alerts(SNORT-ID) / # Total Alerts > 5%
Classes: Compromised, Attack, Scan, Policy

Infection
Duration

Severe
SNORT-ID

First severe -> Last severe SNORT-ID Timestamp

From class "Compromised" and priority "1" (highest)

severe
SNORT-IDs

Correlation Engine
WEKA

Webfrontend

Other
Features

Figure 3.2: Process of extracting significant features from Snort logs

26

3.2 Feature Extraction

3.2.2 Vulnerability Scanner OpenVAS

Suspicious Host

OpenVAS Command Line Interface CLI
OpenVAS Web Frontend GSA

OpenVAS Manager OpenVAS Scanner

IP Address

SQLite
Database

Various Report Formats:
HTML, PDF, XML, Latex

Figure 3.3: Overview of the vulnerabil-
ity scanning process with OpenVAS

OpenVAS (Open Vulnerability Assessment Platform)
[37] is a community-driven platform for vulnerability
scanning. It was forked from the Nessus Vulnerability
Scanner [38] when Nessus was turned from an open
(GPL) software to a proprietary software in 2005. The
most recent version (4.0) was published in March 2011
after a long period of inactivity. The project is backed
by the BSI (German Federal Office for Information Se-
curity) and some commercial companies who are sell-
ing Network Vulnerability Tests (NVT).
We compared OpenVAS 4.0 to Nessus 4.0 on few sus-
picious nodes, using the freely available NVT-Feeds
for both programs (for Nessus the feed is only for free
for private use). In our tests the OpenVAS scanner

found more vulnerabilities and also provided more useful insight into the vulnerabilities than
Nessus did. For this reason we chose OpenVAS for further analysis.
OpenVAS can scan a whole network, a list of hosts or a single host. The most convenient form
of interaction with the software is provided by the web interface Greenbone Security Assistant
(GSA). After defining a scan policy by choosing a subset of tests from the NVTs, we scanned
a specific suspicious host. After starting the scan job using the GSA web interface, OpenVAS
Manager handles the execution of the task. A dedicated OpenVAS Scanner process performs
the scan and reports the progress and results back to the OpenVAS Manager. The OpenVAS
Manager can then provide various reporting formats,e .g. a HTML page or a XML output which
can be easily used for further analysis steps. We used the detailed HTML report to analyze the
security state of the investigated host. Figure 3.3 shows the general process in which a security
assessment with OpenVAS is conducted.
The time needed for a security scan can vary a lot. It depends on the amount of reachable
services and the number of tests available for these services. Scans are mostly non-intrusive,
but some tests can cause reduced system performance or even a system crash. For this reason
only manual non-intrusive scans outside of office hours were initiated. OpenVAS was not used
for automatic scanning as part of the web framework.
A detailed example describing the gained knowledge from an OpenVAS report can be found in
Appendix C.

27

3.2 Feature Extraction

3.2.3 Blacklists

Figure 3.4: Used blacklists: apews.org,
dshield.org, emergingthreats.org,
shadowserver.org and urlblacklist.com

Multiple sources for blacklists exist5. They serve three
main purposes. Firewalls are using blacklists to block
known attackers. These kind of blacklists can be re-
trieved from the blacklist provider in a format under-
stood by the firewall. E-Mail anti spam systems use
blacklists to block known spammers. Some of these
blacklists can be downloaded, but most use the DNS
system to query the blacklist. Content and access fil-
ters use blacklists to block the usage of services, for
political, organizational or legal reasons. These black-
lists are often based not only on IP addresses, but also
on URLs.
We focus exclusively on downloadable lists. DNS
lists are useful to block E-Mail spammers who are
changing their IP addresses frequently. They do not
offer historic data, which is used in our methodology.
For the bulk processing of many IP addresses, which
is often required in our approach, downloadable lists
offer better performance. For future real-time use
of the framework, an inclusion of good DNS based
blacklists might be helpful.

The blacklists from 5 public blacklist providers (Figure 3.4) are automatically downloaded
and stored on a daily basis. The blacklists are partly labeled by the providers, hinting at the
reason for the blacklist entry. The most often used reasons are Bot, Attacker, RBN and Spam.
If no reason is given or if the blacklist contains IP addresses from multiple sources, we used
the reason Multiple. Urlblacklist.org provides additional tags related to the use of the website
hosted on the IP address, e.g. Socialnetworking or Webmail.

For the analysis the 5 blacklists are combined. One or multiple days, depending on the
period in which the infections occurred, are chosen from the stored blacklists. All IP addresses
and reasons for their existence in the blacklist are extracted, again by using the Linux grep
command for performance reasons. They are fed into a SQLite database, storing each IP
address only once. The primary key in the corresponding database table is the IP address.
Future searches for these IP addresses can be done with a time complexity O(log(n))[39].
A suspicious internal host is analyzed by extracting all contacted IP addresses which trigger a
Snort alert. This is done similar to the process described in Section 3.2.1. Instead of extracting
the Snort features, all outgoing alerts are analyzed and the external IP addresses are extracted.
The SQLite database is searched for these IP addresses. If multiple hits are found, the results
are aggregated. The results are stored in another SQLite database in textual form and can
easily be displayed, e.g. on the webfrontend. The process is visualized in Figure 3.5

5For a idea about how many black lists exist, http://rbls.org/ is a good resource

28

3.2 Feature Extraction

ads : 1
m u l t i p l e : 43
rbn : 2
chat : 1

Listing 3.2: Blacklist hits for outgoing connections of a host

Example

A host is suspicious because two of its connections end at IP addresses belonging to the RBN.
Further blacklist hits are from ad-related servers and a chat server. In addition, many IP ad-
dresses belong to the multiple class. These hits mainly originate from DShield’s unfiltered black-
list of hosts being blocked at one of the firewalls of their customers. DShield suggests not to use
this data for blocking as they contain many false positives. We included this data in our set of
features as it gives us a hint of possible malicious activity, but we did not trust this feature.
Based on this data alone it is not possible to infer if this host is infected. In this case, a scan of
the host found a skype supernode. The RBN related alerts originated from this service and are
a typical false positive case.

29

3.2 Feature Extraction

Suspicious IP

Outgoing
SNORT alerts

from suspicious IP

Destination IPs

Blacklist SQLite Database

Category
Hits by Category

Blacklist providers

Data storage
of daily blacklists

<Type, Date, Source>

Selection of evaluated days

1 Week SNORT logs
Full Network

ASCII

Query

Daily Downloads

Manual Preparation
depending on analysis week

Insert

If IP detected

SQLite Database

Figure 3.5: Process of checking for hits in blacklists

30

3.2 Feature Extraction

3.2.4 Nmap Network Mapper

Nmap network mapper is a popular open source tool to scan hosts for open ports. Originally it
was developed to generate a map of the network. A large community developed many additional
scan types and enhanced features. Important features of Nmap used in our scans are:

• Open/Closed/Filtered Port Detection

• SYN scan

• Connect scan

• Operating system detection

• Service version detection

• Top-port scanning which scans top-N most often used open ports

Only static hosts are scanned. Hosts with a dynamic IP address assignment come from VPN,
public docking or WiFi connections. Since in this case the IP address mapping changes fre-
quently it is quite likely to scan a different host than the original alert triggering host. Dynamic
hosts are filtered out by reverse DNS lookups with the help of the Linux tool dig : the hostname
usually contains the words “dynamic” or “public” or “nat” in this case.
At the beginning of a scan the Snort alerts generated by the suspicious host are analyzed. A list
of source ports used in outgoing connections is generated. These ports and the 50 most often
used open ports in the Internet are scanned on the suspicious host. This port list is the result of
work done by Gordon Lyon, the original author of Nmap [40] see Appendix B.
The scan type for open ports is a connect scan. Additionally for each open port the service
version identification is done. Nmap will try to open a full TCP connection consisting of an initial
SYN packet, the SYN/ACK reply packet if the port is open and a final ACK packet from the
scanner. If the port is not open, the host replies with a RST packet or does not reply at all if
a firewall blocks the port. While this scan is less stealthy and slower than other scans, no root
privileges are needed. The results of the scan are identical to the often used SYN scans. The
service version detection uses a number of signatures and queries which it will send to the open
port. The reply allows Nmap to determine what software version is running on this port.
After finishing the scan the results are collected and a list of reachable services is created. As
a final step, a second run of Nmap tries to discover the operating system which is used on the
host. Nmap uses OS fingerprinting [41] to guess the operating system. These results are not
always accurate, as many devices have similar characteristics. Nmap tries not only to distinguish
between Windows, Linux and Mac OS X, but also to find various network devices like routers,
switches, printers and many more. To us only hits concerning Linux, Windows or Mac OS X are
of interest, as the vast majority of systems being infected and discovered by Snort falls into one
of these classes. Nmap has an accuracy score between 0 and 100. We only consider the most
accurate operating system guess above an accuracy score of 80 if multiple systems were found.
If the OS could be detected successfully, it is also saved in the SQLite database storing all other
scan results.

31

3.2 Feature Extraction

Example

http

skype2

microsoft-rdp

OSWindows

Starting Nmap 5.51 (http://nmap.org) at 2011-09-04 23:17 CEST
Nmap scan report for xxx.ethz.ch (129.132.x.y)
Host is up (0.00063s latency).
PORT STATE SERVICE VERSION
80/tcp open http?
443/tcp open skype2 Skype
3389/tcp open microsoft-rdp Microsoft Terminal Service
19498/tcp open skype2 Skype

Warning: OSScan results may be unreliable because we could not find at least 1 open and 1 closed port
Device type: general purpose|WAP|switch
Running (JUST GUESSING): Microsoft Windows 2003 (94%), Linksys embedded (93%), Foundry IronWare 7.X (86%)
No exact OS matches for host (test conditions non-ideal).
Service Info: OS: Windows

Nmap done: 1 IP address (1 host up) scanned in 99.33 seconds

Figure 3.6: Example of a Nmap scan and the extracted features

The host from the blacklist example is now scanned using Nmap. Multiple source ports appeared
in the Snort data and were extracted. After scanning these ports and the top 50 ports 4 open
ports were found: port 80 (HTTP), port 443 (Skype2), port 3386 (Microsoft RDP) and port 19498
(Skype2). The detected OS was MS Windows. The Nmap output in a reduced form and the
extracted features are displayed in Figure 3.6.
This example shows the advantages of the used scanning techniques. With a random port scan
for e.g. the top 1000 ports the port 19498 would likely have been missed, as Skype chooses
these ports randomly. Only by checking explicitly for ports found in Snort alerts we could find
this open port. The correct classification of the service behind port 443 was done by Nmap’s
service and version discovery. Without this test the port would have been classified as a HTTPS
port, because webservers with SSL encryption use this port normally. Skype uses this port, just
as port 80, in its supernodes6 because these ports are seldom blocked by firewalls.
The original reason for this host to be investigated were several alerts triggered by connections
into the RBN. The connections originated from port 19498 are very likely replies to Skype con-
nection queries from hosts in the RBN. This kind of traffic is not malicious and caused us to
classify this suspicious activity as a common false positive.

6Skype supernodes are the backbone of the P2P system which handles the distribution of the lists of online users

32

3.2 Feature Extraction

3.2.5 DNS host name

The Domain Name System (DNS) translates from hostnames like www.example.com to an IP
address like 192.168.0.1. If a reverse record for an IP address has been registered, DNS can
also return the hostname if the IP address is known. If a query for “1.0.168.192.in-addr.arpa”
using the reverse notation of the IP address is made, the reply will hold the hostname in the
DNS PTR (Pointer Record) field.
We use this system to get additional information about the purpose of the suspicious internal
host. In our network environment each IP address has an assigned hostname. From these
hostnames we can easily find out if the IP address belongs to the dynamic address range if the
name contains dynamic or public. Server hostnames often contain the service like ftp, dns, mail
or simply server. When using unencrypted wireless and a landing page for authorization, no
public IP address is given to the devices, but they are put behind a NAT7. The IP addresses of
the NAT gateways can be identified because they have nat in their hostname. Of course these
names can easily be changed or misleading, but in our tests not a single mislabeling occurred.
The process of extracting the possible purpose of the host starts with a reverse DNS query
to our network DNS server. The retrieved hostname is searched for one of the keywords and,
after finding a keyword, the tag is saved to the SQLite database. Possible tags are Dynamic,
Server, NATGateway and DNSServer. The reason for the last tag are the frequent false positives
originating from DNS servers, which we can quickly identify if we know that the investigated IP
address belongs to a DNS server. A full list of keywords and tags can be found in Appendix E.

Example

The IP address 82.130.71.35 is suspicious because of several trojan related alerts. With “dig -x
82.130.71.35” the hostname of this IP address is retrieved: “guest-docking-nat-1-035.ethz.ch.”.
The keyword nat is detected and this host is tagged as a Dynamic host. This host will not be
scanned by Nmap as we would only be able to scan the NAT gateway, not the client itself.
In addition we know that this alert originates from an laptop connecting to the network with
unencrypted wireless. Possibly multiple Hosts share this IP address, making it hard to establish
which packets belonged to a single host. For this reason, we did not investigate these hosts
further.

7Network Address Translation, a technique to connect multiple devices to the Internet over a single external IP
address

33

3.2 Feature Extraction

3.2.6 Google Automatic Querying

Internal
Network

Suspicious Host

Internet

Feature Extractor

SNORT
Sensor

Security
Forum

Report
suspicious activitySend Malware

for analysis

Infection
attempt

Infection

Retrieves
logs for
suspicious host

Queries IPs
contacted by
suspicious host

Indexes
Websites

Connections to
external hosts

Result contains
informations about
malicious host

Benign Host

Malicious Host

Figure 3.7: Information retrieval about malicious activity using Google Search Engine

Google’s search engine is used to infer if IP addresses contacted by suspicious internal hosts
are associated with malicious activity. This is done by querying google for the IP addresses and
searching for keywords in the search results.

The idea behind this approach is the same as for blacklists: you are probably not the
only one being targeted by the malware. If other parties have observed suspicious activity from
certain IP addresses, they sometimes write about this in public forums. Malware analyzers like
ThreatExpert [16] record outgoing connections. The contacted IP addresses can be found in
their ThreatReports which are indexed by Google. Malware tracker pages like SpyEye Tracker
[32] and Zeus Tracker [31] have lists of IP addresses being connected to these botnets8.
These informations and possibly many more are found by Googles search engine. Compared
to blacklists this information is often more detailed. The kind of malware connected to the IP
address, the used IP ports and protocols (UDP or TCP) and the time when this infection was
discovered can all give valuable insight into the nature of the discovered infection.

8A botnet is a collection of infected hosts which can be remotely controlled, e.g. to send Spam or attack Websites

34

3.2 Feature Extraction

In a first step, IP addresses are extracted from the Snort data. Only alerts of the classes
Attack and Compromised are considered. The classes Scan and Policy are ignored as they
refer to alerts which are not triggered by malware (Policy) or are not likely to contact malicious
IP addresses (Scan). Furthermore a single alert type with more than 30 different contacted IP
addresses is discarded. We can only query 100 IP addresses per day for free with one Google
API key. Therefore above this threshold we inspect destination IP addresses connected to a
single alert only manually. In most cases this kind of behavior originates from P2P network
traffic like Skype or request-reply traffic as e.g. used for DNS.
For the Google searches their custom search API [42] is used. using the Python binding from
the Python module Google API Python Client. The search results are stored in a PostgreSQL
database for later analysis of the discovered words and to maximize the usage of the 100
free queries. A second search for the same IP address will not be served by Google, but by
the PostgreSQL database. A query returns the 10 most relevant webpages as determined by
Google. We did not collect additional search results. Most queries do not return a significant
amount of pages. Almost 80% of the queries returning at least 1 result do not return more
than 10 results. We assume that not many interesting information is lost by not considering the
remaining search results and it enables us to query more IP addresses each day. Each query
for 10 additional results would costs 1 of the 100 free queries.

The results are analyzed by searching for specific keywords. These keywords are searched for
in the page name (e.g. “ThreatExpert Trojan Zeus”) and the text snippet provided by Google
together with the page name. The keywords are taken from the paper Unconstrained endpoint
profiling (googling the internet) [30] and augmented by our own security relevant keywords.
Each keyword is associated with a tag. The most important keyword-tag combinations are
(Bot|Trojan|Worm) - “Bot” and (malware|spyware|spybot) - “Malicious”. Additional tags are
“Blacklisted”, “Adware” and “P2P”. The full list of keywords and tags can be found in Appendix
E.
Once all tags have been found for an IP address, they are saved together with their frequency
in a SQLite database. If malware or bot related keywords are found, the direct link to this search
is saved in addition for quick manual inspection.

Keyword - tag combinations are established manually. This process can be done once
and is quite robust as the important keywords do not change a lot over time. To establish a list
of keywords, we used the search results from more than 3400 queries for IP addresses found in
the process described above. A list of words with 3 or more letters and at least 10 occurrences
was created, containing 1331 different words. As this process had to be done only once, we
used these words to infer good keyword - tag combinations manually.

The whole system is summarized in Figure 3.7.

35

3.2 Feature Extraction

Example

A host generated several high priority Trojan related Snort alerts. A list of contacted IP ad-
dresses is generated and automatically queried. in all search results 8 times a keyword con-
nected to the Bot tag is found and 21 keywords indicating Malicious activity are found. In total
11 IP addresses are either reported as being bot- or malware-related. A manual check of the
search results confirms that the IP addresses are used to distribute malware for different types
of bots. The specific alerts generated by Snort and the confirmation of connections to malicious
IP addresses is a very strong indicator for an infected host.

36

3.3 Feature Correlation

3.3 Feature Correlation

A trained security engineer can often tell if a host is infected by just looking at a couple of
selected features. In cases of doubt, he can try to get additional information. This process is
based on his understanding of the way the malware operates. He also knows the reason for the
alerts and can infer when a benign program did trigger an alert. Making an automated system
perform the same task for all kind of malware is impossible.

Nevertheless, we are using automated systems to help the security engineer. The sen-
sors which provide the features are often automated systems. Some of them can detect certain
type of malware on their own if the detection rule is specific enough. But all systems are
specialized on certain types of malware. No system can catch all kind of infections equally well.

In this section we will describe a learning algorithm helping the security engineer to infer
if a host is infected. The algorithm uses results from previous infections. He compares the
features of new suspicious cases to already classified detections. The reason triggering an
automated classification must be reported by the system, such that the security engineer can
better interpret the results. This way he can spot errors made by the algorithm and provide his
own judgement. For this reason we do not consider algorithms where the decision process is
not transparent. The two most prominent classifiers falling into this class are support vector
machines and neural networks.

3.3.1 Classification Algorithms

Naive Bayesian Classifier

One of the simplest classification algorithm is the naive Bayesian classifier. It weighs all features
as being equally important and independent from each other. It uses Bayes rule to compute the
probabilities for a new case to belong into one of the classes. Lets assume we classified several
alerts according to the data in the following table 3.1:

Snort alert Operating System Classification

Virus Win Infected
Spyware Linux Infected
Spyware Linux Infected
Virus Linux Clean
Spyware Win Clean
Virus Win Infected
Virus Win Clean

Table 3.1: Example of collected features and the corresponding classification

A new suspicious case is now found: Snort alert Virus and OS Linux. We calculate the likelihood
of this case being also infected. A Snort virus alert is observed in 2 of 4 infections and the OS
Linux is also observer in 2 of 4 infections. In total there are 4 infections in 7 cases. Multiplying
these ratios gives us the likelihood for the class infected : 2

4 ·
2
4 ·

4
7 = 0.143. The same calculation

for the clean class results in a likelihood of 0.041. A naive Bayesian classifier predicts that our
new case is over 3 times more likely to be infected than to be clean.

Although the assumption of independence between features is an oversimplification, this

37

3.3 Feature Correlation

topsnort-countinfection-dur google-servergoogle-botsnort-attack

conclusion

Figure 3.8: Naive Bayesian network extracted from security incidents from June 2011 - reduced
to 5 features

method results in surprisingly good results on many real world examples, e.g. to filter E-Mail
spam [43]. However naive Bayesian classifier are not suitable for our feature correlation. A rich
training set is needed to infer accurate correlations between features and classes. Features
which never appear together with a class have veto rights, making sure that this class never
gets chosen when the feature appears in another test case. For example, if the feature OS
Linux has never been combined with an infected case, the naive Bayesian classifier will never
classify a new case as being infected if this feature is connected to the new case. Workarounds
exist by assuming that every feature is found at least once for every class. This can introduce
errors if the training set is not rich enough. We do not have a rich training set, and a single
feature can often not be used for classification alone.

Bayesian classifiers can be visualized as Bayesian networks. The nodes represent fea-
tures or classes and the edges are correlations between features. The value of each feature
and class is given by a function with the parent nodes as inputs. For a naive Bayesian classifier,
this graph has the class at its root and all features one level below the root. An example of a
graphical representation of a naive Bayesian classifier is given in figure 3.8.

38

3.3 Feature Correlation

Tree augmented naive Bayesian classifiers

To overcome the limitations of naive Bayesian classifiers several solutions were suggested. A
tree augmented naive Bayesian network (TAN), proposed by Friedman et al in 1997 [44], adds
a simple structure of dependencies between the features to the naive Bayesian classifier. An
edge is drawn from a feature to another feature, weighted with the conditional mutual information
given the class. This complete graph of all features is then transformed to a tree by constructing
the maximum weighted spanning tree. One can say that the result is a tree where features are
connected only when the value of a feature tells a lot about the value of a neighboring feature.
Finally all features are connected to the class, producing a graph as shown in figure 3.9.
A new case with features a1 - an is evaluated by finding the class c which maximizes the
posteriori probability PN (c|a1, . . . , an). N is the TAN learned from the training data.

The authors report that TANs outperform naive Bayesian networks and other state-of-
the-art classification algorithms [44]. We found only very minor differences in both classification
approaches for our data. The tree structure derived from the algorithm shows correlated
features, but cannot be used without calculating the posteriori probability when a new case
is found. The reason for a case being classified e.g. as infected is not visible from the tree
structure. It can only be found by evaluating the probability functions at each node.

topsnort-count

infection-dur

google-server

google-bot

snort-attack

conclusion

Figure 3.9: Tree augmented naive Bayesian network extracted from security incidents from June
2011 - reduced to 5 features

39

3.3 Feature Correlation

C4.5 decision tree classifier

C4.5 is an algorithm developed by Quinlan in 1993 [45] to create a decision tree. It can be used
for classification by following the decision tree. The goal of the algorithm is to split the data
at the feature which provides the highest information gain. The difference in entropy is used
to find the best feature. The algorithm can be compared to human reasoning. For an efficient
manual classification, it is best to first look at general features which can classify many cases.
The algorithm mimics this behavior.

After choosing a feature which splits the data optimally, a node with this feature is cre-
ated. The decision criteria is based on the possible values of the feature. If two or more discrete
values are possible, e.g. TRUE or FALSE, the data is split on these values. If the feature is a
continuous value, e.g. the count of Snort alerts, the algorithm finds the value which splits the
data optimally regarding the entropy. This procedure is repeated for the remaining data, adding
new nodes as children of the originally chosen feature. If only one class remains in the data, a
leaf is created with this classes name. Future cases ending here after traversing the tree will be
classified with the class name of this leaf.

Often the training data or the data in the new cases is incomplete. C4.5 is tolerant against
missing cases in the training data by only considering features which provide a high information
gain. If data is missing in the new cases which should be classified, a missing value is
interpreted as having all possible values. For each possible value the tree is evaluated and the
class which is finally chosen most often is used for classification.

A further problem is that a complete decision tree can be very big and over-fitted to the
training data. C4.5 handles this problem by subtree replacement and subtree raising. Subtree
replacement will replace a whole subtree with a leaf if most of the cases in that subtree
are of the same class. Subtree raising will remove a feature with little information gain by
one of its subtrees and incorporate the lost classes in the subtree’s leafs. To establish
when to use subtree replacement or subtree raising, an approximate error induced by this op-
eration is calculated. If the error is lower after replacement or raising, the operation is performed.

The algorithm is used a lot in the industry [46] and most other classification algorithms
are tested against this algorithm. A commercial version exists which is faster than the open
source version. C4.5 is implemented as part of Weka [47] under the name J48, referring to the
last open version of C4.5 Revision 8. We used this implementation to compute the decision
trees. An example of a C4.5 tree is given in figure 3.10

C4.5 was chosen to classify the security incidents. The high readability of the decision
tree was the main criteria. A security engineer can easily follow the tree manually to classify
new infections. New interesting correlations which can be used to create automatic rules can be
extracted. In chapter 5 we will also show that the classification accuracy of C4.5 is comparable
to other tree-based classification approaches and outperforms the popular Support Vector
Machine (SVM) classification algorithm.

40

3.3 Feature Correlation

= 0<= 3.0

> 1.52<= 1.52

!= 0

<= 1.52

> 9.0<= 9.0

> 3.0

> 4.0<= 4.0 > 1.52

Infected (4.0)

Clean (3.0) Infected (14.0/4.0)

topsnort-2003219

infection-dur

topsnort-count

topsnort-count

Clean (33.0/1.0) topsnort-count

infection-dur

Infected (4.0/1.0) Clean (3.0)

Clean (5.0)

Figure 3.10: C4.5 decision tree extracted from security incidents from June 2011 - reduced to 5
features

41

3.3 Feature Correlation

3.3.2 Implementation

In the following we used the Weka [47] suite to create the decision tree and classify new
cases. It is an open-source data mining toolkit developed at the University of Waikato in New
Zealand, written in Java. It features a graphical interface and a command-line interface. The
command-line interface was used for automated generation of the tree and classification of
new cases. The graphical interface enabled us to quickly test different algorithms and evaluate
the multiple options available to modern classification algorithms.

Weka reads data in the Attribute-Relation File Format (ARFF) [48]. We converted the
features we extracted from the various sensors into this format. All features are either binary,
e.g. if a port is open or closed, nominal e.g. the DNS name which can be put into several
groups like dynamic, NAT or Server) or continuous e.g. the number of Snort alerts triggered
by the suspicious host. Some features need to be combined to reduce the total amount of
features. This is done for Snort alerts where not the Snort id is used as a feature, but the total
amount of hits in a Snort class (Policy, Attack, Compromised or Scan). The time of an attack is
transformed from the start - end notation to a duration in hours.

All successfully classified incidents are then used to create a decision tree with Weka’s
J48 implementation of the C4.5 algorithm. The tree is exported to the DOT-format for a
graphical representation. With the help of the Linux command line tool dot the textual DOT
format is transformed into a PNG image which can be viewed with many image viewers and
web browsers.
If a new case is evaluated, a classification is suggested based on a decision tree generated
from all previously classified incidents.

An overview of the process is given in figure 3.11.

42

3.3 Feature Correlation

SQLite Database
Classified Incidents

Converter to
ARFF format

Export all incidents

Load as Training Data

Apply the J48 Decision Tree Classifier

Output tree in DOT format

DOT formatted
Decision Tree

Convert to PNG image

Suspicious Host

Converter to
ARFF format

Extract and export features

Load as Test Data

Proposed Classification

Classify Test Data
using Decision Tree
from Training Data

Figure 3.11: Process of classification using Weka and the J48 classification algorithm

43

Chapter 4

Host State Assessment

Host state assessment is the combination of the feature extraction and classification approach.
For new threats this task has to be done manually. Known attacks can be extracted into rules
and used for automatic classification. Our framework aims at giving the security administrator as
much information about a host as quick as possible. A classification based on previous incidents
is proposed, but the decision is left to the security engineer. The decision tree which is extracted
automatically from the classified incidents is displayed to guide the manual classification. The
implementation of the back end and front end are explained in the following sections 4.1 and
4.2.

4.1 Back end with Python and Flask

The feature extraction and feature correlation is controlled with the help of Python scripts, utiliz-
ing the micro-framework Flask [49]. Flask is a Python library which makes it very easy to quickly
create interactive websites. It features a powerful debugger allowing to debug the code on de-
mand directly from within the web browser. A screen shot showing the interactive console used
for debugging is displayed in figure 4.1.
The three tasks of the back end are feature extraction and correlation, accepting user input and
providing information to be displayed at the front end.

4.1.1 External Modules

Whenever possible, existing Python libraries were used to provide a functionality. Important
external modules which were used are:

• subprocess and os to call Linux command line programs.

• jinja2, werkzeug and flask [49] to create the website and react to HTTP events.

• psycopg2 and sqlite3 to connect to PostgreSQL and SQLite databases.

• apiclient [42] to connect the Google’s Custom Search API.

• silk [50] to handle IP address manipulation.

• nmap [51] for a direct interface to the network mapper nmap for automated host scans.

44

4.1 Back end with Python and Flask

Figure 4.1: Debugger view of the embedded web server in Flask

4.1.2 Architecture

The central part of the back end is a light weight web server powered by Flask [49]. It receives
HTTP requests and calls the functions chosen to answer to these requests. Content is delivered
to the web browser by the template engine Jinja2 [52].
The back end receives the suspicious IP address and a compressed list of Snort alerts from the
front end. Flask saves the compressed Snort alerts on the hard drive such that the file can be
loaded at a later time without need to upload it again. The IP address and the filename of the
Snort alert file is stored as a session variable. The front end starts the feature extraction and
correlation by sending HTTP GET requests calling the functions, e.g. a HTTP GET to the URL
/nmap will cause the network scan against the suspicious IP address to be started. The back
end provides additional information needed by the function. The back end extracts the Snort
alerts from the compressed Snort alert file and passes them on to the feature extraction.
The feature extraction functions will save their results in a SQLite database. This SQLite
database is configured as part of the Flask initialization and can be accessed by any func-
tion being called from the back end. There is no need to create multiple connections to this
database. Access to the database is handled by Flask.
The feature correlation is called whenever a new incident should be classified or when a new
conclusion has been added to an incident. The feature correlation retrieves all classified inci-
dents and the previously extracted features for the new case from the database. The generated
decision tree is saved on the hard drive and passed on to the web front end for visualization. The
proposed classification for the new incident is returned. Flask uses this information to propose
a classification to the security engineer using the web front end.
The process is visualized in figure 4.2.

45

4.1 Back end with Python and Flask

H
T
M

L
Fr

o
n
t

e
n
d

H
T
T
P
 G

E
T

S
u
sp

ic
io

u
s

IP
H

T
T
P
 P

O
S
T

Fi
le

 S
to

ra
g
e

S
N

O
R
T

a
le

rt
s

H
T
T
P
 P

O
S
T

S
N

O
R
T

a
le

rt
s

W
e
b
 B

ro
w

se
r

w
it

h
 H

T
M

L5

W
e
b
se

rv
e
r

S
Q

Li
te

 D
a
ta

b
a
se

C
la

ss
ifi

e
d
 I
n
ci

d
e
n
ts

S
N

O
R
T
 F

e
a
tu

re
 E

x
tr

a
ct

o
r

In
p
u
t:

IP
 &

 S
N

O
R
T
 a

le
rt

s

O
u
tp

u
t:

Im
p
o
rt

a
n
t

ID
S
 f

e
a
tu

re
s

G
o
o
g
le

 C
h
e
ck

In
p
u
t:

IP
 &

 S
N

O
R
T
 a

le
rt

s

O
u
tp

u
t:

M
a
lic

io
u
s

a
ct

iv
it

y
 o

f
co

n
ta

ct
e
d
 I
P
s

N
m

a
p
 N

e
tw

o
rk

 S
ca

n
n
e
r

In
p
u
t:

IP
 &

 S
N

O
R
T
 a

le
rt

s

O
u
tp

u
t:

O
p
e
n
 P

o
rt

s
&

 S
e
rv

ic
e
s

B
la

ck
lis

t
C

h
e
ck

In
p
u
t:

IP
 &

 S
N

O
R
T
 a

le
rt

s

O
u
tp

u
t:

C
o
u
n
t

o
f

co
n
ta

ct
e
d

b
la

ck
lis

te
d
 I
P
s

Fe
a
tu

re
 C

o
rr

e
la

ti
o
n

In
p
u
t:

C
la

ss
ifi

e
d
 I
n

ci
d
e
n
ts

N
e
w

 I
n
ci

d
e
n

t'
s

Fe
a
tu

re
s

O
u
tp

u
t:

D
e
ci

si
o
n
 T

re
e

C
la

ss
ifi

ca
ti

o
n

 P
ro

p
o
sa

l

Im
a
g
e
 o

f
D

e
ci

si
o
n
 T

re
e

C
la

ss
ifi

ca
ti

o
n

P
ro

p
o
sa

l

Fi
gu

re
4.

2:
O

ve
rv

ie
w

of
th

e
ar

ch
ite

ct
ur

e
em

pl
oy

ed
in

th
e

ba
ck

en
d

46

4.2 Web front end

4.2 Web front end

The primary way to interact with all feature extractors and the correlation engine is done by
using a web front end. The front end can be used on any HTML5 capable web browser. Using
the main page a new incident can be investigated by providing the suspicious IP address and the
corresponding Snort file. The Snort file must be in Snort’s textual output format and should only
contain outgoing alerts generated by the suspicious IP address. All other alerts are discarded.
The file must be compressed using the gzip algorithm.
The main page also displays the decision tree and the already classified incidents. Old incidents
can be loaded and re-evaluated. A screen shot of the front page is given in figure 4.3.
The feature extraction is started as soon as a new case is created by providing both the sus-
picious IP address and the Snort file. The security engineer can ask the back end to extract
the features by clicking the appropriate link. If contacted IP addresses should be analyzed by
Google, a list of contacted IP addresses together with their alerts is displayed. The search en-
gine can be chosen. Either the normal version searching on all pages or the malware version
only searching malware-related web sites can be selected. In addition, the IP addresses must
be chosen which should be checked by the search engine.
A screen shot of the feature extraction and the search engine interface is given in figure 4.4 and
4.5

Figure 4.3: Screen shot of the web front ends main page, showing the form to create a new
case and the decision tree

47

4.2 Web front end

Figure 4.4: Screen shot of the web front ends feature extraction page. All features for the inves-
tigated IP are already extracted.

Figure 4.5: Screen shot of the web front ends search engine interface.

48

Chapter 5

Results

In this chapter we will present the identified security incidents at the ETH campus during two
periods in sumer 2011. An overview of the methods which have been used to reach a conclu-
sion is given. The impact of the different features is evaluated. Finally the chosen automated
classification algorithm C4.5 is evaluated and compared to other classifiers.

5.1 Overview

Period April - May 2011

The first analyzed period spans from 01.04.2011 to 12.05.2011, covering 42 days. In total
49’587’064 alerts where generated, from which 27’896’155 (56%) were caused by internal
hosts. 382’491 unique external hosts and 22’644 unique internal hosts generated alerts. We
investigated 235 unique internal hosts which exhibited more serious signs of an infection. The
hosts were selected by the method developed by Raftopoulos in 2011 [12].

From these 235 unique hosts 149 (63%) belonged to the dynamic address range which
is used mainly by unmanaged personal devices from students and employees.

Period June 2011

The second analyzed period spans one week in June, from 20.06.2011 to 27.06.2011. This
week was pointed out to us by the IT support group because of a very high number of unusual
alerts during that time. Even though only 7 days were analyzed, in total 121’402’841 alerts
where generated, from which 34’781’873 (29%) were caused by internal hosts. 239’863
unique external hosts generated alerts and 17’742 unique internal hosts generated alerts.
We investigated 96 unique internal hosts which exhibited more serious signs of an infection.
The hosts were again selected by the method developed by Raftopoulos in 2011 [12]. In
addition, 30 hosts which were not reported by this method were investigated. The purpose
was to give examples of unbiased behavior of non-infected hosts for the classification algorithm.

From the 126 investigated hosts, 61 (48%) belonged to the dynamic address range.

49

5.2 Security incidents

5.2 Security incidents

The first period from April until May 2011 was analyzed with the various tools described in
chapter 3. During that process, the tools were tuned and optimized. We focused on the different
kind of malware and the features which enable us to classify the infections correctly. The web
front end was developed after the first period and used to classify all incidents from the second
period, i.e.the special week in June 2011. The second period was also used for automated alert
classification.

From the 235 unique hosts which were evaluated in the first period, 43 hosts were dis-
carded because they belonged to the range of addresses assigned to NAT devices. NAT
devices serve as access points to the Internet for multiple clients. As such, it is very hard to
infer which client caused an alert. Combination of multiple alerts under the assumption that
they origin from the same host is not possible. As our inference is based on multiple alerts and
not one single incident alone, we discarded these hosts.

The biggest share of successfully classified incidents from the first period belonged to
the spyware class. 118 hosts were classified as having installed spyware. In the second period
only 18 hosts were infected with spyware. With few exceptions, the reason for the classification
was, that the hosts had installed the Ask Search Toolbar [53]. This software is classified as
malware by SNORT as this toolbar frequently gets installed without the user being aware that it
is installed, e.g. when installing other free software which bundles this toolbar. The reason for
the few detected spyware cases in the second period is likely due to the shorter period in which
we searched for infections.
Detecting the Ask Search Toolbar is done by SNORT with specific rules. The toolbar identifies
itself as AskTB or similar names in the User-Agent string of a HTTP request. This behavior is
very specific and has not been observed for any other software. As such it is not needed to use
other sensors to infer if this toolbar has been installed.
For the analysis of more serious malware we discarded the hosts exhibiting only spyware be-
havior and those behind NAT devices. In total, 74 incidents remained from the first period. From
the second period, 108 incidents remained. These totals serve as a basis for calculating the per-
centages of the different types of infections. For the evaluation of the importance and relative
weight of different features, only the incidents from the first period were used.

50

5.2 Security incidents

Class Cases Percentage

Unknown 25 14%
Clean 67 37%
Common False Positive 37 21%
Infected Clients 20 11%
Bot Infected 31 17%

Table 5.1: Types of identified security incidents in period April-May 2011 and in one week in
June 2011

5.2.1 Incident Classes

We used in total five classes to classify our incidents:

• Bot Infected labels incidents where a Trojan was detected.

• Infected Clients refers to those cases where the host is a server, which itself is not infected,
but which is used by infected clients. Those clients abuse the server, e.g. as a mail server,
a DNS server or a web proxy server. They cause the server to exhibit suspicious activity,
e.g. by causing the DNS server to query domains known to serve malicious content.

• Common False Positives refers to hosts which were believed to be infected because of
seemingly malicious activity exhibited by benign applications. Skype and a antivirus solu-
tion are examples for this behavior, but also some SNORT rules which trigger wrongly on
benign traffic.

• Clean marks cases were we inferred that no infection occurred.

• Unknown belongs to those hosts where we could not infer if an infection occurred. In most
cases too few alerts generated by SNORT caused this inference, although the alerts were
severe. An example is a single known malicious query by a Trojan with no further activity
at all. While the host may well be infected, we could not find any information about the
contacted IP address or observe other malicious activity. In few cases the alerts and signs
did show non-consistent behavior. Known malicious traffic together with contact with the
RBN occurred, but the malicious traffic was directed at benign sites, e.g. google.com or
facebook.com.

In table 5.2.1 the number of incidents per class from both periods is summarized.

5.2.2 Bot Infections

During the first period of 42 days 13 infections were found which exhibited consistent bot-related
activities. In contrast in the second one week period 18 bot-related infections were found. A
wide variety of bots was detected. With 4 hits, the Conficker Bot was found most frequently,
followed by Polybot with 3 hits. Blackenergy, Mufanom, SpyEye, Nervos, Ransky, Torpig and
Kryptic were discovered once in different hosts. For all these bots specific SNORT signatures
exist which were use to infer which bot infected the host. For 17 bot infections the kind of bot is
not known. For these incidents the consistent malicious activity caused us to classify them as
bots. In most cases multiple contacts into the RBN occurred. Other alerts which are marked as
possibly malicious by SNORT did contact hosts which were tagged as malicious by the search
engine approach.

51

5.2 Security incidents

5.2.3 Common False Positives

In 37 cases a host did show seemingly malicious activity while not being infected, but execut-
ing a program which tends to trigger security alerts. As malware is constantly changing, security
sensors try to watch out for generic malicious behavior patterns instead of specific malicious ac-
tivity. Some benign software also tends to act like malicious software, e.g. because it is scanning
a wide range of addresses in a network. Other benign software is not following the standards or
good practices, e.g. by giving a wrong User-Agent string when browsing the web.
In some cases, the SNORT alert rule is not specific enough and triggers on normal traffic. These
rules are normally discovered quickly by the community and removed from the ruleset. While
they are active, they trigger some alerts which we also classified as common false positives
because it is easy to detect them based on their SNORT rule ID.
In particular the following programs and Snort rules caused false positives:

Skype

Skype operates a P2P network of so-called super nodes. Every Skype user with a direct con-
nection to the Internet, i.e without a firewall or NAT device in between, can become a super
node. These super nodes are used to by normal clients to find out if their contacts are online
and to circumvent firewalls and NAT devices. They have connections to many other hosts in
the network. Some of these hosts are on the RBN and ShadowServer blacklists embedded into
SNORT. Consequently, they trigger many alerts of traffic which originates from the super node
and goes to a malicious network or host. The traffic itself is not malicious in these cases. Overall
10 cases in which a Skype super node caused false alerts were detected.

ICQ WebChat

ICQ 1 features a chat functionality which can be accessed using their web page chat.icq.com.
The used protocol is the popular Internet Relay Chat (IRC) protocol. However IRC is also known
to be a communication channel for bots. SNORT watches for traffic which looks like IRC traffic,
but is not directed at the official IRC ports 6660-6669. As these ports are often blocked in a
corporate environment, bots use other ports to connect to their controllers. ICQ’s web chat is
using port 80 and as such triggers alarms of IRC traffic on non-IRC ports.

Avira AntiVir

The popular free virus scanner from Avira does use an incorrect User Agent string when con-
necting to the avira-servers during an update. SNORT warns when this string is found because
malware also uses the same string.

SNORT rules

Two rules used by SNORT were found to be causing alerts with few other malicious activity at
the suspicious hosts. The SNORT rule with ID 2007626 is used to find traffic from the Trojan
Pitbull, but frequently triggers on benign traffic. The rule has been deleted in the meantime.
Another SNORT rule from a commercial rule set watches for queries to a Chinese web page
which tracks user activity. Even when visiting benign Chinese pages which use this tracking

1ICQ (a homophone for “I Seek You”) was the first widely used Instant Messenger

52

5.2 Security incidents

service, this rule is triggered. Some new malware is also using this tracker to provide the bot
controller with the addresses of infected hosts. While this rule likely triggers on true infections,
we discovered that most of the time no further suspicious activity occurred at the host.

5.2.4 Infected Clients behind Servers

DNS, proxy and mail servers often seem to be transmitting malicious traffic. A DNS server
which is used as a caching name server from hosts in the internal net will contact IP addresses
in malicious networks if its clients try to resolve hostnames from these networks. A mail server
receives mails from clients in the internal network and forwards them to mail servers in the
Internet. These E-Mails sometimes carry sensitive data or are being sent to known malicious
mail servers. A proxy server is used to cache and filter web traffic. It also hides the true address
of a user, making traffic seem to originate from the server instead of the client. If malicious web
sites are contacted by a client using a proxy server, SNORT only detects the traffic from the
proxy server.
In all these cases, the server itself is very likely not to be infected. The clients behind the server,
on the other hand, are likely infected. We did not have access to the log files from the servers
and could not infer the true origin of the alerts. We regarded these alerts as false positives as
the server which was reported as being infected is not infected. For a security administrator
with access to the server log files, these alerts can be important when trying to find the infected
clients.
In total 20 hosts were classified as such servers.

53

5.3 Method Evaluation

5.3 Method Evaluation

The 4 different main methods used to infer if an infection took place are based on the IDS
SNORT, the search engine Google, the network scanner Nmap and various blacklists. In addi-
tion, we used the hostname by reverse DNS. All methods contributed to the analysis done for
the second period in June. For the incidents from the first period we evaluated which method
was crucial to infer if an infection did or did not take place. We discarded all spyware related
incidents. They can be detected based on SNORT alone and do not give interesting insight into
the malware landscape as they do not try to hide, attack or redistribute themselves.
Overall, 74 such incidents were investigated. In table 5.2 the numer of occurences is given that
a certain method was necessary for a successful inference. In 13 cases (18%) we could not
determine if the host is infected even though all available methods were used. Figure 5.1 shows
the combined methods and the percentage of cases categorized by the combination.

IDS SNORT

29%
Nmap

Network Scanner

2% 2% 2%

Hostname

16%

29%20% Search Engine
Google

Blacklist

Figure 5.1: Combined methods and the percentage of suspicious cases categorized by the
combination

Table 5.2: Number of times a security feature extraction method was necessary to infer if an
infection occurred - taken from 74 incidents analyzed in April and May 2011

Method Cases involving method Percentage

IDS SNORT 61 82%
Search Engine Google 28 38%
Network Scanner Nmap 13 18%
Blacklists 10 14%
Hostname (reverse DNS) 3 4%

54

5.3 Method Evaluation

5.3.1 IDS SNORT

As SNORT alerts were the initial reason for inspecting a certain host, they also committed the
most valuable data to our evaluation process. They were needed in every case as they provided
the biggest insight into the activities of the host. Contacted external hosts were extracted from
the SNORT data and used for the search engine and blacklist methods. When using Nmap to
scan the suspicious host, SNORT provided an extended list of ports to scan. These ports were
used by the suspicious host as source ports for potentially malicious traffic.
Beside being able to classify all 118 spyware incidents from the first period, inspecting SNORT
alerts alone was enough to classify 18 infections. For the remaining 43 successfully classified
incidents, it was necessary to combine other methods together with SNORT.

5.3.2 Search Engine Google

Using the search engine Google proved to be a successful strategy to check for malicious activ-
ity exhibited by contacted hosts. In 16 cases the combination of SNORT alerts and the search
engine results alone enabled us to classify an infection. In 10 other cases it was necessary to
combine the information with the information from the blacklist method. In two special cases
a manual research was needed. These cases turned out to be rare false positives caused by
a browser based game and a wrongly listed host from the search results. Overall, the method
involving the search engine contributed to 28 successful classification (38%).
The importance of this method is also emphasized by the fact that only 3 malware infections
found in the period in June did not show any signs of malicious activity when querying Google.
While malicious activity is detected in 15 of the 18 infections in the second period, it was also
detected in 42 of 77 cases where we found no infection. The set of analyzed hosts is biased
towards hosts which do show behavior which is at least suspicious, which partly explains the
high number of false positives. It also shows that using a search engine alone to infer if a host
is infected is not a good strategy.

5.3.3 Network Scanner Nmap

The network scanner was used to determine the operating system and open ports of the sus-
picious host in the internal network. This data was useful to filter out false positives and find
servers which show malicious activity because of their clients. In 7 cases it was possible to
detect a Skype super node with the help of a network scan. The hosts were then classified as
common false positives. In 6 cases a network scan helped to discover that either a mail server,
proxy server or DNS server was deployed on the host. The hosts were consequently classified
as having infected clients, but not being infected themselves.
Overall, network scans filtered out 13 false positives.

55

5.3 Method Evaluation

5.3.4 Blacklists

Blacklists were used in 10 cases. In all these cases, they served as a sign of malicious activity
together with the results from the search engine. As blacklist data is often reported as being
outdated or inaccurate, we did not consider a host which contacts hosts on a blacklist as a suffi-
cient feature. However when the host contacted many blacklisted hosts which are also reported
to be malicious by the search engine, we concluded that an infection occurred. If both the search
engine and the blacklists showed no hits, we concluded that the host is not infected. In 6 cases,
based on this pattern, we found an infection. In 4 cases the host was marked as clean because
no blacklist showed any hits.
Blacklists are still very useful tools to find malicious activity. When a host on a blacklist is con-
tacted by an internal host, the reason should be found. Many suspicious hosts were found
because SNORT utilizes two blacklists, one with hosts from the RBN and one with hosts con-
trolling malware, found by the ShadowServer project. 13 of the 18 infected hosts found in period
in June also contacted several hosts which are on one blacklist. Only 21 of the 77 non-infected
hosts of the second period did not show a malware or bot-related hit on any blacklist. Almost all
hosts contacted at least one host which is on one of the blacklists.

56

5.4 Feature correlation and classification

5.4 Feature correlation and classification

During the second period, the correlation and classification algorithms described in section
3.3 were evaluated. The classification algorithms Naive Bayes, TAN and SVM were used to
compare against the accuracy of the decision tree algorithm C4.5.

To find a good measure of the accuracy of the different methods, we used a 10-fold
stratified cross-correlation. In this method the training set is randomly ordered and split into
10 parts, also called folds, of equal size. The set is not purely random, but slightly modified
(“stratified”) to create the same class distribution as in the complete training set. After splitting
the data, one part is used for testing and the 9 remaining parts are used for training. This is
repeated for every fold of the training data. The results are averaged over all test runs and this
gives us the cross-validation estimate of the accuracy.

5.4.1 Extracted Features

The decision trees were extracted from 114 classified cases of security incidents. The distri-
bution of the 5 classes of infections is given in table 5.4.1. In total 113 different features were
extracted.

Class Cases Percentage

Clean 44 39%
Common False Positive 20 18%
Infected Clients 13 11%
Spyware Infected 19 17%
Bot Infected 18 16%

Table 5.3: Types of identified security incidents in period June 2011

Most of these features represented a single type of SNORT alert with high severity. 46 different
kinds of these SNORT alerts were observed in our training set. 29 of these alerts occurred only
in a single incident. Nevertheless, these alerts are very important for the manual analysis of an
security incident. Alerts which appear in multiple cases are also important for the automated
analysis. All other SNORT alerts were counted by their class, resulting in 4 features called
snort-scan, snort-policy , snort-compromised and snort-attack.
30 different services, including the no-open-ports- and hostdown-“services”, were discovered
to run on the suspicious hosts by the network scanner. 3 different operating systems were
extracted: Windows, Linux and in one case iOS, the operating system used on mobile devices
from the company Apple.
5 different kind of blacklists, including the feature blacklist-nohits when no entry on any blacklist
was found, were used. The RBN, malware and bot blacklist represent specific blacklists which
we believed to be more reliable to find malware than other blacklists. All other hits on any
blacklist were combined in the feature blacklist-multiple.
6 distinct privileged source and destination ports were extracted. They belonged in most cases
to web- (TCP 80 and TCP 443), DNS- (UDP 53) and E-Mail-Traffic (TCP 25). In few cases, SSH-
(TCP 22) and FTP-Traffic (TCP 21) were discovered. All unprivileged ports were combined in
the features src-port-HIGH and dst-port-HIGH.
The search engine method resulted in 5 different features. They corresponded to the security
relevant context in which the external hosts were found. This context was grouped into blacklist,

57

5.4 Feature correlation and classification

bot, malware, P2P or server clusters. The keywords used to find the corresponding context are
explained in Appendix E.
Based on the hostname a dns-tag feature was extracted, as described in section 3.2.5. The
infection duration was measured in hours and exported as a feature. The number of important
SNORT alerts generated by a host was the final feature used to automatically classify the
suspicious hosts.

A list of all features can be found in Appendix D.

5.4.2 C4.5 Decision Tree

The main parameter which can be tuned when extracting decision trees from training data is
the confidence. This value must be between 0 and 1, where 0 corresponds to no confidence
in the training data and 1 is equivalent to full confidence. With full confidence, a huge tree is
generated because the pruning is based on the believed rate of error in the training data. The
lower the confidence, the more pruning of the tree is done. As the default setting which balances
the accuracy and size of the tree, 0.25 is used by the Weka data mining tool set.
Another important factor is the minimum number of cases which must end at a leaf. Because of
the high number of diverse attributes relative to the size of the training set (113 features for 114
incidents), it is not difficult to construct a specific tree with many leafs which correctly classifies
all training data. This extensive tree is hard to evaluate by the security engineer and vulnerable
to over-fitting on unimportant features.
To find the optimal parameters for the J48 algorithm, the parameter selection tool from the
Weka tool set was used. The search range for an optimal minimum number of cases per leaf
was from 2 to 5. The confidence value was searched in 0.02 steps from 0.01 to 0.91. We used
the number of correctly classified cases when using stratified 10-fold cross-correlation as the
evaluation function.
The resulting optimal parameters for our decision tree were a minimum number of 2 cases per
leaf and a confidence value of 0.076. If values above this threshold are chosen, the size of the
tree does not change, but the accuracy drops a little bit. Even for a high confidence of 0.5 and
a minimum number of 4 cases per leaf, the difference is small: 80 cases get classified correctly
instead of 83 cases when using low confidence values.

With these values the decision tree displayed in figure 5.2 was found.

58

5.4 Feature correlation and classification

Fi
gu

re
5.

2:
D

ec
is

io
n

tre
e

ge
ne

ra
te

d
fro

m
11

4
cl

as
si

fie
d

in
ci

de
nt

s
fro

m
on

e
w

ee
k

in
Ju

ne
20

11
-c

on
fid

en
ce

le
ve

l0
.0

76

59

5.4 Feature correlation and classification

a b c d e <– classified as

12 0 0 2 4 a = Bot Infected
0 13 0 0 0 b = Infected Clients
1 0 17 1 0 c = Common False Positive
0 0 0 18 1 d = Spyware Infected
1 0 0 4 40 e = Clean

Table 5.4: Confusion matrix of classified hosts - Based on the J48 implementation of the C4.5
algorithm - Training and testing on the same dataset

True Positive Rate False Positive Rate

Bot Infected 0.39 0.07
Infected Clients 0.92 0
Common False Positives 0.79 0.05
Spyware Infected 0.68 0.11
Clean 0.73 0.09

Table 5.5: True and False Positive Rate for the C4.5 decision tree

The decision tree starts with the elimination servers hiding infected clients. Mail servers can
reliably be detected by checking for traffic going to port 25 (used by the Simple Mail Transfer
Protocol SMTP). Interestingly a high number of contacts to hosts in the RBN is also a sign for
such a server. An infected node does contact only few nodes in the RBN, if at all, while these
servers have many contacts. A better feature to find these infections would be the source or
destination port referring to DNS (port 53) traffic. When the blacklist feature is disabled, the
C4.5 algorithm does indeed use these ports to find these cases.
In a next step, all common false positives are detected. Here the relevant specific SNORT rules
are used as a main indicator. SNORT rule 2007626, 200347 and 2802975 frequently trigger
on benign traffic. Only in 3 cases did we classify these hosts as infected. In these cases, we
saw a high number of contacts to other malicious hosts. The decision tree uses the P2P feature
discovered by the Google search engine to discriminate these hosts. This is consistent with our
observations of hosts which do use possibly illegal file sharing activities and consequently get
infected more frequently.
After all common false positives and servers hiding infected clients are filtered, the truly infected
nodes have to be differentiated from the clean nodes. The decision tree first detects reliable
SNORT signatures. In our data set, the rules with ID 2009024 (Trojan Conficker), 2012939
(Trojan Generic trojan) and 2005320 (Trojan Suspicious User-Agent MyAgent) could be used to
classify 9 infections. The hosts which were classified as being clean did exhibit very few SNORT
alerts of the class compromised. At this point in the decision tree we have the highest number
of wrongly classified true infections. 4 bot- and 1 spyware-infected host were wrongly classified
as being clean. 2 other bot-infected hosts were classified as being spyware-infected.
Some spyware is detected based on a specific SNORT rule (ET 2003219 - Alexa Spyware), but
most spyware is found by checking for web traffic (TCP port 80) and the absence of any other
alert.

A table of the confusion matrix showing the correctly and wrongly classified incidents
when testing on the training data can be found in 5.4. The rate of true positives and false
positives, determined by 10-fold stratified cross-correlation, is given in table 5.5.

60

5.4 Feature correlation and classification

C4.5 TAN Naive Bayes SVM

Bot Infected 0.07 0.06 0.05 0.03
Infected Clients 0 0.01 0.03 0
Common False Positives 0.05 0.04 0.11 0.04
Spyware Infected 0.11 0.08 0.13 0.1
Clean 0.09 0.16 0.09 0.2

Table 5.6: False Positive Rates for several classification algorithms based on 10-fold stratified
cross-correlation - security incidents from June 2011

C4.5 TAN Naive Bayes SVM

Bot Infected 0.39 0.5 0.39 0.44
Infected Clients 0.92 0.92 0.92 0.92
Common False Positives 0.79 0.74 0.74 0.90
Spyware Infected 0.68 0.58 0.58 0.58
Clean 0.73 0.84 0.76 0.8

Table 5.7: True Positive Rates for several classification algorithms based on 10-fold stratified
cross-correlation - security incidents from June 2011

5.4.3 Comparison to other classification algorithms

Only the decision tree algorithm gives us easily interpretable reasons for the classification of
the suspicious cases. Other algorithms can be more precise in classification. We compared
the C4.5 algorithm to a simple naive Bayesian classifier and a tree-augmented naive (TAN)
Bayesian classifier. The TAN algorithm could classify one more case (73.7% correctly classified
cases) than the C4.5 classifier, the naive Bayesian classifier did classify 5 cases less (68.4%)
than the C4.5 algorithm. As the TAN algorithm only very slightly outperforms the C4.5 algorithm,
we did not consider using it for the classification of new cases.

A Support Vector Machine (SVM) is an algorithms which represent the state of the art of
modern classification algorithms. Many data mining and machine learning algorithms are based
on SVMs and very good results could be achieved with these classifiers [54]. For this reason
we used an implementation of a SVM in Weka to classify our results and compare it to the C4.5
classifier.
SVMs are, just as C4.5 and the Bayesian trees, supervised machine learning algorithms. A
labeled training set is needed to create a model. Based on this model, the classification can be
done. SVMs can be configured with many parameters, but a popular implementation of SVMs
does handle this problem for us: Sequential Minimal Optimization by Platt from 1999 [55].
Weka has an implementation called SMO. We used the implementation to train a SVM. The
performance was identical to the performance of the TAN algorithm and as such only slightly
better than our C4.5 algorithm.

An overview of the true- and false-positive rates from the different algorithms is given in
table 5.7 and 5.6

61

Chapter 6

Discussion and Future Work

6.1 Discussion

6.1.1 Security Incidents

The malware landscape is highly diverse. We found 9 different types of bots on hosts in the
campus network. No bot dominated the number of infections. In more than half of the cases,
no specific alert but the general behavior of the host caused us to infer that the host is infected.
These results highlight the importance of a holistic approach to malware detection. Multiple
sensors are needed in more than 70% of all cases when the trivial cases of easily detectable
spyware are excluded. The decision tree uses features from SNORT, Google and blacklists.
While testing the best setting for the confidence of the decision tree, we found that a tree
generated with a slightly higher confidence in the extracted features uses all features, including
the results from network scans and the hostname analysis. The great variety of the used
methods confirms our assumptions that a multi-sensor approach is superior to single-sensor
methods.

The second major finding is the high confidence achieved by automated classification for
two types of apparently infected hosts. Servers which are not infected but have possibly
infected clients and applications known to produce many false alarms are detected reliably. As
these types of false positives will likely appear very often when searching for malicious hosts
in a network, it is important to filter them quickly. Our approach represents a reliable method
to detect these incidents automatically. Approximately one quarter of the detected cases in the
week in June fell into this class.

From all methods we used, the IDS SNORT is the most important one. It provides data
about the behavior of suspicious hosts. Analyzing the NetFlow log files can give a complete
list of contacted hosts, but this list is likely to be very large and will contain many addresses
which trigger an alarm in blacklists and our search engine method. It is necessary to combine
all three information sources to achieve reliable results.
The network scan and hostname analysis are valuable tools to filter out false positives. SNORT
generates millions of alerts in our environment. Even after preprocessing these alerts to find
suspicious cases with the method proposed by Raftopolous, most alerts are not referring to true
infections. Quickly filtering the common false positives in a first step of an analysis is vital to
reduce the number of incidents upon which an administrator must act.

62

6.1 Discussion

The search engine method together with blacklist checks provides a method to sort the
remaining cases by importance. In many cases we could not find enough signatures of an
infection. This does not necessary mean that the host is not infected, but it is less likely. Also
these infections are likely to be less severe as they show no signs of attacking other hosts. In
cases where SNORT gives a warning about possible infections because of suspicious traffic,
e.g. by misspelled User-Agent Strings, additional hits in blacklists and through the search
engine help to confirm the alert.

14% of all cases could not be classified with one of the methods. The number strongly
depends on the applied security thresholds, which therefore determine the desired security
enforcement level in a network. For the public part of the campus network in this environment,
our threshold is a reasonable compromise. As long as a possible infected host does not start
attacking other hosts and degrade the network performance while doing that, there is little
incentive from the IT support group to act. Informing the user of suspicious activity by E-Mail is
likely to be enough. Only in cases where an infection is detected in the managed environment
or in an infrastructure-critical part of the network, the security engineer has to act and manually
inspect the host. In the two periods of 48 days in total we found 31 bot infections, less than one
infection per day. This number is well manageable compared to the hosts generating an alert
(more than 22’000) and even to the number of hosts we inspected (361 hosts, 7.5 hosts per
day).

6.1.2 Automated Analysis

The decision tree algorithm C4.5 proved to be well suited for an automated analysis. The way
this tree extracts the relevant information is comparable to the cognitive approach of the security
engineer. Some features are surprising, e.g. the choice to classify all nodes with more than 6
contacts to the RBN network as servers with infected clients. For this reason, manual inspection
of the tree is needed to infer reasonable rules for a possible automated classification.
None of the other methods compared to C4.5 showed significant better results. On the other
hand, even the very basic naive Bayesian classifier did not classify the incidents much worse
than our classifier. As we have many different features and, compared to the number of features,
only few cases in our training set, this result is not surprising.
The SVM classifier showed a better true- and false-positive rate for most classes compared to
the C4.5 algorithm. Only for one important figure, the number of false positives for the class
clean was significantly higher when using the SVM classifier. In case of doubt, the SVM algo-
rithm seems to favor labeling a host as clean.

63

6.2 Future work

6.2 Future work

The results obtained with our method are based on the network traffic from the suspicious hosts.
No access to the suspicious hosts was possible. As such, our results are missing this valuable
source of information. Checking our bot infected and clean host with virus scanners might give
us important additional information and could verify our assumptions.
Additional sensors based on NetFlow data can give interesting additional information. They are
independent from the SNORT IDS data and can act as the source to cross check the data for
the other methods. Anomaly detection based on NetFlow data is an active research field with
promising new methods.
Our framework did focus on the classification of incidents extracted from SNORT data. Future
work should investigate if the methods can also be applied successfully when a suspicious host
is detected through other methods. In these cases fewer IDS data may be available.
The framework is not used for fully automated classification. A method of exporting the newly
derived information into a Security Incident Management Systems should be implemented for a
future productive use.

64

Chapter 7

Conclusion

In this thesis we showed the need of combining multiple methods to infer if a host is infected
or clean. With our automated method of feature extraction, a host can quickly be assessed.
Known attack patterns are detected by a decision tree algorithm and can easily be converted
into fully automated patterns detecting future attacks of this type. We showed that this method
is especially useful to filter out false positives. False positives are a huge problem with IDS
systems, and our framework can help to solve this.
New attacks can be assessed by combining the information extracted from IDS logs and active
scans of the suspicious host with information from the Internet. This way it is possible to classify
new attacks quickly without having to change the detection framework.

While developing and testing our method, we built a labeled data set of infected nodes
spanning 48 days. This set contains the timespan in which hosts were infected, either with a
Trojan or spyware, and reasons for different kind of suspicious, but benign hosts. For this period
we had access to the SNORT alert and NetFlow data of all hosts in our medium sized university
network. This dataset can be used for future evaluation of new methods to find infected hosts in
a network. It is not based on artificial traffic or a testbed. As such, it provides unique possibilities
to test new algorithms on realistic data.

65

Appendix A

Original Task

66

Institut für
Technische Informatik und
Kommunikationsnetze

Seurity assessment of infetion inidentsin the ETH university ampus
Master ThesisMatthias Egli

Seurity assessment of infetion inidents in the ETH university ampus Marh 2011Projet DesriptionIn reent years, malware infetions have beome one of the most prominent seurity threats in thewild. They provide the means for yberriminals to steal on�dential data, launh various types of attaks,host fraudulent web ontent, and send massive spam. As seurity pratitioners shift their attention tothis emerging threat and introdue defensive measures to safeguard their infrastrutures, the attakersdevelop and deploy the next generation of trojans, likbots, and spyware that have stealthy behaviorand robust ommuniation arhiteture making it very hard to monitor and detet them.In our infrastruture, the ETH ampus network, intrusion detetion is used as the main line of network-based defense against ative attaks and malware infetions. In a daily basis the ETH seurity teamollets and stores more than 3 million alerts whih get triggered when a potentially maliious ativityis manifested. Performing forensi analysis based on this data, i.e. identify infetion evidene from largeamounts of system monitoring traes, has beome an important and very hallenging task.The main goal of this work is to provide forensis evidene of high on�dene regarding ative infetionsthat are tagged as suspiious by peripheral defenses and detetion engines. For this purpose we will uselarge amounts of monitoring data inluding IDS logs, NetFlow data, and DNS logs, online seurity threatreports and blaklists, ombined with network probing and vulnerability assessment tools. We aim toorrelate the output of these diverse seurity sensors in order to detet omplex bahavioral patterns thatare manifested by infeted nodes.We have to ope with two inherent di�ulties of network seurity analysis. Firstly, the types ofmaliious behaviors that we attempt to identify are quite disparate, ranging from multi-stage attaks andworm propagation events to trojan and malware ommuniation patterns. Seondly, the tools that we useprovide a reasonable detetion auray only at very �ne levels of analysis (e.g. paket level signatures,server ativity logs, DNS requests). Although, the produed observations might be related to maliiousbehaviors, these tools do not provide onrete evidene that the atual seurity inident has oured.Our approah will rely on a rigorous o�-line automated proess, that ombines multiple independenttrae evidene of low on�dene and our expertise in analyzing suh inidents, in order to strengthenthe assertion that the atual infetion has oured. The soures of low or medium level observations thatwe exploit in order to derive high on�dene evidene regarding the existene or absene of an ativeinfetion deteted during the analyzed traing period, are the following:� Seurity tikets generated by our IT seurity team� Independent blaklist data listing known maliious hosts� Threat reports related to analyzed seurity threats� Reonstruted episodes of multi-stage attak inidents� Publily available seurity pro�ling information� Seurity assessment data olleted using ative sansThe seond goal of this thesis will be to provide a visualization tool that will operate as a dashboard offorensis evidene related to ative infetions. It will provide the seurity operator with all the informationrequired in order to investigate suspiious nodes in an e�ient way, by inorporating the aformentionedseurity input, preproessing the data so that useful information is identi�ed and extrated, and rep-resenting the orresponding forensis evidene in a onise and ompat way. Moreover, the tool willperform some basi orrelation of the data soures used in order to provide a warning about nodes thathave been validated to exhibit onsistent maliious behavior, and thus orrespond to infeted mahines.Requirements and Contat detailsKind of Work: 30% theoretial , 70% pratialRequirements: programming in python/perl and java, programming in /++ desired,experiene with linux, basis of ommuniation networks and protoolsSupervisor: Ilias Raftopoulos, ETZ G97, +41 44 632 70 50Co-supervisor Xenofontas Dimitropoulos, ETZ G90, +41 44 632 70 04Professor: Prof. Dr. Bernhard Plattner
2

Appendix B

Nmap Top 50 most often used
ports

This is a list of the 50 most often used TCP ports in the Internet. For the 25 most often used
ports, the service they usually provide is given. The list is based on work form the author of
Nmap, Gordon Lyon [40].

21 − FTP
22 − SSH
23 − Telnet
25 − SMTP
26
53 − DNS
80 − HTTP
81
110 − POP3
111 − SunRPC
113
135 − Mic roso f t End Poin t Mapper
139 − NetBIOS
143 − IMAP
179
199
443 − HTTPS
445
465
514
515
548
554
587
646

993 − IMAP over SSL
995 − PO3 over SSL
1025
1026
1027
1433
1720
1723 − Mic roso f t PPTP
2000
2001
3306 − MySQL
3389 − Mic roso f t RDP
5060
5666
5900 − VNC
6001
8000
8008
8080 − HTTP a l t e r n a t e
8443
8888
10000
32768
49152
49154

69

Appendix C

OpenVAS example output

An extract of 4 pages of a 37 pages long report from a vulnerability scan against a single host is
given. The scanned host is a virtual machine which runs multiple vulnerable software to assess
the performance and detectin rate of vulnerability scanners.

70

Summary

This document reports on the results of an automatic security scan. The report first summarises the results

found. Then, for each host, the report describes every issue found. Please consider the advice given in each

description, in order to rectify the issue.

Overrides are on. When a result has an override, this report uses the threat of the override.

Notes are included in the report.

This report might not show details of all issues that were found. It only lists hosts that produced issues. Issues

with the threat level "Debug" are not shown.

This report contains all 109 results selected by the filtering described above. Before filtering there were results.

Scan started: Mon Mar 21 15:05:01 2011

Scan ended: Mon Mar 21 15:09:18 2011

Host Summary

Host High Medium Low Log False Positive

172.16.68.128 25 34 40 10 0

Total: 1 25 34 40 10 0

Results per Host

Host 172.16.68.128

Scanning of this host started at: Mon Mar 21 15:05:06 2011

Number of results: 109

Port Summary for Host 172.16.68.128

Service (Port) Threat Level

distcc (3632/tcp) High

ftp (21/tcp) High

http (80/tcp) High

microsoft-ds (445/tcp) High

mysql (3306/tcp) High

domain (53/udp) Medium

netbios-ns (137/udp) Medium

ssh (22/tcp) Medium

ajp13 (8009/tcp) Low

domain (53/tcp) Low

general/SMBClient Low

general/tcp Low

netbios-ssn (139/tcp) Low

postgresql (5432/tcp) Low

distcc (3632/tcp)

ftp (21/tcp)

http (80/tcp)

smtp (25/tcp) Low

telnet (23/tcp) Low

general/CPE-T Log

general/HOST-T Log

Security Issues for Host 172.16.68.128

High

NVT: DistCC Detection (OID: 1.3.6.1.4.1.25623.1.0.12638)

distcc is a program to distribute builds of C, C++, Objective C or

Objective C++ code across several machines on a network.

distcc should always generate the same results as a local build, is simple

to install and use, and is often two or more times faster than a local compile.

distcc by default trusts its clients completely that in turn could

allow a malicious client to execute arbitrary commands on the server.

For more information about DistCC's security see:

http://distcc.samba.org/security.html

Risk factor : High

High (CVSS: 6.8)

NVT: ProFTPD Server SQL Injection Vulnerability (OID: 1.3.6.1.4.1.25623.1.0.900507)

 Overview: This host is running ProFTPD Server and is prone to remote

 SQL Injection vulnerability.

 Vulnerability Insight:

 This flaw occurs because the server performs improper input sanitising,

 - when a %(percent) character is passed in the username, a single quote

 (') gets introduced during variable substitution by mod_sql and this

 eventually allows for an SQL injection during login.

 - when NLS support is enabled, a flaw in variable substition feature in

 mod_sql_mysql and mod_sql_postgres may allow an attacker to bypass

 SQL injection protection mechanisms via invalid, encoded multibyte

 characters.

 Impact:

 Successful exploitation will allow remote attackers to execute arbitrary

 SQL commands, thus gaining access to random user accounts.

 Affected Software/OS:

 ProFTPD Server version 1.3.1 through 1.3.2rc2

 Fix:

 Upgrade to the latest version 1.3.2rc3,

 http://www.proftpd.org/

 References:

 http://www.milw0rm.com/exploits/8037

 http://www.securityfocus.com/archive/1/archive/1/500833/100/0/threaded

 http://www.securityfocus.com/archive/1/archive/1/500851/100/0/threaded

 CVSS Score:

 CVSS Base Score : 6.8 (AV:N/AC:M/Au:NR/C:P/I:P/A:P)

 CVSS Temporal Score : 5.3

 Risk factor: High

CVE : CVE-2009-0542, CVE-2009-0543

BID : 33722

High (CVSS: 7.5)

mysql (3306/tcp)

domain (53/udp)

domain (53/udp)

High

NVT: MySQL 5.x Unspecified Buffer Overflow Vulnerability (OID: 1.3.6.1.4.1.25623.1.0.100271)

Overview:

MySQL is prone to a buffer-overflow vulnerability because if fails to

perform adequate boundary checks on user-supplied data.

An attacker can leverage this issue to execute arbitrary code within

the context of the vulnerable application. Failed exploit attempts

will result in a denial-of-service condition.

This issue affects MySQL 5.x; other versions may also be vulnerable.

References:

http://www.securityfocus.com/bid/36242

http://www.mysql.com/

http://intevydis.com/company.shtml

Risk factor : High

BID : 36242

Medium (CVSS: 7.6)

NVT: ISC BIND 9 DNSSEC Bogus NXDOMAIN Response Remote Cache Poisoning Vulnerability (OID:

1.3.6.1.4.1.25623.1.0.100458)

Overview:

ISC BIND 9 is prone to a remote cache-poisoning vulnerability.

An attacker may leverage this issue to manipulate cache data,

potentially facilitating man-in-the-middle, site-impersonation, or denial-of-

service attacks.

Versions prior to the following are vulnerable:

BIND 9.4.3-P5 BIND 9.5.2-P2 BIND 9.6.1-P3

Solution:

Updates are available. Please see the references for details.

References:

http://www.securityfocus.com/bid/37865

http://www.isc.org/products/BIND/

http://www.kb.cert.org/vuls/id/360341

https://www.isc.org/advisories/CVE-2010-0097

Risk factor : Medium

CVE : CVE-2010-0097, CVE-2010-0290, CVE-2010-0382

BID : 37865

Medium (CVSS: 5.0)

NVT: OpenSSL DSA_verify() Security Bypass Vulnerability in BIND (OID: 1.3.6.1.4.1.25623.1.0.800338)

 Overview: The host is running BIND and is prone to Security Bypass

 Vulnerability.

 Vulnerability Insight:

 The flaw is caused due to improper validation of return value from OpenSSL's

 DSA_do_verify and VP_VerifyFinal functions.

 Impact:

 Successful exploitation could allow remote attackers to bypass the certificate

 validation checks and can cause man-in-the-middle attack via signature checks

 on DSA and ECDSA keys used with SSL/TLS.

 Impact Level: Application

 Affected Software/OS:

 ISC BIND version prior to 9.2 or 9.6.0 P1 or 9.5.1 P1 or 9.4.3 P1 or 9.3.6 P1/Linux

ssh (22/tcp)

ajp13 (8009/tcp)

distcc (3632/tcp)

domain (53/tcp)

domain (53/tcp)

CVE : CAN-1999-0621

Medium (CVSS: 2.6)

NVT: OpenSSH CBC Mode Information Disclosure Vulnerability (OID: 1.3.6.1.4.1.25623.1.0.100153)

 Overview: The host is installed with OpenSSH and is prone to information

 disclosure vulnerability.

 Vulnerability Insight:

 The flaw is caused due to the improper handling of errors within an SSH session

 encrypted with a block cipher algorithm in the Cipher-Block Chaining 'CBC' mode.

 Impact:

 Successful exploits will allow attackers to obtain four bytes of plaintext from

 an encrypted session.

 Impact Level: Application

 Affected Software/OS:

 Versions prior to OpenSSH 5.2 are vulnerable. Various versions of SSH Tectia

 are also affected.

 Fix: Upgrade to higher version

 http://www.openssh.com/portable.html

 References:

 http://www.securityfocus.com/bid/32319

 Risk factor: Medium

CVE : CVE-2008-5161

BID : 32319

Low

NVT: Identify unknown services with nmap (OID: 1.3.6.1.4.1.25623.1.0.66286)

nmap thinks ajp13 is running on this port

Low

NVT: Identify unknown services with nmap (OID: 1.3.6.1.4.1.25623.1.0.66286)

nmap thinks distccd is running on this port

Low

NVT: DNS Server Detection (OID: 1.3.6.1.4.1.25623.1.0.100069)

 Overview:

 A DNS Server is running at this Host.

 A Name Server translates domain names into IP addresses. This makes it

 possible for a user to access a website by typing in the domain name instead of

 the website's actual IP address.

 Risk factor : None

Low

NVT: Determine which version of BIND name daemon is running (OID: 1.3.6.1.4.1.25623.1.0.10028)

BIND 'NAMED' is an open-source DNS server from ISC.org.

Many proprietary DNS servers are based on BIND source code.

The BIND based NAMED servers (or DNS servers) allow remote users

to query for version and type information. The query of the CHAOS

Appendix D

Features used for automated
Classification

In the following table, all features extracted during the analysis of security incidents from 7
days in June 2011 are given. In the first column, the name of the feature is printed. The second
column holds the source of information from which this feature was extracted. In the third column
the type (binary, nominal or real) is given. The forth and fifth column show the number of cases
in which the feature was found and, if applicable, the average value of the feature.

75

Feature Name Source Type Occurrences Average value
blacklist-bot blacklist Real 11 3.3
blacklist-malware blacklist Real 19 3.7
blacklist-multiple blacklist Real 121 6.3
blacklist-nohits blacklist Real 5 1.0
blacklist-rbn blacklist Real 85 5.7
dns-tag hostname Nominal 65 0.0
dst-port-22 IDS Binary 1
dst-port-25 IDS Binary 6
dst-port-443 IDS Binary 9
dst-port-53 IDS Binary 2
dst-port-80 IDS Binary 81
dst-port-82 IDS Binary 1
dst-port-HIGH IDS Binary 78
google-blacklist Search Engine Real 20 6.5
google-bot Search Engine Real 64 8.0
google-malware Search Engine Real 55 10.6
google-p2p Search Engine Real 23 9.9
google-server Search Engine Real 29 2.6
infection-dur IDS Real 80 201.0
service-OSLinux Network Scan Binary 8
service-OSWindows Network Scan Binary 15
service-OSiOS Network Scan Binary 1
service-X11:1 Network Scan Binary 1
service-domain Network Scan Binary 1
service-dynamic_ip_wont_scan Network Scan Binary 61
service-ftp Network Scan Binary 2
service-hostdown Network Scan Binary 26
service-http Network Scan Binary 17
service-http-alt Network Scan Binary 1
service-http-proxy Network Scan Binary 1
service-https Network Scan Binary 4
service-imap Network Scan Binary 2
service-imaps Network Scan Binary 1
service-microsoft-ds Network Scan Binary 1
service-microsoft-rdp Network Scan Binary 5
service-ms-term-serv Network Scan Binary 2
service-msrpc Network Scan Binary 3
service-mysql Network Scan Binary 2
service-netbios-ssn Network Scan Binary 5
service-no_open_ports Network Scan Binary 5
service-pop3 Network Scan Binary 1
service-pop3s Network Scan Binary 1
service-rpcbind Network Scan Binary 7
service-rsync Network Scan Binary 1
service-shell Network Scan Binary 2
service-skype2 Network Scan Binary 1
service-smtp Network Scan Binary 6
service-smtps Network Scan Binary 1
service-snet-sensor-mgmt Network Scan Binary 1
service-ssh Network Scan Binary 12
service-submission Network Scan Binary 2
service-tcpwrapped Network Scan Binary 2
service-vnc Network Scan Binary 2
snort-attack IDS Real 23 537.0
snort-compromised IDS Real 44 10180.9
snort-policy IDS Real 80 8981.0
snort-scan IDS Real 0

76

Feature Name Source Type Occurrences Average value
src-port-1024 IDS Binary 1
src-port-21 IDS Binary 1
src-port-25 IDS Binary 1
src-port-26 IDS Binary 1
src-port-445 IDS Binary 1
src-port-53 IDS Binary 4
src-port-80 IDS Binary 9
src-port-HIGH IDS Binary 115
topsnort-2000345 IDS Binary 5
topsnort-2000347 IDS Binary 2
topsnort-2000348 IDS Binary 2
topsnort-2002167 IDS Binary 1
topsnort-2002728 IDS Binary 1
topsnort-2003219 IDS Binary 4
topsnort-2003620 IDS Binary 1
topsnort-2005320 IDS Binary 2
topsnort-2006384 IDS Binary 1
topsnort-2007626 IDS Binary 5
topsnort-2007668 IDS Binary 1
topsnort-2008321 IDS Binary 1
topsnort-2008374 IDS Binary 1
topsnort-2008411 IDS Binary 2
topsnort-2008428 IDS Binary 1
topsnort-2009024 IDS Binary 4
topsnort-2009867 IDS Binary 2
topsnort-2010071 IDS Binary 1
topsnort-2011365 IDS Binary 1
topsnort-2011849 IDS Binary 1
topsnort-2011912 IDS Binary 1
topsnort-2012113 IDS Binary 1
topsnort-2012401 IDS Binary 1
topsnort-2012609 IDS Binary 1
topsnort-2012612 IDS Binary 1
topsnort-2012625 IDS Binary 1
topsnort-2012627 IDS Binary 1
topsnort-2012645 IDS Binary 2
topsnort-2012686 IDS Binary 2
topsnort-2012725 IDS Binary 1
topsnort-2012863 IDS Binary 1
topsnort-2012939 IDS Binary 3
topsnort-2012958 IDS Binary 1
topsnort-2012959 IDS Binary 1
topsnort-2013121 IDS Binary 1
topsnort-2400001 IDS Binary 53
topsnort-2801246 IDS Binary 3
topsnort-2801953 IDS Binary 3
topsnort-2801954 IDS Binary 3
topsnort-2802841 IDS Binary 1
topsnort-2802870 IDS Binary 1
topsnort-2802895 IDS Binary 2
topsnort-2802912 IDS Binary 1
topsnort-2802929 IDS Binary 1
topsnort-2802975 IDS Binary 15
topsnort-2803032 IDS Binary 1
topsnort-369 IDS Binary 1
topsnort-count IDS Real 93 173.8

77

Appendix E

Keywords used to generate Tags

The full list of keywords which were used in automated analysis of search results and host-
names.

List of words used for classifying everything except hostnames:

Tag Keywords
Server ftp,webmail,email,proxy,smtp,mysql,pop3,mms,netbios,irc
DynamicUser dhcp
Malicious malware,spybot
Spam spam
Blacklisted blacklist,ban,banlist,blocklist
Adware adware
Bot bot,trojan,worm
ircServer irc,undernet,innernet
P2P torrent,emule,kazaa,edonkey,announce,tracker

xunlei,limewire,bitcomet,uusee,qqlive,pplive

List of words used for classifying hostnames:

Tag Keywords
Server ftp,webmail,email,proxy,smtp,mysql,pop3,mms

netbios,irc,server,serv,srv
DynamicUser dhcp,public
Malicious malware,spybot
dnsServer dns
natGateway nat

78

Bibliography

[1] Dmitri Alperovitch. Revealed: Operation shady rat. http://www.mcafee.com/us/
resources/white-papers/wp-operation-shady-rat.pdf.

[2] Jürgen Kuri Jürgen Schmidt Jan-Keno Janssen. Operation payback: protests
via mouse click. http://www.h-online.com/security/news/item/
Operation-Payback-protests-via-mouse-click-1150790.html. Last vis-
ited: 2011-08-24.

[3] The H. Lulzsec comes back to hack the sun web
site. http://www.h-online.com/security/news/item/
Operation-Payback-protests-via-mouse-click-1150790.html. Last vis-
ited: 2011-08-24.

[4] The H. Anonymous dump 7.4 gb of us law enforcement
web sites. http://www.h-online.com/security/news/item/
Anonymous-dump-7-4-GB-of-US-law-enforcement-web-sites-1320117.
html. Last visited: 2011-08-24.

[5] The H. Hacktivists break into sony pictures database. http://www.h-online.com/
security/news/item/Hacktivists-break-into-Sony-Pictures-database-1254622.
html. Last visited: 2011-08-24.

[6] Omar Santos. End-to-End Network Security: Defense-in-Depth. Cisco Press, 2007.

[7] Chris McNab. Network Security Assessment: Know Your Network. O’Reilly Media, 2007.

[8] Alienvault. http://alienvault.com/. Last visited: 2011-08-24.

[9] OSSIEM. http://alienvault.com/community. Last visited: 2011-08-24.

[10] SNORT. http://www.snort.org/. Last visited: 2011-08-24.

[11] Cécile Lüssi. Signature-based extrusion detection. Master’s thesis, ETH Zurich, 2008.

[12] Elias Raftopoulos and Xenofontas Dimitropoulos. Detecting, validating and characterizing
computer infections from IDS alerts. TIK-Report 337, ETH Zurich, June 2011.

[13] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung, D. Weber, S.E.
Webster, D. Wyschogrod, R.K. Cunningham, et al. Evaluating intrusion detection systems:
The 1998 darpa off-line intrusion detection evaluation. In DARPA Information Survivabil-
ity Conference and Exposition, 2000. DISCEX’00. Proceedings, volume 2, pages 12–26.
IEEE, 2000.

[14] J. McHUGH. Testing intrusion detection systems: A critique of the 1998 and 1999 darpa in-
trusion detection system evaluations as performed by lincoln laboratory. ACM Transactions
on Information and System Security, 3(4):262–294, 2000.

[15] Mcafee mistakenly detects legitimate windows system files
as malicious in false positive nightmare. http://www.
scmagazineuk.com/mcafee-mistakenly-detects-legitimate\
-windows-system-files-as-malicious-in-false-positive-nightmare/
article/168521/. Last visited: 2011-08-26.

79

http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf
http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf
http://www.h-online.com/security/news/item/Operation-Payback-protests-via-mouse-click-1150790.html
http://www.h-online.com/security/news/item/Operation-Payback-protests-via-mouse-click-1150790.html
http://www.h-online.com/security/news/item/Operation-Payback-protests-via-mouse-click-1150790.html
http://www.h-online.com/security/news/item/Operation-Payback-protests-via-mouse-click-1150790.html
http://www.h-online.com/security/news/item/Anonymous-dump-7-4-GB-of-US-law-enforcement-web-sites-1320117.html
http://www.h-online.com/security/news/item/Anonymous-dump-7-4-GB-of-US-law-enforcement-web-sites-1320117.html
http://www.h-online.com/security/news/item/Anonymous-dump-7-4-GB-of-US-law-enforcement-web-sites-1320117.html
http://www.h-online.com/security/news/item/Hacktivists-break-into-Sony-Pictures-database-1254622.html
http://www.h-online.com/security/news/item/Hacktivists-break-into-Sony-Pictures-database-1254622.html
http://www.h-online.com/security/news/item/Hacktivists-break-into-Sony-Pictures-database-1254622.html
http://alienvault.com/
http://alienvault.com/community
http://www.snort.org/
http://www.scmagazineuk.com/mcafee-mistakenly-detects-legitimate\-windows-system-files-as-malicious-in-false-positive-nightmare/article/168521/
http://www.scmagazineuk.com/mcafee-mistakenly-detects-legitimate\-windows-system-files-as-malicious-in-false-positive-nightmare/article/168521/
http://www.scmagazineuk.com/mcafee-mistakenly-detects-legitimate\-windows-system-files-as-malicious-in-false-positive-nightmare/article/168521/
http://www.scmagazineuk.com/mcafee-mistakenly-detects-legitimate\-windows-system-files-as-malicious-in-false-positive-nightmare/article/168521/

BIBLIOGRAPHY

[16] ThreatExpert. Threatexpert is an advanced automated threat analysis system... http:
//www.threatexpert.com/. Last visited: 2011-08-27.

[17] K. Scarfone and P. Mell. Guide to intrusion detection and prevention systems (idps). NIST
Special Publication, 800(2007):94, 2007.

[18] Sourcefire. http://www.sourcefire.com/. Last visited: 2011-08-26.

[19] Emergingthreats. http://www.emergingthreats.net/. Last visited: 2011-08-26.

[20] Bleedingsnort snort ruleset. http://www.bleedingsnort.com/. Last visited: 2011-
09-03.

[21] Internet Assigned Numbers Authority (IANA). Port numbers. http:
//www.iana.org/assignments/service-names-port-numbers/
service-names-port-numbers.xml. Last visited: 2011-08-27.

[22] nmap nmap. Network scanner. http://www.nmap.org.

[23] B. Claise and S. Bryant. Specification of the ip flow information export (ipfix) protocol for
the exchange of ip traffic flow information. Technical report, RFC 5101, January, 2008.

[24] A. Wagner and B. Plattner. Entropy based worm and anomaly detection in fast ip networks.
2005.

[25] Brian Trammell, Elisa Boschi, Gregorio Procissi, Christian Callegari, Peter Dorfinger, and
Dominik Schatzmann. Identifying skype traffic in a large-scale flow data repository. In 4th
Traffic Measurement and Analysis Workshop, Vienna, Austria, 2011.

[26] GFI. Gfi sandbox. http://www.gfi.com/malware-analysis-tool/. Last visited:
2011-08-28.

[27] COMODO. Instant malware analysis. http://camas.comodo.com/. Last visited: 2011-
08-28.

[28] Robtex. Swiss army knife internet tool. http://www.robtex.com/.

[29] Common Vulnerabilities and Exposures. http://cve.mitre.org/. Last visited: 2011-
08-28.

[30] Ionut Trestian, Supranamaya Ranjan, Aleksandar Kuzmanovi, and Antonio Nucci. Uncon-
strained endpoint profiling (googling the internet). SIGCOMM Comput. Commun. Rev.,
38:279–290, August 2008.

[31] Zeus Tracker. https://zeustracker.abuse.ch/. Last visited: 2011-08-26.

[32] SpyEye Tracker. https://spyeyetracker.abuse.ch/. Last visited: 2011-08-28.

[33] ShadowServer. http://www.shadowserver.org/. Last visited: 2011-08-28.

[34] Anirudh Ramachandran, Nick Feamster, and Santosh Vempala. Filtering spam with be-
havioral blacklisting. In Proceedings of the 14th ACM conference on Computer and com-
munications security, CCS ’07, pages 342–351, New York, NY, USA, 2007. ACM.

[35] ETH Zürich. Jahresbericht 2010. http://www.ethz.ch/about/publications/
annualreports/eth_jahresbericht_2010_en.pdf. Last visited: 2011-09-05.

[36] Informatikdienste. Statistiken 2010. https://www1.ethz.ch/id/about/facts. Last
visited: 2011-09-05.

[37] OpenVAS. http://www.openvas.org/. Last visited: 2011-08-26.

[38] Tenable Network Security. Nessus vulnerability scanner. http://www.tenable.com/
products/nessus. Last visited: 2011-08-30.

[39] Sqlite db performance. http://diegopizzocaro.posterous.com/
sqlite-search-performances. Last visited: 2011-09-03.

80

http://www.threatexpert.com/
http://www.threatexpert.com/
http://www.sourcefire.com/
http://www.emergingthreats.net/
http://www.bleedingsnort.com/
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.nmap.org
http://www.gfi.com/malware-analysis-tool/
http://camas.comodo.com/
http://www.robtex.com/
http://cve.mitre.org/
https://zeustracker.abuse.ch/
https://spyeyetracker.abuse.ch/
http://www.shadowserver.org/
http://www.ethz.ch/about/publications/annualreports/eth_jahresbericht_2010_en.pdf
http://www.ethz.ch/about/publications/annualreports/eth_jahresbericht_2010_en.pdf
https://www1.ethz.ch/id/about/facts
http://www.openvas.org/
http://www.tenable.com/products/nessus
http://www.tenable.com/products/nessus
http://diegopizzocaro.posterous.com/sqlite-search-performances
http://diegopizzocaro.posterous.com/sqlite-search-performances

BIBLIOGRAPHY

[40] G.F. Lyon. Nmap: Scanning the internet. https://www.blackhat.com/
presentations/bh-usa-08/Vaskovich/BH_US_08_Vaskovich_Nmap_
Scanning_the_Internet.pdf.

[41] Y. Fyodor. Remote os detection via tcp/ip stack fingerprinting, 1998.

[42] Google. Custom search api. http://code.google.com/apis/customsearch/v1/
overview.html. Last visited: 2011-09-05.

[43] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian approach to filtering junk
e-mail. In Learning for Text Categorization: Papers from the 1998 workshop, volume 62,
page 28, 1998.

[44] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine learn-
ing, 29(2):131–163, 1997.

[45] J.R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993.

[46] I.H. Witten and E. Frank. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2005.

[47] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The weka data
mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[48] University of Waikato. Attribute-relation file format (arff). http://www.cs.waikato.ac.
nz/ml/weka/arff.html. Last visited: 2011-08-30.

[49] Flask Python Microframework. http://flask.pocoo.org/. Last visited: 2011-08-30.

[50] CERT Network Situational Awareness Team. System for internet-level knowledge silk.
http://tools.netsa.cert.org/silk/index.html. Last visited 2011-08-30.

[51] Python nmap module. http://xael.org/norman/python/python-nmap/. Last vis-
ited: 2011-08-30.

[52] Jinja2 Template Engine. http://jinja.pocoo.org/. Last visited: 2011-08-30.

[53] Ask Search Toolbar. http://toolbar.ask.com/. Last visisted: 2011-08-30.

[54] LibSVM. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Last visited: 2011-08-
30.

[55] J.C. Platt. Using analytic qp and sparseness to speed training of support vector machines.
Advances in Neural Information Processing Systems, pages 557–563, 1999.

81

https://www.blackhat.com/presentations/bh-usa-08/Vaskovich/BH_US_08_Vaskovich_Nmap_Scanning_the_Internet.pdf
https://www.blackhat.com/presentations/bh-usa-08/Vaskovich/BH_US_08_Vaskovich_Nmap_Scanning_the_Internet.pdf
https://www.blackhat.com/presentations/bh-usa-08/Vaskovich/BH_US_08_Vaskovich_Nmap_Scanning_the_Internet.pdf
http://code.google.com/apis/customsearch/v1/overview.html
http://code.google.com/apis/customsearch/v1/overview.html
http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://flask.pocoo.org/
http://tools.netsa.cert.org/silk/index.html
http://xael.org/norman/python/python-nmap/
http://jinja.pocoo.org/
http://toolbar.ask.com/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

	Introduction
	IT Security and Threats
	Motivation and Problem Statement
	Goals
	Structure of Thesis
	Related Work

	State of the Art in Security Incident Evaluation
	Host based methods
	Anti-virus / Anti-spyware
	Personal Firewalls
	Software Inspectors
	Forensic Tools

	Network Based Methods
	Intrusion Detection Systems (IDS)
	Host Scanning
	Vulnerability Scanner
	IP Traffic Data - NetFlow
	Network Firewall

	Information Gathering
	Security Log File Analysis
	Public Vulnerability Resources
	Blacklists and Malware Trackers

	Methodology
	Environment
	Feature Extraction
	Intrusion Detection System Snort
	Vulnerability Scanner OpenVAS
	Blacklists
	Nmap Network Mapper
	DNS host name
	Google Automatic Querying

	Feature Correlation
	Classification Algorithms
	Implementation

	Host State Assessment
	Back end with Python and Flask
	External Modules
	Architecture

	Web front end

	Results
	Overview
	Security incidents
	Incident Classes
	Bot Infections
	Common False Positives
	Infected Clients behind Servers

	Method Evaluation
	IDS SNORT
	Search Engine Google
	Network Scanner Nmap
	Blacklists

	Feature correlation and classification
	Extracted Features
	C4.5 Decision Tree
	Comparison to other classification algorithms

	Discussion and Future Work
	Discussion
	Security Incidents
	Automated Analysis

	Future work

	Conclusion
	Original Task
	Nmap Top 50 most often used ports
	OpenVAS example output
	Features used for automated Classification
	Keywords used to generate Tags
	Bibliography

