
Institut für
Technische Informatik und
Kommunikationsnetze

SEMESTER THESIS AT THE DEPARTMENT OF

INFORMATION TECHNOLOGY

AND ELECTRICAL ENGINEERING

Spring Term 2011

Performance Evaluation of OpenFlow Switches

Dany Sünnen

28th February 2011

1

Abstract

Opening with the quest for useful metrics best characterizing an OpenFlow
environment, continuing with the build-up of a test infrastucture before
closing with the execution and interpretation of the measurement results,
this work aims at evaluating the performance of OpenFlow switches. The
measurements confirmed the assumption that OpenFlow switches can com-
pete with legacy switches not incurring major performance losses. Only
OpenFlow-specific features, like installing flow rules or requesting counters,
yield some overhead which is fortunately still admissible.

2

Tutors: Jose F. Mingorance-Puga, jose.mingorance@tik.ee.ethz.ch

Dr. Wolfgang Mühlbauer, wolfgang.muehlbauer@tik.ee.ethz.ch

Professor: Prof. Bernhard Plattner, plattner@tik.ee.ethz.ch

Acknowledgements

This semester project was supervised by Jose F. Mingorance-Puga and Wolf-
gang Mühlbauer. Their support helped improving the quality of the results
and I’m thankful for all their comments and advices. Furthermore I would
like to thank Prof. Bernhard Platter for the opportunity to experiment with
a state-of-the-art OpenFlow switch.

3

Contents

1 Introduction 5

2 Basics of the OpenFlow Protocol 5

3 Performance metrics 6
3.1 Cost of installing flow rules 7
3.2 Delay to match against different flow table entries 8
3.3 Comparison between OpenFlow mode and legacy switch mode 8
3.4 Behavior upon flow table overflow 8
3.5 Requesting the counters . 9

4 Experimental setup 9
4.1 Devices used . 9
4.2 Finding an adequate experimental setup 9
4.3 Measurement approaches . 11

4.3.1 Measuring on 2 machines 11
4.3.2 Measuring on a single machine 12

4.4 General measurement approach 12
4.5 Setting up the NOX controller 12
4.6 Setting up the VMs . 12

5 Measurement methodology and performance results 13
5.1 Cost of installing flow rules 13
5.2 Delay to match against different flow table entries 15
5.3 Overflowing the flow table . 15
5.4 Comparison between OpenFlow mode and legacy switch mode 19
5.5 Requesting the counters . 19
5.6 Measurements with OFlops 21

6 Conclusion 21

7 Appendix 21

4

1 Introduction

Born in the academic world, OpenFlow is an emerging communication pro-
tocol aiming to separate the control plane and the forwarding plane of a
switch. Thus all control plane algorithms are executed on a dedicated server
dubbed controller. The duty of the switch is confined to forwarding data
according to its fowarding table, which is subjected to the controller’s oper-
ations. Controller and switch communicate over a secure channel using the
OpenFlow protocol. OpenFlow does away with the onerous task of having
to program on a low level by providing developers with the tools to work on
a high level, paving the way for next-generation network applications. Ap-
plications may include smoothly adapting traffic routes in mobile wireless
networks, load balancing or increasing the energy-efficiency of communica-
tion networks. Apart from OpenFlow’s undoubted supremacy over legacy
switches in terms of flexibility a comparison on the grounds of performance
is justified and may reveal details about the switch’s inner working mecha-
nisms.

2 Basics of the OpenFlow Protocol

As mentioned in the introduction, the OpenFlow protocol constrains the
switch’s operation to parsing incoming packets for flow information, checking
its flow table for matches and forwarding the data to the appropriate port.
When data arrives for which no corresponding entry is found in the flow table
the controller is consulted. The controller decides what should be done with
the data: a new flow table entry could be installed, an existing one can be
modified or deleted. Table 1 shows the form of a flow table entry. Figure
1 depicts how a possible set-up might look like. Each entry is assigned
a multitude of counters for statistical purposes. Counters are also stored
per table, per port and per queue. Especially for network administrators

Header fields Counters Actions

Table 1: Form of a flow table entry

the counters per table, which encompass the number of active entries, the
number of packet look-ups and the number of matches, may be interesting.
The action field may contain several instructions on how to deal with the
packet. Options include forwarding data, dropping data, enqueuing data
and modifying flow fields of the packet. The header fields specify the fields
against which incoming packet is matched. Table 2 shows which fields exist.
Flows are matched based on their priority. Exact flows have a higher priority
than wildcarded flows.

5

Ingress Port Ether src VLAN id IP src TCP/UDP src

Ether dst VLAN prio IP dst TCP/UDP dst
Ether type IP proto

IP ToS

Table 2: Fields to match against

Each flow table entry can be configured to automatically expire. This
is achieved by setting the hard timeout and the idle timeout. Whereas the
idle timeout timer starts as soon as the packet stream belonging to the flow
in question ceases. If idle timeout and hard timeout are both set to zero the
flow will permanently remain in the switch.

Figure 1: The OpenFlow Protocol1

3 Performance metrics

Evaluating the performance of an OpenFlow switch is an iterative process
involving the determination of useful metrics, their measurement and anal-
ysis. Figure 2 serves as a reference figure to show the timing quantities

1Pictures were taken from [6], [1], [5].

6

Figure 2: Packet transmission with flow rule installation

governing a packet transmission across a single OpenFlow switch. Assum-
ing a transmission line of 1m the propagation delay approximately is 5ns.

tprop ≈
distance

2/3 · speed of light
=

3

2
· 1m

3 · 108m/s
= 5ns (1)

Therefore it is safe to consider tprop as negligible. tA,tr,tB,tr,tC,tr and tS,tr
are the transmission times, i.e. the time the sender is spending to put the
bits on the link. All transmission lines in the setup have the same link
speeds. As the packet is encapsulated in the secure channel, the packet size
is not the same on all links. The following approximation is however precise
enough. ttr = tA,tr = tB,tr = tS,tr = tC,tr.

ttr =
packet size

link bandwidth
(2)

tS,process1 is the time it takes to process a new flow before sending the packet
to the controller. tS,process2 is the time that elapses from the receipt of the
flow installation command until the packet is forwarded. The controller
needs time tC,process to inspect an incoming packet and send the pertaining
response back to the switch. The following metrics were deemed expressive
of OpenFlow’s nature.

3.1 Cost of installing flow rules

Installing flow rules is a crucial operation inherent to OpenFlow enabled
switches. The cost of installing flow rules tcost,inst is defined as the amount
of time elapsing from the point in time when a new flow is received to the
instant when a corresponding flow rule is installed and effectively working.

7

One can speculate that this measurement depends both on the number of
fields that are matched and which fields are matched. This scenario is drawn
in figure 2.

tcost,inst = tS,process1 + tS,tr + tC,process + tC,tr + tS,process2 (3)

3.2 Delay to match against different flow table entries

To measure this metric flow table entries are pre-installed. This metric
again aims to represent the processing times in the switch. In this case the
controller will not intervent. Figure 3 shows the involved actions.

tdelay,match = tS,process (4)

Figure 3: Delay to match against flow table entry

3.3 Comparison between OpenFlow mode and legacy switch
mode

Comparing the OpenFlow switch with a legacy switch allows to draw con-
clusions about both the performance of OpenFlow and about how the switch
works internally. The performance is assessed by varying the amount of ad-
ditional traffic in the network once with the switch working in OpenFlow
mode and once with the switch acting as legacy switch. As in the previous
subsection the delays to match against a certain flow rule is recorded. The
idea is the same as demonstrated in figure 3.

3.4 Behavior upon flow table overflow

It might be interesting to discover what happens when the flow table is
overflowed. The switch will then process the packets in software which
should to take longer than processing them in hardware. To report on the
behavior the cost of installing flow rules amongst a surging flow table and the
cost to forward a new flow with an empty and a full flow table is measured.
The situation is the same as pictured in figure 2.

8

3.5 Requesting the counters

The counters provide invaluable information for administering and monitor-
ing a network. Aggregate flow statistics requests are sent at some fixed rate
from the controller to the switch while monitoring the CPU utilization and
the number of pending requests. Requesting the counters is repeated with
a multitude of frequencies.

4 Experimental setup

4.1 Devices used

The performance analysis was conducted on a NEC IP8800/S3640-24T2XW
switch. The experimental servers have a 64 bit quad core Intel Xeon E5620
processor clocked at 2.4GHz and 36GB of RAM. The bandwidth of all ex-
perimental links is limited to 1 Gbit/s.

NEC IP8800/S3640-24T2XW

Max. switching capacity 88 Gbps

Max. packet processing performance 65.5 Mpackets/s

1Gbit ports 1000BASE-T 24

1Gbit ports 1000BASE-X 4

10Gbit ports 10GBASE-R 2

Table 3: NEC switch characteristics

4.2 Finding an adequate experimental setup

At the beginning of this project the experimental setup looked like shown in
figure 4. The first step consisted in pinging host B from host A. This worked
fine as long as the switch operated as a legacy switch. With OpenFlow
enabled however no ping ever reaches host B, although the NOX controller
can successfully connect to the switch. Unfortunately this setup was doomed
to fail, since data from and to the secure channel is not matched against the
flow table [3, p. 12].

The next setup looks far more promising, it is shown in figure 5. In
this setup the NOX controller running on host A is directly connected to
host C via a dedicated link. Thanks to FlowVisor [7] Host C can relay the
controller’s messages to the OpenFlow switch. As a result this setup does
not suffer from the problem experienced in the first setup. And as expected
pinging now works in OpenFlow mode.

The final setup is shown in figure 6. This setup only needs a single
machine to perform the measurements. All previous setups possessed one

9

Figure 4: First setup

Figure 5: Second setup

10

machine to initiate the transmission of data and another machine to receive
the data, perform a minor computation and send back a response. Host
A has 2 virtual machines that are each assigned a single network interface
directly connected to the switch. The NOX controller again communicates
with the switch via FlowVisor on host B. Another advantage of this setup is
the direct connection to the Internet without a detour, which tremendously
simplifies installation of software on the servers.

Figure 6: Final setup

4.3 Measurement approaches

All metrics can be assessed by gauging the delays to send a message. To
deduce the metrics a clever approach to measure the delays is therefore
crucial.

4.3.1 Measuring on 2 machines

This approach consists in sending a message containing the current times-
tamp to the second machine. Upon receipt this machine records the current
time and subtracts the received time from it to obtain the delay. Although
this approach seems simple and straight forward it is not easy to get ac-
curate results. One would expect 2 VM’s running on the same host OS
to be perfectly synchronized, but even in this scenario the attempt to get
precise delay figures fails. During the experiments it was found that the
clocks of the 2 VMs were always some 3.5ms apart and as a consequence all
measurements are obviously worthless.

11

4.3.2 Measuring on a single machine

In this case a single machine is commissioned to measure and compute time
differences. This way problems related to imprecisely synchronized machines
are solved. However a new way to calculate the delay is sought. One method
involves sending a message containing the current timestamp to the second
machine which will immediately return the message back to the sender.
The first machine which initiated the transmission is then in a position to
compute the round trip time. Assuming that a message needs the same
amount of time to be sent from machine A to machine B than back from
machine B to machine A, the time to send the message in one direction can
be found by calculating RTT

2 .

4.4 General measurement approach

The second measurement approach was deemed the only viable one and
was thus adopted. The experiments now consist in computing RTT

2 in a
multitude of different situations described in more detail in the section 5.
All sent probe messages are UDP messages since TCP introduces too much
overhead which will interfere with and falsify the measurements.

4.5 Setting up the NOX controller

A thorough guide on how to install the NOX controller software can be
found on the web [4]. Although the installation of the NOX controller
posed no problems, the start-up did not work at all. The error message
”Cannot change the state of ’python’ to INSTALLED” popped up upon
launching the application. To solve this it suffices to change line 133 in
nox/build/src/nox/coreapps/pyrt/pyoxidereactor.py to ”signal.signal(signal.SIGCHLD,
lambda:self.callLater(0,reapAllProcesses))”.

4.6 Setting up the VMs

The Xen Virtual Machine Monitor software was used to run the Virtual
Machines. The two VMs were assigned IP addresses in two different sub-
nets. VM1 was given the IP address range 192.168.1.1/25 and VM2 the
address range 192.168.1.128/25. Furthermore VM1 and VM2 were bridged
two different interfaces which were connected to the OpenFlow switch. An
entry in the VMs’ routing table ensures that VM1 and VM2 can exchange
messages. Moreover the VMs were assigned 128 MB of RAM memory. The
experiments were conducted with python scripts stored on both VMs. The
”client” script computes the various metrics and automatically writes all
measurements and a summarizing report to a file. The ”server” script lis-
tens for incoming packets and sends them back to the originator.

12

5 Measurement methodology and performance re-
sults

All the experiments required recording a large number of samples. To de-
scribe the distribution of the numbers, the mean and standard deviation
are computed. The distribution is neither a Gaussian distribution nor a
uniform distribution. Therefore the mean is assumed to be the average
value and the standard deviation is approximated using following definition,
prevalently dubbed the sample standard deviation:

σ =

√√√√ 1

n− 1

n∑
i=1

(xi − µ)2 (5)

Where

µ =
1

n

n∑
i=1

xi (6)

and xi are the measured sample values. The frame size is known to be 55
bytes long. With a link speed limited to 1Gbit/s both the switch and the
VM spend

ttr =
packet size

link bandwidth
=

55 · 8bit

1000 · 106bit/s
= 0.44µs (7)

to put the bits on the link. Thus we can compute the processing time in the
switch according to

tpr =
RTT

2
− 2 · ttr (8)

5.1 Cost of installing flow rules

For this experiment the idle timeout is set to 0 and the hard timeout is set to
1. Flows will expire 1 second after their insertion. The actual measurement
is performed by sending 1000 packets and waiting 4 seconds after the recep-
tion of the last packet before sending the next packet. Every sent packet
will therefore be treated as a new flow and the controller has to be con-
sulted. Table 4 summarises the results for the different flows. The sign ’x’
means that this field is matched against. It was found that not all possible
combinations are accepted by the switch which then refused to install a flow
rule. Only the configurations showed in the table induced the installation
of a flow rule in the switch. Exact flow rules need the least time to install,
while wildcarded flow rules just matching against 2 or less fields take the
most time to install. The only two flow rules not follwing this logic are ”Src
IP” and ”Inport”. The time required to install a flow thus depends on the
fields that we match against and the number of fields that are matched.

13

M
atch

in
g

fi
eld

s
T

im
e

in
m

s

D
escrip

tion
in

p
ort

d
l

src
d

l
d

st
d

l
ty

p
e

n
w

src
n
w

d
st

n
w

p
roto

tp
src

tp
d

st
M

ean
σ

E
x
act

x
x

x
x

x
x

x
x

x
2.598

0.437

In
p

ort
x

3.275
1.001

S
rc

IP
x

x
5.468

1.013

U
D

P
p

ort
x

x
x

x
x

x
5.556

1.671

S
rc

U
D

P
p

o
rt

x
x

x
x

x
5.645

2.056

IP
src

a
n

d
d

st
x

x
x

5.656
1.989

D
st

U
D

P
p

o
rt

x
x

x
x

x
5.795

2.214

M
A

C
x

x
8.675

1.764

S
rc

M
A

C
x

8.754
1.735

D
st

IP
x

x
8.993

1.768

D
st

M
A

C
x

9.022
2.043

T
ab

le
4:

C
ost

of
in

stallin
g

fl
ow

ru
les

14

5.2 Delay to match against different flow table entries

This experiment is about measuring tpr when the packet’s flow table entry is
already installed in the switch. The average values have been deduced from
10000 samples. The results are diplayed in table 5. The processing times
are all roughly the same no matter which is the flow rule that is matched
against.

5.3 Overflowing the flow table

The maximum number of flow table entries the switch can store depends on
several parameters: the device, the flow detection mode and the flow statis-
tics. The experiments were conducted on a NEC IP8800/S3640-24T2XW
with flow detection mode set to ”openflow-3” and flow-statistics assuming
the value ”single”. Thus according to the ”OpenFlow Feature Guide” the
switch is configured to accommodate a maximum of 1024 hardware based
flow table entries and 2048 software based flow table entries [2, p. 30]. While
filling the flow table a warning message is triggered as soon as the threshold
value specific to the inserted flow entry is exceeded. The results show that
at this point the behaviour of the switch is not changing yet. Experiments
revealed that the threshold values and the maximum number of table entries
vary significantly with respect to which kind of flow entries are installed.

In order to overflow the flow table 1000 packets are sent from VM1 to
VM2. Each of these packets has exactly the same flow details except for the
destination UDP port which is steadily incremented by 1 in every packet.
As each packet triggers a response packet at VM2, 2 different but symmetric
flows (source and destination numbers are swapped) are being inserted into
the flow table. After overflowing the flow table the behaviour of the switch
changes abruptly.

15

M
atch

ed
fi

eld
s

T
im

e
in
µ

s

D
escrip

tion
in

p
ort

d
l

src
d

l
d

st
d

l
ty

p
e

n
w

src
n
w

d
st

n
w

p
roto

tp
src

tp
d

st
M

ean
σ

E
x
act

x
x

x
x

x
x

x
x

x
94.4

13.0

In
p

ort
x

93.4
13.0

S
rc

U
D

P
p

o
rt

x
x

x
x

x
94.4

13.4

D
st

U
D

P
p

o
rt

x
x

x
x

x
93.3

12.9

IP
src

a
n

d
d

st
x

x
x

94.0
13.1

S
rc

IP
x

x
94.0

13.2

U
D

P
p

ort
x

x
x

x
x

x
93.4

13.2

D
st

M
A

C
x

93.7
13.1

M
A

C
x

x
93.6

13.0

S
rc

M
A

C
x

93.9
13.0

D
st

IP
x

x
93.8

13.4

T
ab

le
5
:

D
elay

to
m

atch
again

st
d

iff
eren

t
fl

ow
tab

le
en

tries

16

Hardware flow table entries

Flow Threshold Maximum number

Exact 800 1008

UDP port dst 52 67

UDP port src 52 67

UDP port 52 67

Table 6: Maximum number of table entries

Time used to forward new flow in ms

Flow
Empty table Full table OpenFlow
Mean σ Mean σ overhead factor

Exact 2.598 0.437 34.669 2.622 13.3

UDP port 5.556 1.671 40.667 3.121 7.3

UDP port src 5.645 2.056 40.710 3.181 7.2

UDP port dst 5.795 2.214 40.674 3.052 7.0

Table 7: Forwarding new flow with empty and full flow table

When the flow table is completely full the switch is as fast as before,
dealing with known flows. But when a new flow appears the switch runs into
trouble. The new flow should be installed, at the same time all flows in the
table are required to remain persistent. The switch will refrain from evicting
a flow rule from the full hardware flow table and forwards the message using
the software flow table. The plots show that this significantly inflates the
forwarding delay of the message.

17

Figure 7: Flow table overflow

Figure 8: Forwarding a flow in a full and empty table

18

5.4 Comparison between OpenFlow mode and legacy switch
mode

In this experiment the controller pre-installs flows only containing the inport
into the switch. The switch in the experiment can work as an OpenFlow
switch and as a legacy switch, therefore all experiments can be conducted
on the same device. The performance is measured with different loads in the
network, ranging from no additional load up to 1000Mbit/s of supplementary
traffic.

Figure 9 and table 8 show that OpenFlow and the legacy switch behave
quite similary. Any deviations are in the order of a percent. This may
confirm the assumption that OpenFlow is working with the same circuitry
than the simple legacy switch.

Figure 9: Comparison between OpenFlow and legacy switch mode

5.5 Requesting the counters

To discover how often the counters can be successfully retrieved, the con-
troller requests the counters at some fixed rate and at the same time the
CPU utilization and the number of pending requests is monitored. Varying
the counter request frequency the blue curve in figure 10 is obtained. At
the same time the average number of pending requests is measured. The
number of pending requests is increasing with the frequency however by far
not as significantly as the CPU utilization. Around 50 Hz some requests
cannot be answered before the next request is sent, as a consequence the
average number of pending requests surpasses 0.

19

A
d

d
ition

al
load

in
th

e
n

etw
ork

in
M

b
it/s

S
w

itch
m

o
d

e
0

0.988
101

203
302

405
M

ea
n

σ
M

ean
σ

M
ean

σ
M

ean
σ

M
ean

σ
M

ean
σ

O
p

en
F

low
[µ

s]
93.4

13
.0

94.6
12.4

100.0
50.0

91.7
36.6

81.3
12.8

83.9
8.3

L
egacy

sw
itch

[µ
s]

93.9
13

.1
94.0

12.1
77.3

67.0
77.9

17.2
81.2

7.2
84.3

13.6

V
a
ria

tio
n

[%
]

-1
.4

8
-0.76

0.63
2.48

29.03
-25.37

17.51
112.79

0.12
77.78

-0.47
-39.12

A
d

d
ition

al
load

in
th

e
n

etw
ork

in
M

b
it/s

S
w

itch
m

o
d

e
511

619
735

840
904

957
M

ea
n

σ
M

ean
σ

M
ean

σ
M

ean
σ

M
ean

σ
M

ean
σ

O
p

en
F

low
[µ

s]
1
17.9

14
.6

93.5
14.4

108.0
27.0

127.8
22.8

135.7
26.1

557.0
67.5

L
egacy

sw
itch

[µ
s]

87.3
18

.4
94.0

13.9
107.9

22.4
127.4

19.4
136.3

30.4
568.2

66.8

V
a
ria

tio
n

[%
]

3
4.69

-2
0.65

-0.53
3.6

0.09
20.54

0.31
17.53

-0.44
-14.14

-1.97
1.05

T
ab

le
8:

C
om

p
arison

w
ith

legacy
sw

itch

20

Figure 10: Request the counters

5.6 Measurements with OFlops

’OFlops (OpenFlow Operations Per Second) is a standalone controller that
benchmarks various aspects of an OpenFlow switch’ [8]. We used the tool
to find out the time between port stats request and response.
The output of the program was the following:
Experiment has 10236 packets sent and 6543 received – 0.360785 dropped
(i.e., loss = 3693) with average delay of 5018.362525 us.

6 Conclusion

This project showed that OpenFlow-enabled switches are serious competi-
tors to legacy switches, paralleling their performance and offering great flex-
ibility. Although OpenFlow inherent operations like installing flow rules or
reading counters may introduce additional delays, its overhead still seems
tolerable for future applications. Furthermore the results revealed that when
providing the same conditions and functionality as a legacy switch the Open-
Flow switch does not carry overhead.

7 Appendix

21

Figure 11: Flow table overflow - UDP port

Figure 12: Flow table overflow - UDP port dst

22

Figure 13: Flow table overflow - UDP port src

Figure 14: Forwarding a flow with full and empty table - UDP port

23

Figure 15: Forwarding a flow with full and empty table - UDP port dst

Figure 16: Forwarding a flow with full and empty table - UDP port src

24

References

[1] Everaldo Coelho. Computer and screen image. http:

//2.bp.blogspot.com/_7i8uZFjV1_k/Sp3bdfrxD8I/AAAAAAAABWU/

7vW6MpWnIbU/s1600-h/500px-Computer_n_screen.svg.png.

[2] NEC corporation. Openflow feature guide. Technical report, NEC cor-
poration, 2010.

[3] Brandon Heller. Openflow switch specification. Technical report, Stand-
ford University, 2009.

[4] NOX. Nox installation. http://noxrepo.org/noxwiki/index.php/

NOX_Installation.

[5] OCAL. Cloud image. http://www.clker.com/cliparts/2/7/1/0/

11949849491786662466cloud_jon_phillips_01.svg.med.png.

[6] rg1024. Router image. http://colouringbook.org/www/

COLOURINGBOOK.ORG/Artists/rg1024/rg_1_24_router_coloring_

book_colouring-555px.png.

[7] Rob Sherwood, Glen Gibb, Srini Seetharaman, Nick Bastin, and
Anne Struble. Flowvisor. https://openflow.stanford.edu/display/
flowvisor/Home.

[8] Rob Sherwood and Kok-Kiong KK Yap. Oflops. http://www.openflow.
org/wk/index.php/Oflops.

25

