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Abstract

The Intel Single-Chip Cloud Computer (SCC) is a 48-core microprocessor.
The distributed operation layer (DOL) is a framework that allows mapping of
applications to multiprocessor platforms. The DOL was extended to allow
mapping-dependant code generation for the SCC and a networked Linux
cluster. The application is given as Kahn process network (KPN), which
consists of processes communicating via FIFO channels. It can be arbitrarily
mapped to and subsequently executed on both target platforms. The main
contribution is the inter-process communication between processes mapped
to di�erent cores (SCC) or workstations (Linux cluster). To this end, a
remote FIFO model is presented that separates a remote FIFO channel in to
two endpoints. It is shown that deadlocks can occur if multiple such channels
share the same physical channel. A solution, using synchronization between
the sender and the receiver to control the data �ow, is proposed. The model
is implemented for the two target architectures. Finally, the performance of
the implementation is evaluated with an exemplary application.
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1
Introduction

1.1 Motivation

The requirements of modern real-time multimedia and signal-processing ap-
plications on embedded systems can no longer be met by traditional single
processor architectures which have reached their physical limits. Therefore,
such systems are increasingly developed as multiprocessor system-on-chip
(MPSoC) designs. Such systems are typically highly integrated, o�er high
computation power while maintaining a moderate power consumption. Ho-
wever, programming such architectures, to e�ciently make use of the given
resources, remains a challenge.

Therefore, extensive research is currently done to develop design �ows and
tools which ease the programming of such platforms and which help designing
an ideal MPSoC for certain applications. The design complexity is reduced
by raising the level of abstraction and by providing tools to automate the
design �ow. A few examples are given in the following. The Daedalus fra-
mework [2] provides an environment to program and prototype multimedia
MPSoC architectures. It assumed that the MPSoC is constructed from a set
of IP components. Given a sequential application, the framework automa-
tically converts it to a parallel form. This is then used to �nd a number of
promising MPSoC's made from the previously mentioned components. These
architectures are automatically synthesized to a FPGA and can subsequently
be used for prototyping. A similar approach is taken by theMAMPS project
[4] and the Koski framework [10]. CoFluent Studio is a commercial software
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CHAPTER 1. INTRODUCTION

for modelling and simulating multiprocessor systems (among other electronic
systems) using SystemC. It o�ers behavioural and performance estimation
without requiring embedded software application code or a precise platform
description.

All these frameworks/tools have in common that they are based on the so
called Y-chart approach [7]. It will be discussed in more detail in connection
with the DOL framework in section 1.2.

The Intel Single-Chip Cloud Computer (SCC) [13] is an example of an MP-
SoC. The SCC is an experimental microprocessor embedding 48 cores with
an x86 instruction set on a single piece of silicon. Other examples of MP-
SoC's include the processors made by Tilera [6] (with up to 100 cores!) or the
Cell Broadband Engine [1] from IBM, Toshiba and Sony (one 64-bit Power
Architecture processor core plus eight synergistic processor cores).

1.2 DOL Framework

The distributed operation layer (DOL) [21] is a framework developed at the
TIK laboratory at the department of electrical engineering at ETH Zurich.
The DOL allows programmers to easily make use of MPSoC systems without
having a detailed knowledge of their actual architecture. If the programmer
writes the application according to certain guidelines (see section 1.2.1), the
DOL can automatically generate the code to execute the application on the
chosen target architecture. The focus of DOL lies on stream-oriented applica-
tions, which are typically found in multimedia or signal processing. The DOL
framework implements the previously mentioned Y-chart approach, which is
illustrated in �gure 1.1.

The key idea of this design �ow is to have a separate speci�cation for the
application (consisting of the application code and the application speci�ac-
tion), which is provided by the application programmer, and the architecture
(consisting of the architecture speci�cation and a architecture dependant li-
brary) which is provided by the DOL programmer. The mapping combines
the two speci�cations and determines "where" (binding the application to
certain architecture elements) and "when" (scheduling of the application)
the application is executed on the target architecture. Based on these in-
puts, the DOL generates code which can be compiled, resulting in one or
multiple executables. These can be executed on the chosen architecture.
The necessary inputs are described in more detail in the following sections.

The goal of this thesis was to extend the DOL to support code generation
for the SCC architecture. The DOL framework also provides further func-
tionality such as performance analysis and design space exploration (e.g.
automatically �nding an optimal mapping, given the application and archi-
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1.2. DOL FRAMEWORK

Figure 1.1: DOL design �ow implementing the Y-chart approach.

tecture speci�cation). These aspects were not part of this thesis (for more
details see [12]).

1.2.1 Application

In order to map an application to a target architecture, using the DOL,
the application must be written in a speci�c manner and implement/make
use of the DOL API. DOL applications have to be implemented using Kahn
process networks (KPN) as model of computation [17]. In such networks, a
group of sequential processes communicate via unbounded FIFO channels.
In general, processes may read data from several input channels, process the
read data, and write the results to several output channels. There are also
processes that act purely as data source or data sink. These have no input
or output channels respectively. An example of such a process network is
shown in �gure 1.2. The application speci�cation consists of two parts as
shown in �gure 1.1.

Application code

It is up to the programmer to implement her or his application in the form
of a KPN. The structure of such a process is de�ned by the DOL API and
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CHAPTER 1. INTRODUCTION

Figure 1.2: Example process network.

is shown below. Each process in the network must implement two DOL API
functions which are explained in the following.

1 i n i t ( ) {
2 . . .
3 }
4
5 f i r e ( ) {
6 . . .
7 DOL_read( ) ;
8 // do some computation
9 DOL_write ( ) ;
10 . . .
11 i f ( . . . ) {
12 DOL_detach ( ) ;
13 }
14 }

Listing 1.1: Typical structure of a DOL process.

� DOL_init(): This function initializes the process when the application
is started. It is only called once per execution of the KPN.

� DOL_�re(): The �re function contains the actual functionality of the
process. Typically, data is read from one or more input channels using
the DOL_read() function. The read data items are then processed
and the results are written to one or multiple output channels using the
DOL_write() function. These functions do not have to be implemen-
ted by the application programmer. Their implementation depends on
the target architecture (see section 1.2.2). The �re function is called
repeatedly by the scheduler that controls the execution of the process
network until the DOL_detach() function is called.
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1.2. DOL FRAMEWORK

� DOL_detach(): The detach function tells the scheduler that the pro-
cess calling the function no longer has to be executed. The process is
responsible for detaching itself, i.e. this function is called from within
DOL_�re() and the process has to know when to detach itself (e.g.
after a certain number of data items have been processed).

Further details on how to program DOL applications using C/C++ as pro-
gramming language and on the DOL API can be found in [18].

Application speci�cation

The application speci�cation describes the topology of the process network.
It contains the information how the individual processes are connected with
each other and therefore also which processes exchange data. Additionally,
the size of the individual FIFO channels are de�ned here. The topology is
described in XML according to DOL guidelines.

1.2.2 Architecture

The "architecture input" of the DOL design �ow consists of two parts which
are provided by the DOL programmer.

Application speci�c library

The application speci�c library implements theDOL_read() andDOL_write()
functions used by the application programmer to write the code of the pro-
cesses in the process network. These functions make use of the hard- and
software resources o�ered by the target architecture. For example, for a
multi-core system, a call to DOL_write() could be implemented as a write
to a shared memory location and a call to DOL_read() as a read from a
shared memory location.

Furthermore, the library is also responsible for the scheduling of shared re-
sources. For example, if multiple processes are running on a single-core
system and one process was assigned a higher priority by the application
programmer, the architecture speci�c library is responsible for the higher
priority process being always executed as soon as it is possible.

Architecture speci�cation

Similar to the application speci�cation, the architecture speci�cation des-
cribes the hardware resources o�ered by the target platform. The archi-

� 5 �



CHAPTER 1. INTRODUCTION

Figure 1.3: Example architecture.

tecture is described in terms of processors, memories, hardware (communi-
cation) channels and a few other elements. For example, consider the ar-
chitecture shown in �gure 1.3. The architecture speci�cation could include
di�erent types of processors (e.g. processor A and B are x86 processors and
processor C a DSP) and the bus is described as hardware channel. The
architecture is described in XML according to DOL guidelines.

1.2.3 Mapping

The mapping combines the "application input" with the "architecture in-
put" from �gure 1.1. Elements of the application speci�cation are mapped
to elements of the architecture speci�cation. DOL supports both manual
and automatic mapping. In the case of a manual mapping, the mapping
speci�cation has to be provided by the application programmer. If automa-
tic mapping is supported for the target architecture, it is also possible to let
the DOL �nd an optimized mapping according to some design constraints
such as achieving minimum power consumption or minimum execution time.

As an example, consider �gure 1.4 which shows a possible mapping of the
previously shown example process network to the example architecture. Pro-
cesses are assigned to the processors on which they will be executed. The
communication channels between processes running on distinct processors
are mapped to the bus. Therefore, the data exchange between those pro-
cesses will take place via the communication bus.

1.3 Contributions

The main contribution of this thesis was extending the DOL to support the
execution of Kahn process networks on the SCC as well as on a networked
Linux cluster (see section 2.3). This was done in two steps.

1. Implementation of the architecture speci�c library. The main goal was
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Figure 1.4: Possible mapping of the example PN on to the example archi-
tecture.

to have a scalable implementation with respect to the number of cores
as the SCC o�ers many. It was shown that a �ow control mechanism
is necessary for executing distributed process networks without the
possibility of deadlocks occurring (see section 3.3).

2. Extension of the DOL back-end by implementing a code generator for
the two architectures. This allows the automatic code generation given
the inputs described in section 1.2.

Finally, the implementation and the code generation was tested with a exem-
plary application.

1.4 Related Work

The main di�culty of this thesis was to implement the communication bet-
ween processes running on di�erent cores on the SCC. Communication bet-
ween SCC cores is an ongoing research topic and there exist multiple ap-
proaches.

1. RCCE: RCCE is a small library provided by Intel. It allows communi-
cation via message passing on the SCC. It makes use of its specialized
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CHAPTER 1. INTRODUCTION

message passing hardware. RCCE logically partitions the total mes-
sage passing bu�er (MPB) memory (see section 2.1) of 24×16KB into
8KB bu�ers (one for each core). Two di�erent interfaces are provi-
ded. The "basic" interface o�ers high level functions to send and re-
ceive messages between cores or to synchronize programs with barriers
and fences. The "gory" interface o�ers lower level functions for better
control over the MPB's such as directly reading and writing from or
to a MPB. Additionally, RCCE also includes an API for various po-
wer management functions. However, RCCE only o�ers synchronous
or blocking communication. This means that a process, that wants to
send some data to another process, will have to wait for a matching
receive call by the other process before it can return from its send call.
The idle time, while a sending process is waiting for the receiving pro-
cess, could possibly be used more e�ciently. More information can be
found in [20].

2. iRCCE: iRCCE is an extension of RCCE by a group at RWTH Aachen
University. The main improvement is the implementation of asynchro-
nous or non-blocking send and receive functions. Assume a core tries
to send or receive a message, but the function cannot be completed at
the instance of the call. Instead of waiting for the other core (as would
be the case with RCCE), the function returns immediately, allowing
the calling process to do some computation and trying to complete the
communication at a later point in time. iRCCE implements a queueing
mechanism to handle multiple outstanding communication requests
to preserve the order of subsequent send and/or receive calls. Ad-
ditionally, iRCCE also improves the performance of some other RCCE
functions. More information can be found in [9].

3. RCKMPI: RCKMPI is an MPI implementation for the SCC by In-
tel. It makes use of the specialized message passing hardware resources
o�ered by the SCC to provide low latency and hight bandwidth com-
munication. The advantage of RCKMPI over RCCE/iRCCE is that
MPI applications are highly portable because MPI implementations
exist for many platforms. Conversely, applications that were written
using MPI can easily be executed on the SCC without any additional
e�ort to port the application. More information can be found in [22].

Extending the DOL to support a certain architecture has been addressed in
several previous theses. An example is the work by Lars Schor using the Cell
Broadband Engine (used in the Playstation 3) as target architecture [19].
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1.5 Outline

Chapter 2 provides an overview of the SCC architecture and how it can be
programmed. Chapter 3 proposes a remote FIFO model, showing some theo-
retical aspects for the implementation of a remote FIFO channel. How these
concepts were implemented is shown in chapter 4. Finally, an evaluation of
the implementation and possible future work is given in chapter 5.
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2
The SCC Architecture

The Intel Single-chip Cloud Computer (SCC) is a fully integrated many-core
microprocessor. The SCC was developed as part of Intel's Tera-scale Com-
puting Research Program. The program is concerned with increasing the
performance and capabilities of current computers. The SCC should help to
investigate many-core CPU's, their architectures and how to program them.
Several research partners from academia and industry have been granted ac-
cess to the SCC to do advanced software research. The Computer Enginee-
ring and Networks Laboratory of the Department of Electrical Engineering
and Information Technology at ETH Zurich is one of those research partners.

This chapter gives an overview of the SCC architecture and what hardware
resources it o�ers. Furthermore, the implication of the provided hardware
on the programming of the SCC is discussed. An overview on the SCC
architecture including how to program it using RCCE (see section 1.4) and
an introduction to some SCC speci�c tools can be found in [15]. More
detailed architectural information can be found in [14].

2.1 Architecture

The high-level block diagram of the SCC is shown in �gure 2.1. The SCC
die contains 24 tiles. The architecture of such a tile will be discussed shortly.
The tiles are arranged in a 6 × 4 array and connected by a network-on-
chip with mesh topology. The tra�c �ow between the tiles is handled by
routers (one per tile). There are four on-chip memory controllers which
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CHAPTER 2. THE SCC ARCHITECTURE

Figure 2.1: High-level SCC block diagram.

can access up to 64GB of external DDR3 memory. The external memory
can be used as memory private to each core and as memory shared by all
cores. The exact partitioning of the external memory can be con�gured. The
entire microprocessor is controlled by a board management microcontroller
(not shown in the �gure) which initializes and shuts down critical system
functions. It is normally connected to an external PC acting as management
console (MCPC) via the system interface. Via the MCPC, programs can be
loaded onto SCC cores and SCC con�guration registers can be modi�ed.

A simpli�ed block diagram of one such tile is shown in �gure 2.2. Its most
important elements are described in the following.

� P54C: The P54C is a x86 instruction set core based on an older Pen-
tium design. There are two such cores per tile. Each core has its own
16KB instruction and 16KB data L1 caches.

� L2 cache: Each core has its own 256KB L2 cache. A core's private o�-
chip DRAM is cached through the core's L2 and L1 caches according
to the rules of the P54C processor. There is no cache coherence among
the cores.

� Mesh Interface Unit (MIU): The cores on a tile access the network-
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Figure 2.2: Simpli�ed block diagram of a SCC tile.

on-chip via the MIU which is connected to the tile's router. The MIU
sends and receives data to and from the mesh. The MIU can be seen
as an address translator. A core uses 32-bit addresses (core address),
resulting in a 4GB memory space per core. However, the SCC platform
can have up to 64GB of memory which it addresses with the system
address. The MIU uses a lookup table (LUT) to translate the core
address into a system address. There is one LUT per core. Each LUT
entry can point to any memory location in the system (e.g. external
memory or MPB). The LUT can be con�gured via the MCPC.

� Message Passing Bu�er (MPB): In addition to the traditional
cache structures, each tile has a 16KB MPB SRAM. Each core of the
SCC can access the MPB of every tile. The idea of the MPB is to o�er
fast on-chip shared memory for e�cient message passing between the
cores.

2.2 Programming the SCC

2.2.1 Writing applications

The hardware o�ered by the SCC supports a message passing programming
model. The total available MPB memory is typically divided into 8KB per
core where each core can only write to its own 8KB but read from all other
core's memory segments. This allows e�cient message passing between the
cores via shared memory. It is possible for the programmer to explicitly
access the MPB memory by con�guring the memory map of a core via its
LUT and con�guration registers. To ease the programmer's job, these low
level details are abstracted into some message passing library such as RCCE
(see section 1.4). The programmer can simply use the high level functions
o�ered by such a library and be assured that the specialized hardware is
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CHAPTER 2. THE SCC ARCHITECTURE

used internally.

2.2.2 Executing applications

Currently, the SCC supports two platforms.

1. Linux platform: Each core runs its own Linux operating system. Ap-
plications can be executed on core with operating system support. In
this mode, the SCC behaves exactly the same as a networked cluster
of Linux workstations.

2. Baremetal platform: Applications run directly on the cores without
operating system support.

To execute applications on either of the two platforms, the SCC is accessed
via the MCPC. From the MCPC, the SCC can be con�gured, applications
can be compiled and loaded to one or several cores and �nally be execu-
ted. The application's I/O is through the MCPC. It is also possible to use
SSH to access each core individually from the MCPC and directly execute
applications on a core.

An introduction to writing applications for the SCC and using the software
o�ered by the MCPC can be found in [16].

2.3 Extending DOL to support the SCC

Due to the similarities between the SCC (Linux platform) and a networked
Linux cluster, it was decided to extend the DOL to support both the SCC and
a regular Linux cluster. This implied that the architecture speci�c library
had to be written so it works for both architectures.

There were several reasons for this decision. Firstly, due to the similari-
ties, supporting both platforms does not require substantially more e�ort.
Secondly, because the SCC is a research microprocessor, it is not widely
available and therefore not always accessible by the programmer. The Li-
nux cluster on the other hand is one of the most popular multiprocessor
architectures in the world. Before testing an application on the SCC, the
programmer could test his or her application on a Linux cluster. If it runs on
this platform, it should also work on the SCC. Furthermore, there are other
MPSoC architectures that make use of Linux. The Linux cluster implemen-
tation could also be useful to prototype applications for these platforms.
Finally, being able to easily program applications to run on a networked
Linux cluster could be of interest itself.
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2.3. EXTENDING DOL TO SUPPORT THE SCC

The major part of extending the DOL for the two platforms, is the im-
plementation of the remote inter-process communication. This is discussed
in-depth in the following chapter.
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3
Remote FIFO Model

This chapter describes some of the theoretical considerations that are impor-
tant for the implementation of remote FIFO channels. Section 3.1 describes
how a remote FIFO channel is modelled and section 3.2 shows how multiple
remote FIFO channels can be managed. Finally, section 3.3 shows that some
form of �ow control is necessary to avoid deadlocks and a solution is presen-
ted. Note that when mentioning a "(SCC) core" in the following, it could
also say "Linux workstation".

3.1 Endpoint concept

Consider the situation in �gure 3.1. Two processes P1 and P2 are mapped
to the same SCC core. P1 sends data to P2. By de�nition of a KPN, pro-
cesses exchange data over FIFO channels. As the processes run on the same
core, the FIFO channel can easily be implemented with globally allocated
memory because the two processes share the same address space when they
are executed in separate threads.

Now consider the situation in �gure 3.2. The processes P1 and P2 are map-
ped to two di�erent SCC cores. P1 still sends data to P2. The FIFO channel
can no longer be implemented as described above. Instead of having one
single FIFO channel which is accessed by both processes, there is a "sending
endpoint" on the writing process's core and a "receiving endpoint" on the
reading process's core. The writing/reading process writes/reads to the sen-
ding/receiving endpoint as it would to a local FIFO channel. Functionality
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CHAPTER 3. REMOTE FIFO MODEL

Figure 3.1: FIFO channel when two processes are mapped to the same core.

Figure 3.2: FIFO channel when two processes are mapped to di�erent cores.

is required to transfer the data from the sending endpoints of one core to
the corresponding receiving endpoints on other cores. This is discussed in
section 3.2.

3.2 Channel management

To transfer data from one core to another, it must be sent over the network.
For sending and receiving data, the sockets API is used. An introduction
can be found in [11]. The sockets API documentation can be found in the
UNIX man pages. As discussed in section 2.2, the SCC (when used as Linux
platform) is equivalent to a networked Linux cluster. Therefore, every core
on the SCC has its own IP address. The sockets API was chosen because it is
widespread, and compatible with both architectures targeted in this thesis,
i.e. the SCC and a cluster of Linux workstations.

A connection can be established between a socket pair (one each on the
writing/reading process's core). Stream sockets are used, which results in
TCP/IP connections. A TCP/IP connection guarantees that the data is not
lost in the network and that it is received in the same order as it was sent.
Sections 3.2.1 and 3.2.2 discuss how such connections should be established
between cores.
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Figure 3.3: TCP/IP channels when establishing a connection per edge in
the KPN.

3.2.1 Connection per KPN channel

One possible approach is shown in �gure 3.3. Assume two processes P1 and
P2, mapped to one core, send data to a process P3, mapped to a di�erent
core. This corresponds to two edges in the KPN. For each pair of commu-
nicating processes that are mapped to di�erent cores, a TCP/IP connection
is established. One socket pair is required per connection.

Although the data of both connections goes through the same hardware chan-
nel (from one core to the other over the network), two "software channels"
are used. This results in unnecessary overhead compared to using only one
TCP/IP channel (one socket pair). Firstly, more system calls are necessary
because e.g. the core running the writing processes has to call send() on two
sockets instead of one. Secondly, before the data is actually injected into the
network, it is packetized by adding header information (such as TCP and IP
headers). If two separate TCP/IP channels are used, this overhead has to be
sent twice when P1 and P2 send data to P3. If the data were to be sent over
one TCP/IP connection, the header information only had to be sent once if
the data from both processes is sent at the same time.

3.2.2 Connection per physical channel

By using only one TCP/IP channel per pair of cores that run processes that
communicate with each other (i.e. per physical channel), the communica-
tion overhead (less calls to socket functions) and the network tra�c can be
reduced in certain situations.

This approach is shown in �gure 3.4. The core running the reading pro-
cess (P3) receives data from the two processes P1 and P2 over one TCP/IP
connection. The receiving side must be able to tell to which receiving end-
point of P3 the received data has to be written because the data could be
from P1 or P2. This is achieved by multiplexing the data on the sending
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Figure 3.4: TCP/IP channel when establishing a connection per physical
channel.

side. Multiplexing is done by adding some header information to the data
from each sending endpoint. The header must have the following content.

1. Information from which sending endpoint the data originates or to
which receiving endpoint is should be written. Every edge in the KPN
of the application is assigned a unique number. This number can be
used to represent this information because only one sending and recei-
ving endpoint belong to one channel (KPN edge).

2. Information on the length of the data belonging to this header. This
is necessary so that the receiver can tell where the payload ends and
the next header starts if multiple of these packets were received.

The receiving side can then demultiplex the received data by reading the
header information and writing the payload data to the proper receiving
endpoints.

3.3 Deadlock-free implementation

In this section, it is shown that some form of �ow control is necessary to
guarantee a deadlock-free execution when multiple logical channels share
the same physical channel. Section 3.3.1 shows how such a deadlock can
occur. Section 3.3.2 shows the proposed solution.

3.3.1 Deadlock situation

Assume data could be transferred from sending endpoints as soon as a process
has written to one. If this was the case, a deadlock can occur as shown in
�gure 3.5.
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Processes P1 and P2 are mapped to core A and process P3 to core B. Both
processes on core A send data to the process on core B. In order that P3 can
process data, it requires both a data item from P1 and P2. To send data items
from both sending endpoints on A to B, it must �rst be transferred from the
sending endpoints to an output bu�er where also the header information is
added. From the output bu�er, it is sent over the TCP/IP connection to core
B, where it is received to an input bu�er. The header information is decoded
and the data is distributed to the corresponding receiving endpoints. With
the previous assumptions, the situation described in the following leads to a
deadlock.

1. P2 generates a data item (red) and writes it to its sending endpoint.

2. The data item is multiplexed to the output bu�er. By reading it from
the sending endpoint, the data is consumed from there.

3. The data is sent over the network from the output bu�er of A to the
input bu�er of B.

4. By demultiplexing, the data item is transferred from the input bu�er
to one of the receiving endpoints of P3. P3 can not consume the data
because its other receiving endpoint is empty.

5. Assume P2 generates another data item (pink). This could happen in a
general KPC application, because e.g. P2 produces data much quicker
than P1.

6. Steps 2 and 3 are repeated with the second data item. However, the
receiving endpoint to which the data should be written is already occu-
pied. To avoid losing the data, it must be kept in the input bu�er. The
input bu�er is now full. This means that no data can be transferred
from core A to core B. Data can only be transferred if P3 consumes
that data in the occupied sending endpoint. This will only occur if
data from P1 is transferred from A to B. Hence, we have a deadlock.

Changing the sizes of the sending/receiving endpoints and/or the input/out-
put bu�ers can not solve this problem. Bear in mind that this problem is not
speci�c to the SCC platform or DOL applications. It can occur everywhere
where two (or more) senders send data to one receiver over the same physical
channel and where the receiver requires data from both senders in order to
process data.

3.3.2 Flow control to avoid deadlocks

The solution to the problem described in section 3.3.1, is to control the data
�ow between a sending endpoint and its receiving endpoint. In general, this
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Figure 3.5: Implementation leading to a deadlock in certain situations.
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Figure 3.5: Implementation leading to a deadlock in certain situations.

means that a sender should only send as much data as it knows the receiver
can handle. As a consequence, the sender must in some way be informed by
the receiver on how much more data it can accommodate.

Assume that data is not consumed from the sending endpoint when writing
it to the output bu�er. Part 4 of �gure 3.5 would then look like shown in
�gure 3.6. It shows that if the receiving endpoint is full, its corresponding
sending endpoint will also be full. In �gure 3.6 this means that P2 can not
generate data because it can not write to its sending endpoint. Hence, the
input bu�er on core B can never be full and it can always receive data from
P1 independently of how long it takes P1 to generate data.

This approach requires a mechanism to free the space in sending endpoints
when appropriate. It is safe for a process to write to a sending endpoint
when there is free space in its corresponding receiving endpoint. This avoids
having a full input bu�er. As long as there is data in a sending endpoint,
it looks for the writing process as if its reading process had not consumed
the data yet. So the sending endpoint needs to be updated to re�ect the
state of its receiving endpoint when the process reading from the receiving
endpoint has consumed data from it. This synchronization between sending
and receiving endpoints is shown in �gure 3.7.

1. Both processes P1 and P2 have produced a data item. Because P3 has
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Figure 3.6: Part 4 of �gure 3.5 without data being consumed from the sen-
ding endpoint.

not consumed this data from its receiving endpoints yet, it also remains
in the sending endpoints.

2. P3 reads the data from its receiving endpoints thereby consuming the
data.

3. Core B noti�es core A how much data was consumed from its receiving
endpoints. Core A clears the same amount of data from its correspon-
ding sending endpoints. P1 and P2 can now write data to their sending
endpoints again.

Again, this solution works for the more general case described at the end of
section 3.3. It ensures that each sender always knows the minimum amount
of data it can safely send to the receiver without "blocking" the physical
channel for the other sender.
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Figure 3.7: Deadlock-free implementation.
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4
Implementation

This chapter describes the implementation of the architecture speci�c library
(see �gure 1.1). This includes the implementation of the concepts described
in chapter 3. Furthermore, it is shown how the DOL was extended to support
the new architectures.

4.1 Local and remote FIFO channels

This section describes the implementation of local (used if two processes are
mapped to the same core) and remote (used if two processes are mapped to
di�erent cores) FIFO channels.

4.1.1 Local FIFO implementation

Before this thesis, the DOL already supported the execution of process net-
works on a single core of a workstation running Linux (or a di�erent POSIX
compliant operating system). This DOL extension (also termed visitor) is
called PipeAndFilter (PaF).

In the PaF implementation, each process of the process network is executed
in its own thread. For handling threads, the POSIX threads (or pthreads)
API is used. It allows the manipulation and synchronization of and between
threads. An introduction can be found at [8]. Because the PaF visitor allows
the execution of process networks on a Linux workstation, it is also possible
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to use it to generate applications to be run on a single SCC core (as discussed
in section 2.2).

Figure 3.1 illustrates the functionality of the PaF visitor. As stated above,
each process of the process network (in this example the PN consists of
two processes P1 and P2 connected by a channel from P1 to P2) runs as
an own thread on the same core. Because all processes share the same
address space, data can be exchanged via globally allocated memory. The
FIFO channels of the PN are therefore implemented as shared memory FIFO
bu�ers. The shared memory is protected with pthreads mutex objects to
avoid that two processes access the shared memory at the same time to
avoid data corruption.

This shared memory FIFO bu�er is implemented as circular FIFO bu�er in
a class called Fifo. It o�ers a simple read/write interface as shown in listing
4.1.1. It is similar to the interface speci�ed by the DOL API (see [18]).
Furthermore, there are several auxiliary functions, e.g. to check how many
bytes are free in the bu�er. For each channel in the PN, one Fifo object is
instantiated. Two processes that are connected by an edge in the PN both
have a pointer to the same Fifo object. The writing process uses the Fifo's
write interface and the reading process uses it's read interface.

1 virtual unsigned read (void* de s t ina t i on , unsigned l en ) ;
2 virtual unsigned wr i t e ( const void* source , unsigned l en ) ;

Listing 4.1: Fifo read/write interface.

As described in section 1.2.1, the application programmer uses the DOL API
to read and write from channels in the PN. What actually happens when
these functions are called, depends on the architecture speci�c library of
the DOL visitor in question. For the PaF visitor, a call to DOL_write()
results in the corresponding process calling the write() function of the Fifo
object shared with an other process, thereby writing to a shared memory
location. Conversely, calling DOL_read() leads to the corresponding process
calling the read() function of the Fifo object shared with an other process,
thereby reading from a shared memory location. Reading from a Fifo object
consumes the read data from the bu�er.

The PaF Fifo is reused in the SCC visitor for channels between processes
that are mapped to the same core.

4.1.2 Remote FIFO implementation

As discussed in section 3.1, a "sending endpoint" is generated on the wri-
ting process's core and a "receiving endpoint" is generated on the reading
process's core if the two processes are mapped to di�erent cores.
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These endpoints were implemented in the classes RemoteSendingFifo (RSF)
and RemoteReceivingFifo (RRF). Both the RSF and RRF classes are derived
from the Fifo class. This ensures that a process can use the same interface
when reading/writing from/to a local or a remote channel. A part of their
interfaces is shown in listings 4.2 and 4.3.

1 unsigned read (void* de s t ina t i on , unsigned l en ) ;
2 void c l e a r (unsigned l en ) ;

Listing 4.2: Part of the RSF interface.

1 unsigned read (void* de s t ina t i on , unsigned l en ) ;
2 unsigned sync ( ) ;

Listing 4.3: Part of the RRF interface.

The RSF read() function has the same semantics as the Fifo's but is modi�ed
internally. It implements a read from the RSF's bu�er without consuming
the read data. As shown in section 3.3.2 this is necessary to avoid deadlocks.
Additionally, there is the clear() function which frees the speci�ed number
of bytes in the RSF's bu�er. It is used after data was consumed from a RRF
belonging to a RSF.

The RRF has a sync() function which returns the number of bytes that were
consumed from the RRF since the last call to sync(). It is required to tell
a RSF belonging to a RRF that data was consumed. The RRF also has a
read() function with the same form as the Fifo's. Internally, it is modi�ed
to count the number of consumed bytes since the last call to sync(). This
counter is reset and returned when calling sync().

4.2 Remote Channel Management

This section describes the implementation of the channel management. The
concepts from sections 3.2 and 3.3 are implemented. As mentioned there,
internet sockets using TCP/IP channels are used to establish remote connec-
tions.

4.2.1 The Remote Channel Connector

To establish a TCP/IP connection between two cores, a socket needs to be
set up on each of the two cores. A socket is managed by the RemoteChannel-
Connector (RCC) class. For each connection a core establishes with other
cores, one socket and therefore one RCC object is instantiated on each of the
two cores. The important interface functions and member objects/variables
of the RCC are shown in listing 4.4.
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To establish a TCP/IP connection between two hosts, one of them has to
wait for the incoming connection request sent by the other one. After the
connection was established, it can be used bidirectionally. So for every pair
of RCC's that want to establish a connection between each other, one waits
for the other to actively connect to it.

The RCC connecting to the other one uses the function setupConnecting-
Socket() followed by _connect(). The former simply creates a socket and
speci�es to which IP/port (speci�ed by the private members _ip_address
and _port which are set according to the architecture speci�cation (see sec-
tion 4.3) it will have to connect. _connect() then establishes the connection.

1 public :
2 int setupConnect ingSocket ( ) ;
3 int _connect ( ) ;
4 int _send ( ) ;
5 int _rece ive ( ) ;
6 . . .
7
8 private :
9 RemoteChannelMultiplexer* _mult ip lexer ;
10 RemoteChannelDemultiplexer* _demult ipe lxer ;
11 int _socket ;
12 char* _ip_address ;
13 unsigned short int _port ;
14 . . .

Listing 4.4: Part of the RCC interface.

The RCC functionality is illustrated by an example in �gure 4.1. Processes
P1 − P4 are running on core A. Each of them is synthesized in to a pthread.
P1 and P2 are data sources and are connected with processes on core B
(not shown). Processes P3 and P4 are data sinks and receive data from
core B. The four edges in the corresponding KPN are synthesized in to a
single socket pair as they all share the same physical channel. The processes
write/read to/from RSF's/RRF's. Because there are processes on core A
that communicate with processes on core B there is one RCC on each of the
two cores. The RCC holds the socket (S) associated with the connection.
The RCC also holds one object each of the types RemoteChannelMultiplexer
(RCMU) and RemoteChannelDemultiplexer (RCDE). With this example,
the RCC's _send() and _receive() functions are explained.

� _send(): Internally, this calls functions of the RCMU. In a �rst step,
the RCMU checks all RSF's associated with its RCC for data that was
not sent to the other core yet. Unsent data is copied to the output buf-
fer (held by the RCMU) and header information is added (see section
3.2.2). The RCMU then checks all RRF's associated with its RCC for
consumed data using the RRF's sync() function. If data was consumed
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Figure 4.1: Illustration of RCC functionality.

since the last call to sync(), a synchronization message is generated in
the output bu�er. It contains the channel number and the number
of consumed bytes. The second step is for the RCMU to send all the
data accumulated in the output bu�er via the socket over the TCP/IP
connection.

� _receive(): Internally, this calls functions of the RCDE. In a �rst
step, the RCDE receives data via the socket that was sent by the other
core. Received data is stored in the input bu�er. The second step is
for the RCDE to demultiplex the data in the input bu�er. Data is
written to the corresponding RRF's. If synchronization messages were
received, the RCDE calls the clear() function of the appropriate RSF's.

4.2.2 The Remote Channel Manager

The Remote Channel Manager (RCM) class manages all RCC's on a core.
There is one instance of the RCM per core. There is a separate thread calling
the RCM's functions. This is illustrated in �gure 4.2. Assume a process P1

sends data to two processes P2 and P3. P1, P2 and P3 are mapped to cores
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Figure 4.2: Illustration of RCM functionality.

A, B and C respectively. Core A has two RCC's corresponding to the two
physical channels: from core A to B and from A to C. Core B and C have
one RCC each. In the example, each core runs two threads: one executing
a process and one for handling the remote communication. The RCM calls
its RCC functions as described in the following.

The important RCM member functions and variables are shown in listing
4.5. The RCM holds two lists containing all RCC's on its core. There are
two di�erent lists so the RCM can tell if a RCC will initiate or wait for a
TCP/IP connection (see section 4.2.1).

� init(): This function is called once before the application is executed.
It establishes all TCP/IP connections of the RCC's held by the RCM.
Initialization can only complete if the init() function is also called on
the cores with the RCC's that a connection should be established to.

� run(): Calls the select() function (see [5]) to check if data can be sent
and/or received from any sockets held by the RCM's RCC's without the
socket function call blocking. This is necessary because non-blocking
sockets are used to avoid deadlocks. For each socket where data can be
sent and/or received the RCM calls the corresponding RCC's _send()
and or _receive() function (see section 4.2.1). run() is called repeatedly
by the thread handling the remote communication. Each time it is
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called, as much data as possible, that is waiting to be sent or received,
it sent or received.

1 public :
2 bool i n i t ( ) ;
3 bool run ( ) ;
4 . . .
5
6 private :
7 l i s t <RemoteChannelConnector*>* _connect ingConnectorList ;
8 l i s t <RemoteChannelConnector*>* _accept ingConnectorList ;
9 . . .

Listing 4.5: Important RCM member functions and variables.

This approach is scalable with respect to the number of processes running
on one core because there is only one thread managing all remote communi-
cation.

4.3 Integration into the DOL

The DOL was extended so that it can automatically generate code, given
the application code, the KPN, the mapping and the architecture speci�ca-
tions (see �gure 1.1). The code generation procedure is explained in section
4.3.1. The required XML inputs are discussed with the help of an example
application in section 4.3.2.

4.3.1 Code generation procedure

The DOL basically parses the XML inputs mentioned above and stores the
information in corresponding classes. For example, there is a Mapping class
which among other things provides a list of all processes used in the mapping.
Information about a process is again managed by a class called Process. The
DOL is written in Java. The generated code is C++.

Code generation consists of three parts which were each implemented in a
separate class. A fourth class (called SCCVisitor.java for the SCC visitor),
is used to call the functions of the other three classes. The three parts are
discussed in the following.

� Create a Make�le (SCCMake�leVisitor.java): The Make�le can be
used to easily compile the generated code. After compilation, there
will be one executable per processor that has processes mapped to it
in the mapping speci�cation. This number can be retrieved from the
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DOL Mapping class and is used to generate the Make�le accordingly.
The Make�le is the only di�erence between the generated code for the
SCC and a networked Linux cluster as target architecture. The SCC
requires compilation with the Intel C/C++ compiler called icpc. The
g++ compiler can be used when compiling the application for a Linux
cluster.

� Create process wrapper classes (SCCProcessVisitor.java): A process
wrapper is a class that basically holds function pointers to the init()
and �re() functions which were speci�ed in the application code. Ad-
ditionally it contains Fifo pointers which specify from/to what Fifo
object the process will read/write. These will be set in the third part.
A process wrapper class is generated for each process type in the ap-
plication. The generated classes are derived from the ProcessWrapper
base class.

� Generate mapping dependent code (SCCModuleVisitor.java): This is
the main part of the code generation. Three separate �les are genera-
ted for each processor in the mapping speci�cation. Two of them are
processnetwork_partXXX.cpp and processnetwork_partXXX.h. XXX
is a number starting from 001, where the lowest number corresponds
to the �rst processor in the architecture speci�cation. These two �les
basically contain the instantiations of the necessary Fifo, RCC, RRF
and RSF objects for the corresponding processor. The third �le is
sc_application_XXX.cpp. It contains the main routine for the corres-
ponding processor. A more detailed explanation on how the process-
network �les are generated is given in the following.

1. Each channel of the process network speci�cation is assigned a
unique ID (see section 3.2.2).

2. Choose a processor from the processors that are used in the map-
ping.

3. Get the processes that are executed on the chosen processor ac-
cording to the mapping.

4. For each of these processes, check if it communicates with pro-
cesses on the same processor or with processes on di�erent pro-
cessors. If a process sends/receives data locally, a Fifo object is
instantiated (see section 4.1.1). If a process sends/receives data
remotely, a RSF/RRF is instantiated (see section 4.1.2).

5. For each processor with which the chosen processor communi-
cates, a RCC is instantiated. Each RCC requires its RSF's/RRF's
with their corresponding channel ID. Furthermore the RCC needs
the IP/port to which it connects to or from where the connection
will be instantiated. The IP/port information can be extracted
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Figure 4.3: Simple example PN.

from a processor's name in the architecture/mapping speci�ca-
tion (see section 4.3.2). As mentioned in section 4.2.1, for two
RCC's on di�erent processors to establish a connection, one must
initiate the connection while the other one accepts it. For each
instantiated RCC, it is arbitrarily chosen if it should establish or
wait for the connection. When the corresponding RCC for the
other processor is instantiated, it is set to wait for or establish
the connection depending on what was chosen for the other RCC.

6. Instantiate a process wrapper object for each of the processes
found in 3).

7. Assign the instantiated Fifo's, RSF's and RRF's to the corres-
ponding process wrappers to "connect" the processes.

8. Repeat steps 2)-7) for each processor in the mapping to obtain
the processnetwork �les for each processor.

4.3.2 Code generation for an example application

Consider the KPN shown in �gure 4.3. P1 sends data to P2 which processes
it and sends the results to P3. The source code of the processes is given in the
�les process1.c, process2.c and process3.c. The KPN speci�cation (written in
XML) is shown in listing 4.6. It contains an entry for each process, channel
and connection between the two. The FIFO channel sizes are speci�ed here.

1 <!−− p ro c e s s e s −−>
2 <proce s s name=" proce s s1 ">
3 <port type="output" name="1"/>
4 <source type="c" l o c a t i o n=" proce s s1 . c"/>
5 </process>
6
7 <proce s s name=" proce s s2 ">
8 <port type=" input " name="1"/>
9 <port type="output" name="2"/>
10 <source type="c" l o c a t i o n=" proce s s2 . c"/>
11 </process>
12
13 <proce s s name=" proce s s3 ">
14 <port type=" input " name="1"/>
15 <source type="c" l o c a t i o n=" proce s s3 . c"/>
16 </process>
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17
18 <!−− FIFO channe l s −−>
19 <sw_channel type=" f i f o " s i z e="10" name="C1">
20 <port type=" input " name="0"/>
21 <port type="output" name="1"/>
22 </sw_channel>
23
24 <sw_channel type=" f i f o " s i z e="10" name="C2">
25 <port type=" input " name="0"/>
26 <port type="output" name="1"/>
27 </sw_channel>
28
29 <!−− connec t i ons −−>
30 <connect ion name="p1−c1">
31 <o r i g i n name=" proce s s1 ">
32 <port name="1"/>
33 </or i g i n>
34 <ta rg e t name="C1">
35 <port name="0"/>
36 </target>
37 </connect ion>
38
39 <connect ion name="c1−p2">
40 <o r i g i n name="C1">
41 <port name="1"/>
42 </or i g i n>
43 <ta rg e t name=" proce s s2 ">
44 <port name="1"/>
45 </target>
46 </connect ion>
47
48 <connect ion name="p2−c2"
49 <o r i g i n name=" proce s s2 ">
50 <port name="2"/>
51 </or i g i n>
52 <ta rg e t name="C2">
53 <port name="0"/>
54 </target>
55 </connect ion>
56
57 <connect ion name="c2−p3"
58 <o r i g i n name="C2">
59 <port name="1"/>
60 </or i g i n>
61 <ta rg e t name=" proce s s3 ">
62 <port name="1"/>
63 </target>
64 </connect ion>

Listing 4.6: KPN speci�cation of the PN in �gure 4.3

Assume the processes will be mapped to two SCC cores. A possible architec-
ture speci�cation is shown in listing 4.7. As discussed in section 4.2 the IP
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address and a port is required for each core to establish the TCP/IP connec-
tions. This information is not hardcoded, but can be speci�ed by the user
by choosing an appropriate processor name in the architecture speci�cation.
For example, if the second processor wanted to connect to the �rst processor,
it would establish a connection to IP address 192.168.0.1 on the port 1337.
One entry is required per processor used to run the application. If all SCC
cores were to be used, the architecture speci�cation contained 48 entries.

1 <proc e s s o r name=" 192 . 1 6 8 . 0 . 1 : 1 3 37 " type="RISC">
2 </proces sor>
3
4 <proc e s s o r name=" 192 . 1 6 8 . 0 . 2 : 1 3 37 " type="RISC">
5 </proces sor>

Listing 4.7: Partial SCC architecture speci�cation.

Say P1 is mapped to one core and P2 and P3 to the other core. The cor-
responding mapping speci�cation is given in listing 4.8. One binding entry
is required per process entry in the KPN speci�cation. Each entry maps
a process (de�ned in the KPN speci�cation) to a processor (de�ned in the
architecture).

1 <!−− p ro c e s s e s bound to the f i r s t core −−>
2 <binding name=" proce s s1 " x s i : type="computation">
3 <proce s s name=" proce s s1 "/>
4 <proc e s s o r name=" 192 . 1 6 8 . 0 . 1 : 1 3 37 "/>
5 </binding>
6
7 <!−− p ro c e s s e s bound to the second core −−>
8 <binding name=" proce s s2 " x s i : type="computation">
9 <proce s s name=" proce s s2 "/>
10 <proc e s s o r name=" 192 . 1 6 8 . 0 . 2 : 1 3 37 "/>
11 </binding>
12
13 <binding name=" proce s s3 " x s i : type="computation">
14 <proce s s name=" proce s s3 "/>
15 <proc e s s o r name=" 192 . 1 6 8 . 0 . 3 : 1 3 37 "/>
16 </binding>

Listing 4.8: Mapping the PN from �gure 4.3 to two SCC cores.

After code generation, the code can be compiled using the Make�le. Then,
the executables have to be distributed to their corresponding core (SCC)
or workstation (Linux cluster). When all executables are started, TCP/IP
connections are established and the KPN is executed.
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5
Evaluation

This chapter shows the performance evaluation of the implementation. An
example application is presented. It is executed on the SCC using a di�erent
number of cores. The results are compared to the PaF implementation (see
section 4.1.1) which runs on a single core. The results are discussed and
future improvements/extensions are suggested.

5.1 Test setup

For the evaluation, the application with the KPN shown in �gure 5.1 was
used. It consists of three di�erent types of processes. The generator simply
writes arbitrary numbers to its output channel. The computation process
(comp) reads the numbers produced by the generator. It then performs
some arbitrary computation on each number. The computation is in a loop
with a con�gurable number of iterations. The number of iterations can be
changed to change the communication vs computation ratio. The �nal result
is written to the process's output channel. Finally the consumer reads the
results produced by the comp process and prints them.

The number of comp processes is parametrized. This allows to easily run
the same application on a di�erent number of cores. While the number of
processes in the KPN changes, if it has to be executed on di�erent numbers
of cores, the total amount of data that has to be processed remains constant.
For example, assume that the generator is con�gured to produce 1000 num-
bers. If the KPN with two comp processes is chosen, each of the two will
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Figure 5.1: KPN of the application used for the evaluation.

Figure 5.2: Mapping the application to the SCC.

have to perform computation on 500 numbers. If four comp processes are
chosen, each of them processes 250 numbers.

The reference implementation is the PaF visitor. It allows the execution
of a KPN on a single SCC core (see section 4.1.1). Only one comp process
is used. How the application is mapped to the SCC is shown in �gure 5.2.
The generator and consumer are mapped to their own core. For each core
that is used for the application, an additional comp process is generated and
mapped to that core. For the evaluation, the application was executed on a
range from 2 to 16 SCC cores.
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Figure 5.3: Evaluation results.

5.2 Results and discussion

The results are shown in �gure 5.3. For the green bars, the Y-axis represents
the speed up compared to the application running on a single core using the
PaF visitor. For the red bars, it represents the execution time normalized by
the execution time of the reference application (which is the inverse of the
speed up). The bars at "number of cores = 1" correspond to the reference
implementation.

The following observations were made.

� Ideally, one would expect a speed up of n when using n cores. This is
however not the case (e.g. 16 cores only result in a speed up of around
4.3). The reason for this lies in the ine�ciency of the thread managing
the remote communication. It polls the RSF's for data to be sent by
repeatedly calling the run() function of the RCM (see section 4.2.2).
This results in wasted CPU time that could be used by the thread
running the comp process. This could be veri�ed by adding a sleep()
command to the remote communication thread when no data could
be sent. Using the sleep() command, almost linear speed up could be
achieved.

� The implementation scales well with the number of cores for the example
application. The transparent bars in �gure 5.3 are not actual measu-
rement but are extrapolated values using the formula

Execution time(n) = n−1
n · Execution time(n− 1)

which describes the execution time depending on the number of cores
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when ideal scaling is assumed. As can be seen in �gure 5.3, the extra-
polated values �t well into the actual measurements which indicates
good scaling.

5.3 Future work

5.3.1 Improving performance

For better performance, the remote communication thread must be imple-
mented more e�ciently. Basically, the thread should be suspended after no
data could be sent or received. This avoids repeatedly trying to send data al-
though none is available. There are two ways in which the suspended thread
can be woken up again.

First, if a process writes to a RSF, the thread running the process could
notify the suspended remote communication thread because data can be
sent. However, there could be a situation where all processes on a core
are waiting for incoming data. If the remote communication thread were
suspended and waiting for a process to write to its RSF, a deadlock would
occur.

In this situation, the remote communication thread should wait for incoming
data by calling select() in the RCM's run() function. select() is used to check
if data can be sent or received from a set of sockets. It returns instantly if
either of the two are possible. Assume a set of sockets is only checked for
data to be received. In this case, select() will only return when a other
processor sends data to this processor. The thread is suspended while it is
waiting for select() to return. However if the remote communication thread
is suspended in this way, a deadlock could occur if e.g. all processors sending
data to this processor are waiting for data from this processor.

A concept is required to allow the remote communication thread to decide
how it can be suspended without causing a deadlock.

Performance could also be increased by using a di�erent method for the
remote communication that makes better use of the SCC's specialized hard-
ware (see section 1.4).

5.3.2 Extension to DAL

The current implementation could be extended to work with the distributed
application layer (DAL) [3]. The DAL allows the dynamic execution of KPN
applications on a target platform. This makes it possible that an application
can be stopped at any time, possibly be mapped di�erently to the platform,

� 42 �



5.3. FUTURE WORK

and then started again. Dynamic mapping can be useful if e.g. a part of
the MPSoC consumes a lot of power and heats up. In such a scenario, the
application could be stopped, mapped to a cooler region of the platform and
then started again.
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6
Conclusion

In this thesis, the DOL was extended to allow the execution of KPN appli-
cations on the SCC and on a networked Linux cluster.

A remote FIFO model was discussed. It implements a KPN channel with
a FIFO endpoint on each processor running the connected processes. The
data transfer from one endpoint to another is managed by a channel manager
on each processor. Furthermore it was shown that �ow control is necessary
to avoid deadlocks in the KPN. The content of the FIFO endpoint of the
sender is not consumed when transferred to the endpoint of the receiver.
The sender is noti�ed when data was consumed by its receiver allowing it
to remove the data also in the sender's endpoint. This was implemented
with simple synchronization messages that are generated and handled by
the channel manager. To reduce network tra�c, only one TCP/IP channel
is used per communicating processor pair. This requires the (de)multiplexing
of data (from)to the channel. This is also handled by the channel manager.

A DOL code generator is provided for each target platform. The applica-
tion programmer has only to provide a simple architecture and mapping
speci�cation. The architecture speci�cation contains the IP address and a
port for each SCC core/Linux workstation to be used to execute the KPN.
The programmer can arbitrarily map the processes of the application to the
processors in the architecture speci�cation.

The performance of the implementation was evaluated. Due to ine�ciency,
the bene�t of using multiple cores is limited. This has to be addressed in fu-
ture work. However, scaling seems to be promising for suitable applications.
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Toolchain guide

The toolchain guide is a step-by-step instruction on how to integrate the new
visitors SCC and LinuxCluster into the DOL framework. It is also explained
how to set up and run the example application used for the evaluation (see
section 5.1). The required �les can be found on the CD provided with this
report.

� How to build DOL with the SCC and LinuxCluster visitors.

1. Add the SCC directory (found in SCC.tar.gz ) to your DOL di-
rectory /dol/src/dol/visitor/.

2. Add the LinuxCluster directory (found in LinuxCluster.tar.gz ) to
your DOL directory /dol/src/dol/visitor/.

3. Add the build.xml �le to your DOL directory /dol/ or add the
include entries dol/visitor/LinuxCluster/lib/** and dol/visitor/
SCC/lib/** to your existing build.xml �le.

4. Add the runexample.xml �le to your DOL directory /dol/exam-
ples/.

5. Place the architecture speci�cations for the SCC (scc.xml) and
the Linux cluster (linuxcluster.xml) in your DOL directory /dol/
examples/arch/.

6. Build DOL by running ant -f build.xml all in your DOL directory
/dol/.

� How to generate code to run the example application on the SCC.
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1. Add the examplescc directory (found in examplescc.tar.gz ) to your
DOL directory /dol/examples/examplescc/.

2. Depending on the number of cores the application should be exe-
cuted on, change the following parameters

� In /dol/examples/examplescc/examplescc.xml, adjust<variable
value="X" name="NUM_OF_PAR_PORTS"/>. Replace
X with the number of comp processes that should be genera-
ted.

� In /dol/examples/examplescc/map_scc.xml, comment out unu-
sed comp_i processes (e.g. if X=2 was chosen above, com-
ment out everything except comp_0 and comp_1 ). The de-
fault mapping is the one used in section 5.1. The mapping
can also be adjusted if necessary.

� In /dol/examples/examplescc/src/global.h, set NUM_OF_
PAR_PORTS to the value X chosen above. Other parame-
ters can be adjusted. These are described in examplescc.xml.

3. Build the example by running ant -f runexample.xml -Dnumber=scc
-Dgenerator=SCC -Darchitecture=scc -Dmapping=map_scc in your
DOL directory /dol/build/bin/main/.

� How to compile and run the application on the SCC.

1. Enable the Intel icpc compiler on the MCPC.

� Copy the crosscompile.sh (found in SCC.tar.gz ) �le to your
home directory on the MCPC using scp.

� Execute the script by running source crosscompile.sh.

2. Copy the directory containing the generated example to your
home directory on the MCPC (examples generated for the SCC
are located in /dol/build/bin/main/examplescc/SCC/ ).

3. Compile the application by executing the Make�le located in the
example's directory with make all (make sure the parameters are
adjusted to your application as described in the last point of this
guide).

4. Copy the required libraries to the SCC cores used for the example.

� Copy the libraries scclib.tgz and the script setupLibSCC.sh
(both found in SCC.tar.gz ) to your home directory on the
MCPC.

� Adjust setupLibSCC.sh so it will only copy and extract the
libraries to the cores used by the application (e.g. if three
cores are used, comment out the second for-loop and adjust
the �rst line to be for N in 0..2 ).
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� Execute the script to copy and extract the libraries to the
speci�ed cores by running ./setupLibSCC.sh.

5. Distribute the executables to the cores.

� Copy the script setupAppSCC.sh (found in SCC.tar.gz ) to
the same directory on the MCPC where the Make�le of the
application is located.

� Adjust the script to that the correct number of executables
are copied to the cores (same as for the setupLibSCC.sh script).

� Execute the script by running ./setupAppSCC.sh. It recom-
piles the application if necessary and then copies the applica-
tions to the corresponding SCC cores (i.e. sc_application_001
to rck00, sc_application_002 to rck01, etc).

6. Execute the process network.

� Copy the �les hosts.txt and run.sh (both found in SCC.tar.gz )
to the MCPC home directory.

� Adjust the hosts.txt �le to only contain the cores which are
used by the application (e.g. rck00, rck01 and rck02 if the
application is mapped to three cores).

� Start the application by executing the run script with ./run.sh.
This script uses pssh to start all executables on the cores at
the same time.

� How to generate and run the example application on a Linux cluster.
The procedure is very similar to that for the SCC. The di�erences are
listed in the following.

1. Adjust the architecture speci�cation linuxcluster.xml to specify
the IP of a workstation and the port to which other workstations
will connect to. One entry is required per involved workstation.

2. Adjust the mapping in /dol/examples/examplescc/
map_linuxcluster.xml. The processor names have to match those
of the architecture speci�cation.

3. The runexample.xml �le has to be run with the parameters ant -f
runexample.xml -Dnumber=scc -Dgenerator=LinuxCluster
-Darchitecture=linuxcluster -Dmapping=map_linuxcluster.

4. The scripts provided for the SCC cannot be reused for a Linux
cluster because the IP addresses will generally be irregular. Either
adjust the scripts or manually copy and run the executables to/on
their corresponding workstations.

5. The application can also be tested on a single workstation by
running the executables in a separate shell each. The archi-
tecture speci�cation must then contain entries 127.0.0.1:PPPP
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where PPPP is a port and must now be di�erent for all entries.
After code generation, the bind_port argument of the RCC's
has to be added manually in the processnetwork_part_XXX.cpp
�les. Two RCC's that connect to each other have to have the
same bind_port. More information can be found in the RCC
class header �le RemoteChannelConnector.h. Furthermore, ad-
just the function setupListeningSocket() in RemoteChannelMana-
ger.cpp (instructions are given at the beginning of the function).

� Adjustable parameters: Adjustable parameters for both the SCC and
the Linux cluster implementation can be found in the header �le Pa-
cket.h which is located in the lib directory of the corresponding visitor.
The most important parameter is MAX_FIFO_SIZE which has to be
set to the largest channel size from the process network speci�cation.
Further parameters include the number of bytes in the packet header
which needs to be adjusted depending on maximum possible message
size and the total number of processes in the process network. For
more information, refer to the explanations in Packet.h.
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List of Acronyms

API Application Programming Interface
DOL Distributed Operation Layer
IP Internet Protocol
KPN Kahn Process Network
LUT Look-up table
MCPC Management Console PC
MIU Mesh Interface Unit
MPB Message Passing Bu�er
MPSoC Multi-processor System on Chip
PaF PipeAndFilter
RCC Remote Channel Connector
RCDE Remote Channel Demultiplexer
RCM Remote Channel Manager
RCMU Remote Channel Multiplexer
RRF Remote Receiving Fifo
RRS Remote Sending Fifo
SCC Single-chip Cloud Computer
SSH Secure Shell
TCP Transmission Control Protocol
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