
Distributed
 Computing

FooDroid: A Food Recommendation
App for University Canteens

Semester Thesis

Marian Runo

runom@ee.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Tobias Langner, Samuel Welten

Prof. Dr. Roger Wattenhofer

June 21, 2011

mailto:Marian Runo<runom@ee.ethz.ch>

Acknowledgements

I thank my advisors Tobias Langner and Samuel Welten for their helpful advices
and constructive discussions.

i

Abstract

The goal of this semester thesis was to develop a menu recommendation system
for the canteens of ETH Zurich (and University of Zurich). Existing applications
mainly present the menus for the day in lists but cannot tell which menu a user
would prefer. Browsing long lists to find a favorite dish however is tedious. The
system should be able to recommend available menus based on the preferences of
the user. Mobility was also a key feature to consider because users would most
likely not have access to a computer on their way to the canteen, however mobile
phones are almost ubiquitous. The final implementation consists of three parts:
A crawler which downloads the necessary data and adds it to a database; a server
which retrieves menu data from the database and computes ratings; and a client
running on an Android-based mobile platform which presents the recommended
menu to the user in a simple and convenient way.

Keywords: android, app, mensa, canteen, menu, recommendation, collabora-
tive filtering, ETH, university, Zurich

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Existing Applications . 1

1.2 Related Work . 2

2 System Architecture 3

2.1 Overview . 3

2.2 Data Crawler . 3

2.2.1 ETHZ Parser . 5

2.2.2 UZH Parser . 5

2.3 Server . 6

2.3.1 Database . 6

2.4 Client . 6

3 Menu Recommendation 10

3.1 Ingredient-Based Rating . 10

3.2 User Rating . 11

3.3 User-based Collaborative Filtering 12

3.4 Rating Combination . 13

4 Conclusion 15

4.1 Future Work . 15

Bibliography 17

A Appendix 1

iii

Chapter 1

Introduction

With many offerings always comes a selection process which can become quite
cumbersome very fast if many different offers have to be compared to make
an optimal choice. One thing where tastes could not vary more widely is food.
Simply rating a canteen or restaurant can only give a very generalized assessment
about the quality of the different menus served. Some menus might be favored
by some customers but not others and depending on who gives more ratings,
the recommendation accuracy suffers. A more personalized recommendation
system which operates on the preferences of individuals – or small groups –
is hence desireable. Addtionally, the location of the customer and a canteen or
restaurant comes into play if only a limited amount of time can be spent on lunch.
A customer should not be forced to walk across town. Rather, a combination of
good menus and relative closeness needs to be considered in the recommendation
process.

In particular, the number of canteens around the ETH Zurich and University
of Zurich is big and often they are located far apart (Zentrum, Science City,
Irchel). Often people are not willed to invest much time in searching for preferred
menus on the canteens websites before lunch – or they forget to check altogether.
Even if a customer is willed to browse the various canteens’ websites for menu
lists though, the sole descriptions oftentimes do not provide great insight into the
actual edibility of a menu. FooDroid aims to solve these problems by providing
a unified platform to display menus of various canteens on Android based mobile
phones. Users can browse through the menus offered today in various canteens,
filter meals according to their taste and rate them for latecomers to benefit from
the reviews of their fellow colleagues.

1.1 Existing Applications

Before FooDroid, students had to rely mostly on websites provided by the can-
teens themselves in order to gather menu information. However, there exists a
simple application for Android-based mobile phones called StudiFood which was

1

1. Introduction 2

programmed by fellow student Mirko Mikulic. The application lists the various
menus according to their corresponding canteen and provides a distance mea-
sure. There is, however, no rating system in place, hence the application can be
understood rather as a more comfortable way to access the data provided on the
various canteens’ websites than a real recommendation solution. The same can
be said about ETHZ Mensa - Uni Zürich Mensa for iOS (iPhone) which pro-
vides, as stated in the description, ”Nothing more, nothing less” than a simple
list. FooDroid picks up the idea of StudiFood and others but tries to extend it in
order to provide an additional accurate recommendation system to avoid tedious
browsing of dozens of menus.

1.2 Related Work

Even though recommendation systems aren’t exactly a new idea they experienced
a recent gain in popularity. The work done on GroupLens [4] for instance, which
this work bases a part of the recommendation procedure on, was developed in
1994 for rating prediction on Usenet newsgroup entries. Fortunately many rating
algorithms can be used independently of the actual thing to be rated. Because
these systems rely on user input, originally only few places which actually sup-
ported user feedback could employ such systems. Most of the internet of the
past however was a static assembly of webpages with no possibility for users to
interact. With the advent of Web 2.0 which incorporates the actions of users
much more, these recommendation system experienced a big gain in popularity.

There has been done considerable work for canteen or restaurant-based rec-
ommendation systems over the years. REJA [2] is such a restaurant-based rec-
ommendation system which uses a hybrid recommendation algorithm based on
collaborative filtering as well as knowledge-based filtering. REJA further incor-
porates a geographic module that provides information referred by Google maps.
However, this system is a web-application which can be a hassle to use on mobile
devices. Another interesting approach is taken by Moon-He et. al. [3]. They try
to recommend restaurants to groups of people which can have widely differing
tastes. Taking into consideration whole groups of people required the use of
a complex AHP (Analytic Hierarchy Process) which works on multiple criteria
for its decision making. The client application however only runs on Windows-
based mobile devices of which the market penetration, compared to the desktop
segment, is rather low.

There are only few recommendation systems which specifically deal with
menus though and are often tailored to users under dietary constraints [1]. The
goal is to bring a recommendation system to an up-to-date platform, in this case
Android, and provide highly personalized menu recommendation.

Chapter 2

System Architecture

First of all an overview on the system architecture is provided to establish the
basic structure and basic workings of the whole. Then a more detailed view
on every component is provided, explaining in greater detail how the individual
components interact and what their exact purpose is.

2.1 Overview

Simple data fetching would usually only require a client application which can
fetch menu data from the various canteens’ own websites and display them in
a structured manner. FooDroid however wants to provide the students with a
mean to rate menus he or she ate and recommend menus based on these ratings
in the future. This is more complicated than the existing approach by StudiFood
and hence requires a more complex system of interacting software. The FooDroid
system (see figure 2.1) hence consists of three major parts:

• a data crawler, for fetching the data from canteens’ websites

• a data server, for providing data for the client application

• and the client application itself on the Android phone

The whole system is backed by a MySQL database wherein the crawled data as
well as ratings for each menu and user are stored. The following sections will
explain each part of the system and their inner workings in greater detail.

2.2 Data Crawler

The data crawler is the most important part of the whole since it crawls the dif-
ferent canteens’ websites for the menus, parses the data according to the system’s
needs and adds them to the database. The data can then be easily accessed and

3

2. System Architecture 4

Internet

Crawler Database Server

Client

menu data

menu info

menu info

menu inforatings

ratings

Figure 2.1: System Overview

is returned in human readable form as an xml file. There is no restriction in
place concerning the access to the data nor is there a dependence on a certain
client, i.e. other applications could potentially access the data as well as add
ratings for menus if it would be decided to make the database public access. The
crawler’s work itself can be divided into the following steps:

1. Downloading the menu data provided by the canteens

2. Extracting informations such as menu name, menu description and price

3. Extracting token words and ingredients used from the menu’s description

4. Adding all the newly gained information for each menu to the database

The downloaded data is parsed into a class called MenuItem (see table 2.1) and
holds all the necessary variables which will be written to the database. The pro-
cess of writing the data to the database begins with checking if a menu with iden-
tical variables is already present for today. If true, the writing process is skipped.
Otherwise an entry in MenuItems is created. See figure A.1 for the database’s
structure. The database returns the menuitem id of the newly created row and
the crawler then proceeds to add the new ingredients. Usually, there will be no
additions because the dictionary is static, i.e. updated by hand. However, if
new entries are made in the dictionary, these entries are automatically added to
the respective tables if they are found in a menu. The ingredients have to be

2. System Architecture 5

Variable Description

String mensa The name of the canteen the menu belongs to

Boolean closed Certain keywords trigger this varbiable and if true, the
menu is not added to the database

String menuName The name of the menu, e.g. ”Menu 1”

String type Specifies if the menu is served during lunch or dinner

String description The description of the menu as extracted directly from
the downloaded data

String validDate The date on which the menu is served

String[] tags Contains the extracted tags of the menu, e.g. ”vegetar-
ian”

String[] ingredients Contains the extracted ingredients of the menu

String[] tokens Contains the exploded menu description (for future use)

Table 2.1: MenuItem variables

connected to the menu which is done by adding pairs of menuitems id and in-
gredient id to the MenuItem2Ingredient table. The procedure for the ingredients
is identically executed for tags and tokens using the tables Tags/MenuItem2Tag
and Description Tokens/MenuItem2Token respectively.

There is no restriction on the number of canteens or the form of the data
they provide. The crawler’s parser class is abstracted in order to insure easy
addition of canteens in the future. For the time being, parsers for two major
canteen providers, ETH Zurich and University Zurich, have been implemented.

2.2.1 ETHZ Parser

The ETH Zurich provides data on their menus in the form of html tables as well
as RSS feeds (XML). For simplicities sake, the easier xml data format was chosen.
The parser expects a list of URLs from where the data should be downloaded.
This approach was chosen to insure high flexibility if a URL changes or a need
arises to exclude certain canteens altogether (for instance cafeterias with non-
changing offers). This way menus of 14 canteens all around the ETH Zurich can
be included into the database.

2.2.2 UZH Parser

Data on menus for the University Zurich is distributed in the form of pdf files.
Pdf files are much more challenging to parse than a simple xml file because one
has to rely on whitespace characters for its structure. For the time being parsers
for the two closest and hence most interesting canteens, Zentrum für Zahnmedizin
and Plattenstrasse, were implemented. This can be easily extended in the future

2. System Architecture 6

to include other canteens such as the canteens situated in the main building of
the university such as Mensa A/B as well as Mensa Irchel.

2.3 Server

The client gets his data from the server which has direct access to the database
and consists of several PHP scripts. The client can ask for specific data only con-
sidering certain canteens or ingredients which is then retrieved from the database
by the server and returned to the client formatted as an xml file. It is also the
job of the server to calculate all kinds of ratings.

While the base rating and ingredient ratings are calculated offline, some
ratings such as the user rating and the correlation between users are calculated
on demand. This could potentially lead to scalability issues in the future though.
For many users the computation time of the user-based collaborative filtering
grows quadratically. In order to circumvent this problem, correlation coefficients
could be calculated offline and stored in a database every few hours to incorporate
new ratings. This way the calculation is only done a few times over the course
of a day and not every time a user requests the menus.

2.3.1 Database

Menu data as well as user data and ratings are saved in a MySQL database. The
database consists of several tables each containing specific data. Table 2.2 shows
a listing of the used tables and their purpose while figure A.1 shows the database’s
actual structure. The database is highly normalized to minimize redundancy. For
the ingredients, tags and tokens an intermediate many-to-many mapping table
was employed. This tag database structure is based on the Toxi tagging scheme
which is also used by Wordpress.

2.4 Client

The FooDroid client retrieves menu info from the server and displays it in a
convenient manner for the user. Upon starting the app, the user is presented with
the menu of the day (see fig. 2.2(a)). This menu is chosen by the highest rating
which is a combination of three separate ratings, ingredient-based, user and
user-based collaborative filtering. Further options can be accessed by pressing
the phone’s settings button. There the user is presented with several possible
actions:

• Update retrieves updated menu info and recommendation with updated
filters from the server

2. System Architecture 7

Name Description

Mensas Informations about canteens such as id, name, loca-
tion

Periods Times for lunch, dinner in order to present menus
according to their serving period

Ratings Ratings for each menu with related user id

MenuItems Data on menus such as id, name, description, base
rating

Description Tokens Token words extracted from the descriptions of menus

Ingredients Ingredients extracted from the descriptions of menus

IngredRatings Ratings for each ingredient, calculated from user rat-
ings

Tags Tag words such as vegetarian etc.

MenuItem2Ingredient Maps ingredients to menus

MenuItem2Tag Maps tags to menus

MenuItem2Token Maps token words to menus

Users User data such as id, hashed IMEI and joining date

Table 2.2: Database tables

• Browse the user can browse all menus sorted by canteens

• Settings ingredient filters and canteen filters can be set as well as a re-
minder option

• About about the application

As mentioned, if the user wants to check for further menus, it is possible to
browse all menus for the day sorted by canteens (fig. 2.3(a)). While browsing
the user can also rate menus (fig. 2.3(b)) consumed today so that other users
who have not eaten yet may profit from the newly gained knowledge. The user
can rate a menu by adding stars by dragging the filling from 0 to 5 stars. In order
to prevent erroneous ratings caused by inaccuracies which surface by handling
a touch interface, the user is prompted to confirm the rating which was just
given. If the rating was indeed erroneous, the user can then cancel the rating
submission and re-submit the intended rating.

User’s preferences can be set under ”Settings” where certain ingredients and
canteens can be excluded. Excluded ingredients and canteens then won’t be
considered for the menu of the day and won’t show up while browsing. The
client also includes a so called ”AppWidget” (fig. 2.2(b)) which can be placed
on the phones home screen. This way the user has even easier access to the
recommended menu. The widget updates itself every few hours if the phone is
active. Sometimes the user does not use the phone for a prolonged period of

2. System Architecture 8

time and the widget is not updated to save battery power. In such a case the
user can simply touch the widget and the menu info is automatically updated.

(a) (b)

Figure 2.2: Client UI: a) Home screen which shows the recommended menu
for today, b) AppWidget on the phones ”desktop” recommending the menu for
today directly without starting the application

Getting as many ratings as possible can be an issue because many users
simply cannot be bothered to rate. However, in order to insure high prediction
quality as many ratings as possible need to be submitted to the system. Only
then can sufficiently accurate recommendations be provided. In order to motivate
people to rate menus, a reminder was implemented. If the user choses to be
reminded (under settings), half an hour after the application has been started,
a notification will be issued in order to remind the user to vote. Experience has
shown that while there is an interest in checking the recommended menu, users
often forget to rate after eating because the application is not needed anymore
and hence the focus of attention shifts to other matters. If the user rates a menu
before the notification is issued, the pending notification is canceled and the user
is not reminded this day anymore. Further, there is no additional notification
issued after the user has been notified one time even if the application is launched
several more times. This was done in order to reduce the number of interruptions

2. System Architecture 9

and trouble, and to prevent the user from unchecking the reminder option and
forgetting to rate altogether.

(a) (b)

Figure 2.3: Client UI: a) Canteen listing which is dynamically loaded from the
server, once the user chooses a canteen by tapping, he or she is greated with
the b) Menu listing for the specific canteen with rating indicators; The three
numbers below the rating stars show the individual ratings, ingredient-based,
user and collaborative filtering

Chapter 3

Menu Recommendation

In order to recommend a menu some kind of rateable variable has to be intro-
duced since the crawled data has no such attributes by itself. Therefore the
system has to assign a rating to each menu. An overall rating for a certain menu
is calculated by combining several separate ratings into one. Seperate ratings
have to be considered because one rating rarely covers all aspects of what it takes
for a menu to be good or bad. There are further limitations like the availability
of up-to-date user ratings whose lack causes certain ratings to be non-usable but
which, on the other hand, have far better prediction accuracy than any other
rating if up-to-date ratings are indeed available. The ratings also vary by the
direct influence of the users.

At this time three separate ratings are implemented, though if need be, addi-
tional ratings can be added easily in the future. A sensible method of combining
the ratings had to be developed reflecting the differing predictive qualities of
each rating. Since the optimal combination of ratings is still an active area of
research, a basic combination method was chosen which might not be optimal
but somewhat reflects the significance of the separate ratings.

3.1 Ingredient-Based Rating

In order to have a first assessment of a menu, the ingredient-based rating is
calculated. This rating is calculated by taking into consideration the ratings of
individual ingredients of a menu hence does not rely primarily on recent user
ratings. This is important because at the start of a period or day obviously no
user had the opportunity to rate a menu yet. Even under these circumstances
though, a recommendation has to be provided. An additional table aids in
this endeavour by providing an averaged ingredient rating which was computed
from all rated menus containing this ingredient (see figure 3.1 for how the table
is built). The algorithm checks if an ingredient found in the description of the
menu to be rated is listed in the IngredRatings table which holds all the ingredient
ratings. It then fetches the ratings of all ingredients present in the menu to be

10

3. Menu Recommendation 11

Menu description Rating

Wiener Schnitzel mit Kalbfleisch (Schweiz)
Pommes Frites ... 3.5

Wiener Kalbsrahmgulasch (Schweiz)
Pilawreis
Pfälze...

4

... ...

Σ

Ingredient rating_sum rating_num

Kalb 7.5 2

...

Figure 3.1: Building the IngredRatings table

rated and adds them up. Finally the average is calculated by dividing the sum
by the number of rated ingredients. The rating can then be written as:

RB =

∑
i
rating sumi

rating numi

n
(3.1)

where rating sumi and rating numi are the summed ratings and number of
ratings respectively for a particular ingredient i of the n ingredients the menu
contains. These values are, as just mentioned, stored and retrieved from the
database. In the case that no ratings have been given for the ingredients in the
menu to be rated, a neutral rating of 2.5 is given on a scale of 0 (bad) to 5
(excellent). This base rating relies on past data and works with keywords from
a dictionary hence the results can vary significantly. Even though it is a very
rough rating, the base rating can provide a good guide if no users have rated a
particular menu today, i.e. no recent user feedback was received.

3.2 User Rating

The user rating reflects the opinion of users about a particular menu and is the
second most important rating and a way for the user to directly communicate
with the system. Where the ingredient-based rating is a very crude first guess,
the user rating is regarded as a more accurate idea. Of course, the opinion of one
user is not enough to give a definite recommendation hence the more user ratings
are given, the better the whole menu rating works. In section 3.4 the process of
combining the seperate ratings and how the system avoids high impact of single

3. Menu Recommendation 12

high or low user ratings will be explained in more detail. Every user can give
a rating for a menu between 0 (bad) and 5 (excellent). The user rating for a
particular menu is then simply the average of all ratings for this menu:

RU,m =

∑n
i=1Rm,i
n

(3.2)

where RU,m is the current user rating for menu m and Rm,i is the ith rating
out of n ratings for menu m. The user rating is used for the calculation of the
ingredient ratings as well as for the computation of the correlation coefficients
and later the user-based collaborative filtering. Because of the fact that the other
ratings rely on the ratings given by users, it is important to have as many user
ratings in the database as possible in order to increase prediction quality.

3.3 User-based Collaborative Filtering

Collaborative filtering entertains the idea that people who agreed in the past will
most likely agree in the future. Simply put, if someone rated menus very close
to how I did, it’s very likely that if someone liked a menu I haven’t rated yet, I
will like it too. Collaborative filtering is generally accepted to be one of the most
effective mechanisms for producing high quality predictions [5] and is treated as
such. The problem however, is that a recent rating for the menu is needed in
order to give a prediction, meaning that someone has to rate a menu before the
collaborative filtering can be used to recommended a menu to another user. The
lack of prediction capability of this collaborative filtering method until ratings
have been given therefore requires a sensible method of combining the different
ratings such that non-significant ratings can be suppressed.

The collaborative filtering algorithm used in FooDroid is a memory-based
type and was employed by GroupLens [4]. It uses weighted averages of all rat-
ings for a certain menu. For this rating, first all Pearson correlation coefficients
between the user and all other users have to be calculated. The Pearson corre-
lation coefficient between two users, Ken and Lee, can be calculated as follows:

rKen,Lee =
E[(K − µKen)(L− µLee)]

σKen · σLee
(3.3)

where σ is the standard deviation, µ is the average of all ratings for this user
and E is the expected value of the differences of all ratings of Ken K and Lee L
and their respective averages. It is assumed that the probabilities of all ratings
are uniformly distributed. The correlation coefficient can hence also be written
as:

rKen,Lee =

∑n
i=1 (Ki−µKen)(Li−µLee)

n

σKen · σLee
(3.4)

3. Menu Recommendation 13

where n is the number of the common rated menus of the two users. The final
rating can now be calculated with the weighted average of all users:

RCFKen,m = µKen +

∑
J∈users(Jm − µJ) · rKen,J∑

J∈users |rKen,J |
(3.5)

where m is the menu.

3.4 Rating Combination

Since there are three ratings with varying degrees of accuracy and availability,
one has to chose a way to combine all the ratings into one final rating. At
the start of the day there are no user ratings present hence the final rating relies
heavily on the base rating first. The more people rate a menu, the less significant
the base rating becomes. The process of combining the three separate ratings
into one looks as follows. First of all the base rating and current user rating are
combined. The weight function used looks as follows:

w(x) =

0 if x < 0

1
5 · x if x ≥ 0

1 if x > 5
(3.6)

where x equals the number of ratings for a menu. It was decided that after five

1

0

weight

user ratings5

User Rating

Base Rating

Figure 3.2: Weight Function

users have rated a menu, the base rating shall have no further influence on the
overall rating. This number is arbitrary and can be adjusted if need be. Both
ratings are then combined into an intermediate rating:

Rint,m = (1− w) ·RB + w ·RU,m (3.7)

3. Menu Recommendation 14

In order to get the final rating, Rint,m and the rating based on collaborative
filtering are simply averaged, although a different approach like for the base and
user rating might be possible:

Rfinal,m =
Rint,m +RCFUser,m

2
(3.8)

The client then chooses the recommended menu according to the highest rating.
For now, only one recommended menu is shown although it might be beneficial
to present the user a short list of the three or five highest rated menus.

Chapter 4

Conclusion

Recommending menus can be a demanding task because simple ingredient based
comparison might produce misleading predictions. Therefore it was decided that
the opinion of the users has more weight in the recommendation process than
automated ratings. A system was developed which can list menus without con-
stant user input but can also improve predictions by taking into account the
ratings of users. Preferences are expressed by rating presented menus but also
by specifically including or excluding liked and disliked ingredients respectively.

4.1 Future Work

There are a few things which had to be cut in order to fit into the time frame of
a semester thesis. For one, the system could not be evaluated in this short time.
To do that a large number of ratings and users are needed but were not available
because the whole system was written from scratch and there was no ready for
release version until late in the semester. However it is very important to check if
the system produces better predictions than a simple random approach. Further,
the question remains how different combinations of ratings compare and what
different combination procedures could improve the prediction. The three ratings
and their combination in this work were chosen as an educated guess and there
is no definite way of telling if this choice was any good. Other collaborative
filtering methods and types such as model-based collaborative filtering could be
used. Location-based filtering is another feature which could be implemented so
that only menus of canteens in a user-definable radius or area are considered.
This was skipped in this iteration because of delay considerations; the location
detection needs some time to lock unto a new location but that would cause
unwanted delays in the retrieval of the menus. A new approach would be needed
to incorporate the location without noticeable delays. A new feature with a
big impact might be group based recommendation like proposed in [3] which
would try to recommend a menu or canteen to a group of users. Of course, most
often not all users prefer the same menus so a simple majority vote would be

15

4. Conclusion 16

insufficient. Bringing the client to iOS phones might be worth considering also
because the user base of the iPhone is just as big if not even bigger than that of
Android-based phones which would benefit the prediction quality but also make
evaluation easier.

Bibliography

[1] Hoffmann A. Khan A.S. Building a case-based diet recommendation system
without a knowledge engineer. Artificial Intelligence in Medicine, 27:155–
179(25), February 2003.

[2] Luis Mart́ınez, Rosa M. Rodriguez, and Macarena Espinilla. Reja: A georef-
erenced hybrid recommender system for restaurants. In Web Intelligence/IAT
Workshops’09, pages 187–190, 2009.

[3] Moon-Hee Park, Han-Saem Park, and Sung-Bae Cho. Restaurant recom-
mendation for group of people in mobile environments using probabilistic
multi-criteria decision making. In Proceedings of the 8th Asia-Pacific confer-
ence on Computer-Human Interaction, APCHI ’08, pages 114–122, Berlin,
Heidelberg, 2008. Springer-Verlag.

[4] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: an open architecture for collaborative filtering of netnews.
In Proceedings of the 1994 ACM conference on Computer supported cooper-
ative work, CSCW ’94, pages 175–186, New York, NY, USA, 1994. ACM.

[5] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering
techniques. Adv. in Artif. Intell., 2009:4:2–4:2, January 2009.

17

Appendix A

Appendix

1

A. Appendix 2

U
sers
user_id

register_date

IM
E
I_M

D
5

usernam
e

pass_M
D
5

Tags
tag_id
tag_text

R
atings
m
enuitem

_id
user_id
rating

Periods
period_id
period_nam

e

M
enuItem

s
m
enuitem

_id
m
ensa_id

period_id
valid_date
nam

e
description
base_rating

M
enuItem

2Token
token_id
m
enuitem

_id

M
enuItem

2Tag
tag_id
m
enuitem

_id

M
enuItem

2Ingredient

ingredient_id
m
enuitem

_id

M
ensas

m
ensa_id

m
ensa_nam

e
address
gps_position

IngredR
atings

ingredient_id
rating_sum
rating_num

Ingredients
ingredient_id
ingredient_text

D
escription_Tokens
token_id
token_text

Figure A.1: Database structure

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Existing Applications
	1.2 Related Work

	2 System Architecture
	2.1 Overview
	2.2 Data Crawler
	2.2.1 ETHZ Parser
	2.2.2 UZH Parser

	2.3 Server
	2.3.1 Database

	2.4 Client

	3 Menu Recommendation
	3.1 Ingredient-Based Rating
	3.2 User Rating
	3.3 User-based Collaborative Filtering
	3.4 Rating Combination

	4 Conclusion
	4.1 Future Work

	Bibliography
	A Appendix

