
Peer to Peer and Mobile
Systems Support

Semester Thesis

Rowan Klöti

19th July 2011

Advisors: Remo Meier
Supervisor: Prof. Dr. Roger Wattenhofer

Computer Engineering and Networks Laboratory, ETH Zurich

Abstract

In this work, the Sharpen Eclipse plugin, created to convert Java to C# code,
is adapted and modified to output code in C++ instead. Furthermore, certain
parts of the Java API are adapted to be used by converted code. The intent is
to allow the Pulsar content distribution system to be ported to platforms where
no Java or C# environment is supported.

Contents

1 Introduction 2

2 Related Work 3
2.1 Brief overview of Sharpen . 3
2.2 Other software frameworks used 4

2.2.1 Java Native Interface (JNI) 4
2.2.2 PThreads . 4
2.2.3 C++ Standard library classes 4

3 Sharpen for C++ 5
3.1 Overview of architectural changes 5
3.2 Changes in detail . 7

3.2.1 Basic syntax . 7
3.2.2 Strings . 8
3.2.3 Arrays . 8
3.2.4 Enumerations . 9
3.2.5 Classes and interfaces . 10
3.2.6 Namespaces and compilation units 11

3.3 The CS/CPP AST . 12

4 Java API 17
4.1 Networking . 17

4.1.1 Address resolution . 17
4.1.2 Datagram sockets . 18

4.2 Threads . 19
4.2.1 Creating new threads . 19
4.2.2 Mutexes and condition variables 19

5 Future Work 20
5.1 Synchronisation . 20
5.2 Collections . 21
5.3 Exceptions . 21
5.4 C++ 2011 . 22

6 Conclusion 23

1

Chapter 1

Introduction

Pulsar, also known as StreamForge1, is a distributed peer-to-peer system which
allows media to be streamed between clients. It has been offered as a commercial
product by a spin-off venture since 2009. It is desired to port the client solution
to as many platforms as possible. The client itself was developed on the Java
platform. However, many potential platforms, especially mobile platforms, do
not support the JVM. For this reason, the Computer Engineering and Networks
Laboratory has made use of the Sharpen Eclipse plugin, originally developed
by Versant to automatically translate their object oriented database db4o into
C#2, allowing the client to be used on .NET platforms. In this work, the
existing plugin will be adapted to output C++ rather than C# code, to further
extend the number of platforms that the Pulsar client can be easily ported to.

The primary aim of this semester thesis is to transform syntactically valid
Java code into functionally equivalent syntactically valid C++ code. In order
to actually translate Java to C++, this is not sufficient. In particular, it is
necessary to translate parts of the Java API to C++ in order that they can be
called from the converted code. Sharpen has a mechanism to map namespaces,
classes, properties and methods, but this is not sufficient as the Java standard
API has a much greater scope than C++ standard library and many of the
classes are not entirely semantically isomorphic. This project has not attempted
to recreate the Java API in C++, nor to find a C++ equivalent for every
class in the Java API. Indeed, the developers of Sharpen make no claim on the
completeness of the conversion: They clearly state that it is necessary to write
code that is compatible with it.

1See http://www.streamforge.com/
2See http://developer.db4o.com/Projects/html/projectspaces/db4o_product_design/

sharpen.html

2

http://www.streamforge.com/
http://developer.db4o.com/Projects/html/projectspaces/db4o_product_design/sharpen.html
http://developer.db4o.com/Projects/html/projectspaces/db4o_product_design/sharpen.html

Chapter 2

Related Work

2.1 Brief overview of Sharpen
Sharpen1is an Eclipse plugin which consists of several important components.

• The Eclipse framework itself, which provides an AST representation of
Java syntax. This is required in order for Eclipse to parse and modify the
Java source code. This is required for the conversion.

• The CSharpBuilder class. Broadly stated, it obtains an Eclipse output
tree, parses it with a visitor2 pattern, then outputs an C# AST. There
are a number of derived classes performing specialised functions, such
as AbstractNestedClassBuilder, which is for parsing nested classes
(classes defined inside another class).

• The C# AST elements. Unlike the Java AST, this is not provided by the
Eclipse environment. Instead, it is part of the Sharpen project.

• The CSharpPrinter class. Also implementing the visitor pattern, it
parses the C# AST and outputs syntactically valid C# code.

• The Configuration class. Amongst other things, it configures mappings
between Java and C# classes, methods and properties and configures var-
ious parameters of conversion.

• A variety of internal classes, which will be discussed in more detail as
needed later on. They include NamingStrategy and Mappings.

1The original codebase of Sharpen can be viewed at http://source.db4o.com/db4o/trunk/
sharpen/sharpen.core/src/sharpen/core/. Please note that it does not correspond with
code used here, even without the modifications made to support C++.

2See http://en.wikipedia.org/wiki/Visitor_pattern for more information about this
pattern.

3

http://source.db4o.com/db4o/trunk/sharpen/sharpen.core/src/sharpen/core/
http://source.db4o.com/db4o/trunk/sharpen/sharpen.core/src/sharpen/core/
http://en.wikipedia.org/wiki/Visitor_pattern

2.2 Other software frameworks used

2.2.1 Java Native Interface (JNI)
Java Native Interface (JNI)3 is an adaptation layer allowing Java classes to use
native C or C++ code. For any method declared with the native keyword, the
necessary declaration is generated automatically. This was used to implement
networking and threading routines in C++ that could be called from Java.
These would then be adapted to run C++ code directly. There are several
caveats when using JNI, most originating in the JVM’s memory management
and garbage collection routines.

2.2.2 PThreads
PThreads (short for POSIX threads)4 is the standard thread library for POSIX
systems, such as Linux. Although all implementation here was done on Win-
dows, PThreads is still preferred to a native Windows solution, as PThreads
offers the only somewhat platform-independent solution for threads available at
the current time. PThreads was used to implement the creation of threads, as
well as methods to lock and unlock mutexes, to wait and to notify threads.

2.2.3 C++ Standard library classes
The C++ standard provides for a variety of classes, of which only two are used
in this project:

• The std::string class5. This is the preferred alternative to CStrings
(arrays of chars) in C++. They are mutable, supporting common oper-
ations such as concatenation (by overriding the “+” operator), assignment
or substring finding. The class manages memory automatically, allocat-
ing new space as needed. They are used in lieu of java.lang.String
class, so mutable strings are not needed. Rather, they are used like Java
strings, with new ones being created whenever a string operation (e.g.
concatenation) is performed.

• The std::vector class6. This is one of various generic containers supplied
by the STL (standard template library). It is intended as an alternative
to arrays and is used to replace Java arrays. Like the std::string it can
grow and shrink as needed, reallocating memory and copying its contents
if needed and it guarantees contiguous memory assignment. Also like
strings, not all of the functionality provided by the class is required. They
support access via the index operator or with the at() method, the latter
throwing an exception if the index is out of bounds.

3See online manual at http://java.sun.com/docs/books/jni/
4Online tutorial at https://computing.llnl.gov/tutorials/pthreads/
5Online reference: http://www.cplusplus.com/reference/string/string/
6Online reference: http://www.cplusplus.com/reference/stl/vector/

4

http://java.sun.com/docs/books/jni/
https://computing.llnl.gov/tutorials/pthreads/
http://www.cplusplus.com/reference/string/string/
http://www.cplusplus.com/reference/stl/vector/

Chapter 3

Sharpen for C++

3.1 Overview of architectural changes
Here is a brief summarisation of the main classes that I have added to Sharpen
in order to accommodate Java-to-C++ conversions. Details of how different
parts of the language were adapted are discussed in the next section.

• CPPBuilder: In general, I have attempted to adapt Sharpen with as few
changes to the CSharpBuilder class as possible. There are several child
classes of CSharpBuilder, so this must be taken into account when
making modifications. I have chosen to add new class, CPPBuilder,
which derives from CSharpBuilder. This class only overrides methods
when it is neither possible to make the changes further along the conversion
stack, nor to make changes which are language-agnostic, for instance by
the use of factory classes.

• CPPSourcePrinter and CPPHeaderPrinter: These classes replace
the CSharpPrinter (they do not derive from it, but rather from its
parent class CSVisitor). For each class, a class declaration is produced
in the header file, and a class definition is produced in the source file. It
is here that the majority of adaptations were made.

• AbstractASTElementFactory: Where it was necessary to replace CS
AST element classes, the CPP equivalent classes derive from the originals.
The AbstractASTElementFactory class implements abstract factory
pattern1 and has two concrete implementations, CSASTElementFac-
tory and CPPASTElementFactory. The factory methods pass on
all required information needed to construct the CPP objects, the extra
information is simple ignored by the CS class. As all of the CPP elements
derive from equivalent CS methods, it would have been possible to replace

1See http://en.wikipedia.org/wiki/Abstract_factory_pattern for more information
about this pattern.

5

http://en.wikipedia.org/wiki/Abstract_factory_pattern

them entirely or even simply modify the base class, but I have attempted
to limit changes to the parts of the code relevant to CS conversions to
avoid introducing bugs there. The classes that I have overridden are:

– CSReferenceExpression to CPPReferenceExpression

– CSMemberReferenceExpression to CPPMemberReference-
Expression

– CSTypeReference to CPPTypeReference

– CSCompilationUnit to CPPCompilationUnit

– CSParenthesizedExpression to CPPDereferenceExpression

• CPPConfiguration: This class derives from the Configuration class.
It provides mappings between Java and CPP methods, although only
a few of these are implemented. Furthermore, in conjunction with the
CPPNamingStrategy and CPPMappings, it maps fully qualified type
names2.

• CPPNamingStrategy and CPPMappings: As mentioned above, these
classes are responsible for mapping type names. The main changes re-
quired here are to accommodate the differences between C# type names
(which are essentially equivalent to Java type names) and C++ type
names, where it is necessary to distinguish between namespace part and
the class name part (which may consist of several nested classes). The
mappings class is an implementation of the Mapping interface. There
are several other services provided as an implementation of a interface,
although this was the only one that needed to be overridden.

Input files

CPPBuilder

CPPHeaderPrinter

CPPSourcePrinterCPPConfiguration

Figure 3.1: Simplified diagram of revised Sharpen structure.

2Fully qualified means that the name is supplied with the package name (in Java) or the
the namespace name (in C# or C++).

6

3.2 Changes in detail

3.2.1 Basic syntax
Fortunately, Java, C# and C++ share many elements of their basic syntax
(they are so-called “curly bracket languages”). if/else, for, while, do/while,
switch/case and try/catch blocks are translated verbatim. Likewise, the
return, new, throw, continue and break statements are translated with-
out any changes. The delete operator does not occur in Java and is never
generated by Sharpen - Garbage collection must be used if any objects are gen-
erated on the heap. In general, each Java statement corresponds with a C++
statement and each Java code block corresponds with a C++ code block. Vari-
able declaration is considerably different: All Java objects are either a primitive3
or an object4, including enumerators, strings and arrays, which are special cases
and are dealt with below.

All Java primitives correspond to a C++ primitive and are translated as
such. Java objects cannot be translated directly, however. Java objects are ad-
dressed with references, which, in spite of the name, actually correspond more
closely to C++ pointers than C++ references. In particular, it is impossible to
point a C++ reference at a new address once it has been initialised, and all C++
references can only be initialised at declaration, not later on. For this reason, I
have chosen to map Java object references to C++ pointers. The CSTypeRef-
erence AST element, which is used to represent variables’ types, does not carry
any information on whether or not the type being referenced is a primitive or
not. Although it would be possible to directly compare the typename, this solu-
tion would be inelegant and is not future-safe, as new primitives could be added
in the future5. Instead, I have added a new AST element, CPPTypeRefer-
ence, which contains information about whether or not it is a primitive. The
header and source printers then add a dereferencing operator as needed, such as
in variable declarations. Type casting is translated as C style type casts - that
is, (typename) expression - for primitives and as dynamic_cast<typename>
for non-primitives (It is not possible to use dynamic_cast for primitives as it
can only be used to convert pointers and references).

A further difference in basic syntax is the member reference operator. In the
Java the member reference operator “.” is used for all member references and cor-
responds to both the member reference operator and scope resolution operator
in C++. Apart from the scope resolution operator, it is necessary to distinguish
between access to static and non-static fields as well invocation of static and
non-static methods. For this reason, I have created the class CPPMember-
ReferenceExpression, derived from CSMemberReferenceExpression,
which also contains information about static/non-static access. Static access is
done via the scope resolution operator, while non-static access is done with the

3int, short, long, boolean, char, byte, float or double
4That is, a subclass of java.lang.Object
5Consider the long long primitive, for an integer of at least 64 bits, added to C and

C++.

7

arrow expression “->”, as all classes are accessed via pointers. Objects are never
allocated on the stack, reflecting the lack of support for stack-based storage of
objects in Java.

3.2.2 Strings
Both Java and C++ provide a string object. CPPSharpen uses a pointer to
a std::string object whenever it encounters a java.lang.String. In par-
ticular, a C++ string literal, which returns a CString, must be enclosed by a
std::string constructor invocation, using the CSConstructorInvocation-
Expression element. This may result in the unnecessary instantiation of ob-
jects, and underscores the necessity of using a garbage collector in conjunction
with a converted program, as neither Java not C# have a delete operator or
any equivalent alternative.

It is also necessary to handle string concatenation separately, as Java allows
concatenation with the “+” operator, a deviation from the general principle
of not allowing operator overloading in Java. Although std::strings support
concatenation with the “+” operator, like all of the STL classes, they require ref-
erences instead of pointers. To accommodate this, the visitor for the InfixEx-
pression node has been overridden. The new handler is used only when either
side of an InfixExpression has a String binding. Then the left hand and right
hand expressions are converted to CSExpressions with the mapExpression
method. Both expressions are embedded in a CPPDereferenceExpression,
then added to a new CSInfixExpression and this finally to a CSConstruc-
torInvocationExpression. If there are more than two operands, the extra
ones are contained in a list. These are then processed as above, with the entire
previous expression as the left side of a new CSInfixExpression. The net
effect is that in each infix operator, each of the operands is dereferenced to a
std::string, the standard concatenation via operator+ is performed, then a
new string with the result is constructed. This is repeated recursively if there
are more than two operands.

In order to handle std::string methods such as compare, it is necessary to
first dereference the std::string pointer. This is achieved by overriding the visi-
tor for MethodInvocatation AST nodes. A new method, isNativeMethod,
identifies calls to standard library functions (currently only std::string meth-
ods) and a second method isNativeArgument identifies all arguments which
require dereferencing. These are then stored in a CPPDereferenceExpres-
sion. This could be expanded in future to allow more native methods to be
used.

3.2.3 Arrays
Java arrays are objects which support bounds checking and “know” their max-
imum size. Standard C++ arrays, either declared statically or with the new
operator, do not do bounds checking and do not record their size, at least not
in a manner available to the programmer. It is therefore necessary to provide a

8

replacement. I have elected to use the std::vector container, which actually
supports automatic resizing (which is not necessary, as Java arrays cannot be
resized) and bounds checking. Once initialised, it provides a reference to a its
contents via an index expression, allowing it to be used just like an array.

Unfortunately, it is not possible to instantiate a std::vector with an array
literal. It is therefore necessary to create a temporary constant local variable,
named __init_arrayname, where arrayname is the name of the array to be
declared. The array is then initialised with the iteration constructor, which
takes the start and end6 points of the array. If no initialiser is supplied, only
the size of the array, then the array is created with the repetitive sequence
constructor, using the default constructor of the element type.

The length property of the Java array is mapped to the length() method
of std::string. Currently, the use of iterators is not supported. Java and C++
iterators have very different semantics, with Java iterators using the next()
method and C++ iterators supplying the begin() and end() methods and
overloading the incrementation operator. Since C++ currently has no syntax
for a foreach block, unlike Java and C#, one typical usage of iterators would
not be possible to implement.

3.2.4 Enumerations
As with arrays, Java enumerations, while declared in the same way as C++
enumerations, are considered to be objects by the language - a subclass of
java.lang.Enumeration - while instantiated C++ enumerations are consid-
ered primitives. This implies that Java enumeration can and do have methods,
which C++ enumerations can and do not. This problem is also present for C#,
in which enumeration are also primitives. The solution chosen by the Computer
Engineering and Networks Laboratory was to create a supplemental “extension”
class which would implement the missing methods statically. This solution was
maintained here, was changes being made as necessary to make the generated
code C++ compliant. The extensions classes generated supply a static array
VALUES containing all possible values of the enumeration as well as the fol-
lowing static methods:

• values() - Returns the array VALUES

• valueOf(string) - Returns the enumeration value with the name spec-
ified in the parameter

• name(enum) - Returns the name of the enumeration value specified in
the parameter

In addition, an extra value _null is added to the set of enumerator values.
As Java enumerations are objects, accessed via references, it is necessary to
somehow represent the value of a null reference in C++ or C#.

6Actually one step beyond the end of the array

9

3.2.5 Classes and interfaces
This is where most of the important changes were made. Where Java and C#
classes are declared and defined in the same place, C++ classes are typically
declared in a separate header and then defined in a source files. This archi-
tecture has been used here - The CPPHeaderPrinter class and the CPP-
SourcePrinter class, both derived from the CSVisitor class, are executed in
serial, producing a header file and a source file for every Java class encountered.
Classes defined within another class do not produce separate files. Interfaces
are treated as classes, as C++ does not support a special interface type. The
classes produced from interfaces contain only public purely virtual methods7.

The class declarations are produced analog to the original Java classes, with
several modifications. The header printer collects all the members and sorts
them according to visibility, printing their declarations and the appropriate
header. The class methods do not contain a body, the body is defined in the
source file instead. Otherwise, the methods are printed with mapped modifiers,
parameters and return types. All non-static methods apart from the construc-
tors and destructor are declared as virtual, even if they are not overridden in
derived classes. Abstract methods become purely virtual methods, with “= 0”
added to the definition. Static methods become C++ static methods. The con-
structors are printed as-is, the destructor is printed only if the class overrides
the finalize method, with this method then becoming the destructor.

Constant fields are printed verbatim. Non-constant fields have their ini-
tialiser removed, as C++ does not allow non-constant fields to be initialised in
the class declaration. Instead, static fields have their initialiser moved to the
source file, while non-static fields have theirs moved to each defined constructor,
with a new default constructor being created if none existed beforehand.

Types, that is, classes, interfaces and enums, are declared recursively in
the same manner as the containing class: Without definitions. All anonymous
classes are translated to a nested class with a random name, as C++ does
not support anonymous classes. The extension classes referred to in 3.2.4 on
the preceding page are created outside the class in which the enumeration is
declared, at the same level as the declaring class. If extension classes are used,
the main class8, is printed first. This is done for the sake of extension classes:
The std::vector class requires any type used to be fully defined and not just
forward declared, so that it can allocate the correct amount of memory per
element. Since the enumeration declaration is in the main class, the main class
must be declared before the extension classes.

The source printer prints out all methods declared in any class in the header
file, and also any static fields. There is no indentation and everything is declared
“naked” in the source file without any surrounding blocks. Non-static fields and
type declarations are not printed. Also, any method declared as native is not

7A purely virtual method, that is, a method with no definition in this class, corresponds to
an abstract method in Java and C#. Any class which contains such a method is an abstract
class and cannot be instantiated.

8The class with the same name as the compilation unit

10

printed here, as such methods would simply be printed without a body. For each
member defined, the full list of containing classes, usually one but possibly more
if nested classes are used, are printed out with the scope resolution operator.
In order to keep track of this, the source printer keeps a list of all current
classes in a stack. Method bodies are reproduced verbatim, except in the case
of constructors, where there may be statements added to define non-static non-
constant fields, potentially with an extra line for initialisation if the variable is
an array.

Java classes can only inherit from a base class, although they can implement
an unlimited number of interfaces. The C++ classes generated inherit the base
class first and then all classes created from interfaces - there is no difference
between the actual base class and the interface classes in C++. All inheritance
is public, as this corresponds semantically with Java inheritance and Java does
not allow any other form of inheritance. The base class for the current type
is stored in a stack. If base constructors are called by the class, the base class
constructor name is added to constructor definition header of the derived class
- C++ does not have a base or a super keyword and does not allow chained
constructor invocations to be defined in the class declaration.

If the main class contains a static void Main(String[]) method, then
an addition int main(int argc, char **argv) function printed outside that
class. This is the only time that a function (as opposed to a method) is gen-
erated. The function takes that input arguments, initialises a std::string for
each one, then writes the std::strings into an std::vector and calls the
Main method with that vector. This allows the translated Java code to access
arguments in the normal manner.

3.2.6 Namespaces and compilation units
All Java classes are contained in a package, declared with the package state-
ment at the start of the compilation unit. The nomenclature for packages gener-
ally reflects the directory structure, although the package namespace is flat, i.e.
it is not possible to embed one package inside another. The use of names divided
by a point merely suggests a hierarchical structure. All Java type names can be
referred to as a so-called “fully qualified name”, which includes the full package
name, then the type name. It is also possible to omit the package name, if the
import statement is used. Packages provide an extra layer of encapsulation,
preventing name conflicts.

In order to obtain the same effect in C++ (or C#), the use of namespaces is
required. Namespaces are declared in a block with the namespace keyword. It
is possible to nest namespaces inside each other. Following the Java convention,
no use is made of this capability, all namespaces are flat. As with Java, it is pos-
sible to fully qualify a type name with a namespace, using the scope resolution
operator “::”. Alternatively, this may be avoiding, either by importing a single
type into the current namespace, with the using keyword, or by importing an
entire namespace, with the using namespace keyword.

Sharpen keeps track of all namespaces used in a class, importing all of the

11

namespaces so that fully qualified namespaces are generally not needed. All
namespaces are mapped internally by CPPConfiguration, so if an equivalent
C++ class is supplied for a Java class, the namespace can be transformed as well
as the class name itself. Each package becomes its own namespace, with the “.”
separator being replaced with an underscore, as C++ does not allow points in
namespace names. The scope dereferencing operator is only used at the end of
the namespace, to separate the namespace from the class name and any internal
class names. In order to differentiate between the namespace and class part, the
CPPMappings class uses the type binding to find out the package name, then
cut the package name from the fully qualified name, leaving the class names.

In addition to namespaces, C++ also requires the use of #include direc-
tives. The source file automatically includes the header file for the same class.
To implement this, the CSCompilationUnit class is overridden by CPPCom-
pilationUnit class, the latter including the property fileName. This stores
the file name of the compilation unit. The header file contains an #include
directive for each header file of a class referenced by the class under consider-
ation. The CPPConfiguration class, when it performs the type name map-
ping, also registers the classes referenced in a set, which is also included in
the CPPCompilationUnit. Each of #include directives produced has a rel-
ative path name. The assumption is that the original code is in a directory
structure which reflects the package names. To find the correct path, the CPP-
Configuration class counts the number of name space parts (separated by an
underscore) in the current namespace and invokes the “..” directory the same
number of times. In addition, there are a number of includes in every header,
namely for <vector> and <string>. Although it would have been possible
to only include these if needed, the extra code complexity would hardly have
merited the small savings in compile time.

3.3 The CS/CPP AST
In this section, I will provide a brief overview of the AST used to generate
C# or C++ code. This is both to aid understanding of the conversion and
show the internal representation of the code, as well as an aid to anyone who
wishes to further develop the plugin, as there is no extant documentation that
I am aware of. I will not provide any information about the Java AST, as
this is adequately documented online9. Not all possible elements are listed,
some are not generally produced by Sharpen, others are not interesting (e.g.
documentation and comments). All of the following classes are derived from
CSNode, the base class of all AST elements:

• CSCaseClause - Has a list of expressions and a body of code. When
multiple expressions are used, the individual cases are written sequentially,
allowing multiple expressions for one block of code.

9See http://help.eclipse.org/galileo/nftopic/org.eclipse.jdt.doc.isv/reference/
api/org/eclipse/jdt/core/dom/package-summary.html

12

http://help.eclipse.org/galileo/nftopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/package-summary.html
http://help.eclipse.org/galileo/nftopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/package-summary.html

• CSCatchClause - Has an exception (as a variable declaration) and a
body of code. Can also be anonymous, specified with boolean variable.

• CSCompilationUnit and CPPCompilationUnit - Representing an in-
dividual file of code. Has a list of types (generally with just one class),
a namespace, a list of usings and a list of comments. CPPCompilatio-
nUnit adds a file name (so that the source file includes the right header)
and a list of files to include.

• CSEnumValue - Has a string for a name.

• CSExpression - base class for all expressions, that is, a piece of code
that represents some kind of value.

– CSAbstractInvocation - The base class for all method invoca-
tions. Has a list of argument expressions.

∗ CSMethodInvocationExpression - This class represents all
method invocations. Adds an invoking expression (generally a
reference expression) and type arguments, for use with templates.
· CSConstructorInvocationExpression - This represents
the invocation of a constructor with the new keyword. Does
not add any new members.

– CSArrayCreationExpression and CSArrayInitializerExpres-
sion - They are used for array initialisations. CSArrayCreation-
Expression can either represent a new empty array with a fixed
length (represented as an expression) and an element type, or the
creation of an array literal with an element type and a CSArrayIni-
tializerExpression, which contains a list of expressions to be printed
out between curly brackets.

– CSBaseExpression - Represents invocation of base class construc-
tor. Special work around needed, as C++ does not have a base
keyword. See 3.2.5 on page 10.

– CSBoolLiteralExpression, CSCharLiteralExpression, CSNum-
berLiteralExpression, CSStringLiteralExpression - Repre-
sent all kinds of literals. Contains the value of the literal to be
included. The string literal also provides an escaped value, which
includes the quotation marks around the string.

– CSNullLiteralExpression - Used for null pointer. No members.
In C++, prints out a “0”.

– CSCastExpression - Has an expression to cast and a type reference
to cast it to.

– CSConditionalExpression - Used for the ternary operator “condi-
tion_expression ? expression_if_true : expression_if_false”. Con-
tains all three expressions as members.

13

– CSDeclarationExpression - Contains a list of variable declara-
tions.

– CSIndexedExpression - Used for index access to an array or con-
tainer. Translated with “->operator[]()”. Contains expression
(usually a reference) and a list of expressions for the indexes

– CSInfixExpression - Contains two expressions (left and right) and
a string and represents expressions of the form “ left OP right”. E.g.
a + b

– CSParenthesizedExpression - Contains an expression and repre-
sents expression surrounded by parentheses.

∗ CPPDereferenceExpression - As above, but add derefer-
encing operator “*” before parentheses.

– CSReferenceExpression and CPPReferenceExpression - Has
a string and generally represents variable or method names. CP-
PReferenceExpression also has a boolean to mark whether the
reference is to a primitive. In a declaration, non-primitives need a
referencing operator so that they are declared as pointers.

∗ CSMemberReferenceExpression and CPPMemberRefer-
enceExpression - Contain an expression and a string and rep-
resent expressions of the form expression.string, such as used in
method invocation or field access. CPPMemberReference-
Expression also has a boolean for static access, in which case
the scope resolution operator “::” is generated.

– CSThisExpression - Represents the this keyword. No members.

– CSTypeReferenceExpression - Base type for all type names,
that is, anything that can be declared as a variable.

∗ CSArrayTypeReference - Represents array type. Has an
integer for the number of dimensions and a further CSTypeR-
eferenceExpression for the element type.

∗ CSTypeReference and CPPTypeReference - Represents a
normal type. Has a string for a type name and list of CSTypeR-
eferenceExpressions for type arguments. The latter are used
in case the type is a template: They are printed between the
angular brackets.

– CSUnaryExpression - The base class for all expressions with just
one operand. Has a string for the operator and an expression for the
operand.

∗ CSPostfixExpression - Expressions of the form OperandOP.
E.g. i++

∗ CSPrefixExpression - Expressions of the form OPOperand.
E.g. !a

14

• CSMember - base class for all members of classes and interfaces. Has a
string for the name and for the signature and a CSVisibility object for
visibility10.

– CSMethodBase - The base class for all declarations of methods,
anything that can be called. Has a list of variable declarations for
parameters and a body. There is a boolean for variadic arguments,
but this is not currently supported for C++.

∗ CSConstructor - Has a CSConstructorModifier for a
modifier11 and a CSConstructorInvocationExpression for
chained constructor invocation (to call base class constructor).

∗ CSDestructor - No additional members.
∗ CSMethod - Has a CSMethodModifier for modifiers12, a

type reference expression for return types and a list of CSType-
Parameters (if the method is a template method).

– CSType - The base class for all types that can be defined by the user.
Has an integer for source length. Also supports structs, but they
are not supported by Java and therefore not produced by Sharpen.

∗ CSEnum - Has a list of strings representing all the possible values
of the enum.

∗ CSTypeDeclaration - Base class for class and interface decla-
rations. Has a list of type reference expressions for base types, a
list of members, a list of type parameters (if it is a class/interface
template) and a boolean for partial declarations, but this is not
necessary in C++.
· CSClass (CSEnumExtensionClass) - Contains a CSClass-

Modifier for class modifiers13. The CSEnumExtension-
Class class also has a reference to them enum that it was
created for.

· CSInterface - No additional members. Treated like a class
with all methods declared as public and abstract and no
fields, as C++ does not have special support for interfaces.

– CSTypedMember - The base type of members which have a type.
Has a type reference expression to represent the type.

∗ CSField - Represents a member variable of a class. Adds a
list of field modifiers14 and an initialisation expression, which
is optional. If there is a static modifier, then the field needs a
definition in the source as well as a declaration in the header.

10private, internal, protected, protectedinternal and public
11none and static
12abstract, abstractoverride, sealed, override, virtual, static and none. Added

for C++ only are extern and externstatic
13static, abstract, sealed and none
14static, readonly, const and volatile

15

• CSStatement - base class for all statements (a “line of code”) and groups
of statements. No members.

– CSBlock - Has a list of statements. Represents a code block, a list
of statements (one on each line) surrounded by curly brackets.

– CSBlockStatement - Represents various keywords which have an
expression and a code body.
∗ CSForEachStatement - Represents “for (var : collection)”

syntax. Has a variable declaration object for var. Not supported
by C++.

∗ CSForStatement - Has a list of initialising expressions and
updating expressions. The former are in the first part of the
for statement’s parentheses, the latter in the last. The inherited
expression forms the iteration condition.

∗ CSLockStatement - Not supported by C++.
∗ CSWhileStatement and CSDoStatement - No new mem-

bers. Represent the while and do ... while statements.
– CSBreakStatement, CSContinueStatement - These simply rep-

resent the keywords of the same name.
– CSDeclarationStatement - Contains a single variable declara-

tion. Represents a single, stand-alone variable declaration.
– CSExpressionStatement - Has a single expression as a field. Rep-

resents an expression or tree of expressions. Many standard lines of
code will be represented by this type.

– CSIfStatement - Has an expression to evaluate for truth, and two
blocks of code, one underneath the “if”, the other underneath the
“else” keyword. The latter block is optional.

– CSReturnStatement, CSThrowStatement - A single expres-
sion to return or throw from a method.

– CSSwitchStatement - Has a single expression to evaluate and list
of CSCaseClauses.

– CSTryStatement - Has a list of CSCatchClauses, a (main) body
and a “finally” body. Note that the finally keyword is not sup-
ported by C++.

• CSTypeParameter - Used for templates or generics. Has a name and
two lists of type parameters: restrictions and sub-parameters.

• CSUsing - Used for using namespace statements. Contains a string
with the namespace name.

• CSVariableDeclaration - Represents a variable declaration, either in
a statement or in a method declaration. Has a string for the name, an
expression for an initialiser (optional) and a type reference expression for
the variable type.

16

Chapter 4

Java API

4.1 Networking

4.1.1 Address resolution
In order to allow Java applications to resolve hostnames into IP addresses,
I have reimplemented the java.net.InetAddress, java.net.Inet4Address
and java.net.Inet6Address classes. java.net.InetAddress1 is implemented
as an abstract class, from which the other two derive, although almost all of the
functionality is implemented in it. It implements the getByName(String),
getByAddress(byte[]) and getByAddress(String, byte) methods, the
equivalent constructors as well as getters and setters for the address and host-
name. The important functionality is in the private native method getIPad-
dress(String). This method calls a C++ method (via JNI, 2.2.1 on page 4)
which performs the DNS lookup. The native method calls the standard getad-
drinfo2 function, which returns an addrinfo3 structure. If no address is
found, the method throws an UnknownHostException, otherwise it exam-
ines the ai_family component to determine whether the address is an IPv4
address or an IPv6 address. The ai_addr component is typecasted to either
sockaddr_in4 or sockaddr_in6 as needed then the sin_addr/sin6_addr
element is copied to a jbyte pointer. This is then used to copy the address into
a byte array, after which the method cleans up and returns. The calling method
recognises the address type by looking at the array length and instantiates either
an Inet4Address or an Inet6Address object as needed. The Inet4Address
and Inet6Address classes override only the abstract addresslength method
to return the number of bytes in the address. The Inet4Address class also
allows construction with an integer instead of a byte array, for convenience.

1For the original class, see http://download.oracle.com/javase/1.4.2/docs/api/java/
net/InetAddress.html

2See http://msdn.microsoft.com/en-us/library/ms738520(v=vs.85).aspx
3See http://msdn.microsoft.com/en-us/library/ms737530(v=vs.85).aspx
4See http://msdn.microsoft.com/en-us/library/ms740496(v=vs.85).aspx

17

http://download.oracle.com/javase/1.4.2/docs/api/java/net/InetAddress.html
http://download.oracle.com/javase/1.4.2/docs/api/java/net/InetAddress.html
http://msdn.microsoft.com/en-us/library/ms738520(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms737530(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms740496(v=vs.85).aspx

The implementation here is essentially platform-agnostic, although it has
only been tested with Winsock. The only deviation from the standard are the
WSAStartup and WSACleanup functions, which must be called before and
after using Winsock functions, respectively. The implementation supports IPv6
and should allow it to be used transparently.

4.1.2 Datagram sockets
I have also reimplemented the DatagramSocket5 and DatagramPacket6

classes. The DatagramPacket class has an address field, port, offset and
length fields and most importantly, a data buffer, which uses the ByteBuffer7

class. The class provides standard constructors as well as getter and setter func-
tions for these fields. The ByteBuffer is allocated with the allocateDirect
static method, allowing direct writing to and reading from it in native methods.

The DatagramSocket class, apart from the standard constructors and get-
ter and setter methods, provides wrappers for the socket8 and bind9 methods,
which are called when the object is constructed. These are required to allow
the program to bind to a port number in order to receive packets. Most impor-
tantly, it has the send(DatagramPacket) and receive(DatagramPacket)
methods. These call the private native methods sendto and recvfrom, re-
spectively. The sendto method obtains a pointer to the data buffer (which is
efficient, as it has been allocated as a direct buffer), then initialises a sockaddr
structure for either an IPv4 or an IPv6 address, finally calling the sendto10

function with the appropriate parameters, returning the error number, which is
zero if the function is successful.

The recvfrom method also makes use of the direct buffer, calling the
recvfrom11 function, which writes the received data into the buffer, as well as
writing a sockaddr structure with the origin of the packet. The recvfrom
method allocates a 17 byte array, using one byte to mark whether the packet
is an IPv4 or an IPv6 packet. The remaining space is used to store the sender
address. After cleaning up, the method returns the number of bytes used. The
receive method then uses this to create a new InetAddress object holding
the sender address and copies the data to the DatagramPacket specified in
the parameter.

5See http://download.oracle.com/javase/1.4.2/docs/api/java/net/DatagramSocket.
html

6See http://download.oracle.com/javase/1.4.2/docs/api/java/net/DatagramPacket.
html

7See http://download.oracle.com/javase/1,5.0/docs/api/java/nio/ByteBuffer.html
8See http://msdn.microsoft.com/en-us/library/ms740506(v=vs.85).aspx
9See http://msdn.microsoft.com/en-us/library/ms737550(v=vs.85).aspx

10See http://msdn.microsoft.com/en-us/library/ms740148(v=vs.85).aspx
11See http://msdn.microsoft.com/en-us/library/ms740120(v=vs.85).aspx

18

http://download.oracle.com/javase/1.4.2/docs/api/java/net/DatagramSocket.html
http://download.oracle.com/javase/1.4.2/docs/api/java/net/DatagramSocket.html
http://download.oracle.com/javase/1.4.2/docs/api/java/net/DatagramPacket.html
http://download.oracle.com/javase/1.4.2/docs/api/java/net/DatagramPacket.html
http://download.oracle.com/javase/1,5.0/docs/api/java/nio/ByteBuffer.html
http://msdn.microsoft.com/en-us/library/ms740506(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms737550(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms740148(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms740120(v=vs.85).aspx

4.2 Threads

4.2.1 Creating new threads
The Thread12 class and the Runnable13 interface have been reimplemented to
allow the use of threading in converted code. The Runnable interface is iden-
tical to the standard one. The Thread class supplies a constructor which takes
a Runnable object, as well as the start method. This calls the private native
start(Runnable) method. This method creates a new PThread (see 2.2.1 on
page 4), then stores the Runnable object in a global reference, finally executing
the new thread by calling the internal execThread function, passing the global
reference in a structure. The execThread function, now running in the new
thread, attaches the thread to the JVM, then calls the Runnable object’s run
method. After this returns, it deletes the global reference, detaches the thread
from the JVM and exits. The JNI_OnLoad and JNI_OnUnload functions
are also overloaded, allowing the JVM pointer to be stored to a global variable,
as well as initialising the MethodID object needed to make the JNI method
call to run at load time rather than than execution time, saving overhead.

4.2.2 Mutexes and condition variables
In order to allow the use of synchronisation primitives, I have reimplemented the
Object14 class as CppObject, from which all the other reimplemented classes
derive. The class contains one PThreads mutex and one PThreads condition
variable, which are initialised as needed by the initMutex and initCondition
methods, the pointer to the variables being stored in a long value. Likewise, the
objects are destroyed in the class finalizer. The class provides wrappers for the
pthread_mutex_lock, pthread_mutex_unlock, pthread_cond_signal,
pthread_cond_broadcast and pthread_cond_wait15 functions. The
methods _enter and _exit allow for the locking and unlocking of mutexes,
while the _notify, _notifyAll and _wait methods supply the same func-
tionality as similarly named Object methods.

12See http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html
13See http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Runnable.html
14See http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
15It should also provide the pthread_timedwait function. Unfortunately, MinGW does

not support the clock_gettime function needed for this to work.

19

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Runnable.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html

Chapter 5

Future Work

In this chapter, I will briefly discuss various aspects of Java-to-C++ conversion
that still need attending to. This is by no means a complete list of features
missing from the conversion, as there are many ways in which Java and C++
differ which make an isomorphic translation prohibitively difficult.

5.1 Synchronisation
In 4.2.2 on the preceding page the CppObject class was described that allows
for the use of synchronisation primitives in converted code. The Java language
supports the synchronized keyword to allow blocks of code or entire methods
to be serialised, preventing concurrency conflicts. The synchronized keyword
can make use of any object, as the synchronisation primitives are implemented
in the Object1 class, from which all other Java classes derive. This class has
a monitor that is used by the JVM to control access to synchronised code. By
using the _enter method of the CppObject at the beginning and the _exit
method at the end of such a code block, it is possible to simulate the effect of a
synchronized block in C++. The simulation of synchronised methods is more
difficult, but may be implemented by having a lockable object for each method,
then locking the method by use of a local variable that goes out of scope when
the method ends. The great difficulty is how to deal with exceptions properly
and prevent deadlock scenarios from occurring. The CppObject class also has
the _notify, _notifyAll and _wait methods, which can be used in the
same manner as the Java Object methods on which they are modeled. As
noted in 4.2.2 on the previous page, timed wait does not work properly yet,
although this is only a limitation of the MinGW compiler.

1See http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html

20

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html

5.2 Collections
Apart from built-in Java arrays which, as discussed in 3.2.3 on page 8, are
converted to C++ std::vectors, there is also the matter of Collections to
deal with. In general, the use of standard containers is preferred to arrays
in both languages. C++ provides a variety of containers through the STL:
std::vector, std::list2, std::map3 and std::set4 being the most important.
In Java, these are interfaces, namely List5, Set6 and Map7. These are then
implemented by various built-in classes, such as ArrayList8 or HashMap9.
There are three different approaches to converting the use of Java collections to
C++. Firstly, attempt to map the use of Java collections to C++ STL classes,
as was done with strings. Unfortunately, the semantics often differ considerably
and mapping in general is far less useful than for conversion to C#, where
the API is much more similar. Secondly, as was done with networking and
threads, it could be attempted to reimplement the classes in native code, giving
an efficient implementation which is also a much closer match to the original
Java Collections. This is feasible if only a few Collection classes are used, but as
a general approach it is time consuming and error prone. Unlike threading and
networking, the use of containers does not require any low-level access to the
operating system API, only the use of normal language primitives. It is therefore
conceivable that an already existing implementation of these containers written
in Java10 could be automatically translated to C++. This would ensure that
all Collections were available and match the originals semantically. It remains
to be seen how efficient this would be, as arrays are much more expensive to
create in converted C++ code than normal C/C++ arrays.

5.3 Exceptions
Java and C++ both support the use of exceptions, although important differ-
ences exist. C++ does not support a finally keyword; this is intentional and
there is no likelihood that such a keyword would be added later on11. This raises
the question how the Java equivalent should be converted to C++. C++ is far
more flexible about what can be thrown, Java requires all exceptions to derive
from a base class, although this is not an impediment to the correct transla-
tion by Sharpen. A major problem is compatibility with threading, which was
mentioned in 5.1 on the previous page. There is no way to guarantee that a

2See http://www.cplusplus.com/reference/stl/list/
3See http://www.cplusplus.com/reference/stl/map/
4See http://www.cplusplus.com/reference/stl/set/
5See http://download.oracle.com/javase/1,5.0/docs/api/java/util/List.html
6See http://download.oracle.com/javase/1,5.0/docs/api/java/util/Set.html
7See http://download.oracle.com/javase/1,5.0/docs/api/java/util/Map.html
8See http://download.oracle.com/javase/1,5.0/docs/api/java/util/ArrayList.html
9See http://download.oracle.com/javase/1,5.0/docs/api/java/util/HashMap.html

10For instance Apache Harmony, see http://harmony.apache.org/
11Bjarne Stroustrup states this explicitly in his FAQ: http://www2.research.att.com/~bs/

bs_faq2.html

21

http://www.cplusplus.com/reference/stl/list/
http://www.cplusplus.com/reference/stl/map/
http://www.cplusplus.com/reference/stl/set/
http://download.oracle.com/javase/1,5.0/docs/api/java/util/List.html
http://download.oracle.com/javase/1,5.0/docs/api/java/util/Set.html
http://download.oracle.com/javase/1,5.0/docs/api/java/util/Map.html
http://download.oracle.com/javase/1,5.0/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1,5.0/docs/api/java/util/HashMap.html
http://harmony.apache.org/
http://www2.research.att.com/~bs/bs_faq2.html
http://www2.research.att.com/~bs/bs_faq2.html

mutex is unlocked if an exception is thrown between the locking and unlocking
of a mutex, meaning that a deadlock could occur. As exceptions are widely
used in Java code, this must be addressed before such code can safely be used
in a multi-threaded environment. It may be possible to simulate the finally
block using labels and goto statements, although this could result in ugly and
incomprehensible code.

5.4 C++ 2011
Finally, I would like to refer to the C++ 2011 standard. Many of the issues
that arose during this semester thesis could have either been prevented entirely
or greatly simplified by the new standard12. In particular:

• The use of initialiser lists, so that temporary variables are no longer needed
for array initialisation. The usage is now the same as with Java arrays
and containers.

• The std::array container, which in particular stores its size and it is a
much closer match semantically to Java arrays than std::vectors which
can grow or shrink. It may also be more light-weight.

• Built-in support for the foreach statement, with the same syntax as Java
and C#.

• In-declaration member initialisation, so it is no longer necessary to create
a new default constructor to define member variables.

• Typed null pointers with the nullptr keyword.

• Methods can be explicitly declared to be overridden, and it is possible to
prevent methods from being overridden (with the new final keyword).

• unique_ptr and shared_ptr, which are especially useful for ensuring
that objects are deleted in case of exceptions. They may reduce the need
for garbage collection.

• Possibly the most important improvement is the addition of threading to
the standard library, which has many similar semantics to Java threads.
This would allow direct translation of Java threads to C++ threads with-
out worrying about compatibility or exception issues.

12See http://www2.research.att.com/~bs/C++0xFAQ.html

22

http://www2.research.att.com/~bs/C++0xFAQ.html

Chapter 6

Conclusion

In this semester thesis, I have developed a platform to convert Java to C++
code, with a view to simplify porting the Pulsar distributed media streaming
system to new platforms. To accomplish this I have adapted the Eclipse plugin
Sharpen, which converts Java code to C# code, to allow it to generate C++
code as an output, and I have reimplemented parts of the Java API in C++
using only generic APIs to maximise portability.

The Sharpen plugin essentially consists of two visitors, the first of which
steps through the Java source AST and creates a new AST for C#, the second
uses this second AST to output C# code. I have modified the first visitor and
replaced the second with two new visitors, producing a C++ class header and
a source file. I have made changes to the code output, taking into account the
syntactical differences between the languages. In particular, I have adapted
the handling of arrays, strings and enumerations, classes with inheritance and
interfaces as well as namespaces and compilation units. The plugin produces
compliant code for a large subset of the Java language.

Furthermore, I have translated parts of the Java API to C++, for usage by
the converted code. I have paid special attention to threading, with the creation
of new threads and synchronisation, as well networking, with hostname-to-IP
resolution as well as UDP based transport enabled. This code also supports
IPv6 and is agnostic of the layer 3 protocol used.

However, the support of C++ is by no means complete, nor was this the ob-
jective of this thesis. In particular, aspects not touched upon include exceptions,
collections as well as the implementation of the synchronized keyword. Even
then, not all valid Java code can be translated, as C++ lacks many elements
present in Java and to some extent also in C#. It is clear that further work will
be needed, especially with respect to the API, in order to translate large and
complicated programs such as Pulsar.

In a final section, I have pointed out the advantages of the C++ 2011 stan-
dard, which adds many new features to the language and to the API that makes
conversion both considerably less arduous, more semantically accurate and also
shorter and more elegant.

23

	Introduction
	Related Work
	Brief overview of Sharpen
	Other software frameworks used
	Java Native Interface (JNI)
	PThreads
	C++ Standard library classes

	Sharpen for C++
	Overview of architectural changes
	Changes in detail
	Basic syntax
	Strings
	Arrays
	Enumerations
	Classes and interfaces
	Namespaces and compilation units

	The CS/CPP AST

	Java API
	Networking
	Address resolution
	Datagram sockets

	Threads
	Creating new threads
	Mutexes and condition variables

	Future Work
	Synchronisation
	Collections
	Exceptions
	C++ 2011

	Conclusion

