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Abstract

The GPS signal can be used to determine the position of a navigation device in
an outdoor setting. However, in buildings the GPS signal is often attenuated
by the walls and the roof. Due to this, the signal strength is often too weak to
obtain an accurate position or a position at all.
We are looking for an alternative method to guide a person in an indoor setting
in this group thesis. For this purpose, we develop an Android application that
is based on the information obtained from the accelerometer and the magnetic
field sensor. The accelerometer measurements are used to detect and count steps
and the magnetic field sensor serves as a compass. The aim of this thesis is to
develop an application that doesn’t rely on floor plans of buildings. In fact, with
our application the user should be able to record routes and use already recorded
routes to navigate to specific locations.
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Chapter 1

Introduction

Most modern cars are equipped with a navigation system that uses the global
positioning system (GPS) to determine the position. These devices make it
possible to find an arbitrary destination by providing route information to the
driver of a car. However, as soon as the driver exits the car and enters a building,
the GPS signal is often insufficient.
In this group thesis, we are looking for a method that does not rely on GPS
signals to help a user to find a specific location inside a building. The aim is
to develop a navigation solution, that is independent of maps and floor plans of
buildings.
Modern smartphones include a multitude of different sensors. Two of those
sensors, namely the accelerometer and the magnetic field sensor, are especially
useful to determine the position of the user in an indoor setting. In this thesis,
the information received from the accelerometer is used to detect steps made by
the user. We then multiply the number of steps by the step length in order to
get distances. But knowing only the distance that has been covered so far is not
sufficient. Therefore, we use the magnetic field sensor in combination with the
accelerometer to calculate the orientation of the smartphone.
To evaluate the quality of the aforementioned methods, we developed an Android
application. In this application the distance measurements and the information
about the orientation of the device are used to record routes and to navigate
along prerecorded tracks.

1.1 Related Work

Several projects about indoor navigation already exist. Some of them rely on
external map data. Ferial Shayeganfar and Amin Anjomshoaa and A Tjoa [1], for
example, developed a smart indoor navigation solution that is based on Semantic
Web technologies and a Building Information Model.
Other projects are based on wireless data networks. Suguna P. Subramanian,
Jürgen Sommer, Stephen Schmitt and Wolfgang Rosenstiel [2] implemented a
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1. Introduction 2

system using bluetooth.
Furthermore Chin-Woo Tan and Sungsu Park [3] tried to build a navigation
system making use of multiple accelerometers without the need of a gyroscope.
In contrast to the projects mentioned above, our goal is to implement an Android
application for navigation that does not need GPS, external map information or
dedicated hardware.
In our thesis, we first have a look at some of the different sensors a modern
smartphone contains. Based on the sensor readings, we then develop a method
to measure distances and determine the orientation of the phone without using
the GPS. This information about the distance and the orientation is later on
used to record routes and to navigate along prerecorded routes.



Chapter 2

Sensors

Modern smartphones include many different sensors. In order to determine the
position of a smartphone in an indoor setting different sensors had to be taken
into account, because no single sensor is accurate enough for this task. One of
the sensors we analysed is the accelerometer.

2.1 Accelerometer

The accelerometer returns the actual acceleration of the smartphone splitted into
the components x, y and z in the unit m

s2
. The x-axis points in the cross direction

(from left to right) of the device, the y-axis points in the longitudinal direction
and the z-axis is orthogonal to the display of the device (see figure 2.1).
The gravity measured by the smartphone points away from the Earth’s center
because the accelerometer experiences the same acceleration as if the device was

Figure 2.1: Device coordinate system
source: http://developer.android.com/reference/android/hardware/SensorEvent.html

3

http://developer.android.com/reference/android/hardware/SensorEvent.html


2. Sensors 4

accelerated towards the sky.
Technically, on our devices the acceleration is measured by an integrated circuit
based on a spring-mass system. The springs and the mass are made of silicon.
The mass forms a capacitor together with a reference point on the chip. The
capacitance of this capacitor varies with the distance between the mass and the
reference point and can be measured and converted to the acceleration.
The sampling rate of the accelerometer can be influenced by registering the lis-
tener with one of the following parameters: SENSOR DELAY FASTEST,
SENSOR DELAY GAME, SENSOR DELAY NORMAL and SENSOR DELAY UI.
On the devices we used, SENSOR DELAY FASTEST corresponds to a sampling rate
of about 50 ± 1 Hz. The other three parameters correspond to a sampling rate
of about 25± 1 Hz.
Another sensor we used in our group thesis is the magnetic field sensor.

2.2 Magnetic Field Sensor

The magnetic field sensor measures the ambient magnetic field in the x-, y- and
z-direction of the device (see figure 2.1) in µT . These measurements represent a
vector that is tangential to the magnetic field line at the location of the device.
The length of this vector represents the magnitude of the magnetic field at the
specific location.
In order to measure the magnetic field in all directions, three orthogonal Hall
sensors are used.
After this overview of the sensors, we describe how we process the sensor mea-
surements in the next chapter.



Chapter 3

Processing Sensor Data

The raw sensor data mentioned above are not directly applicable for navigation.
They need to be processed first in order to get measurements suitable for navi-
gation. In this chapter we will discuss possible methods to process these sensor
data. One quantity which has to be measured in order to determine a position
is the covered distance.

3.1 Measuring Distances

To measure distances we use the accelerometer. The accelerometer provides raw
acceleration data. These must be processed to obtain distance measures which
then can be used for navigation. In the next subsection we would like to discuss
the mathematical integration of the accelerometer data.

3.1.1 Integration of the Accelerometer Data

With an ideal accelerometer the speed (~v) of the device could be calculated by
integrating the accelerometer data (~a) over time. Then the position (~x) of the
device could be calculated by further integrating the speed over time.

~v(t) =

∫ t

0
~a(τ)dτ

~x(t) =

∫ t

0
~v(τ ′)dτ ′

=

∫ t

0

∫ τ ′

0
~a(τ)dτdτ ′

But there are two problems with this approach:

5



3. Processing Sensor Data 6

1. The data of real accelerometers have small errors which are summed up
when integrating. Subsequently, the already erroneous value of the speed
must be integrated again to obtain the position, resulting in no longer
usable data.
For example, if the device is at rest, small errors are integrated resulting
in a small value of speed. This small speed is interpreted as a change of
position even if the device actually is not moving.

2. The problem is that the device can be arbitrarily oriented in space. How-
ever, for compensating the influence of gravity it is indispensable to know
its direction. The direction of gravity cannot be determined exactly be-
cause the orientation of the device can only be calculated based upon ac-
celerometer values. But only if the device is at rest, the accelerometer data
can be used to determine the orientation of the device. As soon as the de-
vice is accelerated, the direction of gravity is not identifiable anymore.
For example, if the device was positioned on a horizontal surface and ac-
celerated parallel to it by 9.81m

s2
, the x- and the z-axis would report an

acceleration of 9.81m
s2

.
Given that constellation, it would not be possible to determine the orien-
tation of the device, because the x- and the z-axes are ambiguous. The
same measurements could be made if the device was laying on its side and
was accelerated parallel to the z-axis.

Because of these two problems it is not possible to calculate the current position
of the device by integrating the accelerometer values over time. With the use
of a gyroscope the second problem could be solved, depending on its accuracy.
However, the first problem would remain unchanged or even get worse because
of the error imposed by the gyroscope. An error in the measurement of the
orientation of the device results in an erroneous compensation of the influence
of gravity. This further results in an increased error in the acceleration mea-
surement. Regarding the first problem this increased error in the acceleration
measurement results in an increased error of position.

3.1.2 Counting Steps

A more promising possibility for measuring distances is counting steps based
on the readings of the accelerometer. By counting steps, distances cannot be
measured exactly, but good estimates can be made.

Resultant Vector of the Accelerometer

Because the device can adopt an arbitrary pitch and roll, the individual axes
are not bound to the world coordinate system (see figure 3.1). The gravity (g)
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Figure 3.1: World coordinate system: x and y are both tangential to the ground
at the device’s current location. z is defined as the vector product of x and y. x
points towards east. y points towards the magnetic north and z is perpendicular
to the ground at the device’s current location and points away from the center
of the Earth.
source: http://developer.android.com/reference/android/hardware/SensorManager.html

could for example be mapped exclusively to the z-axis or as well to the y- and
x-axis, depending on the alignment of the device. Because of this condition,
steps cannot be measured based upon one particular component. We have to
find a way to reduce the relevant acceleration to one quantity on which the cal-
culations for counting steps could base upon. The relevant acceleration consists
of the measured acceleration minus gravity.
The magnitude of the resultant vector is defined as: |ares| =

√
ax2 + ay2 + az2

where ax, ay and az are the acceleration measurements in the x, y and z di-
rections respectively. It would be most straightforward to use the magnitude of
the resultant vector in order to reduce the three acceleration components to one
quantity.
The main issue with this method is that the magnitude of the resultant vector pri-
marily represents changes parallel to the direction of the gravity. Small changes
in the acceleration (∆a � g) orthogonal to the gravity are only represented by
a small percentage in the resultant vector (see figure 3.2) while changes in the
acceleration parallel to the gravity are completely represented by the resultant
vector (see figure 3.3). Furthermore, the influence of acceleration orthogonal to
the gravity is nonlinearly depending on the magnitude of the orthogonal accel-
eration. This means that small ∆a orthogonal to the gravity do not influence
the magnitude of the resultant vector while for larger ∆a the magnitude of the
resultant vector is highly dependent on ∆a. Therefore it is difficult to base the
calculation on the magnitude of the resultant vector because the influence of
acceleration orthogonal to the gravity is not known.
Another approach to eliminate the dependence of the direction of gravity we
analyzed was to low pass filter the individual components. The three low pass

http://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix%28float[],%20float[],%20float[],%20float[]%29
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x

Figure 3.2: |ares| is not influenced by ∆a for ∆a� g. |ares| − |g| ≈ 0

ares
g

Δa

y

x

Figure 3.3: |ares| is directly influenced by ∆a. |ares| − |g| = |∆a|

filtered components represent gravity as long as the orientation of the device is
not altered. As soon as the device is turned around an axis, the three low pass
filtered components are delayed. The size of this delay can be influenced during
the design of the low pass filter. If the delay is short enough it will not disturb
the recognition of steps.
The three low pass filtered components can then be subtracted from the raw
accelerometer readings. The outcome of this subtraction is a vector which rep-
resents the accelerometer readings without the gravity component.
If just the magnitude of the newly calculated vector is considered, a further
problem is implicated, because the magnitude does not contain any information
about the direction of the acceleration. This means, if the magnitude of the
acceleration remained fixed at the same value but the direction of acceleration
changed, this change could not be detected.
For example, if the device describes a circle in space without turning around
the axes of the device (see figure 3.4), the vector of the measured acceleration
describes a circle as well (see figure 3.5). However, this is not recognisable if
only the magnitude of the resultant vector is observed, because the lengths of
the vectors a1 to a12 are the same. This means, that the device can accelerate
in different directions without a change in the magnitude of the acceleration
vector. Therefore, we need another method to reduce the three acceleration
components to one quantity, without the loss of information about the direction
of acceleration.
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y

x
speed v

Device

a1 c

Figure 3.4: The device describes a circle around the centre c with speed v which
implies an acceleration a towards c.

a1

Figure 3.5: The acceleration experienced by the device describes a circle.
a(t1) = a1, a(t2) = a2, ...

Turning the Coordinate System of the Device

As we can see in figure 3.6, steps are well-defined by the acceleration in the
direction of the z-axis if the device is held horizontally. The x-axis shows the
acceleration to the left and right side and the y-axis the acceleration to the front
and back. The z-axis represents the acceleration upwards and downwards, which
is the most important direction with regard to counting steps. The z-axis of the
device corresponds to the z-axis of the world coordinate system if the device
is held horizontally. If it is possible to determine the acceleration parallel to
the z-axis of the world coordinate system (without influence of the horizontal
acceleration) this would suffice to base the calculations for counting steps upon.

Thus our goal is to turn the z-axis of the device coordinate system so that it
is parallel to the z-axis of the world coordinate system. On the Earths surface,
gravity is always parallel to the direction of the z-axis of the world coordinate
system. This fact can be used as a reference to the world coordinate system. To

0 2 4 6 8 10

0

5

10

time [s]

a 
[m

/s
2 ]

Figure 3.6: Acceleration components while walking. The device and the world
coordinate system are congruent, because the device is held horizontally.
green: x-axis, blue: y-axis, red: z-axis.
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obtain the gravity we filter the accelerometer readings componentwise with a low
pass filter. The vector of these three low pass filtered components points in the
same direction as the z-axis of the world coordinate system. We call this vector
~g. With the rotation matrix Rn(φ) it is possible to turn the vector ~a around the
axis represented by the vector ~n by the angle φ (see figure 3.7).

Rn(φ) =

 cosφ+ n2xf (φ) nxnyf (φ)− nz sinφ nxnzf (φ) + ny sinφ
nxnyf (φ) + nz sinφ cosφ+ n2yf (φ) nynzf (φ)− nx sinφ

nxnzf (φ)− ny sinφ nynzf (φ) + nx sinφ cosφ+ n2zf (φ)


where

f (φ) = (1− cosφ)

We define
~a′ := Rn(φ) ·~a,

where ~a′ represents the vector ~a turned around the vector ~n. The vector ~n must
fulfill the condition ‖~n‖ = 1 for ‖~a‖ = ‖~a′‖ to hold. Then, ~n can be calculated
by

~n =
~g × ~ez
‖~g × ~ez‖

where ~ez is the unit vector of the z-axis of the world coordinate system. ~g
represents the start of the turn and ~ez the end of the turn. The turn angle is
calculated by

φ = arccos

(
~g ·~ez
‖~g‖ · ‖~ez‖

)
.

Now the z-component of the turned acceleration measurement ~a′ is parallel to
the z-axis of the world coordinate system. From now on, we only need this z-
component of the turned acceleration measurement called a′z for counting steps.
a′z is not influenced by acceleration in the x- or y-direction of the world coordinate

g g

y

z
y

z

world
coordinate
system

device
coordinate
system

ɸ

g

y

z

device
coordinate
system

ɸ

n

Δa Δa Δa

g

y

z

world
coordinate
system

Δa

Figure 3.7: From the point of view of the device, the world coordinate system
has an arbitrary rotation. The measured acceleration readings can be turned by
φ so that the device coordinate system is congruent with the world coordinate
system.
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system. As can be seen in figure 3.6, the sampled data of a′z are not yet suitable
for step recognition. They first must be filtered. Because of the variety of the
shape of steps it is not possible to apply a matched filter of one step. This
means convolving the input data with a standard step is not useful, because the
deviation of steps compared to a standard step can be too large.
Therefore we apply a band pass filter. A band pass filter consists of a passband
and a lower and upper stopband (see figure 3.8). The lower stopband ranges
from 0 Hz to Fstop1, the upper stopband ranges from Fstop2 to Fs/2 and the
passband ranges from Fpass1 to Fpass2. Fs denotes the sampling rate of the
signal. The Nyquist–Shannon sampling theorem states that the sampling rate
has to be at least two times the maximal in the signal occurring frequency, in
order to be able to reconstruct the sampled signal without loss of information.
Therefore, only frequencies smaller than Fs/2 are present in a signal sampled
with frequency Fs. Astop1 and Astop2 denote the attenuation of the lower and
upper stopband respectively. Apass denotes the attenuation of the passband. The
lower stopband assures that low frequency influences (e.g. gravity) are filtered
out while the upper stopband assures, that shaking and other disturbances are
filtered out. The average frequency of steps is around 2 Hz. Therefore, 2 Hz
must lay between Fpass1 and Fpass2. To filter out most disturbances, the interval
(Fstop1, Fstop2) should be as narrow as possible. However, if the passband was
too small, steps would be filtered out as well. We did the fine-tuning by trial
and error with the Filter Design & Analysis Tool (fdatool) of Matlab until the
filtered a′z(t) was smooth enough to detect steps using a threshold.
A basic problem with filters is that the shorter the rising and falling edges are, the
more coefficients the filter has. The more coefficients a filter has, the longer is the
delay from a step to its recognition. To keep the number of filter coefficients as
low as possible, we increase the interval of the rising and falling edges. Following

0 f (Hz)

Mag. (dB)

A
pass

A
stop1

A
stop2

pass1 pass2stop1 stop2
Fs/2

0

Figure 3.8: Explanation of the filter parameters.
source: Matlab Filter Design & Analysis Tool (fdatool)
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filter parameters were found to fit our purpose best:

Fstop1 = 0.1 Hz
Fpass1 = 2 Hz
Fpass2 = 2 Hz
Fstop2 = 4 Hz
Fs = 25 Hz
Astop1 = 80 dB
Apass = 1 dB
Astop2 = 80 dB

These parameters result in the filter in figure 3.9.
Although the passband has size zero, steps can be recognised because the rising
and falling edges are not abrupt. With this configuration we achieve a low
number of filter coefficients.

0 2 4 6 8 10 12
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Figure 3.9: Band pass filter used for filtering the accelerometer data.

As the step frequency is not exceeding 3 Hz while walking normally, a sampling
rate of about 6 Hz is sufficient according to the sampling theorem mentioned
above.
Given that the three parameters SENSOR DELAY GAME, SENSOR DELAY NORMAL and
SENSOR DELAY UI correspond on different devices to the same sampling rate of
25 Hz, we decided to register the listener of the accelerometer with the parameter
SENSOR DELAY GAME. With this sampling rate, frequencies up to 12.5 Hz can be
detected.
Filtering a′z(t) with the filter mentioned above results in the data in figure 3.10
where every sinusoidal wave represents a step. A step can be recognised with a
threshold. Every time the threshold is crossed in positive direction a new step
was made. To be immune to high-frequency shaking, we do not start counting
steps until three steps are done within three seconds. If two steps are made more
than two seconds apart, steps are no longer counted until three steps are made
within three seconds again. This method to count steps is from now on called
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0 2 4 6 8 10
−2

0

2

time [s]

a 
[m

/s
2 ]

Figure 3.10: Accelerometer values shown in figure 3.6 (z-axis) filtered with the
band pass filter shown in figure 3.9 with the threshold

(
in green at 0.3m

s2

)
.

“Step Counter“.
To be able to calculate relative positions, not only the distance walked so far has
to be known but also the direction in which this has been done. Therefore, the
data received from the sensors have to be used to determine the orientation of
the smartphone.
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3.2 Determining the Orientation

The raw measurements of the magnetic field sensor are not yet suitable to derive
the orientation of the device. First, the raw measurements of the magnetic field
sensor have to be transformed in order to be independent of how the user is
holding the device.

3.2.1 Transforming Magnetic Field Sensor Measurements to Ori-
entation Data

The measurements from the accelerometer and the magnetic field sensor of the
device are both returned in the coordinate system of the smartphone (see fig-
ure 2.1). A problem that arises with this is, that the sensor data depends on
how the device is held in respect to the ground. We solve this problem by trans-
forming the sensor data from the device coordinate system to the inverted world
coordinate system (see figure 3.11).

In order to transform the sensor data, the raw data from the accelerometer
and the magnetic field sensor are used to compute the rotation matrix and the
inclination matrix. These matrices transform a vector from the device coordi-
nate system to the world coordinate system. The rotation matrix is then used
to calculate the device’s orientation in respect to the inverted world coordinate
system.
The device’s orientation is defined by the following components: the azimuth
(rotation of the device around the z axis), the pitch (rotation around the x axis)
and the roll (rotation around the y axis). To determine the direction in which the
user of the application is walking, the most important component is the azimuth

Figure 3.11: Inverted world coordinate system: x and y are both tangential to
the ground at the device’s current location. x is defined as the vector product
of y and z. y points towards the magnetic north and z is perpendicular to the
ground and points toward the center of the Earth.
source: http://developer.android.com/reference/android/hardware/SensorManager.html

http://developer.android.com/reference/android/hardware/SensorManager.html#getOrientation%28float[],%20float[]%29
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due to the fact that it implements the same function as a normal compass.

3.2.2 Relative vs. Absolute Azimuth Data

There are two possibilities to determine the direction in which the user of the
application is walking. The first possibility is to work with absolute azimuth
data, i.e. the angle between the walking direction and magnetic north. The
second possibility is to process relative azimuth data, i.e. the angle between the
direction in which the user is currently walking and the direction in which he
walked before the last turn. We will now give some rationale why we ultimately
made the decision to process azimuth data in a relative manner.
As discussed in subsection 3.2.1 the magnetic field sensor measurements are
transformed into orientation data. The most important component of the orien-
tation data, in order to determine the orientation of the device, is the azimuth
value which ranges from −180◦ to 180◦ (see figure 3.12). It indicates the rota-
tion around the z-axis of the inverted world coordinate system (with zero degree
pointing in the direction of the magnetic north).
However, due to this −180◦ to 180◦ discontinuity there would be a fundamental
problem if only the azimuth value was considered to determine changes in the
orientation of the device. If e.g. the user walked in the direction correspond-
ing to an azimuth value of 170◦ and turned right 30◦ the new azimuth value
would read −160◦ (see figure 3.12) instead of 170◦ + 30◦ = 200◦, because of
the −180◦ to 180◦ discontinuity which was crossed in clockwise direction. This
means, that the sense of direction would get lost (the data could be interpreted
as if a 170◦ + 160◦ = 330◦ turn in the counter-clockwise direction was made).
We solve this problem by considering relative azimuth data. In the example
above this would imply that instead of the direction before (170◦) and after the

Figure 3.12: Boundary crossing example. The depicted coordinate system is the
inverted world coordinate system. The circle represents the azimuth.
source: http://developer.android.com/reference/android/hardware/SensorManager.html

edited by: Nils Reinthaler

http://developer.android.com/reference/android/hardware/SensorManager.html#getOrientation%28float[],%20float[]%29


3. Processing Sensor Data 16

turn (−160◦), only the size of the turn (in this case +30◦) would be of interest.
To calculate the size of a turn, it is important to be able to detect −180◦ to 180◦

discontinuity crossings. This can be done by calculating the difference of the
two newest azimuth samples. If the difference is greater than 180◦, the −180◦ to
180◦ discontinuity must have been crossed.
Once a discontinuity crossing has been detected, the newest and all the fol-
lowing azimuth samples can be shifted by 360◦. Depending on the direction
(clockwise/counter-clockwise) in which the discontinuity was crossed, the az-
imuth samples are shifted by +360◦ or −360◦ respectively. The effect of this
shift can be seen in figure 3.13. Plot 1 shows the raw azimuth values plotted
over time. To record this plot, the device has been oriented in the direction cor-
responding to an azimuth value of 85◦ for about the first 3 seconds. Then it has
been turned 160◦ in clockwise direction and at second 10 it has been turned back
to 85◦. The abrupt shifts from +180◦ to −180◦ and back due to the discontinuity
crossing can be seen at second 4 and 11 respectively.
Plot 2 in figure 3.13 shows the azimuth data that have been shifted as described
above. The shifted azimuth takes values that are greater than 180◦ and therefore
cannot be used to determine absolute orientation values anymore. However, to
calculate the size of a turn, which will be described in more detail in the following
subsection, the shifted azimuth values are ideal.

3.2.3 Detecting Turns and Calculating Their Sizes

After solving the problem with the −180◦ to 180◦ discontinuity, the shifted az-
imuth data can be used to detect turns and to calculate their sizes.
First, we lowpass filter the data in order to reduce small disturbances by calcu-
lating the average over the last 20 shifted azimuth samples. The result of this
can be seen in plot 3 in figure 3.13. To detect turns and calculate their sizes, only
the lowpassfiltered shifted azimuth data, from now on called “filtered samples“,
were considered.
If a user starts walking, his initial walking direction is saved as the direction, in
which he last walked straight (see figure 3.14). All the following filtered sam-
ples are compared to the last straight direction. If one sample differs by more
than 30◦ from the last straight direction, the beginning of a turn is detected.
To determine the end of a turn, for each new sample, the difference between
the newest and the last sample is calculated. If two samples lie in between a
previously specified boundary of constant size, the end of a turn is detected
(see figure 3.15). Subsequently, the size of the turn can be found by calculating
the difference between the direction right after the turn (which is also the new
straight direction of the user) and the last straight direction. If the user turned
to the right, this difference is positive, otherwise it is negative.
Therefore, all the information about the orientation of the device is ultimately
simplified to the moment, the size and the direction of turns. This can be seen
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on plot 4 in figure 3.13. The first peak in the plot represents a turn to the right
of about 160◦ (illustrated by the peak height) and the second peak a turn back
to the initial direction.
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Figure 3.13: Different plots of azimuth data and direction change
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Chapter 4

From Distance and Orientation
to a Route

With the information about the walked distance and the change of direction we
can now derive the position of the user. By knowing the position of the user at
every instant we are able to record a route.

4.1 Recording a Route

A route is subdivided into straight parts and turns. Each straight part followed
by a turn is handled as a 2-tuple whereas the straight part is measured in meters
(m) and the turn in degrees (◦). The length of a straight part is the distance
between the end of the last turn and the beginning of the next turn.
We decided to measure the distance between two turns in this way because we
do not know the exact form of a turn. He could stop walking and then turn or
he could as well turn while walking. With the first possibility the user turns at
a well-defined position while with the second possibility the way described by
the user is a curve. The difference in the distance is for small curves small (less
than one step). Larger curves are subdivided into several turns because the turn
speed is too small and therefore an end of turn is detected while turning.
During the process of recording a route, these tuples are saved in a file on the
SD-card of the smartphone. A route is completely represented by a collection of
tuples.

distance [m] turn size [◦]

4.0 75.0

6.4 -34.4

3.2 120.6

8.0 60.0

Table 4.1: Example of a route
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Now that we are able to record routes, these routes can be used to give
directions to the user.

4.2 Navigating Along a Prerecorded Route

To navigate along a prerecorded route the file containing the route information
has to be interpreted.
A prerecorded route is imported and processed tuple after tuple. Once the user
starts navigating the first tuple serves as instruction set whereas the distance is
divided by the step length of the navigating user. Furthermore, positive angles
corresponds to right turns and negative angles to left turns. This means that
e.g. the tuple (6.4,−34.4) would be translated into the instruction set “8 steps
straight, then turn left“. This instruction is updated for each step of the user.
If the user starts turning the covered distance from the end of the last turn is
compared to the distance entry of the tuple. If the difference between the two
values is smaller than a fixed distance tolerance the moment of turn is accepted.
After the turn is completed and if the moment of turn was accepted the size
and direction of the turn are compared to the turn entry of the tuple. If the
difference between these two values is smaller than a fixed turn tolerance and
the direction of the turn is equal to the entry of the tuple, the turn is accepted
and the next tuple is considered. Otherwise the user has to return to the start.



Chapter 5

Conclusion, Future Work and
Outlook

5.1 Conclusion

During this group thesis, a reliable way to count steps has been found. Combined
with the information about the size and moment of turns the basics are covered
in order to be able to record and navigate along a route.
Due to the fact that the measurement of distances is relative and the application
is based on turn sizes instead of absolute azimuth data, a well-defined departure
point and bearing are required. At the current state of the application, there
is no way to instruct the user on how to return to the route if the prerecorded
route was left. While it is possible to navigate on a single floor of a building and
on stairs, stairs are not recognised as such.
A major issue that was discovered during development is that the magnetic field
sensor measurements are heavily influenced by external disturbances such as
power lines or elevators. We tried to compensate for these local disturbances of
the magnetic field by using the accelerometer data.
The acceleration measurements in the direction of the x-axis of the device (see
figure 2.1) have been analyzed to check if this information could be used to
detect if changes in the magnetic field sensor measurements are due to external
disturbances or due to actual changes in the orientation of the device.
Unfortunately, the changes in the acceleration data measurements during an
actual turn of the device were too small to be detectable.

5.2 Future Work and Outlook

To improve the performance of our application, a gyroscope could be used to
compensate disturbances of the magnetic field sensor. Gyroscopes are as of
today only available in a few but increasing number of smartphones.
Furthermore, to increase the user-friendliness, a new temporary route could be

21



5. Conclusion, Future Work and Outlook 22

recorded if the prerecorded route was left, in order to give instructions to the
user on how to return. To further simplify the handling, spoken directions could
be used. Additionally, to offer navigation over different floors, recognition of
stairs could be implemented or the user interface could be adapted to allow the
user to add additional information about a route. This additional information
could involve stairs and the identification of the current floor. Ultimately, it may
be possible to use our findings to compensate for weak GPS signal reception and
therefore improve navigation system performance.
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Appendix A

Application

A.1 Code Structure

The only activity of our application is called “PathFinder“. This class manages
the user interface and handles recording and navigation. “PathFinder“ is based
on the classes “Orientation“, “StepCounter“, “ManageFile“ and “RouteDrawer“.
(see figure A.1)
The class “Orientation“ calculates turn information needed by “PathFinder“
based on the magnetic field sensor and the accelerometer. For the communica-
tion with the activity “PathFinder“, “Orientation“ implements a first listener
which is called every time the start of a turn is detected and a second listener
which is called every time the end of a turn is detected.
The class “StepCounter“ recognises steps based on accelerometer readings. To
determine the direction of gravity and to turn the coordinate system accordingly,
“StepCounter“ needs the classes “GExtractor“ and “RotateVector“ respectively.
To handle filter coefficients used to filter the accelerometer readings, the class
“Filter“ is used. To apply the filter to the accelerometer readings “StepCounter“
uses the class “InnerProduct“. The class “GExtractor“ applies a low pass fil-
ter to the accelerometer readings in order to determine the direction of gravity.
The class “RotateVector“ turns a passed vector according to the descriptions in
section 3.1.2 (Turning the Coordinate System of the Device). The class “Filter“
simplifies the handling of filter coefficients and the class “InnerProduct“ calcu-
lates the inner product of two passed mathematical functions.
The class “ManageFile“ manages the file access of files used to store route infor-
mation.
The class “RouteDrawer“ uses the methods provided by “DrawView“ to draw the
current route. The class “DrawView“ extends the class “View“ from the package
“android.view“ and provides methods to draw on the display of the device.

A-1



Application A-2

PathFinder

StepCounterOrientation ManageFile RouteDrawer

DrawViewGExtractor RotateVector Filter InnerProduct

Figure A.1: Structure of the “Path Finder“ application.
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A.2 User Interface

The user interface consists of three buttons, the text and graphic information
for navigation and the menu. (see figure A.2)
By pressing the “record button“ the recording of a new route will be started.
By pressing this button again, the walked route will be saved on the SD-card.
With the button “select route“ a window can be opened where the user can
select a route for navigation. If a route is selected, the caption of this button
shows the name of this route and the route will be drawn in the “graphical
route information“ section. The navigation can then be started by pressing the
“navigate button“. While navigating, the user is guided by information in the
“text output“ and the “graphical route information“, where the blue triangle
represents the current position.
By pressing the menu button of the phone the “menu“ shows up. A route can
then be deleted by pressing the button “Delete Route“. To calibrate the step
length the user can press the button “Calibrate Step Length“. A window with
the information for calibration of the step length is displayed subsequently. The
calibration of the step length can then be accepted or canceled.

Figure A.2: User interface of the “Path Finder“ application.
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