
An Evaluation of Low Cost Inertial

Sensors for Hierarchical Sensing

Semester thesis

Aron Hjartarson & Kári Hreinsson

November 2011 to March 2012

Supervisor: Bernhard Buchli

Professor: Dr. Lothar Thiele

Abstract

In this project a sensor circuit was designed to reduce power consumption of GPS

nodes used in the PermaSense project and increase the relevance of the GPS data

measured. The sensor circuit serves as an inertial measurement unit which can

activate the GPS chip upon movement detection instead of relying on predefined

duty cycles. A communication protocol between the sensor circuit and a host was de-

signed. An algorithm to extract additional spatial information from the sensor data

was implemented and methods for movement detection were considered. The spa-

tial information was extracted with mixed results and could be done more reliably

in further work by implementing sensor fusion algorithms and advanced filtering.

On–site evaluation using real data is also necessary to assess the parameters of the

detection mechanisms considered.

i

ii

Contents

1: Introduction 1

1.1 Motivation . 1

1.1.1 PermaSense / X–Sense Project 1

1.1.2 GPS Nodes . 1

1.2 Aim . 1

1.3 Problem Statement . 2

1.4 Thesis Contributions . 2

1.5 Related Work . 2

2: Hardware and Software Implementation 5

2.1 Choosing the Hardware . 5

2.1.1 Accelerometer (LIS302DL) . 5

2.1.2 Gyroscope (L3G4200D) . 5

2.1.3 Compass (HMR3400) . 6

2.1.4 Microcontroller (ARM) . 6

2.1.5 Accelerometer Development Kit 6

2.1.6 Development Software . 6

2.2 Assembling Hardware & Communications 7

2.2.1 Preliminary Decisions . 7

2.2.2 The Circuit . 8

2.2.3 Reading from the Accelerometer and Gyroscope 8

2.2.4 Reading from the Compass . 9

2.3 Sensor Data Protocol . 9

2.3.1 Implementation Details . 9

2.3.2 Header Byte . 10

2.3.3 Synchronization Sequence . 10

2.3.4 Gyroscope Sequence . 11

2.3.5 Accelerometer Sequence . 11

2.3.6 Compass Sequence . 12

2.4 Assembling a Test Setup . 12

iii

Contents

3: Data Analysis and Processing 15

3.1 Extracting Information from the Sensor Data 15

3.1.1 The Sensor Data . 15

3.1.2 Calibration & Rotation Adjustment 16

3.1.3 Filtering . 18

3.1.4 Position . 19

3.1.5 Inclination . 22

3.1.6 Heading . 23

3.2 What to Detect and How . 24

3.2.1 Raw Acceleration Data . 24

3.2.2 Raw Gyroscope Data . 25

3.2.3 Raw Magnetic Data . 25

3.2.4 Velocity from the Accelerometer 26

3.2.5 Position from the Accelerometer 27

3.2.6 Inclination from the Accelerometer 27

3.2.7 Inclination / Heading from the Gyroscope 28

3.2.8 Heading from Compass (and Accelerometer) 28

3.3 Further Comments . 29

4: Summary & Outlook 31

A: Sensor Data Protocol Example 33

B: Example of an External Client Code 35

iv

Tables

2-1 Communication sequences for the sensor circuit 10

3-1 Data types and detection mechanisms 30

A-1 Byte sequence reading example . 34

v

Tables

vi

Figures

2-1 A circuit diagram . 7

2-2 The prototype board . 8

2-3 The gyroscope header byte explained . 11

2-4 The accelerometer header byte explained 11

2-5 The test setup . 13

3-1 An example signal recording . 17

3-2 A moving average filter example . 18

3-3 A discrimination window example . 19

3-4 A velocity correction example . 20

3-5 Filtering and processing (’before and after example’) A 21

3-6 Filtering and processing (’before and after example’) B 21

Figures

viii

1
Introduction

1.1 Motivation

1.1.1 PermaSense / X–Sense Project

The focus of the PermaSense / X–Sense project [23] is to establish wireless sensor

networks in the alpine landscape of Switzerland that can sustain long term and

high quality sensing of geological data, such as movement of rock formations and

the effects of climate change. The project is conducted by researchers from ETH

Zurich, University of Zurich and University of Basel. The data obtained can be used

in decision making for harsh terrains as well as predicting natural hazards.

1.1.2 GPS Nodes

GPS nodes [2] are used to monitor the movement of rock formations. The GPS chips

in those nodes consume a lot of power and having them turned on for multiple con-

secutive hours or days for measurements is not viable. Currently the GPS chips are

turned on based on predefined time cycles with long measurement blocks. Therefore,

during the off–time of the GPS chips, important activity might be missed. Equipping

each node with an excessively large battery or developing more power efficient GPS

chips are currently not interesting solutions. Instead of using these predefined time

cycles, the on–time of the GPS chips could be optimized based on additional data,

possibly increasing their power efficiency and more importantly increasing the rel-

evance of the data.

1.2 Aim

The aim of this thesis is to create a standalone sensor circuit equipped with low–

power sensors that can be implemented into the GPS nodes, equipped with move-

ment detection mechanisms and the capability to provide additional spatial infor-

mation about the GPS node to support the GPS readings. Based on that information,

we could limit the on time of the GPS circuitry to periods of actual activity, possibly

1

Chapter 1: Introduction

reducing the energy consumption of the nodes and eliminating gaps in data due to

periodic off times. The sensors considered are an accelerometer, a gyroscope and a

compass, all in the form of integrated circuits. We aim to develop a low overhead

algorithm to extract spatial information from the data and for movement detection.

In a future version, the sensor circuit could be connected to a TinyNode module [24]

that would turn on the GPS circuitry upon receiving an interrupt signal from the

microprocessor on which the algorithm would be written.

1.3 Problem Statement

A blueprint for how to implement the overall hardware design has to be established,

i.e. whether to base it around the CoreStation [3], or to use a standalone micropro-

cessor. Appropriate hardware, such as sensors and microprocessors has to be found

and purchased for the project. The circuit sensors would have to be chosen with

respect to low power, high precision and good availability. Once the circuit is assem-

bled an efficient and preferably simple method has to be developed to ”multiplex”

the data from the different sensors to an external device, so a solution has to be

implemented on the processing unit chosen for the project. A somewhat realistic

test setup has to be designed to test the sensor circuit and log some trial data for

analysis.

An algorithm involving relevant filtering and processing methods has to be devel-

oped to extract additional information from the data and for movement detection.

The methods of extracting additional information from the sensor data have to be

realized and evaluated. Different movement detection strategies should be studied,

based on either raw sensor data or the spatial data extracted.

1.4 Thesis Contributions

The contributions from this semester thesis are the following:

• A standalone sensor circuit that can support a GPS node using movement de-

tection mechanisms and providing additional spatial information.

• A communication protocol between the circuit and an external host.

• Methods and code to process and extract data from the sensors for the purposes

of movement detection.

1.5 Related Work

The implementation of environmental sensor networks has recently been studied

[19, 17] and online GPS nodes for use in the alpine landscape have been developed

and evaluated as a part of the PermaSense project [15, 2]. Estimating the spatial ori-

entation of an aerial or space vehicle is more commonly referred to as attitude esti-

mation and the design of such attitude determination systems has been well studied

[13]. A miniature attitude and heading reference system using an accelerometer, gy-

roscope and a magnetic field sensor has been developed for human motion analysis,

using complementary filters and sensor fusion algorithms with promising results

2

1.5. Related Work

[16]. Nonlinear complementary filters have been developed for attitude estimation

using an inertial measurement unit, which normally consists of an accelerometer,

gyroscope and a magnetic sensor [18]. A similar study was done using a combination

of an inertial measurement unit and a small camera [1].

3

Chapter 1: Introduction

4

2
Hardware and Software

Implementation

2.1 Choosing the Hardware

After exploring different sensors and microprocessors we settled on the following

integrated circuits as they were a good compromise of functionality, power usage,

price and availability.

2.1.1 Accelerometer (LIS302DL)

The LIS302DL [8] is a low power three axes linear accelerometer with an I2C/SPI

serial interface. It has two user selectable measurement ranges, ± 2 g and ± 8

g, draws a supply current of 0.3 mA and has a sensitivity of 72 mg/digit at full

measurement range. It can measure acceleration at an output data rate of 100 Hz

or 400 Hz and is frequently used in applications such as free fall detection, motion

activated functions and gaming devices to name a few.

Default setting as shown in the data sheet were used with the following exceptions:

Data rate (DR) was set to 1 (400 Hz).

Power down control (PR) was set to 1 (active mode).

Full scale (FS) was set to either 0 or 1 in different test runs.

Filtered data selection (FDS) was set to either 0 or 1 in different test runs.

High-pass filter cutoff frequency (HP coeff1/HP coeff2) was set to different val-

ues during test runs.

2.1.2 Gyroscope (L3G4200D)

The L3G4200D [7] is a low power three axis angular rate sensor with an I2C/SPI se-

rial interface. It has three user selectable measurement ranges, ± 250, ± 500 and ±
2000 dps, draws a supply current of 6.1 mA and has a sensitivity of 70 mdps/digit at

5

Chapter 2: Hardware and Software Implementation

full measurement range. It can measure angular rate at an output data rate of 100,

200, 400 or 800 Hz and is frequently used in applications such as GPS navigation

systems, robotics and gaming devices.

Default setting as shown in the data sheet were used with the following exceptions:

Output data rate (DR1–DR0) was set to 10 (400 Hz).

Bandwidth selection (BW1–BW0) was set to 10 (50 Hz).

Power down control (PD) was set to 1 (active mode).

2.1.3 Compass (HMR3400)

The HMR3400 [6] a tilt compensated precision compass with a USART serial data

interface. The tilt compensation is achieved using a built in three axes accelerome-

ter. It draws a supply current of 15 mA and has heading accuracy of 3.0◦ RMS at tilt

levels ranging from 0 to ± 30◦ and resolution of 0.1◦. It can measure heading at an

output data rate of 8 Hz and is typically used in navigation and precision pointing

applications. The supply voltage for the compass is 5 V unlike the other components

which use 3.3 V.

Default settings were used with the compass except that we switched to magnetic

instead of heading data using the *M<cr><lf> command.

2.1.4 Microcontroller (ARM)

The STM32F100RBT6B [9] is an ARM based 32-bit, 64 pin MCU with 8 communi-

cation interfaces, including I2C, SPI and USART. It is suitable for a wide range of

applications including GPS platforms, industrial applications, PC peripherals and

more. The ARM was mounted on a STM32VLDISCOVERY development board [10]

containing an in-circuit ST–Link debugger/programmer.

2.1.5 Accelerometer Development Kit

An evaluation kit [12] was used to get a feel for the data acquisition and format

of the accelerometer, and to possibly get an early start on determining the decision

policy which would later be applied. The evaluation kit was based around an ac-

celerometer very similar to the one used in this project. Communication with the

evaluation kit was experimented with using serial commands processed using Hy-

perTerminal (Windows) as well as with the pySerial library [11], visualizing the

data using Python. The evaluation kit also came with devoted software which was

used initially to some extent.

2.1.6 Development Software

After trying a few different development tools we settled on Atollic TrueSTUDIO

[22] to program the ARM. The option -std=gnu99 was added to the gcc compiler

options for more familiar C syntax.

6

2.2. Assembling Hardware & Communications

Figure 2-1
A high level circuit diagram. Only relevant pins on the ARM development board are shown

and the USB connection is omitted.

2.2 Assembling Hardware & Communications

2.2.1 Preliminary Decisions

Before assembling the hardware, a decision had to be made about whether to do

development on the CoreStation or create our own circuit to gather the data and

forward it to an external host, as briefly mentioned in section 1.3. The CoreSta-

tion offered high level of abstraction, theoretically allowing us to communicate with

the sensors in a regular operating system with various tools and programming lan-

guages at hand. The microprocessor based implementation on the other hand is

closer to the desired end result of a standalone sensor circuit, but having to deal

with low level hardware is often time consuming.

After experimenting with both methods the CoreStation was abandoned and focus

was shifted towards the standalone microprocessor based solution. This was primar-

ily due to software trouble on the CoreStation which lacked the necessary drivers

to communicate with the sensors, and foreseeable time consuming work to fix that.

Also, eventually the system had to be developed as a standalone unit and the soft-

ware trouble on the CoreStation effectively eliminated its advantage.

I2C support is required to communicate with the accelerometer and gyroscope while

USART serial communications are required for the compass, and to send the com-

bined data to an external device a separate USART channel is required. The micro-

controller chosen for the project is described in section 2.1.4. The details of the I2C

protocol used for the devices are shown in their respective datasheets.

7

Chapter 2: Hardware and Software Implementation

Figure 2-2
Circuit and sensors mounted on a prototyping board. From left to right we have the ARM

mounted on its development board, the gyroscope (bottom middle), compass (top middle)

and accelerometer (bottom right).

2.2.2 The Circuit

The circuit was assembled on a prototyping board. A high level diagram can be found

in figure 2-1, excluding irrelevant outputs and components. As the accelerometer

and gyroscope came on expansion boards, appropriate sockets were soldered onto

the circuit board, whereas the compass was attached to the prototyping board and

connected to the ARM through a small cable. Pull–up and series resistors were used

for the I2C channels following instructions in the ARM datasheet, keeping the lines

high when idle. A photo of the assembled circuit can be seen in figure 2-2.

2.2.3 Reading from the Accelerometer and Gyroscope

Considerable time was spent on the I2C communications due to scarce documenta-

tion and code examples. The biggest realization was that in order to get consistent

behavior during development, the accelerometer had to be power cycled between

test runs. This was due to the accelerometer often being left in a state which didn’t

allow establishing new communications because a previous test run had failed and

improperly closed active communications. The power cycling is still done when the

ARM program starts. It was left in the program code as a precaution in the (unlikely)

case that the ARM restarts in the middle of I2C communications.

8

2.3. Sensor Data Protocol

After getting the accelerometer working it was straightforward to establish commu-

nications with the gyroscope, although it needed a slightly different approach due

to each axis of the gyroscope having a resolution of two bytes as opposed to a single

byte for the accelerometer. Since the devices were power cycled during each run of

the microcontroller program, it proved most convenient to supply power to the de-

vices directly from the ARM, as it outputs a ’high’ signal of 3.3 V, which corresponds

to the accelerometer and gyroscope supply voltages.

Serial communications were chosen to forward the data from the ARM to a computer

for analysis. Since data was being read from several sensors, a simple protocol had

to be designed to ’multiplex’ the different data coming from the sensors into one

stream. The programming was complicated by the way the accelerometer and gyro

return their data. The sensors were set to a nominal sampling frequency of 400Hz,

however outputs for the three axes are not written synchronously, often requiring

more than one transmission to read a single three axes measurement.

2.2.4 Reading from the Compass

The compass can only be interfaced via USART serial communications and con-

necting it to the ARM was relatively straightforward, although it required a supply

voltage of 5 V, thus not compatible with the outputs of the ARM. Luckily the devel-

opment board, being powered via USB has 5 V outputs readily available. However,

this makes controlling whether the compass is turned on or off impossible without

external circuitry, which is irrelevant in the case of a prototype, but could be imple-

mented in the final design.

The compass delivers straight ASCII data, so in order to get any meaningful num-

bers into the ARM program, they have to be converted from their text value into

their numerical equivalents. As we are only interested in forwarding the data on to

the serial line, we simply put a header byte in front of all compass bytes and forward

them to the external host, being perhaps not particularly efficient but simple. The

ASCII values can then be mapped to their numerical equivalents on the host side.

2.3 Sensor Data Protocol

When an axis value has been read by the ARM it is forwarded straight on to the

serial line towards the destination host, even if the measurement is incomplete,

containing only one or two axes. Each ’package’ of data from the ARM contains a

header byte, indicating to which sensor the following bytes originate from, what

they represent, and the length of the sequence.

2.3.1 Implementation Details

Need for Synchronization

The data bits following a header byte can have any possible value. In order to realize

what bytes are header bytes and what is data, a receiving program needs to be

’synchronized’ before any useful meaning can be extracted from the the byte stream.

To do this, a synchronization sequence is used that is not otherwise found in the raw

data stream.

9

Chapter 2: Hardware and Software Implementation

Dealing with Overflows

The time it takes to forward sensor data onto the serial line is quite long, initially

causing overflows on the accelerometer and gyroscope before the main program loop

started communicating with the sensors again. Interrupts and buffers are therefore

utilized to avoid blocking the programs main loop during serial transmission. The

interrupts came with a price, since they started disrupting the I2C communications,

presumably by the jump out of the main loop during some vital I2C sequences. This

is avoided by disabling the serial transmissions during I2C communications.

Reducing Traffic

In order to reduce traffic on the serial line, a buffer is implemented that contains

a single measurement from either the accelerometer or gyroscope that can combine

up to three transmissions of different axes into one. This reduces a common case of

transmitting one or two of the available data axes followed shortly by the missing

axes, effectively compressing the data sent, avoiding unnecessary header bytes.

2.3.2 Header Byte

The purpose of the protocol is to identify what data comes from what sensor and

what each bytes represents. Each sequence of data consists of a header byte followed

by variable length content. The possible sequences with their corresponding header

byte are described in table 2-1.

Header byte Sequence type

0b0000XXXX Compass sequence

0b0100XXXX Accelerometer sequence

0b1000XXXX Gyro sequence

0b1100XXXX Synchronizing sequence

Table 2-1: Possible header bytes. x corresponds to an undefined bit.

As shown in the table, only the first four bits of a header sequence are used for

identification while the last four bits are used to store additional data, depending

on the type of sequence. The different sequence types will be described in detail in

the following sections. In table A-1 we can see an example of how the data sensor

protocol is interpreted.

2.3.3 Synchronization Sequence

The length of this sequence is equal to the longest possible sequence for compass,

accelerometer or gyroscope data and consists of seven 0b11111111 bytes in a row.

Since the other header bytes have a fixed value containing one or more zero bits,

the synchronization sequence can be uniquely identified in the byte stream and we

can be assured that the first byte containing a zero bit following seven or more ’full’

bytes is a header byte and the following stream can be interpreted from there. If

synchronization is lost for some reason, one simply has to wait for the next synchro-

nization sequence and start again. The synchronization sequence is sent once every

10

2.3. Sensor Data Protocol

two hundred runs of the ARM program main loop, but this ’rate’ is configurable in

the ARM code.

2.3.4 Gyroscope Sequence

The last four bits of the gyro header byte contain information about the data that

follows, as shown in figure 2-3. The fifth bit (from the left) indicates if any of the

gyroscope axis had data overflow (a new value was measured and written before

the existing one was read) while the last three indicate that following the header

byte is data for the X, Y or Z axis. Each axis is represented by two bytes of data

where the first byte is the more significant part of the value while the second is the

less significant part. When joined (e.g. by left shifting the first byte by 8 bits and

then ”or”–ing them together) the outcome is a 16 bit two’s–complement value for the

corresponding axis.

1 0 0 0 F X Y Z

F Value of 1 indicates overflow.

X Value of 1 indicates that two bytes of X data follow.

Y Value of 1 indicates that two bytes of Y data follow.

Z Value of 1 indicates that two bytes of Z data follow.
Figure 2-3
Header byte for the gyroscope.

As an example, if a header byte of 0b10000101 is read, we know that four bytes

follow, of which the first two constitute the value of the X axis while the second two

are the Z axis. Furthermore we know that no data was missed because of overflow

in the gyro registers. The fifth byte following the header byte would be the first

(header) byte of the next sequence.

2.3.5 Accelerometer Sequence

The accelerometer sequence, as shown in figure 2-4, is similar to the one for the

gyroscope, except each axis of accelerometer is represented by one byte instead of

two. The header byte is constructed in the exact same way with the last three bits

indicating if X, Y or Z data follows while a 1 in the fifth bit position indicates an

overflow.

0 1 0 0 F X Y Z

F Value of 1 indicates overflow.

X Value of 1 indicates that one byte of X data follows.

Y Value of 1 indicates that one byte of Y data follows.

Z Value of 1 indicates that one byte of Z data follows.

Figure 2-4
Header byte for accelerometer.

11

Chapter 2: Hardware and Software Implementation

2.3.6 Compass Sequence

The compass sequence is simply a header byte followed by a single byte of raw

compass ASCII data. The last four bits of the compass header have no significance.

2.4 Assembling a Test Setup

To get data for different input signals for analysis and processing, the circuit was

mounted on an aluminum pole. The entire circuit was powered through a USB cable

from the computer. The USB cable supplies 5V and a regulator on the development

board was used to get 3.3V which were needed for the accelerometer and the gyro-

scope. The serial data from the ARM was supplied through a serial-to-USB bridge

to the computer. Software was developed to read the output from the circuit and log

the values of the different sensors. The setup was then subjected to various stimu-

lations while exploring different accelerometer settings. All in all, over one hundred

signals were recorded, each of length either 20 or 30 seconds with accelerometer and

gyroscope set to a sampling frequency of 400 Hz and the compass to the maximum

of 8 Hz. A picture of the test setup used can be seen in figure 2-5.

12

2.4. Assembling a Test Setup

Figure 2-5
Test setup: Circuit is securely mounted to the top of the pole, it is then connected directly to a

computer recording the output data from all the sensors.

13

Chapter 2: Hardware and Software Implementation

14

3
Data Analysis and Processing

3.1 Extracting Information from the Sensor Data

3.1.1 The Sensor Data

The data received from the sensors consists of the following:

• 3-axes acceleration in digits 1

• 3-axes angular rate in digits 1

• 3-axes magnetic data in gauss

The accelerometer has two ranges of output, ±2 g and ±8 g. Depending on which

range is used, different conversion parameters have to be used in order to get the

correct units for the data. The accelerometer outputs one byte per axis or 8 bits,

expressed in digits in the range 0 to 28−1. According to the accelerometer datasheet

[8], a sensitivity of 18 mg/digit should be expected for the lower range and 72 mg/digit

for the upper. Thus for example, to convert ±2 g data from digits to units of accel-

eration, the output is multiplied by 0.018 g. The accelerometer also has a high-pass

filtering option implemented if needed, but eventually we disabled it, experiencing

no advantage in using it for our purposes. It should be mentioned that by using the

high-pass filter, the steady state value of Earth’s gravitation is filtered out.

The gyroscope has three ranges of output ±250, ±500 and ±1000 dps. Analogously

to the accelerometer case, the output values were converted into degrees per second

through sensitivity values from the datasheet, 8.75, 17.5 and 70 mdps/digit, respec-

tively. Thus for example, for ±250 dps, the output is multiplied by 0.00875.

No specific ranges were of concern in the compass output. The magnetic values were

read from the compass, instead of the converted heading itself. Of course having a

compass should directly give us the orientation, however we had some problems

with the compass, where it seemed to occasionally give false readings and those

1We refer to digits as unitless numbers that need to be multiplied by a sensitivity parameter to

gain a physical unit.

15

Chapter 3: Data Analysis and Processing

readings would change dramatically with the slightest change in position of the com-

pass itself. This was discovered in the lab and it might have been caused by strong

electromagnetic fields nearby, or possibly interference or length issues of the I2C

cables used in the circuit. Instead of using the formatted output from the compass,

we used the raw magnetic data knowing that the heading can be post calculated

from these values using inclination data from the accelerometer. In the datasheet,

the sensitivity of the magnetic readings was expressed in gauss, expressing units of

the magnetic field B, whereas the tesla unit (T) is normally used to express units

of magnetic field B or the flux magnetic density, where B and H are closely related.

It should be noted that regardless of whether G or T are used as units, the head-

ing calculation should not be affected, since it only focuses on proportional relations

between the 3-axes values. Figure 3-1 shows an example signal reading from the

sensors outputs. The signal was generated by tapping the test pole once from the

side.

3.1.2 Calibration & Rotation Adjustment

Calibrating the Gyroscope

Due to temperature dependence and variance in chip design, the output of the gy-

roscope is assumed to be shifted by an additive offset. An average of a predefined

number of samples at the beginning of each sample vector is used to calculate the

sensor offset, regardless of its inclination. The gyroscope is expected to be in a no

movement state for the predefined number of samples used to calibrate the data.

Calibrating the Accelerometer

During no movement, the accelerometer constantly reads the gravitational vector,

whereas the gyroscope shows zero readings on all axes, given that the offset has been

accounted for. In the case of the accelerometer, the sensor would have to be carefully

mounted in a horizontal plane in order to achieve such a factory offset calibration.

Instead of perfectly aligning the accelerometer for calibration, a reference offset is

calculated analogous to the gyroscope case, in order to show a zero reading on the

x and y-axes and g on the z-axis. In that case, acceleration measured in opposite

directions on the x and y-axes will have different signs, which is important when

integrating the acceleration to estimate velocity and position.

Instead of only calibrating based on the first few samples of data, a dynamic calibra-

tion was also implemented as a second option, which recalibrates the accelerometer

when no external forces have been detected over a given amount of time. Thus, if

a rotational matrix would be applied to the data, this dynamic calibration would

reduce the effects due to noise in the rotational matrix.

Rotational Matrices

A rotational matrix can be used to relate the orientation of two coordinate systems

and we could use such a matrix to map our sensor data to Earth’s coordinates, where

true north could for example serve as the x-axis with the gravitational vector par-

allel to the z-axis. We tried implementing a rotational matrix for the accelerometer

16

3.1. Extracting Information from the Sensor Data

0 0.5 1 1.5 2 2.5 3
-100

0

100

x-
ac

c
[m

/s
2]

0 0.5 1 1.5 2 2.5 3
-40

0

40

x-
gy

ro
 [d

eg
/s

]

0 0.5 1 1.5 2 2.5 3
-50

0

50

t [s]

x-
m

ag
 [g

au
ss

]

Figure 3-1
Example of a sample signal recorded using the test setup. The readings shown in the figure

(only showing x-axis) were generated by tapping the test pole once.

17

Chapter 3: Data Analysis and Processing

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

-2

-1

0

1

2

t [s]

x-
ac

c
[m

/s
2]

original

filtered

Figure 3-2
An example showing the results of filtering data through a moving average filter

(a0 = 1, b0 = 1, b1 = 1, b2 = 1, b3 = 1).

data, but since our compass data was not trustworthy, the matrix couldn’t be effec-

tively used. Since a rotational matrix is not applied, our current processing of the

data only applies to low angles. Given more reliable compass data, a rotational ma-

trix should be straightforward to implement [14]. A different approach is used to

account for rotations in gyroscope data which could be implemented alongside the

aforementioned rotational matrix [20]. The discussion in the following chapters ap-

plies equally to data that is corrected using rotational matrices and data that uses

no rotational matrices, but is already aligned orthogonal to the gravitational vector

and subjected to little or no rotations during measurements.

3.1.3 Filtering

A moving average and a second order Butterworth filter were implemented for data

filtering2. The moving average is a simple low pass filter, in which the current out-

put of the filter is a weighted average of a predefined number of recent inputs and

outputs, as shown in equation 3.1. Thus the filter can be customized by changing

the value of the weights {a0, a1, ..., am} and {b0, b1, ..., bm}. An example of application

of a moving average filter is shown in figure 3-2.

a0y[n] + . . .+ amy[n−m] = b0x[n] + . . .+ bmx[n−m] (3.1)

The Butterworth low pass filter has an infinite impulse response and can be imple-

mented in MATLAB where a specific cut-off frequency is defined, giving a slightly

different approach to the filtering customization that in the case of a moving aver-

age. However, the Butterworth filter might be hard to implement on a host such as

TinyNode etc., thus it might just serve as a tool for data analysis where the cut-off

2A complementary filter was also implemented, using the gyroscope measurements to give a better

estimate of the accelerometer reading based on weights. That filter will not be discussed further, since

it proved to have little or no advantage over the actual accelerometer reading.

18

3.1. Extracting Information from the Sensor Data

0 5 10 15 20 25 30
-5

0

5
x-

ac
ce

le
ra

tio
n

[m
/s

2]

0 5 10 15 20 25 30
-5

0

5

x-
ac

ce
le

ra
tio

n
[m

/s
2]

t [s]

Figure 3-3
Example showing a discrimination window being applied to data. The discrimination

window and the raw data are shown in the upper plot and the result is shown in the lower.

frequency can be easily controlled. It should be noted that low pass filtering can lead

to poor transient response and lag.

3.1.4 Position

Calculating position from accelerometer readings can be done using double integra-

tion over time, going from acceleration to position. However, noise can be very diffi-

cult to deal with in that context, since any error in the acceleration reading grows

exponentially through integration, resulting in shaky position estimates. Measures

can be taken to deal with this issue, such as using filters, discrimination windows

and velocity calibrations, as discussed below. It should be noted that for movement

detection the actual position of the node is not of much significance, whereas the

relative change in position over time is what we are interested in.

Calculating position from accelerometer data:

• Read and calibrate accelerometer data

• Apply filter (MA, BW etc.)

• Apply discrimination window

• Integrate to velocity

• Correct velocity

• Integrate to position

To account for mechanical noise in the accelerometer readings, a discrimination win-

dow was implemented. The idea of a discrimination window is to nullify all values

19

Chapter 3: Data Analysis and Processing

0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

y-
ve

lo
ci

ty
 [m

/s
]

original

calibrated

0 5 10 15 20 25 30

-20

0

20

y-
ac

ce
le

ra
tio

n
[m

/s
2]

t [s]

Figure 3-4
Example showing velocity correction after the first integration, forcing the velocity to zero

after 25 consecutive samples of zero acceleration.

that are within a predefined range of the zero-offset as shown in figure 3-3, to pre-

vent false velocity being summed up due to noise at steady state.

After the first integration, the velocity values are ”corrected” using a heuristic ap-

proach such that they fit the actual behavior expected of the GPS node [21]. Since

it will be sitting on the top end of a pole that will be fixed to the ground, steady

velocity over more than one or two handfuls of samples is not expected to be seen.

Non-zero velocity values should only be expected when non-zero acceleration is ob-

served. Thus, whenever a predefined number of consecutive zero acceleration sam-

ples have been observed, the velocity is forced to zero. This prevents a significant

amount of errors from building up through the double integration. An example of

velocity correction is shown in figure 3-4.

When integrating over time using a discrete set of values sampled from a continuous

event, the estimate will have some error. The integration can be broken down to a

simple sum with as many terms as the amount of samples used. In our case the

sampling frequency determines the time interval between samples. A number of

well known methods exist for calculating such integrals, such as using left sum,

right sum, the midpoint rule etc. Which method to use for optimal results depends

on the type of samples or function being integrated. We used trapezoidal integration

for all integrations in this project. Trapezoidal integration approximates the area

defined over a time interval as a trapezoid, with the two top corners at the function

values at the two end points of the time interval.

20

3.1. Extracting Information from the Sensor Data

0 5 10 15 20 25 30
-25

-20

-15

-10

-5

0

5

10

15

20

25

t [s]

y-
ac

c
[m

/s
2]

Figure 3-5
The acceleration signal used to generate the position estimate in figure 3-6.

0 5 10 15 20 25 30
-60

-50

-40

-30

-20

-10

0

10

t [s]

y-
po

si
tio

n
[c

m
]

No filtering

Filtering

Figure 3-6
Example showing the effects of using a moving average filter, discrimination window and

velocity calibration to reduce errors in position. The error is reduced by roughly 80% for this

particular signal after estimating position for 30 seconds.

21

Chapter 3: Data Analysis and Processing

Despite the filtering, discrimination windows and velocity correction, the noise and

errors introduced through the double integration lead to too much inaccuracy for the

estimate to be trustworthy for the small scale movement considered in this project

(mm to cm). Figures 3-5 and 3-6 show the effects of processing the data using fil-

tering, a discrimination window and velocity correction. The acceleration signal was

created by tapping the pole from our test setup once with a screwdriver. The pole

was fixed and after 30 seconds it had returned to its starting position, as expected. In

this specific case, the error was reduced by roughly 80% after 30 seconds of estima-

tion using the filtering. However, at this time the position estimate deviates roughly

11 cm from the actual value, which should be zero. In case of further work, more

accuracy could be achieved by optimizing the parameters involved in the processing

and by implementing some new filters, such as a Kalman filter and complementary

filters. It should be noted that significant relative changes in position could still

be detected, given that they reach a given threshold of significance, reducing the

likelihood of noise or errors to have induced the change.

3.1.5 Inclination

Inclination from a horizontal position can be calculated from both accelerometer and

gyroscope data.

Calculating inclination from accelerometer data

• Read acceleration data

• Calculate pitch and roll angles using trigonometry

Calculation of inclination from the accelerometer data is very sensitive to noise and

external forces. When calculating the inclination, the acceleration due to gravity (g)

is assumed to be the only force acting on the node. In that situation, acceleration

measured on the x and y-axes can be seen as the x and y components of the grav-

itational vector g [5]. Thus the inclination angles, also known as pitch (θ) and roll

(φ), can be calculated using elementary trigonometry, as shown in equations 3.2 and

3.3. In our case, wind and other noise contributing factors can make such estima-

tions hard. If the node senses acceleration on the x or y-axis, which would simply

shift the node in the respective directions, false inclination would be returned. Some

measures can be taken, such as only calculating inclination from the accelerometer

when the 2-norm of the three acceleration values is close to 1g, e.g. 1g ±0.07g.

θ = arcsin

(

Ax

g

)

(3.2)

φ = arcsin

(

Ay

g

)

(3.3)

The co-domain of the arcsin function is [−90, 90]◦ and whenever the absolute values

of Ax

g
or

Ay

g
become larger than 1, the angle is forced to a value of ±90◦ depending

on the case, which should be fine, given the assumption that the node will never be

inclined to angles of such extent, unless something has gone terribly wrong. Note

that the yaw angle (heading) cannot be calculated from the accelerometer since its

22

3.1. Extracting Information from the Sensor Data

rotational axis is parallel to the gravitational vector g. However, it can be calculated

using a gyroscope as shown in the next section.

Calculating inclination from gyroscope data

• Read and calibrate gyroscope data

• Integrate x- and y-axis angular rates over time

Calculating inclination from gyroscope readings is done by integrating the x and y-

axis values over time to achieve the pitch and roll angles, respectively. It is assumed

that the gyroscope data has been corrected using a rotational matrix, as briefly men-

tioned in section 3.1.2. The gyroscope is less prone to mechanical noise than the

accelerometer, due to the nature of the quantity being measured and thus no noise

filtering is applied to the data. The inclination estimates proved to be quite accurate

for an integration period of 30 seconds, but drift is expected for longer time peri-

ods. Due to the no external forces criterion of the acceleration inclination estimate,

a policy could be implemented such as only using the accelerometer values within

that criterion and otherwise use the gyroscope estimate. The accelerometer esti-

mate could also be used to regulate the drift in the gyroscope estimate periodically

through comparison of estimates. Also, the integration imposes time dependency

for the gyroscope estimate and should the gyroscope for some reason not be able

to read continuously over time, an estimate from the accelerometer can be used for

an initial value for the integration, given that the accelerometer has had successful

inclination calculations recently.

3.1.6 Heading

The heading can be calculated from both the gyroscope and the magnetic data from

the compass.

Calculating heading from compass data

• Read magnetic data

• Calculate inclination for tilt compensation

• Apply rotational equations to get horizontal heading

The rotational equations [4] used are shown in equations 3.4 to 3.6. These equations

take in the pitch and roll angles θ and φ, which we can calculate from the accelerom-

eter data, and the compass magnetic readings bx, by and bz. The output Hcomp is the

corresponding heading based on the magnetic data.

XH = bx cos(φ) + by sin(θ) sin(φ)− bzcos(θ)sin(φ) (3.4)

YH = by cos(θ) + bz sin(θ) (3.5)

Hcomp = arctan

(

YH

XH

)

(3.6)

23

Chapter 3: Data Analysis and Processing

Calculating heading from gyroscope data

The heading can also be calculated from gyroscope data by integrating the angular

rate around the z-axis over time. The angular rate obeys the right hand rule.

• Read and calibrate gyroscope data

• Integrate z-axis angular rate over time

3.2 What to Detect and How

As mentioned in section 3.1, we can extract spatial information such as velocity, po-

sition, inclination and heading from our sensor data. That information could serve

as auxiliary information used to support the GPS node and provide a basis for move-

ment detection. In the above sections we focused on how to extract this spatial in-

formation successfully, but in this section we will estimate the applicability of some

estimation strategies and the viability of the raw and extracted data for such detec-

tion.

As will be pointed out in this section, detection thresholds have to be evaluated for

mechanical and environmental noise such as wind and other natural phenomena

using real data, preferably on-site. These thresholds could vary between nodes, de-

pending on location and weather.

3.2.1 Raw Acceleration Data

We can use thresholds to detect changes in our raw acceleration data by comparing

values from two separated moving average windows. Due to the abrupt nature of

the acceleration data, we want to keep the windows short. The window length and

the threshold values need to be carefully determined based on real on-site data and

considering noise levels. The following is an example code for such detection.

values contains las t X accelerat ion samples

oldmean contains old average

newmean contains new average

newvalue i s the la tes t accelerat ion t r i p l e t (x , y , z)

LENGTH is the window length (at most X / 2)

oldmean −= values [last] / LENGTH

pop (values) # remove the oldest sample
oldmean += values [last − LENGTH] / LENGTH

newmean −= values [first − LENGTH] / LENGTH

shift (values , newvalue) # add the new sample

newmean += values [first] / LENGTH

i f abs (newmean − oldmean) > threshold

trigger interrupt

else

do nothing

Standard deviation can also be used to get an idea of what’s happening, that is,

telling us whether the system is in a relaxed state giving the current mean or

whether some actual external dynamics are affecting the system, producing shaking

or oscillations. The following is an example code for such detection.

24

3.2. What to Detect and How

values contains las t X accelerat ion samples

i f standard_deviation(values) > threshold

trigger interrupt

else
do nothing

Another very simple implementation of a detection mechanism would be to focus on

the euclidean norm of the axes values and see if it varies considerably from earth’s

gravitational vector g. The following is an example code for such detection.

value contains las t accelerat ion sample t r i p l e t (x , y , z)

(or an average over recent samples)

g i s the value of earth ' s gravi tat ional vector

i f abs (norm (value) − g) > threshold

trigger interrupt

else

do nothing

3.2.2 Raw Gyroscope Data

The gyroscope has a zero ’relaxed state reading’ unlike the accelerometer which

always has g as a reference. Raw data from the gyroscope could be used to detect

strong shaking or twisting, that is, fluctuations of angular rate that pass a certain

threshold. Note that the gyroscope is blind towards shifts in position without changes

in inclination or heading. The following is an example code for such detection.

values contains las t LENGTH gyroscope samples

mean contains old average

newvalue contains the la tes t gyroscope sample t r i p l e t (x , y , z)

mean −= values [last] / LENGTH

pop (values) # remove the oldest sample

shift (values , newvalue) # add the la tes t sample

mean += newvalue / LENGTH

i f abs (mean) > threshold

trigger interrupt

else

do nothing

In this example, newvalue can contain an axis reading or a norm over the three

axes.

3.2.3 Raw Magnetic Data

Changes in magnetic values can be used for movement detection through the use of

thresholds. If the node tilts, changes in magnetic data will occur and if they exceed

a certain threshold, movement can be signaled. Because the magnetic data is non–

linear with respect to inclination, the thresholds may vary for different values of

inclination. Because of the different strength in the x,y and z magnetic fields at a

25

Chapter 3: Data Analysis and Processing

given point on Earth, different thresholds have to be implemented for different axes

of the compass. In order to remedy this, the respective thresholds could be scaled

by the magnitudes of its respective axis reading. A foreseeable problem with this

approach is in the case of zero magnitude, for which the threshold will become zero.

The following is an example code for such detection.

values contains las t X magnetic data samples
oldmean contains old average

newmean contains new average

newvalue contains the la tes t gyroscope sample t r i p l e t (x , y , z)

LENGTH is the window length (at most X / 2)

oldmean −= values [last] / LENGTH

pop (values) # remove the oldest sample

oldmean += values [last − LENGTH] / LENGTH

newmean −= values [first − LENGTH] / LENGTH

shift (values , newvalue) # add the la tes t sample

newmean += values [first] / LENGTH

i f abs (newmean − oldmean) > threshold * abs (oldmean)

trigger interrupt

else
do nothing

In this example, values contains readings from one of the three axes. Here the

threshold is multiplied by the magnitude of the old mean to account for different

scales of readings for the individual axes.

3.2.4 Velocity from the Accelerometer

The velocity data is the result of running the accelerometer data through an integra-

tor, which serves as a very simple low pass filter. As mentioned above, discrete inte-

gration leads to accumulation of error and some heuristics and filtering are needed

to get a somewhat realistic estimate. Even though acceleration has not been reach-

ing thresholds over the given time intervals, it might have been non-zero for some

time, thus accumulating velocity. If the velocity goes above a certain threshold, we

should be able to detect actual movement. The following is an example code for such

detection.

v e loc i ty contains the integrated accelerat ion over las t X samples

values contains the sample data vector (length X)

newvalue contains la tes t v e l oc i ty t r i p l e t (x , y , z)

subtract the old trapezoidal value

velocity −= (values [last] + values [last−1]) / 2

pop (values) # remove the oldest value

add the la tes t value

shift (values , newvalue) # add the la tes t value

velocity += (values [first] + values [first−1]) / 2

i f abs (velocity) > threshold :

trigger interrupt

else

do nothing

26

3.2. What to Detect and How

In this method, velocity should be pre-processed using filters and heuristics as

described in section 3.1.

3.2.5 Position from the Accelerometer

Similar to the case of velocity, the position is the result of running velocity data

through an integrator. Position would be our ultimate tool for movement detection,

however due to the inaccuracy introduced through the double integration we can-

not trust our position estimate. However, significant or ’obvious’ changes could be

detected using the position estimate through thresholds. The thresholds would be

very conservative, preventing false positives as much as possible, and as mentioned

above, the value of the threshold would have to be optimized based on real data

and evaluations. We would have to evaluate the extent of the error and make sure

that the threshold exceeds any such erroneous values however it may ultimately be

implemented. The following is an example code for such detection.

pos i t ion contains the integrated v e loc i ty over las t X samples

values contains the sample data vector (length X)

newvalue contains la tes t pos i t ion t r i p l e t (x , y , z)

subtract the old trapezoidal value

position −= (values [last] + values [last−1]) / 2

pop (values) # remove the oldest value

add the la tes t value

shift (values , newvalue) # add the la tes t value

position += (values [first] + values [first−1]) / 2

i f abs (position) > threshold :

trigger interrupt

else

do nothing

3.2.6 Inclination from the Accelerometer

We can detect changes in inclination by comparing values at two different points in

time and see if they exceed a certain threshold. Due to the noise introduced through

the accelerometer data, the estimate is not very accurate. To reduce error we can

take average values over time periods and estimate from those. As mentioned in

section 3.1.5, the inclination values become less viable as more external force is

applied to the node.

Without calculating inclination, the raw accelerometer output with some filtering

can be used to indirectly estimate changes in inclination. The difference between

using the raw data and the inclination values is simply the extra mapping into de-

grees through the arcsin function, used in the inclination calculation. The following

is an example code for such detection.

values contains las t X in c l in a t i on samples
oldmean contains old average

newmean contains new average

newvalue contains la tes t in c l in a t i on value

LENGTH is the window length

27

Chapter 3: Data Analysis and Processing

oldmean −= values [last] / LENGTH

pop (values) # remove the oldest value
oldmean += values [last − LENGTH] / LENGTH

newmean −= values [first − LENGTH] / LENGTH

shift (values , newvalue) # add the la tes t value

newmean += values [first] / LENGTH

i f abs (newmean − oldmean) > threshold

trigger interrupt

else

do nothing

3.2.7 Inclination / Heading from the Gyroscope

The inclination value from the gyro is not affected by external forces and thus more

robust than the accelerometer value, since it is derived by integrating the respec-

tive measured angular rate which is quite accurately measured. The inclination

values from the gyro are relative, that is, if the node starts in an inclined position,

the angular reading will give the angle from that specific position as time goes on.

Conversely, the accelerometer can pinpoint its absolute inclination knowing earth’s

gravitational vector g. We can detect movement by comparing inclination values

between two time points separated by a predefined interval. The following is an

example code for such detection.

movement contains the integrated rate over las t X samples

values contains the sample data vector (length X)

newvalue contains la tes t in c l in a t i on from integrat ion

subtract the old trapezoidal value

movement −= (values [last] + values [last−1]) / 2

pop (values) # remove the oldest value

add the la tes t value

shift (values , newvalue) # add the la tes t value

movement += (values [first] + values [first−1]) / 2

i f abs (movement) > threshold :

trigger interrupt

else

do nothing

3.2.8 Heading from Compass (and Accelerometer)

The heading values are extracted from the magnetic data, as mentioned in sec-

tion 3.1.6. They represent the heading with reference to the magnetic north pole

(as opposed to true north), whereas the gyroscope values are not absolute. The ac-

celerometer values are used to calculate inclination which is needed for the rota-

tional equations used to calculate the heading from the magnetic data. By com-

paring two heading values separated by a predefined time interval, we can detect

whether the node has shifted its direction or not. As before, we base the detection

mechanism on thresholds. An example of such detection is by using two running

average windows separated by a predefined time interval, as shown below:

28

3.3. Further Comments

values contains las t X heading samples

oldmean contains old average

newmean contains new average

newvalue contains la tes t heading sample

LENGTH is the window length

oldmean −= values [last] / LENGTH

pop (values) # remove the oldest value

oldmean += values [last − LENGTH] / LENGTH

newmean −= values [first − LENGTH] / LENGTH

shift (values , newvalue) # add the la tes t value
newmean += values [first] / LENGTH

i f abs (newmean − oldmean) > threshold

trigger interrupt

else

do nothing

3.3 Further Comments

The methods in section 3.2 could be combined using weights depending on the situa-

tion, e.g. giving more weight to the inclination value from the gyroscope than the one

from the accelerometer when significant external forces are affecting the node. Also,

a master detection signal could be implemented, such that its activation is based

on a weighted average of detection signals from the individual movement detection

mechanisms involved. The methods described above are only chosen examples of

what can be done to detect movement of the device. Countless hours can be spent on

fine tuning and combining these types of algorithms to achieve optimal movement

detection for such a setup. A summary of the data types and the relevant detection

mechanism is shown in table 3-1.

29

C
h

a
p

te
r

3
:

D
a

ta
A

n
a

ly
si

s
a

n
d

P
ro

ce
ss

in
g

Data Detection examples Pros Cons

Raw acceleration data Thresholds / two moving av-

erages, standard deviation,

using norm

Time independent, accurate

data

Needs on-site evaluation

Raw gyroscope data Thresholds / integration

window, (using norm)

Time independent, accurate

data

Needs on-site evaluation,

blind towards non-angular

movement

Raw magnetic data Thresholds / two moving av-

erages

Time independent, accurate

data

Needs on-site evaluation

Velocity from accelerometer Thresholds / integration

window, (using norm)

Detects accumulated accel-

eration, used for position

Integration, noisy & inaccu-

rate, error accumulates

Position from accelerometer Thresholds / integration

window, (using norm)

Only method that gives po-

sition, could help GPS

Integration, noisy & inaccu-

rate, error accumulates

Inclination from accelerom-

eter

Thresholds / two moving av-

erages

Time independent, used for

tilt compensation

Sensitive to external forces,

noisy

Inclination / heading from

gyroscope

Thresholds / integration

window

Accurate, used for tilt com-

pensation

Integration, drift, short

term

Heading from compass (and

accelerometer)

Thresholds / two moving av-

erages

Accurate Blind to many common

types of movement

Table 3-1
A summary of the data types and suggested detection mechanism.

3
0

4
Summary & Outlook

A sensor circuit was created that consists of a microcontroller, an accelerometer, a

gyroscope and a compass. Communications were established between the sensors

and the microcontroller and a communication protocol was designed for communi-

cation between the microcontroller and an external host. A test setup was built in

the lab to test the circuit and process some basic signals. Additional spatial infor-

mation was extracted from the sensor data such as velocity, position, inclination

and heading using filters and other processing tools. Several movement detection

mechanisms were studied and their applicability considered. The position estimate

proved to be too inaccurate for the small scale movement we are interested in, but

it might still be of some use in detecting significant events. The movement detec-

tion mechanisms considered were all based on a certain data element reaching a

given threshold or standard deviation. Parameters such as these thresholds have

to be evaluated using real data, preferably on-site, for further optimization of these

detection mechanisms.

Overall, the concept of supporting the GPS nodes using an additional sensor circuit

seems plausible to an extent, although on-site optimization is needed. In case of fu-

ture work, the spatial properties could be extracted more efficiently from the sensor

data by using sensor fusion algorithms and advanced filtering.

31

Chapter 4: Summary & Outlook

32

A
Sensor Data Protocol Example

Table A-1 shows an example of how the data sensor protocol output is interpreted.

33

Appendix A: Sensor Data Protocol Example

Table A-1: Example of a byte sequence reading

Byte Action

10111111 Synchronization sequence not found, ignoring.

10000111 Synchronization sequence not found, ignoring.

11111111 Part of synchronization sequence?

11111111 Part of synchronization sequence?

11111111 Part of synchronization sequence?

11111111 Part of synchronization sequence?

11111111 Part of synchronization sequence?

11111111 Part of synchronization sequence?

11111111 Seven ”full” bytes in a row, we are now synchronized.

00000000 Header byte for compass.

00100000 Compass data byte.

01001010 Header byte for accelerometer indicating that an overflow occurred

before this reading and that a value for Y axis follows.

01110010 Accelerometer Y axis value.

10000011 Header byte for gyroscope indicating no overflow and that bytes for

Y and Z axis follow.

00101100 More significant byte of Y axis.

00010000 Less significant byte of Y axis.

01110100 More significant byte of Z axis.

00010011 Less significant byte of Z axis.

00000000 Compass header byte.

00111100 Compass data byte.

01000101 Header byte for accelerometer indicating no overflow and that a

value for X and Z axis follows.

00010010 Accelerometer X axis value.

00110000 Accelerometer Z axis value.

34

B
Example of an External Client Code

import time

import serial

s = serial .Serial (' / dev / ttyUSB0 ' , baudrate=115200, timeout=1)

s .flushInput ()

join_bytes = lambda x : (x [0] << 8) | x [1]

to_bin_str = lambda n : n > 0 and to_bin_str (n >> 1) + str (n & 1) or ' '

byte_str = lambda n : ('%8s ' % to_bin_str (n)) .replace (' ' , ' 0 ')

AXIS = ((' x ' , 1) , (' y ' , 2) , (' z ' , 4))

acc_overrun = 0

gyro_overrun = 0

acc_data = 0

gyro_data = 0

resets = 0

acc_res = dict ([(x , []) f o r x , y in AXIS])
gyro_res = dict ([(x , []) f o r x , y in AXIS])

start_found = False

compass = []

def from_twos_compliment(bytes , value) :

positive = value >> (bytes*8−1) == 0

return value i f positive else value − 2**(8*bytes)

c lass DataException (Exception) :

def __init__ (self , value) :

self .value = value

def __str__ (self) :

return self .value

def __repr__ (self) :

return ”<DataException : value=%s>” % self .value

class StartSignal (object) :

max_bytes = 7

@classmethod

def process (cls , data) :

g lobal start_found

35

Appendix B: Example of an External Client Code

i f len (data) < cls .max_bytes :

ra ise IndexError (”Data array not long enough ”)
e l i f all (map (lambda x : x == 0xff , data)) :

start_found = True

return cls .max_bytes

else :

ra ise DataException (”Not start s ignal ”)

c lass CompassSignal (object) :

max_bytes = 2

@classmethod

def process (cls , data) :

g lobal compass

i f not (data [0] & 0b11000000) == 0b00000000 :

ra ise DataException (”Not Compass s ignal ”)

print ”Compass : %s ” % data [1]

compass .append (data [1])

return 2

class AccelerometerSignal(object) :

max_bytes = 4

@classmethod

def process (cls , data) :

g lobal acc_overrun , acc_data , AXIS , acc_res

i f not (data [0] & 0b11000000) == 0b01000000 :

ra ise DataException (”Not Accelerometer s ignal ”)

out = dict ([(x , None) f o r x , y in AXIS])

pos = 1

for i , j in AXIS :

i f (data [0] & j) == j :

out [i] = data [pos]

pos += 1

acc_overrun += 1 i f ((data [0] & 0b00001000) > 0) else 0
acc_data += 1 i f ((data [0] & 0b00000111) > 0) else 0

for key , value in out .items () :

i f value i s not None :

acc_res [key] . append (value)

print ” Accelerometer : %8s %5s %5s %5s ” %

(byte_str (data [0]) , out [' x '] , out [' y '] , out [' z '])

return pos

class GyroSignal (object) :

max_bytes = 7

@classmethod

def process (cls , data) :

g lobal gyro_overrun , gyro_data , gyro_res , AXIS

i f not (data [0] & 0b11000000) == 0b10000000 :

ra ise DataException (”Not Gyroscope s ignal ”)

out = dict ([(x , None) f o r x , y in AXIS])

pos = 1
for i , j in AXIS :

36

i f (data [0] & j) == j :

out [i] = from_twos_compliment(

2 ,
join_bytes (data [pos :pos+2])

)

pos += 2

gyro_overrun += 1 i f ((data [0] & 0b00001000) > 0) else 0

gyro_data += 1 i f ((data [0] & 0b00000111) > 0) else 0

for key , value in out .items () :

i f value i s not None :

gyro_res [key] . append (value)

print ” Gyroscope : %8s %6s %6s %6s ” % (

byte_str (data [0]) , out [' x '] , out [' y '] , out [' z ']

)

return pos

bytes = list ()

options = [StartSignal ,]

while 1 :
i f time .clock () >= 1:

break

i f s .inWaiting () < 1:

continue

bytes .append (ord (s .read (1)))

option = None

missing_bytes = False

f o r i in options [:] :

try :

used_bytes = i .process (bytes [0 :i .max_bytes])

bytes = bytes [used_bytes :]

i f i i s StartSignal :

options = [

StartSignal ,
AccelerometerSignal ,

GyroSignal ,

CompassSignal

]

option = i

break

except IndexError , e :

missing_bytes = True

except DataException , e :

pass

i f option == None and not missing_bytes :

i f not start_found :

print ” Waiting for start s ignal . . ”

e lse :
print ”Out of sync , resett ing options to ” \

” s tart s ignal alone and discarding one byte . ”

print bytes ,

print map (byte_str , bytes)

options = [StartSignal ,]

resets += 1

bytes .pop (0)

print ” Unprocessed bytes : %s ” % bytes

37

Appendix B: Example of an External Client Code

print ” Accelerometer samples / overruns : %s/%s ” % (acc_data , acc_overrun)

print ”Gyro samples / overruns : %s/%s ” % (gyro_data , gyro_overrun)

print ” Resets : %s ” % resets

print ”Compass data : ”

print ” ” .join (map (chr , compass)) .strip ()

38

Bibliography

[1] Grant Baldwin, Robert Mahony, Jochen Trumpf, Tarek Hamel, and Thibault

Cheviron. Complementary Filter Design on the Special Euclidean Group SE(3).

In European Control Conference, 2007.

[2] Bernhard Buchli, Felix Sutton, and Jan Beutel. GPS-equipped Wireless Sensor

Network Node for High-Accuracy Positioning Applications. In Proc. 9th Eu-

ropean Conference on Wireless Sensor Networks (EWSN 2012), 2012. Trento,

Italy.

[3] Bernhard Buchli, Mustafa Yuecel, Roman Lim, Tonio Gsell, and Jan Beutel.

”Demo Abstract: Feature-Rich Platform for WSN Design Space Exploration”.

http://www.tik.ee.ethz.ch/ bbuchli/pubs/BYLGB2011.pdf.

[4] Michael J Caruso. Applications of Magnetoresistive Sensors in Navigation Sys-

tems. Technical report, Honeywell Inc., 1997.

[5] Michelle Clifford and Leticia Gomez. Measuring Tilt with Low-g Accelerome-

ters. Technical report, Freescale Semiconductor Inc., 2005.

[6] HMR3400 (Compass) Datasheet. http://www51.honeywell.com/aero/common/

documents/myaerospacecatalog-documents/Space-documents/

Digital Compass Solution HMR3400.pdf.

[7] L3G4200D (Gyroscope) Datasheet. http://www.st.com/internet/com/

TECHNICAL RESOURCES/TECHNICAL LITERATURE/

DATASHEET/CD00265057.pdf.

[8] LIS302DL (Accelerometer) Datasheet. http://www.st.com/internet/com/

TECHNICAL RESOURCES/TECHNICAL LITERATURE/

DATASHEET/CD00135460.pdf.

[9] STM32F100RBT6B (ARM) Datasheet. http://www.st.com/internet/com/

TECHNICAL RESOURCES/TECHNICAL LITERATURE/

DATASHEET/CD00251732.pdf.

[10] STM32VLDISCOVERY ARM development board user manual.

http://www.st.com/internet/com/TECHNICAL RESOURCES/

TECHNICAL LITERATURE/ USER MANUAL/CD00267113.pdf.

[11] PySerial documentation. http://pyserial.sf.net.

39

Bibliography

[12] STEVAL-MKI005V1 (Accelerometer evaluation kit).

http://www.st.com/internet/com/TECHNICAL RESOURCES/

TECHNICAL LITERATURE/ USER MANUAL/CD00214614.pdf.

[13] Demoz Gebre-Egziabher, Roger C. Hayward, and J. David Powell. ”Design

of Multi-Sensor Attitude Determination Systems”. IEEE Transactions on

Aerospace and Electronic Systems, 40(2):627 – 649, 2004.

[14] Herbert Goldstein. ”Classical Mechanics”. Addison-Wesley, 1980.

[15] Patrice Guillet. Online GPS for PermaSense WSN. Semester thesis, 2010.

[16] Holger Harms, Oliver Amft, Rene Winkler, Johannes Schumm, Martin

Kusserow, and Gerhard Troester. ETHOS: Miniature Orientation Sensor for

Wearable Human Motion Analysis. In Sensors 2010: Proceedings of IEEE Sen-

sors conference. IEEE, 2010.

[17] Andreas Hasler, Igor Talzi, Jan Beutel, Christian Tschudin, and Stephan Gru-

ber. ”Wireless Sensor Networks in Permafrost Research - Concept, Require-

ments, Implementation and Challenges”. Proceedings of the Ninth Interna-

tional Conference on Permafrost, 2008.

[18] Robert Mahoney, Tarek Hamel, and Jean-Michel Pflimlin. ”Nonlinear Com-

plementary Filters on the Special Orthogonal Group”. IEEE Transactions on

Automatic Control, 53(5):1203 – 1218, 2008.

[19] Kirk Martinez, Jane K. Hart, and Royan Ong. Environmental Sensor Net-

works. IEEE Computer, pages 50–56, 2004.

[20] William Premerlani and Paul Bizard. ”Direction Cosine Matrix IMU: Theory”.

2009. http://gentlenav.googlecode.com/files/DCMDraft2.pdf.

[21] Kurt Seifert and Oscar Camacho. Implementing Position Algorithms Using

Accelerometers. Technical report, Freescale Semiconductor Inc., 2007.

[22] Atollic TrueSTUDIO web page. http://www.atollic.com/truestudio.

[23] PermaSense web page. http://www.permasense.ch.

[24] TinyNode web page. http://www.tinynode.com/.

40

