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ETH Zürich

Supervisors:

Dr. Jan Beutel, Dr. Philipp Schneider

Prof. Dr. Lothar Thiele

June 22, 2012

mailto:Daniel Burgener<burgdani@gmx.ch>


ii



Abstract

Hydrologists use water samplers in order to research the linking process between
catchment hydrology and stream water chemistry during storm events. Decid-
ing when to trigger a series of samples, which is subsequently analyzed in the
laboratory, is difficult with a single locally connected sensor. Due to the water
sampler’s stand-alone system design it is not possible to use multiple distributed
sensors as a trigger criteria, synchronize the sampling of multiple water samplers,
or to remotely query the sampler status.

To tackle these problems we explore in this thesis the possibilities to (i)
integrate the water sampler into the existing PermaSense wireless sensor network,
and (ii) to control the water sampler based on online sensor data. To this end, the
end-to-end integration of a water sampler into the PermaSense wireless sensor
network is detailed, which leverages on a feature rich sensor platform for rapid
development and efficient debugging. A control algorithm is devised, evaluated
and embedded into the backend of the PermaSense system where sensor data is
used to control the water sampler.

The system is evaluated in a real-world wireless sensor network deployment
at river Thur. The results show the successful integration of the water sampler
and its sensor-based control. Specifically, the control algorithm generates a static
sampling scheme consisting of 24 samples at an interval of 30 minutes when the
electrical conductivity sensor in the wireless sensor network exceeds a predefined
threshold. Further steps include the use of multiple sensor channels as trigger
input, synchronized water sampling of multiple water samplers, as well as the
dynamic adaption of the sampling scheme based on sensor data.
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Chapter 1

Introduction

1.1 Motivation

Water sampling is an important process in different areas of application, such
as water and wastewater monitoring. For example, governmental monitoring
networks use automated samplers to survey water quality in ground and surface
water systems as defined by the water framework directive (WFD) [1]. Its focus
is on long-term continuous monitoring to detect water quality trends in river
basins. In environmental research the focus is typically on short-term campaigns
and experiments with an emphasis on hydro-chemical dynamics during storm
events. While for governmental water quality monitoring the catchment area is
in the order of river basins (> 250km2) the research catchments are typically
of meso-scale of up to 50km2. Figure 1.1 shows a possible headwater research
catchment to monitor.

Figure 1.1: Hydrological catchment area.

Automated water samplers are an established technology for monitoring wa-
ter quality. The water samplers are placed at the location of interest (e.g. a
stream, river or lake) from where they draw water according to a programmed
sampling scheme and store it into bottles located inside the water sampler. The
number of samples drawn by a water sampler is limited by the number of avail-
able bottles, making continuous high frequency sampling very labor-intensive due
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2 Chapter 1. Introduction

to the frequent collection of the samples and subsequent analysis in the labora-
tory. Therefore, water samplers are mainly used for low frequency sampling or
in combination with a local sensor for high frequency sampling during a specific
event. To enable sampling at their specific time of interest, e.g. storm events
of short duration (1-2 hours), sensor-based event triggering is used. The draw-
back of existing event triggered water samplers is their dependence on a single
local sensor, typically a water level sensor. It is not possible to use multiple,
distributed sensors to determine the trigger. Because of the limited number of
samples a water sampler can draw, the threshold of such water level sensor is set
rather high to prevent false triggering. This in turn often has the drawback that
the sampling onset is delayed and no samplings are drawn at the beginning of
the rising limb (see Figure 1.2(a)). In addition, it may happen that events are
not detected because the stream has eroded its river bed and thus changed the
cross-section area and thus the local rating curve. Another drawback of existing
water samplers is their lack of networking capabilities. That is, it is not possible
to synchronize multiple water samplers allowing to draw samples at different
locations of the catchment area at the same time nor is it possible to remotely
observe the current state of a water sampler.

(a)

(b)

Figure 1.2: The figure shows two sampling series [2]: a) automated water sampling
with delayed onset, and b) manual on-site water sampling without delayed onset. The X
axis represents the time and the Y axis the runoff. The time of sampling is represented
as circle or dot.

In this thesis, we propose a concept to integrate the ISCO 6712 water sampler
from Teledyne [3] into the existing PermaSense wireless sensor network (WSN)
[4]. Furthermore, the control of the water sampler is integrated into the Per-
maSense system. This enables the control algorithm to trigger one or more
water samplers based on data from one or multiple sensors in the WSN.
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1.2 Contribution

The contributions of this thesis are the following:

• Integration of the 6712 water sampler into the PermaSense WSN.

• Control of the 6712 water sampler based on sensor data.

• Automated and manual control of the water sampler.

• Remote information about the current state of the 6712 water sampler.

• Possibility to remotely modify the water sampler control algorithm.

1.3 Outline

Chapter 2 discusses related works and concepts of WSNs, wireless sensor actor
networks (WSANs) and water sampling strategies. Chapter 3 describes possi-
bilities how to integrate the 6712 water sampler into the existing PermaSense
WSN and where to run the control algorithm controlling the water sampler. In
Chapter 4 relevant information about the 6712 water sampler are summarized.
Chapter 5 contains a detailed concept of the in-system control of water sam-
pler as well as general information about the different software implementations.
Chapter 6 illustrates the problem when using raw data for the control and ex-
amines some data cleaning approaches. First evaluation results from tests at
the river Thur are shown in Chapter 7. Finally, Chapter 8 concludes the master
thesis and gives an outlook on possible further steps.
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Chapter 2

Related Work and Project
Background

This chapter contains some general information about wireless networks con-
sisting of sensors only or sensors and actuators. Furthermore, some sampling
strategies used for water quality assessment are shown.

2.1 Wireless Sensor and Actuator Networks

2.1.1 Why Actors?

According to [5], actuators and actors are not exactly the same. A device used
to convert a control signal into a physical action is called an actuator. An actor
on the other hand consists of one or several actuators and additionally features
networking-related functionalities (receive, transmit, process, and relay data).
For example, a robot may consist of several actuators used to perform actions
on the physical environment. In terms of networking, the robot is a single entity
and therefore considered as an actor.

2.1.2 Implication on Network Architecture

WSNs aim to sense the physical environment and store sensor data. WSANs, in
turn, can additionally perform certain actions on the environment in response
to the sensed data. That is, the information transfer is not only in one direction
like in a WSN but in both directions. A typical WSAN network architecture is
shown in Figure 2.1. The sensors sense the physical environment and forward
this information to the actors which, in turn, use the information to perform an
action on the environment. Examples of WSANs are the light sensing and control
in home automation [6], smart homes for supporting elderly and handicapped
people [7], or the health monitoring of infrastructure such as an airplane [8].

5



6 Chapter 2. Related Work and Project Background

The two main components of a WSAN are sensors and actors. Sensors are small
devices with limited power, communication and computation capabilities while
actors have more resources and are able to perform appropriate action based on
sensor values [9]. Additionally, they may have a sink responsible for monitoring
and managing the overall network [10].

Task Manager

Sink

sensor/actor field : sensor

: actor

Node

Figure 2.1: The architecture of WSANs including sensors, actors, and a sink [11].

WSAN architectures can be grouped in two categories [12]: (i) semi-automated
architecture, and (ii) automated architecture. In semi-automated architectures
the sensed data is collected at a sink from where the acting process is centrally
controlled (see Figure 2.2(a)). That is, there is an explicit controller entity, e.g.
located at the sink. With this architecture, the sensor data as well as the control
commands to control the actuator are transmitted over the WSAN. Figure 2.3(a)
shows the corresponding abstract high-level control application view. An exam-
ple of a centralized control is the networked lighting system for optimizing energy
savings where the optimal illumination of a shared-office space is controlled from
a central point [13]. Conversely, in the automated architecture actions are not
controlled from a centralized controller but from the actor itself, i.e. controllers
are embedded into the actors (see Figure 2.2(b)). The actor collects sensor data
from its environment and initiate appropriate action. Depending on the ap-
plication, actor-actor communication may be required to coordinate the acting
process. If no communication between actors is necessary, the WSAN network
is only used for the transmission of sensor data (see Figure 2.3(b)).

Because the semi-automated architecture is similar to WSN architectures,
existing WSNs may be adapted to accommodate actors. The disadvantage of
the semi-automated architecture compared to the automated architecture is its
longer latency because all data has to be routed to the sink where decision about
the appropriate action is taken. But this drawback only holds when the sensor
data origins from nearby sensors. Depending on the size of the event area, it
may be necessary for the actor to receive data not only from nearby sensors
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Sink

: sensor
: actor

sink

Event 
area

(a)

: sensor
: actor

Event 
area

sink

(b)

Figure 2.2: a) Semi-automated vs. b) automated architecture.

Physical
System

Actuator

Sensor

Controller

W
S
A
N

(a) Semi-automated architecture with explicit
controllers.

Physical
System

Actuator

Sensor

Controller

WSAN

(b) Automated architecture without explicit
controllers.

Figure 2.3: Abstraction of control application [10].

but also from sensors which are further away or even in another WSN. Due to
the fact that all data is processed by a central controller in the semi-automated
architecture, the controller is a single point of failure.

2.2 PermaSense WSN

The PermaSense project [14] aims to collect geophysical data for permafrost
monitoring in alpine regions. The system’s heart is a WSN consisting of mul-
tiple simple sensor nodes able to measure temperature, electrical conductivity,
water pressure etc. (see Figure 2.4). Recently the system was extended by more
complex sensors with higher and variable data rates requiring user-interaction,
or in-network data fusion. This successor project is called X-Sense [15] and
strives to monitor the environment under extreme conditions. The PermaSense
architecture, illustrated in Figure 2.4, is structured along the following tiers: (i)
WSN including sensor nodes, (ii) Base Station, and (iii) backend. The WSN
consists of multiple sensor nodes (TinyNodes [16]) which communicate over an
868 MHz radio. The wireless sensor nodes use the PermaDozer [17] data gath-
ering protocol for sending their data to the sink. The PermaDozer protocol is
based on the Dozer protocol [18]. The network topology of the WSN is a tree
which may dynamically change. The tree is rooted at a single sink which is a
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Base Station in the PermaSense WSN. Each message sent by a node is explicitly
acknowledged by the receiving neighboring node in the tree topology and resent
by the sender if no acknowledgment has been received. That is, there is no end-
to-end message acknowledgment, but each single hop message is acknowledged.
Although the Dozer protocol is mainly designed for data flow towards the sink,
it features a lightweight backward channel enabling the sink to send data to sen-
sor nodes. The backward channel data is included in the beacon message and
limited to a few bytes. Furthermore, beacon messages sent by the sink are not
acknowledged by the receiver, i.e. data send to sensor nodes over the WSN are
not acknowledged at all.

Sensor Node

Core Station
Water Sampler

Core Station
Weather

Core Station
Water Sampler

Sensor Node

Sensor Node

Core Station
Weather

12V Solar Power

12V Solar Power

Dozer Low Power Network

WLAN Directional Links

Base Station

12V Solar Power
Access Point

Server

Station

Station

Figure 2.4: PermaSense system architecture.

The Base Station corresponds to a first level sink which forwards the received
data over a wireless local area network (WLAN), general packet radio service
(GPRS) or Ethernet link to the final sink (backend system). The PermaSense
network may consist of several sub-WSNs, each connected to a single sink (Base
Station). The Base Station is equipped with an 868 MHz radio interface allowing
to communicate with the WSN. Additionally, it features a WLAN, Ethernet or
GPRS interface for the communication with the backend. The backend system
consist of one or multiple servers running the global sensor networks (GSN)
software [19]. The GSN allows to integrate multiple WSNs, e.g. two different
WSNs with individual sinks (Base Stations) connected to the backend system
running the GSN. GSN is used for data collection, storage and data management.
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Currently the following different sensor integrations are possible: (i) sensor
node in WSN, (ii) Core Station in WSN (iii) Core Station with WLAN, GPRS or
Ethernet link only, or (iv) Core Station in WSN with WLAN, GPRS or Ethernet
link. The case (iv) is used in the concept of a wakeup-radio where the low power,
lower bandwidth radio interface (here WSN) is used to temporarily enable the
radio interface with the higher bandwidth (here WLAN, see [20]).

2.2.1 Time Information

Different time information exists in the PermaSense system. Figure 2.5 illustrates
the relation between the different time information. The generation time is the
absolute time when the data was generated. It is calculated based on the absolute
time when it was received by the Base Station (timestamp) and the relative time
it required to propagate through the Dozer low power WSN to the Base Station
(atime). The timed time corresponds to the absolute time when the data was
finally received by the GSN and stored in a database. For data generated by the
Base Station, the Dozer low power network is not involved in the transmission,
and therefore the atime is zero and the generation time is identical with the
timestamp.

generation time timed

Sensor Node Base Station Access Point GSN Server

timestamp
atime backtime

time

absolute timerelative time

proptime

Dozer Low
Power Network

Figure 2.5: Time information in PermaSense.

2.2.2 Core Station

The Core Station is a generic platform which can be used as a sensor node or a
Base Station [15]. The software running on the Core Station is called backlog
and defines the platform’s functionality. It is organized with plugins executing
different tasks such as receiving sensor data from the WSN and forwarding them
to the backend or reporting the Core Station and backlog status to the backend.
The backlog software is configured by means of a configuration file stored on the
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Core Station (backlog.cfg). When a plugin in the plugin section of the config-
uration file is set to 1, it is loaded during startup. After a plugin is instantiated,
the init function of the plugin is called before the run function is executed.
The action function is called when there is a schedule entry in the schedule file.
The action function’s parameters are those listed in the schedule file. If the
plugin has not been loaded before, the plugin is instanciated before the action

function is called. The stop function is called when the backlog software is
stopped or the maximal runtime of the plugin is expired (max runtime minutes

as schedule entry parameter or max runtime value in the config file).

The Core Station can be operated in a duty cycle mode to save energy. In
the duty cycle mode the Core Station is shutdown if the plugins do not have
to execute any tasks. After the Core Station is shutdown, it is only turned on
if a schedule job has to be executed, the daily service wake up is enabled, or a
Dozer wake up command is received over the WSN. To activate the duty cycle
mode, the duty cycle variable in the options section of the backlog config file
has to be set to 1 (duty cycle mode = 1). In the duty cycle mode, the Core
Station is shutdown if no plugin needs to run. The individual plugins can decide
whether or not they allow to power off. If the plugin does not allow to power
off, the function isBusy needs to return TRUE else FALSE. Before the system is
shutdown, the TinyNode (running the PowerControl code) is configured to wake
up the system at the time of the next schedule entry. The Core Station can be
remotely powered on by the Dozer beacon command GUMSTIX CTRL CMD with the
command value 1. If the system has been enabled by this command, it has to
be cleared with the same command and the command value 4 to return to the
normal schedule mode. The command value 2 can also be used to power on the
Core Station. With this command value the Core Station starts normally. After
the boot process the Core Station is shutdown as soon as no more tasks have to
be executed. That is, no subsequent Dozer beacon command is necessary to set
the Core Station back to sleep as it was the case with the Dozer command value
1 mentioned before.

2.3 Sampling Strategies for Water Quality Assess-
ment

There exist different sampling strategies to monitor the water quality. The ap-
plied strategy depends on the focus of the water quality monitoring. In research
water analysis is used to understand the linking process between the catchment
hydrology and the stream water chemistry [21]. Therefore, the sampling fre-
quency has to be adapted to the time scale of the catchment’s hydrological
response. For research catchments of small scales, the hydrological response is in
the order of minutes or hours requiring high-frequency water sampling. On the
contrary, sampling frequencies prescribed by WFDs for water quality monitoring
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are often in the order of weeks or months [22] (e.g. acidification status of rivers:
one sample every 3 months [1]).

Manual sampling is a simple sampling strategy and used when low frequency
monitoring is required. The drawback of low frequency sampling is that it only
gives information about a single point in time which may be inappropriate if
the water quality fluctuates over a short time period [23]. Automated water
samplers are an alternative to manual sampling. They are able to automati-
cally draw water from a stream or lake and store the samples into bottles. Due
to the limited number of bottles, the automated water sampler has to be ser-
viced once all bottles have been filled. Automated water samplers are used to
draw time proportional samples [24, 25, 22] or, with a locally connected sen-
sor, flow/volume proportional samples [26]. In addition, an on-site sensor can
be used to trigger a sampling series in case of a specific event such as a storm
event [27]. When continuous high-frequency sampling is required, sample bottles
pile up fast leading to time consuming and expensive laboratory measurements
of water chemistry. Therefore, high frequency sampling with automated water
samplers is typically restricted to event triggered sampling [21]. In-situ analytics
with field-deployable autoanalyzers enable long-term continuous sampling with
higher frequency. The availability of environmental data with a high temporal
resolution allows to observe previously unattainable insights into the hydrochem-
ical evolution [21]. Although, some online measurements such as temperature,
pH or electrical conductivity are already available at favorable prices, autoan-
alyzers for chemicals are still expensive. Another drawback of autoanalyzers is
their limited number of chemicals they can analyze.
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Chapter 3

Integration Concept

This chapter examines the different methods of integrating the actuator and its
control into the existing PermaSense WSN.

3.1 Introduction

The approach of an event driven sampling system is based on the infrastructure
of the WSN project PermaSense [4]. Although actuators have previously been
integrated into the PermaSense system (e.g. controllable cameras [20]), the fact
that an actuator has to be controlled based on sensor data is new. By the
integration of actuators, the former WSN is extended to a WSAN. The presence
of a control algorithm arises new questions such as where to implement the
control algorithm, i.e. on which tier of the system (i.e. WSN, Base Station, or
backend).

The integration of the in-system controlled actuators can be divided into two
parts: (i) the actuator integration, and (ii) the control algorithm integration.
The actuator integration deals with the physical integration of the actuator,
i.e. how can the actuator interact with the existing wireless network. The
control algorithm integration addresses the location where the control algorithm
is implemented, i.e. where sensor data and other inputs are converted into actor
control commands. Figure 3.1 shows the integration concept of the actuator
and the control algorithm. The following sections will discuss the actuator and
the control algorithm integration and how they relate to the WSAN network
architecture presented in Section 2.1.2.

3.2 Network Architecture

The integration of water sampler actuators requires the extension of the Per-
maSense WSN to a WSAN. But our WSAN slightly differs from the WSAN

13
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Sensor
Data

Control
Algorithm

Water
Sampling
Schedule

(a)

Sensor Node

Dozer Low Power Network

WLAN Directional Links

Base Station

Access Point
Server

Water Sampler
Core Station

(b)

Figure 3.1: a) Abstract view of the water sampler control. b) PermaSense system
architecture view of the integration concept.

described in Section 2.1. The actuator used in this project has little impact on
the environment because it only draws a small amount of water from its environ-
ment. Additionally, the actuator does not only rely on sensor nodes located in
the same WSN but potentially also on data from other networks (WSN, Internet
etc.). Thus, the event area may be bigger than the WSN itself. Furthermore,
actions to be performed cannot be split among multiple actors or delegated to
another actor. Beside applying actions based on sensor data, the sensor data has
to be gathered and stored, which requires forwarding all data to the sink.

In this project we focus on the semi-automated architecture which has the
advantage that its architecture is similar to the existing WSN architecture. This
allows the reuse of the existing architecture and its protocols. Furthermore, the
actuator is not used to control an environmental variable, thus the hydrological
catchment system is not a closed-loop system with potential instabilities due to
high latencies. Also network lifetime is not considered to decrease significantly
by the choice of a semi-automated architecture because the sensed sensor data
still needs to be forwarded to the sink and control commands for the actors can
be piggybacked on the Dozer beacon messages which are send anyway.
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3.3 Actuator Integration

The actuator (6712 water sampler) does not feature a wireless interface supported
by the PermaSense infrastructure (868 MHz radio, WLAN, GSM/GPRS). There-
fore an interface unit is required to integrate the actuator into the PermaSense
system. The combination of the actuator and the interface unit is referred to as
actor (see Section 2.1.1). Currently two hardware platforms exist which allow
to integrate sensors and actuators into the network: (i) sensor node, and (ii)
Core Station. Some interface features of the two hardware platforms are listed
in Table 3.1. Both platforms are equipped with a UART interface required for
the communication with the actuator.

Table 3.1: Interfaces of sensor node and Core Station.

Interface Sensor Node Core Station

UART x x

Ethernet x

868 MHz Radio x x

WLAN x

GSM/GPRS x

In a first step the actuator is connected to a powerful generic platform (see
Section 2.2.2). The PermaSense Core Station serves as generic node, which in a
later step may be replaced by a node with reduced hardware (e.g. sensor node
hardware). This approach allows faster implementation and easier observation.
The interface unit is integrated via the 868 MHz radio as well as the WLAN into
the existing system. Care has to be taken that the data transmitted over the
WLAN link is kept low so that it is possible to replace it at a later time by an
interface with lower data rate, e.g. an 868 MHz radio.

3.4 Control Algorithm Integration

The aim of the control algorithm is to control actors based on sensor data and
other inputs such as human commands or actor states (see Figure 3.1(a)). As
mentioned in Section 3.2, we will focus on the semi-automated architecture where
the control algorithm is located in a central controller, e.g. the sink. In the
following the different control algorithm integration possibilities are reviewed.
The review is based on the following assumption:

• The control algorithm requires data from different networks such as a dif-
ferent WSN or Internet.

• Actuators may reside in different WSAN.

• Wireless link failures may occur.
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Based on the PermaSense system architecture with its three tiers, the control
algorithm may be integrated into a single tier or a combination of different tiers.
In the following, the different tiers are analyzed qualitatively with respect to the
following criteria: link failure, processing power, availability of energy and sensor
data, observability of the control algorithm, reaction time and data traffic.

3.4.1 Sensor Nodes

Nodes within the WSN are connected to the Base Station via ISM-band radio
interface. The multi-hop protocol PermaDozer is used for the communication be-
tween nodes and Base Station. Due to the power restrictions of the sensor nodes
in the WSN and the protocol, the bandwidth is limited. Because of the poten-
tially large amount of data required by the control algorithm, the integration of
the control algorithm into the WSN, i.e. into the interface unit, is not possible
due to PermaDozer data limitation. Although the WSN tier is not appropriate
for the control algorithm integration, it may need to carry out some tasks of the
control algorithm in case of link failure (fallback scenario). Furthermore, it may
also take over some control algorithm parts where short latencies are required.

3.4.2 Base Station vs. Backend (GSN)

If the control algorithm would depend only on the sensor data of sensor nodes
connected to a single Base Station, then the integration of the control algorithm
into the Base Station would be an advantage because of the availability of data
in case of a Base Station - backend link failure. But as the control algorithm
possibly relies on data from other WSNs only accessible via the backend, none
of the two tiers have an advantage over the other. Furthermore, the current
Base Station software architecture does not allow plugins running on the Base
Station to access data of other sensors. Also the reaction time will be similar
for both tiers, because the Base Station and the backend need information from
each other. In terms of processing power the backend has more resources which
can be increased easily. Also the availability of energy is often better for the
backend because the Base Station is usually powered by a battery combined
with a solar panel. Concerning the observability of the control algorithm, the
backend does not have a big advantage because the Base Station - backend link
allows fast access to the Base Station. In terms of data traffic, the Base Station
does not have an advantage because all sensor data needs to be stored in the
backend system. Furthermore, an integration of the control algorithm into the
Base Station would increase the data traffic between Base Station because all
relevant information not available from the WSN needs to be send from the
backend to the Base Station.



3.4. Control Algorithm Integration 17

3.4.3 Summary

The WSN tier alone is not an option for the implementation of the in-system
control algorithm, but it has to undertake some fallback tasks if no connection is
available between the actor and the main control algorithm. The implementation
of the main control algorithm in the Base Station tier is not favorable because
its main advantage, the availability of sensor data of the connected WSN in case
of a Base Station - backend link failure, is no longer given when data from other
networks is required. For this reasons, the backup tier is the preferred location
for the implementation of the control algorithm (see Figure 3.1(b)).
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Chapter 4

ISCO 6712 Water Sampler

This chapter aims to give some relevant information about the 6712 water sam-
pler from Teledyne ISCO (hereafter referred as 6712). The information mainly
origins from the 6712’s instruction manual [3] or was gained through tests with
the 6712.

4.1 Introduction

The 6712 is a portable water sampler which can easily be moved from site to site
(Figure 4.1). It is able to draw water from a nearby stream or lake by means
of a tube. Water samples are stored in bottles located inside the sampler (see
Figure 4.1(b)). The 6712 features a controller which can be programmed to run
different programs. The controller has a 4 × 20 character display as well as a
keypad for human interaction. Different modules (700 Series modules) may be
connected to the controller to monitor physical phenomena such as temperature
or flow rate. These monitoring devices may be used to trigger the sampler to
draw a water sample. As an option, SDI-12 sensors may be connected to the
controller. The water sampler is extensively described in the installation and
operation guide [3]. In the following sections some relevant parts from the guide
as well as information gained during the project are described.

4.2 Programming Level

When the water sampler is used as stand-alone device, it may be programmed
based on two programming levels: (i) standard programming level, and (ii) ex-
tended programming level. The standard programming level allows to set up
typical sampling programs while the extended programming level allows to set
additional features. The programming level can be selected by entering a nu-
merical command on the keypad when the 6712 is in the main menu: (i) 6712.1

19
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(a) (b)

Figure 4.1: 6712 water sampler.

for the standard programming level, and (ii) 6712.2 for the extended program-
ming level. The main menus of the standard and the extended programming
level are shown in Figure 4.2.

RUN
PROGRAM

VIEW REPORT
OTHER FUNCTIONS

(a) Standard programming level

RUN “EXTENDED 1”
PROGRAM

VIEW REPORT
OTHER FUNCTIONS

(b) Extended programming level

Figure 4.2: Programming level dependent main menus [3].

4.2.1 Standard Programming Level

The language and the unit for the length can be selected by typing 6712.8 at
the main menu. In the standard programming level the following settings may
be configured:

• Site description (text)

• Bottle kit (number of bottles and bottle size)

• Suction line length

• Pacing, defining at which rate the 6712 takes samples

• Distribution, defining how the drawn samples are distributed over the bot-
tles (one sample per bottle, several bottles per sample, several samples per



4.2. Programming Level 21

bottle etc.)

• Sample volume

• Sampling start, defining when to start with the sampling (immediate start,
delayed start, start at a specific time, start after remote command)

The 6712 may be disabled to prevent samples being taken while a program is
running. This can be done by an external module or a remote control command
(see Section 4.6.1.1). A standard program may be started by selecting RUN in the
main menu. Afterwards, the running program may be interrupted by pressing
the STOP key or sending the remote command PAUSE. These actions are logged
in the event log contained in the sampling report (see Section 4.6.1.4). In the
pause state, the program operates as normal, except that no samples are taken.
Skipped samples are recorded in the event log. By selecting RESUME PROGRAM

the paused program can be continued.

4.2.2 Extended Programming Level

All the features available in the standard programming level are also available
in the extended programming level. The 6712 can store four different extended
programs. In the following some relevant configurations available in the Program
and Software Options menu are described. The Program menu is available in the
main menu (Figure 4.2(b)) and the Software Options menu is a sub-menu of the
Other Functions menu (Figure 4.3(b)) available in the main menu. Figure 4.3(a)
shows the Bottle menu where the number of bottles, the bottle volume and other
settings can be configured.

_ _ , _ _ _ _ m l B O T T L E S
_ _ f t S U C T I O N L I N E

A U T O S U C T I O N H E A D
_ R I N S E S , _ R E T R I E S

(a) Bottle menu

MAINTENANCE
MANUAL FUNCTIONS
SOFTWARE OPTIONS

HARDWARE

(b) Other Functions menu

Figure 4.3: 6712 extended programming menus.

4.2.2.1 Rinses and Retries

In the extended programming mode it is possible to program the 6712 to au-
tomatically rinse the suction line before taking a sample. The number of rinse
cycles is in the range of 0 to 3. The 6712 is able to detect liquid. If the 6712
does not detect any liquid when pumping, it may retry to take a sample before
it skips. The number of retries may be configured and is between 0 and 3.
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4.2.2.2 Pump Counts for Purge Cycle

Purge cycles are used to clear the strainer at the end of the suction line before
and after taking a sample. During the purge cycle the pump runs in reverse.
Pre- and post-sample purges are defined in pump counts and can be configured
in the Software Options menu.

4.2.2.3 Periodic Serial Output

The 6712 can be configured to periodically output its status to the interroga-
tor port (see Figure 4.7). The format of the serial data (DATA) is the same
as described in Section 4.6.1.2. While the 6712 is in communication mode (Sec-
tion 4.6) the status is not sent. Only after the communication timeout the status
is periodically sent again.

4.2.2.4 Interrogator Connector Power

The interrogator connector features a +12VDC power output (Section 4.6.2).
This power output can be programmed to be either always on/off or on/off
during certain time intervals.

4.3 Power

4.3.1 Power Consumption

Table 4.1 shows some typical power consumptions of the 6712. The measure-
ments were accomplished with the multimeter Agilent U1253A. For the current
measurements the handheld terminals ’A’ and ’COM’ with a maximal current of
10A were used.

Table 4.1: Power consumption of 6712.

Sampler Status Back Current [mA]
(see Figure 4.6) Light avg1 peak1

Sampler Off OFF 14.6 23.1

at Standby OFF 16.2 29.8

at Standby ON 225.9 239.6

Program Running (disabled) OFF 18.3 28.9

Take Sample OFF 3100 5322
1 Peak and average current were measured during at least 100s
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4.3.2 Power Failure

When a running 6712 program is interrupted due to a power failure, it is contin-
ued after the power is restored. When requesting the 6712 status in the Menu
Control mode (see Section 4.6.1.1), the sampler status is extended with an error
in brackets (see Listing 4.1). Furthermore, the time when the power fail occurred
and the time when the power has been restored is listed in the sampling report
(POWER FAILED! and POWER RESTORED).

Listing 4.1: Menu Control sampler status after power fail.

Sampler Status: Program Running (ERRORS)

Program Status: 0 samples in bottle 1 (Disabled: remote)

...

4.4 Fuel Gauge

The 6712 has an internal fuel gauge monitoring the power consumption. By
pressing the STOP key, the current and the previous power consumption are
displayed in Ampere-hours. The previous power consumption denotes the power
consumed before the battery has been changed and the current power consump-
tion denotes the power consumed since the battery has been changed. It has to
be kept in mind that the power consumption does not give an absolute infor-
mation about the battery’s state because the initial state of the battery is not
known by the 6712.

4.5 Report

The 6712 is able to store 1000 sampling events in its internal battery-backed
RAM. It is able to store additional readings from SDI-12 sensors, 700 Series
modules and other sensors. Those sensor readings and the program settings are
available as reports which may be collected in different ways, e.g. via serial RS-
232 interface. The format of the report can be configured. Figure 4.4 lists two
different types of report. For the description of the source and error codes in
the sampling report we refer to Table 4-3 in [3]. The data for the reports are
stored in the memory until a new program is run (selecting RUN). Starting a new
program clears the memory and stores the data for the current program. That
is, the program settings in the report are only updated after a program has been
started.
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SAMPLER ID# 3687447734 06:32 19-DEC-02
Hardware: A0 Software: 1.02

*********** SAMPLING RESULTS ***********
SITE: FACTORY051

Program Started at 15:03 WE 18-DEC-02
Nominal Sample Volume = 200 ml

COUNT
TO

SAMPLE BOTTLE TIME SOURCE ERROR LIQUID
------- ------ ---- -- -- ------

15:03 PGM ENABLED
1,1 1 15:03 S 250
1,1 2 15:18 T 247
1,1 3 15:33 T 247
1,1 4 15:48 T 249
1,1 5 16:03 T 247
1,1 6 16:18 T 247
1,1 7 16:33 T 247
1,1 8 16:48 T 248
1,1 9 17:03 T 237
1,1 10 17:18 T 236
1,1 11 17:33 T 237
1,1 12 17:48 T 241
1,1 13 18:03 T 238
1,1 14 18:18 T 236
1,1 15 18:33 T 237
1,1 16 18:48 T 236
1,1 17 19:03 T 242
1,1 18 19:18 T 237
1,1 19 19:33 T 235
1,1 20 19:48 T 238
1,1 21 20:03 T 237
1,1 22 20:18 T 237
1,1 23 20:33 T 236
1,1 24 20:48 T 230

20:48 PGM DONE 19-DEC

SOURCE S ==> START
SOURCE T ==> TIME
----------------------------------------

(a) Sampling results

SAMPLER ID# 3687447734 06:32 19-DEC-02
Hardware: A0 Software: 1.02

*********** PROGRAM SETTINGS ***********
----------

SITE DESCRIPTION:
"FACTORY051"

----------
UNITS SELECTED:
FLOW RATE: cfs

FLOW VOLUME: Mgal

----------
BUBBLER MODULE:

WEIR
90

V-NOTCH
----------

24, 1000 ml BTLS

10 ft SUCTION LINE

----------
PACING:

TIME, EVERY
0 HOURS, 15 MINUTES

----------
DISTRIBUTION:
SEQUENTIAL

----------

200 ml SAMPLES

----------

5 MINUTE DELAY TO
FIRST SAMPLE

----------------------------------------

(b) Program settings

Figure 4.4: 6712 report examples [3].
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4.6 Remote Control

4.6.1 Computer Control

The 6712 can be controlled remotely via the RS-232 serial interface. Table 4.2
shows the settings required for the RS-232 serial communication. The baud
rate is automatically detected by the 6712. Figure 4.5 shows an overview of the
samplers remote operation control structure. It is distinguished between two
different levels of computer control: (i) Menu Control, and (ii) External Program
Control. To build up a connection to the 6712, question marks (?) need to be sent
until the 6712 returns its banner string containing hard- and software revision,
model number and ID followed by a greater-than sign (>). This needs to be done
for both levels of control. After approximately 6 minutes, the communication
times out and has to be re-established by sending question marks before new
commands are accepted. It is not possible to remotely turn off the sampler. In
the following the different remote operation modes illustrated in Figure 4.5 are
explained in more detail.

'MENU' +
ENTER

Sampling Reports

Menu Control:
<ST>ATUS - ...
<S>CREEN_<D>UMP - ...
<1>, RUN1 - ...
CONTROL - ... 

Remote Control of 
Sampler Keypad

External Program Control:
STS,1
STS,2
DATA
BTL,x,SVO,v

Offline

'???' 'Q' +
ENTER or
Timeout

'Q' +
ENTER

'CONTROL' +
ENTER

'Q' or
Timeout

'???'

'REPORT' + ENTER

Timeout

Figure 4.5: 6712 remote operation control structure.
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Table 4.2: Serial settings for the communication with the 6712.

Baud Rate 2’400 - 19’200

Parity none

Data Bits 8

Stop Bits 1

Flow Control none

4.6.1.1 Menu Control

After establishing a connection to the 6712, menu commands can be sent to the
6712. MENU followed by an ENTER needs to be typed before menu commands are
accepted by the 6712. Table 4.3 lists all known menu commands and indicates
when those commands are available. For more detailed description we refer to
Table 7-1 in [3].

Table 4.3: Remote menu commands of the 6712.

Menu Command/ Standard Program Extended Program
Short Form Stopped Running Stopped Running

START / 0 – X1 – X1

RUN1 / 1 –3 – X X2

RUN2 / 2 – – X X2

RUN3 / 3 – – X X2

RUN4 / 4 – – X X2

DISABLE / 5 – X – X4

ENABLE / 6 – X – X5

TAKE SAMPLE / 7 – – – X
STATUS / ST X X X X
SCREEN DUMP / SD X X X X
PAUSE / P – X – X
CONTROL X X X X
QUIT / Q X X X X

1 Available when program is set to WAIT FOR PHONE CALL
2 Available when another program number is running
3 Accoring to [3] Table 7-1, this should be possible
4 Available when program is enabled
5 Available when program is disabled

Depending on the 6712’s current state (selected menu, programming mode,
program state etc.) the available commands may change. The menu commands
allow to load and start existing programs. Furthermore, running programs can be
disabled to prevent the 6712 from drawing samples. While a program is running
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on the 6712, it is possible to manually initiate a sampling. Full control over the
6712 can be gained by typing CONTROL. This command allows to remotely control
the 6712’s keypad (see Section 4.6.1.3). The Menu Control mode can be quit by
typing Q and ENTER.

Note: When the main screen (see Figure 4.2) is not active, i.e. when another
menu is selected or the POWER USED is displayed, the RUNx commands are not
available in the Menu Control mode!

In the Menu Control mode the following states, requested by the STATUS

command, are possible:

• Sampler Off

• Program Idle

• at Standby

• Program Waiting Start

• Program Running (enabled/disabled)

• Program Halted

The possible transitions between the states are shown in Figure 4.6. After
the power on of the 6712, the Menu Control mode state changes from Sampler
Off to the Program Idle before it reaches at Standby after the booting has
completed. The 6712 is only in the at Standby state when the main menu (see
Figure 4.2) is active. When a program is run, the next state depends on the start
configuration of the 6712. When it is configured to start at a later point in time,
the state Program Waiting Start is entered (see 1 Figure 4.6) else the state
Program Running (enabled) is entered (see 2 Figure 4.6). If the sampler is
in the Program Waiting Start state and the program is started because the
configured ’later point in time’ is reached, the 6712’s state changes to Program
Running (enabled) if it has not been disabled before (see 3 Figure 4.6). If it has
been disabled before, the 6712’s next state is Program Running (disabled)
(see 4 Figure 4.6). While the 6712 is running a program, its program state can
be enabled and disabled. Disabling and enabling is only possible in the Menu
Control mode but neither in another remote operation mode nor by a manual
keypad press. The state Program Halted is entered as soon as the 6712’s
program is stopped. The program can only be stopped by a keypad operation,
which can take place manually on-site or remotely in the remote operation mode
Remote Control of Sampler Keypad. It may happen that after the stopping of
the 6712’s program, the 6712 state stays in the Program Halted and does not
automatically change to the at Standby state (see 5 Figure 4.6). The Program
Halted state then can be left by pressing the STOP key again.
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Figure 4.6: Menu Control mode state transitions.
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4.6.1.2 External Program Control

The following four commands are available in the External Program Control
mode:

• Turn on sampler

• Take a sample

• Send status

• Send data

The commands need to be followed by a carriage return (<CR>). The indi-
vidual commands are described in the following paragraphs. It is possible to
execute the commands while a program is running. Command driven samples
are then marked in the sampling results report as M (command driven sample).
When no program is running, command driven samples are not logged by the
6712.

Turn on the Sampler The 6712 can be remotely turned on by sending the
command STS,2<CR>. This command is replied by the 6712 with the latest
status. It is not possible to remotely turn off the 6712.

Take a Sample The 6712 can be remotely triggered to take a sample by the
command BTL,2,SVO,100<CR>. The first number after BTL, specifies the bottle
to place the sample in (here bottle number 2) and the second number specifies
the sample volume in ml (here 100ml). This command is only valid if the 6712
is waiting to sample (state WAITING TO SAMPLE = STS,1). The take a sample
command is replied with a status string (see Send Status command below).
When an invalid bottle number or an invalid sampling volume is specified, the
reply status is INVALID BOTTLE=STS,22 or VOLUME OUT OF RANGE=STS,23 re-
spectively. This status is only present for the immediate reply, that is, for a later
status request with STS,1<CR> the status will not be INVALID BOTTLE or VOLUME
OUT OF RANGE anymore (see Appendix C.1.3).

Most settings of the 6712 are ignored when the 6712 is in the External Pro-
gram Control mode, but two settings need to be configured in advance (see p.7-4
in [3]): (i) number of bottles and (ii) suction line length (can be done in the
standard or extended program mode). The rinsing and retry behavior depends
on the selected program. Rinses and retries are only available in the extended
programming level (see Section 4.2.2). If the selected extended program, which
does not need to run, enables rinses and/or retries, a remotely triggered sample
taking also does rinses and/or retries.
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Send Status The status command STS,1<CR> returns a string containing the
current status of the 6712. The string contains multiple comma-separated pairs
of identifiers and values. The status string contains static information such as
model number or ID number as well as dynamic information such as the current
device state or information about the last drawn sample. All possible identifiers
and the interpretation of the values are listed on page 7-5 in [3]. Line 1 in
Listing 4.2 shows a possible reply on a status request command.

Listing 4.2: 6712 send status replies with identifier/value pairs.

1 MO ,6712 ,ID ,1281780884 ,TI ,40889.61407 ,STS ,9,STI ,40889.58014 ,

BTL ,1,SVO ,200,SOR ,13,CS ,4793

2 MO ,6712 ,ID ,1281780884 ,TI ,40889.61407 ,STS ,9,CS ,6894

When the 6712 has been reset, no ’most recent sampling’ data is available
and therefore the status reply contains only the following identifiers: MO, ID,

TI, STS, CS (see line 2 in Listing 4.2).

Send Data The send data command DATA<CR> is replied by the 6712 with a
string containing standard and sensor information. The standard information
part contains, among others, the model number, current time and information
about the last three bottles used for storing the water samples. The sensor part
contains data from the sensor modules connected to the 6712 (e.g. rain gauge,
SDI-12 devices). Table 7-2 in [3] shows an extensive list describing different
identifiers. Listing 4.3 shows a possible reply from a 6712 without any external
sensors.

Listing 4.3: 6712 send data reply with identifier/value pairs.

DE ,6712 SAMPLER ,ID ,1281780884 ,MO ,6712 ,TI ,40889.62551 ,SS ,1,B1

,40889.58014 ,B1 ,40889.57059 ,B1 ,40889.49978 ,CS ,5876

Checksum Each command can be extended by an optional checksum to pre-
vent wrong commands. If the appended checksum is wrong, the command is
ignore and the status is CHECKSUM MISMATCH=STS,21. The 6712’s reply strings
always contain the checksum. The calculation of the checksum is described on
page 7-8 in [3].

4.6.1.3 Remote Control of Sampler Keypad

In this mode, the sampler keypad can be remotely controlled. The 6712 con-
tinously updates the terminal so that it corresponds to the 6712 display. The
accepted computer keys and their corresponding functions are listed in Table 4.4.
The remote control of the sampler keypad can be left by typing Q (see Figure 4.5).
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Table 4.4: Remote control of sampler keypad (see Table 7-3 in
[3]).

Computer Key Sampler Key

<Esc>, S, s STOP

L,l,U,u, <Backspace> Left / Up

R, r, D, d Right / Down

O, o ON

<Enter>, arrows, decimal, numbers Same as sampler

The 6712 uses VT100 terminal commands to move the cursor in the terminal
and to format the displayed characters. All known commands used by the 6712
are listed in Tables 4.5 and 4.6. For a more detailed list about VT100 terminal
commands we refer to [28].

Table 4.5: VT100 control characters.

Control Character Description
Hex Char

0A LF Line feed

0D CR Carriage return

1B ESC Invokes a control sequence (see Table 4.6)

Table 4.6: VT100 control sequences.

Control Sequence Description
Hex Char

1B 5B 30 6D ESC [0m Turn off character attributes

1B 5B 35 6D ESC [5m Turn blinking mode on

1B 5B 37 6D ESC [7m Turn reverse video on

1B 5B xx 41 ESC [xxA Move cursor up xx lines

1B 5B xx 42 ESC [xxB Move cursor down xx lines

1B 5B xx 43 ESC [xxC Move cursor right xx lines

1B 5B xx 44 ESC [xxD Move cursor left xx lines

Programming Style The 6712 features two different programming styles,
that is, ways to navigate through the 6712’s menu, for on-site configuration
or in the Remote Control of Sampler Keypad mode: (i) Normal, or (ii) Quick
View. The Quick View progamming style allows to view and modify the different
configurations, while the Normal programming style guides through the menu
step-by-step. The Quick View is faster and more flexible because not all possible
configurations have to be entered.
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Stopping a Program A program cannot be stopped by a Menu Control mode
command or by an External Program Control mode command. To remotely
stop a running program, the Remote Control of Sampler Keypad mode has to be
activated (CONTROL in the Menu Control mode) before, by navigating through
the menu, the program can be stopped by selecting STOP PROGRAM.

Configuring the 6712 It is not possible to configure the 6712 by means of
a configuration file or a specific application programming interface (API). That
is, the only way to remotely configure the 6712 is through the Remote Control
of Sampler Keypad mode.

4.6.1.4 Sampling Report

The sampling report contains events occurred while a program was running (see
Section 4.5). It can be read out via serial RS-232 interface. The format of the
report is as configured (see Chapter 4.15.3 in [3]). The Menu Control mode
has to be exit (Q) before requesting the sampling report by typing REPORT and
pressing enter (see Figure 4.5). After receiving the report, question marks have
to be sent until the banner string is sent by the 6712, otherwise no commands
are accepted. The sampling report can be read out while a program is running.

4.6.2 Interface

Figure 4.7 shows the symbol of the interface plug and its pinning. The female
connector on the 6712 side has 6 pins. Its counter piece is a 6 pin male cable
connector (MIL-C-5015 type 3106A-14S-6P). The cable configuration of the in-
terface cable is shown in Table 4.7. Pin C (Connection Sense) of the interrogator
port needs to be set to ground to enable the communication. If pin C is left
open, only model number, hardware and software revision as well as the ID can
be read out before the connection times out. Therefore no commands other than
?? are accepted by the 6712 if pin C is left open.

(a) Symbol

A

B

C

D

E

F

(b) Pinning

A Switched +12 volts DC

B Ground

C Connection Sense

D Transmit

E Receive

F NC

(c) Pin function

Figure 4.7: 6712 interrogator port [3].
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Table 4.7: Interface cable 6712 – computer.

6712 interrogator port Computer
6-pin male 9-pin female

A +12V DC open - -

B GND - 5 GND

C Connection Sense set to GND, pin B - -

D Transmit - 2 RXD

E Receive - 3 TXD

F NC open - -
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Chapter 5

Realization

This chapter contains the detailed integration concept for the in-system control
of the actuator. Furthermore, an overview about the individual software imple-
mentations is given. For detailed information about the software we refer to the
source code.

5.1 Overview

The following chapters describe the tasks of the individual devices/tiers in con-
nection with in-system controlled actuators. Figure 5.1 shows an abstract view
of the control application. The control loop is open because the actuator does
not have any influence on the environment, i.e. the physical system.

Interface
Unit Actuator

Physical
System

Sensor

W
S
N
/W

LA
N

Control
Algorithm

Actor

Figure 5.1: Abstraction of control application.

A PermaSense system architectural view with the different devices is illus-
trated in Figure 5.2. It shows an example with a single actor and a single sensor
as well as the backend system consisting of a GSN server. Furthermore, the con-
nections between the different devices are shown. The control algorithm residing
in the GSN server controls the actor by means of a schedule file containing all
relevant information about the samples to be taken. The schedule file is trans-
mitted by the GSN server via WLAN to the Core Station. To save energy the
Core Station is in the duty cycle mode. Therefore the Core Station cannot
receive any schedule files over the WLAN link when it is shutdown. Sending a

35
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Dozer wake-up beacon from the backend via Base Station to the the WSN allows
to wake-up the Core Station so that it can receive a new schedule.

Base
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W
L
A
N

W
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N

Core
Station U

A
R
T 6712

Water
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A
R
T

Sampler
GSN

Server W
L
A
N

Actor

Backend Base Station Sensor & Actuator Nodes

Sensor
Node I/

F

W
S
N

SensorI/
F

Figure 5.2: PermaSense system architectural view.

The Core Station and the 6712 water sampler are powered by the same
12VDC battery. The battery voltage is periodically measured by the Core Station
and reported to the backend system. Therefore, the 6712 fuel gauge functionality
(see Section 4.4) is not required to monitor the state of the battery.

5.2 Backend

This section describes the structure of the system from a GSN perspective. It
describes how the different virtual sensors (VSs) are connected to each other.

5.2.1 Object Model

Figure 5.3 shows the GSN view of the sensor-based control of the 6712 water
samplers. Physical devices such as the Core Station, sensors or 6712 are shown
outside the GSN view as rectangular boxes. The control algorithm VS receives
cleaned data (outlier and noise filtered data) from one or multiple sensors. Based
on its control algorithm, it decides when and how much water the 6712 needs to
draw. Before the 6712, respectively the Core Station the 6712 is connected to,
can receive a new schedule file containing the water sampling timing information,
the Core Station needs to be activated via the Dozer command VS.

5.2.2 Dynamic Model

This section describes the behavior of the individual VSs and the interaction
between the VSs. The sequence diagrams show the interaction between the VSs
for different scenarios.
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Sensor VS

Schedule VSSampler6712
Sampling VS

Sampler6712
Status VS

Dozer
Command VS

Control
Algorithm VS

Outlier Noise
Filter VS

Algorithm
Config. VS

Algorithm Data
Evaluation VS

Core Station Base Station

Base Station

GSN View

6712 Water Sampler

Sensor Node

Sensor

Figure 5.3: GSN view of VSs (rounded boxes) related to the control of the 6712
water sampler. An arrow with a solid line corresponds to the flow of streaming data
within GSN. Dashed lines show the flow of data via HTTP post. The rectangular boxes
outside the GSN view represent the devices the individual VSs are connected to (see
also Figure 5.2).
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5.2.2.1 Sequence Diagrams

The following sequence diagrams are shown only for a single sensor and a single
Dozer command and schedule VS. But it is conceivable that the number of VS
is increased in the future. The communication between the VSs in the following
figures takes place over GSN data streams or HTTP posts. In the following, the
expression ’acknowledge’ is used in connection with the Dozer command VS and
the schedule VS corresponds to the data streams generated by those two VSs
when accessed with an HTTP post.

Figure 5.4 shows the sequence diagram of a successful schedule transmission.
When the control algorithm VS decides to generate a new schedule after receiving
a cleaned sensor value it sends the new schedule to the schedule VS and wakes
up the Core Station. The wake-up of the Core Station is done via the Dozer
command VS. A Dozer command is sent to the Base Station from where it is
forwarded over the WSN to the destination (see Figures 5.2 and 5.3). In our case,
the destination is the Core Station the actuator is connected to. The reception
of a Dozer command is only acknowledged by the connected Base Station(s)
but not by the destination (Core Station) of the command. That is, there is
no direct feedback about the reception of the wake-up command and therefore
you never know if the command reached its destination or if it is lost during
transmission. For this reason the Dozer command acknowledge is ignored. The
sending of the schedule disposes of a feedback mechanism. First of all, the
schedule VS acknowledges the reception of the new schedule. As soon as the
schedule has arrived at the Core Station, a second acknowledge is generated
by the schedule VS (schedule transmitted). The time between the sending of
the schedule including the wake-up command and the acknowledgment of the
schedule by the Core Station may be in the order of minutes. The reason for
this is: (i) the propagation time of the Dozer wake-up command (depends on the
current WSN topology), (ii) the startup time of the Core Station after receiving
a wake-up command (approx. 2 minutes), (iii) the time until the GSN connects
to the Core Station, and (iv) the time until the Core Station requests for a new
schedule.

The Dozer command used is a power control command (command id: 14,
command: GUMSTIX CTRL CMD) with the argument 2 which starts the Core Sta-
tion. For more details about the Dozer command see chapter TinyOS Dozer
Beacons in [29]. Because the Core Station is in duty cycle mode, after checking
for a new schedule it is automatically shutdown as soon as it does not have any-
thing to do. Therefore, after sending the power control command, no additional
commands have to be sent to the Core Station in order to shut it down.

Figure 5.5 shows the sequence diagram of a failed transmission. If the sched-
ule is not acknowledged by the schedule VS within the timeout, the schedule is
retransmitted. Also the schedule transmission acknowledge, i.e. the confirma-
tion that the schedule was not only received by the schedule VS but also by the
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Figure 5.4: Sequence diagram of successful sending of a new schedule. Arrows with a
solid line corresponds to the flow of streaming data within GSN, dashed lines show the
data flow via HTTP posts.

Core Station, features a retransmission mechanism. If the schedule transmission
is not acknowledged within a timeout, a new wake-up command is sent to the
Dozer command VS. In this case the schedule does not have to be sent again
because it is stored in the schedule VS, unless it needs to be modified.

5.2.3 Control Algorithm VS

5.2.3.1 Introduction

The aim of the control algorithm is to control the 6712 water sampler based on
sensor values. Specifically, for a first system test the sensor is a single electrical
conductivity (EC) sensor. As soon as the difference between the minimum and
maximum electrical conductivity (EC), determined over a period of 12 hours,
exceeds a certain threshold for more than 10 minutes (hold time), a static sam-
pling schedule is generated and send to the actor. It must be taken into account
that sensor values may be delayed or lost.

5.2.3.2 Data Processing

The GSN system provides aggregate functions which allow to calculate the min-
imum and maximum EC over a certain period [19]. For the calculation of the
aggregate function, the GSN system uses the timed time information (see Fig-
ure 2.5) as the time reference. Hence, the result of the aggregate function may
be wrong, especially in case of long delays between the generation of the data
and its arrival at the GSN server (see Section 7.1.3.2). For this reason, the con-
trol algorithm needs to buffer all data of interest internally and apply its own
aggregate function with the generation time as the time reference, i.e. the time
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Figure 5.5: Sequence diagram of failed sending of a new schedule. Arrows with a solid
line corresponds to the flow of streaming data within GSN, dashed lines show the data
flow via HTTP posts.

when the data has been generated. If the VS delivering the sensor values is on
the same GSN server, then the buffer is filled with historical data during the
initialization of the control algorithm VS. Figure 5.6 illustrates how a new sen-
sor value is processed. Only sensor values generated within the 12 hour window
+ hold time period are stored in the internal buffer, all older sensor values are
skipped. Because of the limited buffer size, the oldest stored values are removed
if the buffer is full.

After storing the new sensor value, the sensor values in the buffer need to
be analyzed. There has to be a minimum number of sensor values within the
hold time period. If this is not the case, the sensor values are not evaluated (see
Figure 5.6). If enough values within the hold time period are available, then for
each sensor value within the hold time period, the minimum and maximum over
its preceding sensor values is calculated. Figure 5.7 illustrates with an example
the sensor values stored in the internal buffer as well as the sensor values used
for the minimum/maximum calculation of a single sensor value (red square)
within the considered hold time period. If the start condition is fulfilled for all
sensor values within the hold time period, a new sampling schedule is generated
and send to the actor. The sampling schedule is generated according to the
parameters in the virtual sensor description (VSD) file (see Section 5.2.3.3).
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Figure 5.6: Flow chart of the processing of a new sensor value.
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Figure 5.7: Data evaluation example to determine whether start condition is fulfilled
or not.
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The control algorithm can be enabled/disabled via the GSN web interface
(see Appendix A.1.2). If the control algorithm is disabled, no schedule is sent to
the actor. In case of an enabled control algorithm and a fulfilled start condition,
the state machine in Figure 5.8 changes from the Idle state to the Schedule
Generation state where a new sampling schedule is generated and sent to the
schedule VS. This transition can also be triggered by a manual start initiated by
an upload on the GSN web interface (see Appendix A.1.2). After the schedule
VS has acknowledged the reception of the new schedule, the state Wait for
Transmission is entered and a wake-up beacon is sent to the Core Station. As
soon as the new schedule has arrived at the Core Station, the state Schedule
Transmitted is entered and the control algorithm is disabled. This state is left
when the GSN is restarted or a manual schedule reset is initiated on the GSN
web interface.

new sensor value [Start condition fullfilled &

schedule transmitted timeout expired
[transmitted timeout counter ≤

Schedule ack received [] / stop schedule ack timeout,

Schedule transmitted [] /

schedule transmitted tmo expired
[transmitted timeout cntr >

max. nb of timeouts] /
max. nb of timeouts] /

generate schedule
send schedule

wake-up CS

Idle

Schedule Generation

Wait for Transmission

Schedule Transmitted

control enabled] / clear ack timeout counter

start schedule

schedule ack timeout expired
[ack timeout cntr ≤
max. nb of timeouts] /

transmitted timeout

start schedule ack tmo

clear transmitted timeout cntr

schedule ack timeout expired
[transmitted timeout cntr >

max. nb of timeouts] /

manual start[] /

disable control

entry:

entry:

entry:
reset schedule generation [] /

Schedule transmitted [] /
stop schedule ack timeout

stop schedule transmitted tmo

clr ack tmo cntr

algorithm

init state machine [] /

Figure 5.8: State diagram of the control algorithm VS. The transition arrows are
encoded as follows: event [condition] / action. The filled circle marks the starting point.

5.2.3.3 Virtual Sensor Description File

The VSD file (*.xml) allows to set some parameters for the control algorithm VS.
Listing D.3 shows such a VSD file for the control algorithm VS. The different
values used for the sensor data evaluation are stored as parameters in the VSD file
(threshold, hold time, window size, minimum number of sensor values within hold
time etc.). Also the timeout for the wake-up of the Core Station as well as the
number of retries can be parameterized. Additionally, some information required
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for the generation of the sampling schedule, such as delay of first sampling and the
sampling scheme, need to be parameterized. The sampling scheme is configured
with a tuple of four elements: start bottle number, stop bottle number, interval in
minutes, sampling volume in milliliter. When the start condition is fulfilled, the
very first sample is not taken after the interval time but after the configured start
delay. It is possible to add multiple sampling schemes by separating them with
a semicolon. Listing 5.1 shows a configuration example of a possible sampling
schedule and Figure 5.9 shows the resulting sampling series.

Listing 5.1: Configuration of sampling schedule in VSD file.

1 <param name=" sampling_start_delay_in_min ">20</param >

2 <param name=" sampling_scheme ">1,4,10,100;5,8,30,100</param >

time [min]

bottle #

trigger

1

2

3

4

5

6

7

8

9

10

60 120 1800

Figure 5.9: Sampling series as configured in Listing 5.1.

Because the schedule VS and the Dozer command VS are accessed via HTTP
post, the host names as well as the VS names of those two VS need to be
configured.

The control algorithm VS receives data streams from different VS which
have to be processed differently. Therefore, the VS requires a method to distinct
between the different streams. This differentiation is done by means of the
stream name assigned in the VSD file (see Table 5.1 and line 62, 76, and 88 in
Listing D.3).
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Table 5.1: Stream names used in the VSD file of the control algorithm VS.

Stream Name Virtual Sensor

sensor VS delivering the sensor values

schedule Schedule VS the schedule state is received from

dozer command Dozer command VS the wake-up beacon acknowledge
is received from 1

1 This information is currently not used by the control algorithm VS.

The sensor value to be used by the control algorithm needs to be renamed
with an SQL alias to sensor value in order to be clearly detected by the VS
(see line 69 in Listing D.3). The control algorithm VS generates data of different
types: (i) sensor value evaluation data, and (ii) schedule file generation data.
Because a VS can have only a single output structure, the differentiation is done
by means of the DATA TYPE field. This field can be used to demultiplex the
output structure by other VSs (see Section 5.2.5). Table D.3 shows the output
structure of the control algorithm VS.

5.2.4 Outlier and Noise Filter VS

5.2.4.1 Introduction

The aim of the outlier and noise filter is to reduce the number of outliers and the
noise. The outlier cleaning is done with an approach presented in Section 6.2.3.
A simple mean filter is used to filter the noise. Considering the implementation
of both filters, it must be taken into account that sensor values may be delayed
or lost.

5.2.4.2 Data Processing

Similar to the control algorithm VS (see Section 5.2.3), the outlier and noise
filter VS also features an internal buffer for holding historical data. If the VS
delivering the sensor values is on the same GSN server the buffer is filled with
historical data during the initialization. The data cleaning is a two stage process.
In a first step, the outliers are replaced by a more likely value and in a second step
a noise filter is applied. For the filtering process, the relevant time information is
the generation time. A new sensor value is evaluated only with respect to older
sensor values.

For the outlier cleaning, only the buffered raw sensor values within the win-
dow width, with respect to the sensor value to be evaluated, are considered (see
Figure 5.10). A minimum number of sensor values within the window is required.



5.2. Backend 45

If this is not the case, then the new sensor value is not classified. If more than
the minimum number of sensor values are within the window, the sensor value is
classified according to the outlier filter presented in Section 6.2.3. That is, if the
absolute difference between the new sensor value and the median of the sensor
values within the window, including the new sensor value, is smaller or equal
than a certain threshold, then the new sensor value is classified as non-outlier. If
the difference is more than the threshold, then the new sensor value is classified
as outlier. An outlier is replaced by the last sensor value, with respect to the
new sensor value, classified as non-outlier. If no such non-outlier-classified sensor
value exists, the outlier is replaced by the calculated median.

generation time

raw EC

outlier filter window width

Figure 5.10: Outlier filtering example to determine whether the sensor value is an
outlier or not. The red square represents the sensor value to be evaluated.

The noise filter applied after the outlier filter only takes into account values
from a certain window width with respect to the sensor value. This window
width may be different than the window width used for the outlier filter. The
noise filter only considers outlier filtered sensor values, i.e. sensor values which
were classified. In contrast to the outlier filter, the noise filter does not require
a minimum number of sensor values within the considered window.

After the completion of both filtering steps, the new sensor value is stored in
the internal buffer including its classification and filtered values. Furthermore, a
new data stream is generated so that it can be further processed by other VSs,
such as the control algorithm VS.

5.2.4.3 Virtual Sensor Description File

The VSD file contains some parameters for the outlier and noise filter. List-
ing D.6 shows such a VSD file for the outlier and noise filter VS. The size of the
buffer holding historical sensor data can be configured in that file. Also the type
of outlier and noise filter are parameterizable. The applied noise filter requires
some configuration values such as threshold, window width and the minimum
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number of values within the window. Also the window width of the noise filter
can be configured in the VSD file.

In order to be flexible in terms of sensor data to be filtered, the outlier
and noise filter VS expects the sensor value to have the stream element name
raw value. If the stream element name of the sensor data to be filtered has a
different name, which it certainly will, then it can be renamed with an SQL alias
to raw value (see line 41 Listing D.6). The outlier and noise filter VS does not
only generate a single output but also the intermediate results of the filtering
process. Table D.4 shows the output structure of the outlier and noise filter VS.

5.2.5 Other VSs

The status VS and sampling VS receive data streams directly from the actor.
The sampling VS shows the result of a sampling executed by the 6712 water
sampler. Its output structure is illustrated in Table D.2. A sampling can be
initiated either by the scheduler or by an upload on the GSN web interface (see
Appendix A.1.4.2). The status VS shows the current status of the 6712 water
sampler. It contains some configuration data of the 6712 water sampler, the
Menu Control mode state (see Section 4.6.1.1) and the External Program Control
mode state (see Section 4.6.1.2). Its output structure is illustrated in Table D.1.
A daily status report can be configured in the schedule file or manually requested
by an upload on the web interface (see Appendix A.1.4.4).

The control algorithm configuration and evaluation VSs are used to demulti-
plex data generated by the control algorithm VS. That is, they show data which
are derived from the data stream of another VS. The demultiplexing is done
based on the field data type.

5.3 Actor

The actor consist of the interface unit (Core Station) and the actuator (6712
water sampler, hereafter referred as 6712). As already mentioned in Section 3.3,
in a first step the water sampler is integrated by means of a powerful Core
Station featuring a WSN as well as a WLAN interface. Although the 6712 is
able to run its own sampling program, the 6712 is controlled by the Core Station
in a way so that it only takes samples when it is told to do so. That is, the
6712 does not execute any samplings on its own initiative. The Core Station, in
turn, is controlled by means of a schedule file containing the necessary sampling
information (time, bottle, and volume). As soon as it is time to take a sample,
the Core Station triggers the 6712 to draw a sample.
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5.3.1 Bottle Change

Because the 6712 water sampler’s sampling is controlled by the Core Station, a
procedure is required to prevent automated sampling while the user collects the
bottles. That is, the user being on-site needs to inform the Core Station that
he intends to collect the 6712’s bottles. As the Core Station does not feature an
on-site user-interface, the 6712’s internal state is used for this.

Before the bottles can be collected, the user needs to stop the running pro-
gram by pressing the STOP key on the 6712’s keypad. By the stopping of the
running program, the 6712’s Menu Control state will change into one of the
states in the green box of Figure 5.11, labeled with Collecting Bottles. Now, the
user can safely collect the bottles because no sampling commands are send by
the Core Station as long as the 6712 is not in the Sampler Off or Program
Running (disabled) state. As soon as the bottles have been collected and
replaced by empty bottles, the user has to turn off the sampler to reactivate the
remote sampling. When the Core Station detects at a later point in time, that
the sampler has been turned off (state Sampler Off), the sampler is initialized
and the Core Station’s internal bottle states are reset.

5.3.2 Initialization

Before the Core Station initiates a sampling, it first checks the 6712’s Menu
Control mode state. When the sampler is in the state Sampler Off, the 6712
needs to be initialized by the Core Station before a sample can be taken. The
following 6712 settings are initialized:

• Number of bottles

• Bottle volume

• Suction line length

• Suction head

• Suction line rinses

• Sampling retries

• Start time

• Report configuration

After the initialization, the 6712 is set into the Menu Control mode state
Program Running (disabled). This state can only be reached by means of
remote operation and therefore allows the Core Station to verify if the 6712
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stop programU

init samplerC

offU

Bottle Collection 
Complete

Collecting Bottles

Remote Sampling

Figure 5.11: 6712 water sampler’s internal menu control state transitions. U = user
interaction, C = Core Station interaction.
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has already been initialized before. The start time of the 6712’s program is al-
ways configured to WAITING FOR PHONE CALL. This allows to disable the 6712’s
internal program before it is started. Although the 6712’s internal program
is disabled, the 6712 accepts remotely triggered samples. Furthermore, those
remotely triggered samples are stored in the sampling result report (see Fig-
ure 4.4(a)). The Program Running (disabled) is reached by the following
program sequence executed by the Core Station:

• run program (when 6712 is in the Remote Control of Sampler Keypad
mode)

• disable program (Menu Control mode command DISABLE)

• start program waiting for call (Menu Control mode command START)

5.3.3 Sampling

Sampling is only allowed when the sampler is in the Menu Control mode state
Program Running (disabled) or Sampler Off. If the sampler is not in one of
those two states and a sample needs to be taken, the sampling is reported to the
GSN to have failed. All samples are triggered by the Core Station by means of
the External Program Control command BTL,x,SVO,x<CR> (see Section 4.6.1.2).
This command does not only take a sample but also, when configured, rinses
the suction line and retries if sampling fails. Furthermore, the sample events are
logged in the 6712’s sampling result report when a 6712 program is running. The
sampler’s External Program Control mode state is periodically read by means
of the STS<CR> command while the sampler is taking a sample. As soon as the
most recent sample result (SOR identifier) and the sampler’s current status (STS
identifier) is not anymore SAMPLING IN PROGRESS, the sampling is complete and
the result is sent to the GSN.

5.3.4 Software-Design

5.3.4.1 Overview

The backlog software running in the Core Station is responsible to initialize the
actuator, that is, the 6712 water sampler, and to initiate samplings. The func-
tionality to access the 6712 is implemented in a plugin (Sampler6712Plugin.py).
To save power, the backlog software runs in the duty cycle mode so that the
Core Station is off if no sample has to be taken. In the following, we refer to
the Sampler6712Plugin as software, unless otherwise mentioned. The backlog
software is programmed in Python.
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5.3.4.2 6712 Sampler Plugin

The behavior of the software is controlled by the tasks in the task queue (see
Figure 5.12). Multiple sources can put new tasks into the task queue: (i) sched-
uler (schedule plugin Section 5.3.4.3), or (ii) GSN message generated through
the GSN web interface.

run()

msgReceived()

action()

Process actions

ISCO 6712 water samplertask queue

isBusyschedule file

control of 6712

ta
sk

1

ta
sk

2

ta
sk
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Process messages
received from GSN
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the scheduler

Figure 5.12: 6712 plugin overview.

The queue element is defined as a list where the first element is the task origin
and the second element is the task type (Table 5.2). The following list-elements
are optional parameters and depend on the task type.

Table 5.2: Definition of queue element.

Task Origin Task Type Parameters
1 Take sample Sampling object 2

1 Reinit 6712 -
1 Report status -

1 Scheduler or GSN
2 The sampling object contains the bottle number and the
sampling volume in ml

In the following some software parts of the plugin are described. For more
detailed information we refer to the source code.

Task Take Sample If a Take Sample task has been received, the behavior of
the software depends on the status of the 6712 obtained in the Menu Control
mode (see Figure 4.6). It is noted that there is also another status which can
be remotely obtained, the External Program Control mode status (command
STS,1<CR>). A sampling task is only forwarded to the 6712 if it is in the status
Program Running and the program’s state is disabled (see Algorithm 1).



5.3. Actor 51

If the sampler is turned off (status Sampler Off), the 6712 is first initialized
before a sampling is initiated. For all other states, the sampling is skipped.

Algorithm 1 6712 sampler plugin (run() function)

1: while plugin not stopped do
2: if task queue is empty then
3: isBusy = False
4: end if
5: read task queue (blocking)
6: isBusy = True
7: if task type == Take sample then
8: read samplerState and programState (menu control mode)
9: if samplerState == Program Running then

10: if programState == disabled then
11: take a sample
12: else if programState == enabled then
13: skip sampling
14: else
15: raise exception (invalid program status)
16: end if
17: else if samplerState == Sampler Off then
18: initialize 6712
19: take a sample
20: else
21: skip sampling
22: end if
23: else if task type = Reinit 6712 then
24: initialize 6712
25: else
26: warning: unknown queue element
27: end if
28: end while

When a sampling is possible according to the sampler and program state the
bottle number is verified first (Algorithm 2). If the bottle number is valid, the
bottle capacity is also checked. The water level of each bottle is tracked in the
software. This allows to prevent overfilling bottles. If the bottle number is valid
and the bottle is capable to collect the new sampling, a sampling command is
send to the 6712. This sampling command (BTL,x,SVO,y<CR>) is send in the
remote operation mode External Program Control. After sending the sampling
command, the sampler’s External Program Control mode status is periodically
requested (STS,1<CR>) as long as either the sampler state or the last sample
result is SAMPLE IN PROGRESS. As soon as the sampling is complete, the internal
water level of the filled bottle is update, independent of the sampling result. As a
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final action, the sampling result is sent to the backend system. The information
contained in the GSN message is listed in Table D.1.

Algorithm 2 Take a sample

1: if bottle number is not valid then
2: samplingResult = skipped because of invalid bottle number
3: else
4: if bottle has capacity to carry new sample then
5: send sample command to 6712 and read state (BTL,x,SVO,y)
6: if samplerState == SAMPLE IN PROGRESS then
7: while samplerState == SAMPLE IN PROGRESS or

mostRecentSamplingResult == SAMPLE IN PROGRESS do
8: read samplerState and mostRecentSamplingResult from 6712
9: end while

10: update bottle water level
11: samplingResult = done
12: else
13: samplingResult = skipped (for reason see samplerState)
14: end if
15: else
16: samplingResult = skipped because of exceeded bottle capacity
17: end if
18: end if
19: send samplingResult and other data to GSN

Task Reinit Sampler The task Reinit Sampler can be used to remotely
force a reinitialization of the 6712 (see Appendix A.1.1). This command is useful
when the 6712 was not manually turned off after it has been stopped to collect the
bottles. The initialization procedure is the same as for the regular initialization
executed when the 6712 is in the Sampler Off state.

Task Report Status The task Report Status can be initiated either by an
upload on the GSN web interface or by the scheduler (see Appendix A.1.4.4).
An example of a schedule file entry is shown in Listing 5.2. The Report Status

task reports the different states of the 6712 as well as some configuration of the
6712 to the GSN. The following list shows a general overview of the information
contained in the status report. For a more detailed list we refer to Table D.2.

• Sampler state (Menu Control mode)

• Program state (Menu Control mode)

• Program state (External Program Control mode)

• Program configuration
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Listing 5.2: Schedule file entry for periodic status report.

1 0 9 * * * plugin Sampler6712Plugin report_status

Actuator Initialization The extended programming level allows to configure
more settings than the standard programming level (see Section 4.2). Therefore
the 6712 is set into the extended programming level before it is configured.
Because only some configuration of the 6712 are relevant, the programming style
Quick View is used for the configuration of the 6712 (see Section 4.6.1.3). The
Quick View allows a faster and more flexible configuration of the 6712 than
the Normal mode. The programming style is essential for the navigation in
the Remote Control of Sampler Keypad mode and therefore it has to be set
before the actual configuration starts. As soon as the 6712 is in the Quick View
programming style, the configuration starts. At first, partial configuration of the
Software Option menu, such as pump purge counts, are carried out. Afterwards
some settings in the Program menu, such as number of bottles or bottle volume,
are configured by navigating through the 6712’s menu (see Figure 4.3(a)). After
the configuration has been completed, the 6712’s program is run, then disabled,
and finally started. This procedure ensures that the 6712 is in the state Program
Running with the program state disabled after the initialization. During the
initialization, the remote operation mode is changed multiple times because for
different actions different remote operation modes are necessary.

Determination of Remote Control Mode Different remote control modes
are used for the communication with the 6712. Therefore it is important to
reliably determine the 6712’s remote operation mode. The remote control mode
is determined by sending ? to the 6712. Because the remote operation modes
Offline and Sampling Reports (see Figure 4.5) are left when sending ?, only
three modes are possible: (i) External Program Control, (ii) Menu Control, and
(iii) Remote Control of Sampler Keypad. The mode Remote Control of Sampler
Keypad is determined by sending a S or a Q. Therefore (i) the current menu in
the Remote Control of Sampler Keypad mode is modified (S), or (ii) the Remote
Control of Sampler Keypad is quit to enter the Menu Control mode (Q) through
the determination of the remote control mode. Figure 5.13 shows the program
flow of the remote control mode determination.

Remote Control of Sampler Keypad The Remote Control of Sampler Key-
pad mode is designed for human navigation and not for machine controlled nav-
igation. When the software communicates with the 6712 in the Remote Control
of Sampler Keypad mode, it needs to act like a VT100 terminal emulator. As a
VT100 terminal emulator, the software has to interpret the incoming data and
store it somewhere if it is intended for further use. In our case, the incoming



54 Chapter 5. Realization

send question mark
(ASCII 0x3F)

decrement counter

answer send
by 6712?

Mode:
Remote Control of
Sampler Keypad

answer is only
banner string?

no

Mode:
External Program 

Control

yes

Mode:
Menu Control

no

counter > 0?

yes

yes

flush serial buffers
counter = 10

send STOP key
('S')

answer send
by 6712 contains 

0x1b?

no

yes

no
send QUIT key

('Q')

answer send
by 6712 contains 

0x1b?

Mode:
Unknown Mode

no

yes

Figure 5.13: Determination of remote control mode.
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data is stored in a virtual display (i.e. virtual because the display information is
available in some memory but is not humane readable). Not all incoming data is
available on the virtual display. Control commands cause the terminal emulator
to change the character representation, move the cursor, etc. Only a few control
characters and control sequences from the VT100 are used by the 6712. Other
control commands than those listed in Tables 4.5 and 4.6 are ignored and cause
an error. The virtual display is a 4 × 20 matrix similar to the 4 × 20 character
display on the 6712. Each matrix element has an assigned character and a char-
acter attribute. Valid character attributes are: (i) no character attribute, (ii)
blinking attribute and (iii) reverse attribute. Figure 5.14 illustrates an example
of a display representation.

characters:

character attributes:

display representation:
R I N S E S , 1 R E T R I E S >1

A U T O H E A D
1 . 0 M S U C T I O N L I N E

< 8 , 0 . 5 0 l i t B T L S

S U C T I O N

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R I N S E S , 1 R E T R I E S >1
A U T O H E A D
1 . 0 M S U C T I O N L I N E

< 8 , 0 . 5 0 l i t B T L S

S U C T I O N

Figure 5.14: Each element on the 4 × 20 matrix has a character and a character
attribute (left). Combining those information will result in the same display represen-
tation as the display on the 6712 (right). Here the AUTO SUCTION HEAD part is blinking
because its character attribute is ’blinking’ (5, see Table 4.6).

The virtual display is used to navigate through the menu. The navigation
through the menu is configured by means of a navigation object which allows a
flexible navigation procedure. Each navigation object has six attributes:

• search text (list)

• search type (screen or selection)

• found action

• maximum number of found actions

• found expiration action

• not found action

• maximum number of not found actions

• not found expiration action

The search text is a list with strings the navigator should navigate to.
In case of search type ’screen’, the navigator tries to navigate to the screen
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containing all elements of the search text list. If the search type is set to
’selection’, only characters with the character attribute ’blinking’ are considered.
The found action attribute defines the action to be executed when the search
text was found and the maximum number of found actions has not been
reached yet. If the search text has been found and the maximum number
of found actions is reached, then the found expiration action is executed.
The behavior is analog if the search text has not been found, but with not
found action and not found expiration action as actions and maximum
number of not found actions as maximum counter value. The different action
attributes can be of varied type:

• String to send to the 6712

• Another navigation object

• Delay object defining a delay before the virtual display is again tested
on the search text

• None if no action should be done

• Exception to be raised

The navigation procedure is listed in Algorithm 3.

5.3.4.3 Scheduler Plugin

The sampling of the 6712 is controlled by means of the schedule plugin. That is,
the times when to take a sample have to be specified in the cron-like schedule
file (see Listing 5.3). Each line in the schedule file corresponds to a job which
consists of a time expression, the keyword plugin followed by the plugin name
and optional parameters. The scheduler calls the plugin’s action() function
with the optional parameters, when the specified time is reached. For the Sam-
pler6712Plugin the parameters are the bottle number (bottle(x)) to use for the
sampling and the sampling volume in milliliter (volume(y)). If the loading of
the schedule plugin during the backlog boot process is not completed before a
new job in the schedule file needs to be executed, the job is discarded. To prevent
this, the option backward tolerance minutes enables the scheduler to execute
jobs which have expired by the defined number of minutes. The time when to
generate a status report of the 6712 can also be configured in the schedule file.
For an example see Listing 5.2.

Listing 5.3: Schedule file.

1 0 19 11 2 * plugin Sampler6712Plugin bottle (9) volume

(10) backward_tolerance_minutes =5
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Algorithm 3 Navigation

1: foundCounter = maximum number of found actions
2: notFoundCounter = maximum number of not found actions
3: while foundCounter ≥ 0 and notFoundCounter ≥ 0 do
4: update virtual display according to incoming data
5: read virtual display text (according to search type)
6: if all search text elements are available in the read display text then
7: if foundCounter ≤ 0 then
8: action = found expiration action
9: else

10: action = found action
11: end if
12: decrement foundCounter
13: else
14: if notFoundCounter ≤ 0 then
15: action = not found expiration action
16: else
17: action = not found action
18: end if
19: decrement notFoundCounter
20: end if
21: do action
22: end while

5.3.4.4 Backlog Startup

The backlog software runs in duty cycle mode. That is, the Core Station is
turned off when nothing has to be done and turned on when a new schedule job
needs to be executed. When the Core Station is shut down, the backlog software
running on the Core Station is booted a defined time before the next schedule
job needs to be executed. This time can be configured in the configuration file
with the entry approximate startup seconds = 120. To enable the starting
of the Sampler6712Plugin during the backlog startup the configuration file entry
Sampler6712Plugin = 1 is required. If the plugin does not have to accomplish
any tasks (that is, it is not busy), and all the other plugins are finished, it
is stopped at the earliest after the minimum runtime (configuration file entry
min runtime). Figure 5.15 shows the backlog startup (solid line) followed by a
take sample task (dashed line). If the 6712 has not been initialized before the
take sample task, the take sample task is preceded by the initialization of the
6712.

If the plugin’s minimum runtime expires before the scheduler executes the
plugin’s action() function, the plugin may already have been stopped so that the
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Backlog startup
duty_cycle_mode = 1
approximate_startup_seconds = 120
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Figure 5.15: Backlog startup. The solid line corresponds to the actions/states always
executed during the backlog startup. The dashed line are the actions/states if additional
tasks have to be executed. The time information are not accurate but give a rough
overview of how long the individual tasks last.

plugin needs to be loaded again. This behavior can be prevented by configuring
the minimum runtime (min runtime) greater than the approximated startup
time (approximate startup seconds).

5.3.4.5 Config File

Some relevant entries for the Sampler6712Plugin in the backlog configuration
file are listed in Listing 5.4. The backlog software runs in the duty cycle mode
(duty cycle mode = 1). To allow for the reception of GSN messages, the Sam-
pler6712Plugin is always started during the backlog startup (Sampler6712Plugin
= 1) and runs at least a minimum runtime (min runtime). The options device name

and baudrate specify the serial port and its baud rate to be used for the com-
munication with the 6712. The option bottle status file defines where the
bottle state (i.e. current level of each bottle etc.) is stored.

Listing 5.4: Backlog configuration file backlog.cfg.

1 [options]

2 duty_cycle_mode = 1

3 ...

4 [schedule]

5 ...

6 approximate_startup_seconds = 120

7 ...

8 [plugins]

9 ...

10 Sampler6712Plugin = 1

11 ...

12 [Sampler6712Plugin_options]

13 priority = 10

14 backlog = True
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15 runtime_mode = 4

16 min_runtime = 2

17
18 device_name = /dev/ttyUSB0

19 baudrate = 19200

20
21 bottle_status_file = /media/card/backlog/bottle_status

22 ...

5.3.4.6 Debugging

Serial Interface To simplify the debugging of the serial communication, a
transfer loop can be set up allowing to log all communication (see Appendix G.2).
It is important to disable the canonical mode (icanaon=0) in order to ensure that
all data is transmitted immediately. Listing 5.5 shows how the transfer loop can
be installed. This command can be executed manually or automatically (e.g.
in the backlog file). The command has to be executed from a writable location
(e.g. /media/card) so that all traffic is logged into the file screenlog.0. For
the listed example, the port /dev/ttyUSB0 would be mapped to the serial port
/tmp/myttyUSB0. That is, the serial port to be used by the Sampler6712Plugin
would be /tmp/myttyUSB0.

Listing 5.5: Schedule file.

1 screen -L -S serial socat -v -x PTY ,link=/tmp/myttyUSB0 ,raw ,

echo=0,isig=0,icanon =0 /dev/ttyUSB0 ,raw ,echo=0,isig=0,

icanon =0

Report It is possible to remotely retrieve the sampling report (see Section 4.5).
For this, first a remote connection to the Core Station via SSH needs to be
established. To get access to the Core Station’s serial interface connecting the
Core Station with the 6712, the backlog software running on the Core Station
needs to be stopped. Afterwards a terminal, such as minicom or socat, can be
started on the Core Station to enable the direct communication with the 6712.
Then the report can be download as illustrated in Figure 4.5. The connection
with the 6712 not only allows to see the report file but also enables other levels
of computer control (see Section 4.6.1).
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Chapter 6

Data Cleaning

6.1 Introduction

The sensor value used as input signal for the control of the actuator originates
from an EC sensor (Decagon 5TE, see Appendix B). The sensor data does not
always represent the physical process properly because the time-series data con-
tains sensor value steps of more than ± 40µS/cm within a few minutes (see
Figure 6.1) which is not possible in ground water. It is unclear why this phe-
nomena occurs. Additionally, the sensor data contains EC drops in absolute
value to approximately 0µS/cm. The second case can be explained by the expo-
sure of the sensor to the air. Apart from outliers, the sensor data contains also
noise. It is not always obvious to differentiate between outliers and noise [30].
Before the data can be analyzed, outliers as well as noise needs to be removed
as much as possible. We will tackle those two problems sequentially. First we
will filter the outliers and then the noise.

6.2 Outlier Filter

Outliers appear in many different applications such as aerial surface data mea-
surement [31], intensive care patient monitoring [32], and closed-loop control
[33]. In literature different names, such as anomalies or exceptions, are used
for outliers [30]. The survey [30] shows a broad overview of different anomaly
detection techniques. We will focus on a rather simple technique which is based
on a median filter, modified so that it can be applied on streaming data [33, 34].
In the following, the terms outlier and anomaly are used interchangeably.

The focus of the filter design is the removal of the relative step changes in
the EC sensor data (see Figure 6.1). The relative step changes of the EC sensor
value is a contextual anomaly, i.e. its value actually is not incorrect because
it is still within the valid range of possible water EC, but in context with its
temporal neighborhood, the sensor value is anomalous. We assume the outliers

61
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Figure 6.1: Raw EC values from the Decagon 5TE sensor at position 5 (R042), channel
0 of the Thur deployment.

to be additive. These additive outliers can be modeled with the additive outlier
model [33]:

yk = xk + ok (6.1)

where yk is the measured sensor value at time k, xk the real but unknown
physical value and ok an additive which is mostly zero and a few times ’large’
compared to the nominal variation of yk.

6.2.1 Median Filter

A widely used filter is the nonlinear median filter [35]. The median of n values
is defined as follows [35]:

med(yk) =

{
y(v+1) n = 2v + 1
1
2(y(v) + y(v+1)) n = 2v

(6.2)

where y(i) is the i-th value in the rank-ordered list. The corresponding median
filter can be expressed as:

mk = med(yk−v, . . . , yk, . . . , yk+v) (6.3)

where mk is the filter output at time k and yk−v . . . yk+v is the considered
data window. The breakdown point of the median filter is 50%, i.e. it can reject
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up to 50% of outliers in the data window. If the variation of the data within the
data window is high, the median filter leads to distortion [33] and the a linear
trend is approximated by a step function [32]. Because in our application, the
data is changing rather slowly, the main disadvantage of the median filter is the
delay v introduced by the median filter when applied on streaming data.

6.2.2 Two- and One-Sided Median Filter

The outlier filter proposed in [34] consists of two steps: (i) the outlier detection,
and (ii) the outlier handling, i.e. what to do with the outliers. They proposed
two filters that are based on the median from neighboring data values: (i) two-
sided median method, and (ii) one-sided median method. The two-sided median
method considers the median of the neighboring data to determine whether a
data value is an outlier or not. The neighborhood of a particular data value yk at

time k is defined as η
(v)
k = yk−v, . . . , yk−1, yk+1, . . . yk+v. If the difference between

the consider data value yk and the median of the neighborhood m
(v)
k = med(η

(v)
k )

is larger than a specified threshold T , then yk is declared to be an outlier. Fig-
ure 6.2 illustrates the two-sided median outlier detection method. This approach
prevents distortion of the signal within the boundaries. But the drawback of the
two-sided median method is the delay introduced by the consideration of the
positive and negative neighborhood.

5 100 k

η
(3)
7 = {y4, y5, y6, y8, y9, y10}

2T

m
(3)
7

Figure 6.2: Example of two-sided median method [34]. The shaded area illustrates the
threshold T . In this example y7 is declared as outlier.

To overcome this drawback, a one-sided median method which considers only
the current and old data values was also proposed [34]. Similar to the two-sided

median method, the one-sided median is defined as m̃
(y)
k = med{yk−2v, . . . , yk−1}.

Additionally, the first difference of the considered data series yk is calculated:

zk = yk−yk−1. Based on the median of the first difference m̃
(z)
k = med{zk−2v, . . . , zk−1}
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and the median of the observed time series m̃
(y)
k a prediction for yk is calculated.

The prediction m̃
(2v)
k is calculated as follows: m̃

(2v)
k = m̃

(y)
k + v · m̃(z)

k . If the

difference between the prediction m̃
(2v)
k and the data value yk is larger than the

threshold T̃ , i.e. |yk − m̃
(2v)
k | ≥ T̃ , then yk is replaced by the prediction m̃

(2v)
k ,

else yk is left unmodified.

6.2.2.1 Simulation

The following simulation was performed with Matlab based on GSN data from
the Decagon sensor 5TE at position 3 (R073), channel 4 (conductivity4) from the
Thur deployment (virtual sensor: thur dozer decagonmux conv). The simula-
tion was done offline, that is all data was available at the time of the simulation.
The generation time was used as time reference and the applied outlier filter
technique is based on the one-sided median method.

Figure 6.3 shows an example of instable behavior of the one-sided median
outlier filter. The value of the last non-outlier data point is 463µS/cm. The

median first difference for the next data point is m̃
(z)
k = −0.5 what results in a

prediction of m̃
(2v)
k = m̃

(y)
k + v · m̃(z)

k = 463 + 15 · (−0.5) = 455.5. Because of this

incorrect prediction and the small threshold of T̃ = 5, the data point with the
value 464µS/cm is declared as outlier and replaced by the (incorrect) prediction.
As the replacement takes place in the original data, the outlier filter may become
unstable as it is the case in Figure 6.3. Therefore, this outlier filter method is
no longer considered.

6.2.3 Median Filter by Menold et al.

An approach very similar to the two-sided median method was proposed in [33].
In contrast to the two-sided median method they consider only the current yk
and past N−1 values, i.e. y†k = med(yk−N+1, . . . , yk). If the distance dk between

the current value yk and the median of the current and past N − 1 values y†k
is larger than the threshold Tk, then the current value is declared as an outlier.
Two different strategies are proposed in [33] for the selection of Tk. One basic
approach is to declare Tk as a constant value: Tk = c ∀ k. In the other strategy
Tk is varied in time and depends on the current and past data. Because in our
case the typical variation of the data values is known, we will focus on the basic
approach where the threshold is constant.

6.2.3.1 Dimensioning of Window-Width and Threshold

The window-width N has to be chosen large enough so that the number of
outliers within the window stay below the breakdown point of 50%. For the
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Figure 6.3: Simulation of one-sided median outlier filter with EC values from sensor at
position 3, channel 5 from the Thur deployment with classification (date: 27.02.2012).
Threshold T̃ = 5, window width v = 15.

data of the Thur deployment, accumulation of outliers occurred (e.g. ≈ 10 out
of 17). Therefore the window-width is set to 30 data values, what corresponds
to approx. 60min. (based on a measurement interval of 2min).

For a step change of the data value, it last half of the median window width
(N/2) until the median value y†k reacts. Therefore, the constant threshold T can
be determined as follows:

T = ECdyn
W

2
(6.4)

where ECdyn is the maximal temporal change of the EC and W is the window
length. For ECdyn = 15µS/cm/h and W = 1h, the threshold is T ≈ 8µS/cm.

6.2.3.2 Outlier Replacement Strategy

When a data value is declared to be an outlier, it has either to be removed
or replaced by a prediction y?k. A simple strategy is the replacement by the

median, y?k = y†k [33, 34]. Another strategy is the replacement with the last
valid point [33]: y?k = yk−j where j is the smallest value where the condition

|y†k − yk−j | ≤ Tk is fulfilled. We will use the latter replacement strategy because
this strategy performs better than the median replacement for monotonically
increasing and decreasing sequences [33].
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6.2.3.3 Simulation

The following simulations were performed with Matlab based on GSN data from
the Decagon sensor 5TE at position 5 (R071), channel 0 (conductivity0) from the
Thur deployment (virtual sensor: thur dozer decagonmux conv). The simula-
tion was done offline, that is all data was available at the time of the simulation.
The generation time was used as time reference and the applied outlier filter
technique is based on [33], see Section 6.2.3.

Figure 6.4 shows the EC over a period of four days (see also Figure 6.1).
All the visible outliers were detected. It can be seen that the median curve,
corresponding to y†k, approximates the raw curve without outliers by a step
function.
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Figure 6.4: Simulation of median outlier filter from Menold et al. with EC values from
sensor at position 5, channel 0 from the Thur deployment with classification. Threshold
T = 8, window width N = 30.

Figure 6.5 shows a zoom of Figure 6.4. It can be seen that the data value
declared as outliers (red squares) are replaced by the last valid value (blue trian-
gles). The present case shows an accumulation of outliers where significant raw
value drops are not recovered immediately but within the following 4−6 samples.
Due to the temporal accumulation of outliers the median shortly deviates from
the overall tendency (see also Figure 6.4). Furthermore, as the raw data after
an outlier does not immediately return to the general trend, some data points
of a single outlier peak fall within the filter boundaries and are therefore not
classified as outliers.

Figure 6.6 shows the data after the noise filtering with a mean filter (mean
line). It is applied on the outlier filtered data. It smooths the outlier filtered
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Figure 6.5: Simulation of outlier filter from Menold et al. with EC values from sensor
at position 5, channel 0 from the Thur deployment with classification (date: 28.02.2012).
Threshold T = 8, window width N = 30.

data and attenuates the effect of remaining outliers not removed by the outlier
filter.

6.3 GSN-Test

The following tests were performed online with data from the Thur deployment.
The applied outlier-filter is the median filter by Menold et al. (Section 6.2.3,
[33]). Data points declared as outliers are replaced by the last valid data point.
The filter settings were as follows:

• window-width = 60min.

• threshold = 8µS/cm

The noise filter applied on the outlier filtered data was a simple mean with
a window width of 20min.. Figure 6.7 shows the raw EC values and the out-
put after the outlier- and noise-filtering. The green lines corresponds to the
boundaries used by the outlier filter. All occurring outliers are properly filtered.
Although the EC shows a steep rise on the 16.04.2012, the filtered output reflects
the behavior of the raw EC.

Figure 6.8 shows the raw and the outlier- and noise filtered data from another
sensor. Due to the steep rising of the EC, some raw data points are incorrectly
declared as outliers. Therefore the filtered output does not properly reflect the
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Figure 6.6: Simulation of the outlier and noise filter with EC values from sensor at
position 5, channel 0 from the Thur deployment with classification (date: 28.02.2012).
Mean window = 10.
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Figure 6.7: GSN test of the outlier and noise filter with EC values from sensor at
position 3, channel 3 from the Thur deployment. The red line is the outlier- and noise
filtered data.
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behavior of the raw EC in the region of the steep rising. This last case shows the
limitation of the filter in case of sensor signals with high dynamics. When the
dynamics of the sensor signal is higher than the fixed boundaries of the outlier
filter, the sensor data outside the boundaries is declared an outlier. Stretching
the boundaries has the disadvantage that outliers with small amplitude are not
detected anymore. That is, there is a trade off between the maximum dynamic
of the sensor signal and the cleaning of outliers when using the outlier filter of
Menold et al. [33] with a pre-defined threshold.
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Figure 6.8: GSN test of the outlier and noise filter with EC values from sensor at
position 5, channel 2 from the Thur deployment (date: 16.04.2012). The red line is the
outlier- and noise filtered data.
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Chapter 7

System Evaluation

7.1 Test at Thur Deployment

7.1.1 Overview

At the Thur deployment the electrical conductivity of groundwater is measured
at different positions (R042, R071, R073 and R074 see Figure 7.1(b)) and depths.
At each position, the conductivity is measured in five different depths with 1m
distance. In this first test the EC of a single sensor is used to determine when
to start with the sampling program.

7.1.2 Deployment Configuration

Figure 7.1 shows the installation at the Thur deployment. Both, the 6712 water
sampler and the Core Station are battery powered.

The Core Station’s hostname is ’permasense-thur-hyd01.ethz.ch’ and the
channel of the WSN is channel number 8. The following plugins are enabled
on the Core Station the 6712 is connected to:

• BackLogStatusPlugin

• CoreStationStatusPlugin

• SyslogNgPlugin

• Sampler6712Plugin

The duty cycle mode is also enabled and the service wakeup is at 08:00 and
lasts 15min.

71
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Figure 7.1: a) 6712 water sampler with battery (black box) next to position R061
and Core Station (gray box) mounted on the top of the mast at position R073. b)
Description of positions.
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7.1.3 Test

7.1.3.1 Configuration

The test round was performed between 01.05.2012 and 13.05.2012. During that
period, the GSN server was down from 07.05.2012 11:21:23 UTC until 09.05.2012
08:17:36 UTC due to maintenance work. Furthermore, the GSN application was
restarted multiple times.

For the test, the virtual sensors were configured as shown in Figure 7.2. The
single sensor (dozer decagonmux conv) was the EC sensor channel 4 at position
4 (R042). The median filter presented in Section 6.2.3 was used as outlier filter.
The filter’s parameters were as follows: threshold = 8µS/cm, minimum numbers
of values in window = 10, window width = 60 minutes. The noise filter applied
after the outlier filter was a mean filter with a window width of 20 minutes.

The control algorithm was configured to generate a static sampling schedule
file as soon as the difference between the minimum and maximum EC within the
last 12 hours is higher than 10µS/cm. The water sampling schedule is a static
schedule taking a sample of 10ml every 30 minutes into a new bottle, starting
with bottle 1 and ending with bottle 24.

schedule dozer

command

outliernoisefilter

pos4 ch4

sampler6712

algorithm

control id7000

sampler6712

algorithm

config

sampler6712

algorithm

eval

sampler6712

status

sampler6712

sampling

dozer

decagonmux

conv

PermaSense::GSN - Private

PermaSense::GSN - Test - Private

PermaSense::GSN - Public

Figure 7.2: The virtual sensors for the test at the Thur deployment reside in different
GSN servers. The ’thur ’ prefix in the figure’s virtual sensor names were omitted.
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7.1.3.2 Results

Figure 7.3 shows an overview of the test period. As long as the EC min/max
delta is below the threshold, no new schedule containing the water sampling
information was generated and sent to the Core Station. The first time the EC
min/max delta exceeded the threshold (just before 06.05.2012), a new sampling
schedule was generated and sent to the Core Station. The schedule transmission
was followed by 24 samplings in an interval of 30 minutes, starting with bottle
number 1. The next exceeding of the threshold does not trigger a schedule
generation because a manual reset is required to enable a new schedule generation
(see Figure 5.8).
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Figure 7.3: Overview of the test results. The data for the graphs originate from
different virtual sensors. The EC min/max delta is the process observed by the control
algorithm.

After the first sampling round, the GSN server was down for almost two
days due to maintenance. The completion of the maintenance was followed by
multiple restarts of the GSN server (see Figure 7.4). Because the EC min/max
delta increased above the threshold shortly after the different GSN restarts,
new sampling schedules were generated and overwrote the existing schedules.
The reason for this overwriting is the fact that the internal state of the control
algorithm VS is not stored persistently, i.e. after a GSN restart the control
algorithm VS is ready to generate a new schedule (see Figure 5.8).

Table 7.1 shows an excerpt of the samples taken during the test run. It
contains the sampling results reported by the Core Station to the GSN as well
as the sampling report logged by the 6712. The sampling report of the 6712 was
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Figure 7.4: Zoom of the test (09.05.2012). The encircled 6712 samplings and schedule
transmissions show to which schedule transmission the individual 6712 samplings belong
to.

retrieved remotely (see Section 5.3.4.6). All samplings were successful and the
bottle numbers and the sampling volume are identical. Only the time difference
is between 1h 1min and 1h 2min. The reason for the 1h difference is the winter
time of the 6712’s clock. One cause for the remaining 1−2min difference is that
the time in the sampling report is the time of the event causing the sampling,
i.e. the time the sampling was initiated by the Core Station, and the time in the
GSN database entry corresponds to the sampling result after the completion of
the sampling. Another cause for the 1 − 2min difference is the time difference
between the Core Station’s clock and the 6712’s clock of about 10s. The static
sampling started on 12.05.2012 was stopped after the 8th bottle because the
battery was low.

By observing the behavior of the EC min/max delta after a GSN restart it
can be seen that the EC min/max delta rises fast (after 1st and 2nd GSN server
restart in Figure 7.4) or even does a jump (after 3rd GSN server restart). This
behavior was not to be expected because the electrical conductivity of ground
water changes rather slowly, i.e. not by 10µS/cm within a few minutes. The
reason for this behavior is the way the min/max delta EC is calculated. For
the calculation of the minimum and maximum value within the last 12 hours,
the source query provided by GSN was used. Listing 7.1 shows the relevant
extract from the VSD file (Thur Sampler6712 Algorithm control Id7000.xml)
which defines the calculation of the minimum and maximum. The window size
of 12 hours is defined in line 2 (storage-size) and the aggregation functions



76 Chapter 7. System Evaluation

are visible in line 8 (MIN() and MAX() respectively).

Listing 7.1: Minimum and maximum aggregate function over a window of 12h.

1 <stream name="sensor">

2 <source alias="source" storage -size="12h" sampling -rate="1">

3 <address wrapper="local">

4 <predicate key="query">

5 select * from Thur_OutlierNoiseFilter_Pos4__Ch4

6 </predicate >

7 </address >

8 <query> select MIN(noise_filter_value) as minValue , MAX(

noise_filter_value) as maxValue from wrapper

9 </query>

10 </source >

11 <query> select * from source </query>

12 </stream >

If all sensor data would arrive in real-time, i.e. with a short propagation
time so that the time difference between the generation time and the writing
into the database is small (see Figure 2.5), then this approach would work. But
due to the long downtime of the GSN server, the data partially arrived at the
GSN server with very long delays. The lower graph in Figure 7.5 shows the
filtered EC data once with the generation time as timeline (blue), i.e. the time
the data was generated, and once with timed as timeline (red), i.e. the time
the data was stored in the GSN database. Both curves are almost overlaying
so long as the propagation time is short. But as soon as the propagation time
gets large, the curve using the timed information as timeline does not represent
the reality anymore. Such a case happened when the GSN server was under
maintenance. While the GSN server was under maintenance, no data was stored
in the database. But as soon as the server went back online, the data recorded in
the WSN while the GSN server was down, is transmitted to the GSN and stored
in the database.

As mentioned before, the aggregation function of the source query uses the
timed information as time. Therefore it cannot distinguish between data which
has just been generated by a sensor and data which was stored in the WSN/Core
Station and only transmitted when the GSN server goes back online. This results
in the fast increasing of the EC min/max delta (see Figure 7.6). The filtered EC
values with the generation time as timeline in Figure 7.6 has gaps directly after
GSN server restarts. The reason for those gaps is the outlier and noise filter
which needs some sensor values before starting the filtering process.
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Figure 7.5: The timed and generation time time information may be very different
when the GSN server is down for a longer time.
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but the timed timeline is relevant. Therefore the EC min/max delta rises fast although
the real EC (generation time timeline) only changes slowly.
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Chapter 8

Conclusion and Outlook

In this thesis we successfully integrated the 6712 water sampler into the existing
PermaSense WSN so that it is possible to control the water sampler based on
sensor data. In a first step a concept was made to examine the integration of
the 6712 water sampler as well as the control algorithm controlling the 6712
into the existing PermaSense system (see Chapter 3). The integration of the
6712 requires an interface unit to connect the 6712 with the existing system.
Following the design approach where the integration of a new device is done
with a feature-rich node followed by a second design step in which superfluous
features are removed, we started with a Core Station to connect the 6712 with
the PermaSense system. The 6712 and its serial interface had to be studied
extensively in order to control the device by the Core Station, in particular the
serial interface and the API required significant analysis, implementation and
verification (see Chapters 4 and 5). The control algorithm was defined to be
located at the backend, more precisely in the GSN. Because of the noise and the
outliers in the sensor data used by the control algorithm, online data cleaning
was required (see Chapter 6). The applied data cleaning was sufficient for the
used control algorithm but new data cleaning approaches may be necessary when
more complex control algorithms are used. First test at the Thur deployment
showed that the basic mechanics work properly, i.e. after the control algorithm
decided to start a static sampling series all samples were successfully drawn by
the 6712 (see Chapter 7). Due to the fact that the 6712 is controlled with a
schedule file containing the information for multiple samples, the 6712 together
with the Core Station are able to run autonomous once received the schedule.

The control algorithm does not feature dynamic sampling yet. This requires
some further information how such a dynamic schedule has to be in terms of
the sensor data. Another next step may be the synchronized water sampling
of multiple 6712 installed in the same catchment area. When aiming to have
multiple 6712 water samplers connected to the PermaSense system, then the
migration from the feature-rich Core Station to a smaller interface unit accessible
through the WSN may be an option. This migration would not only contain a
software migration but also the communication currently taking place over the
WLAN would need to be moved to the WSN.

79



80 Chapter 8. Conclusion and Outlook



Appendix A

User’s Guide

A.1 Operation

A.1.1 Bottle Change

To prevent sampling while the bottles are being changed, the bottles have to be
replaced according to the following on-situ procedure:

1. Stop the running program of the water sampler by pressing the STOP key
(see Figure A.1(a)) and selecting STOP PROGRAM on the menu pause screen
(see Figure A.1(c)).

2. Change the bottles.

3. Turn off the water sampler by pressing the STANDBY key (see Figure A.1(b)).

(a) (b)

← STOP PROGRAM
RESUME PROGRAM

VIEW DATA
GRAB SAMPLE →

(c)

Figure A.1: 6712 water sampler: a) stop key, b) standby key, c) menu pause screen.

This procedure is not only required to prevent sampling during the change
of bottles but also to reinitialize the Core Station’s internal bottle state. If the
procedure is not performed, the Core Station skips samples when the bottles
are full according to its internal bottle state. In case it was forgotten to stop
the water sampler before changing the bottles or if the water sampler was not
powered off after changing the bottles, the water sampler can be remotely reini-
tialized by a GSN web interface upload (see Figure A.2). It has to be ensured
that the Core Station is powered on before executing remote reinitialization (see
Appendix A.1.4.1).
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Figure A.2: GSN web interface upload tab of sampler6712 sampling VS.

Background Information When the water sampler’s running program is
stopped, the Menu Control mode state Program Running (disabled) is left
(see Figure 5.11) so that no samplings are initiated by the Core Station. When
the control algorithm generates a new sampling schedule while the bottles are
being changed, all samplings falling into that period will be skipped. When the
water sampler is turned off after the bottles have been changed, its state changes
to Sampler Off. The next time the Core Station initiates a new sampling, the
water sampler is initialized first and thereby set into the Program Running
(disabled) state before a sampling is initiated by the Core Station.

A.1.2 Control Algorithm

The control algorithm generates two different types of data (see also Section 5.2.3.3).
Two extra VS allow to demultiplex the control algorithm’s output based on the
data type field. The eval VS (see Figure A.3) shows the evaluation criteria as
well as the evaluation result of the sensor signal. The config VS (see Figure A.4)
shows the state of the control algorithm (enable/disable) and the state of the
state machine (see Figure 5.8). For the explanation of the different fields in
Figures A.3 and A.4 we refer to Table D.3.

Figure A.3: GSN web interface real-time tab of sampler6712 algorithm eval VS.

The control algorithm generates a new schedule file containing the sampling
information (time, volume, bottle number) when the start condition is fulfilled
and the control algorithm is enabled. Subsequently, the schedule file is sent to
the Core Station. The control algorithm can be enabled and disabled by a GSN
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Figure A.4: GSN web interface real-time tab of sampler6712 algorithm config VS.

web interface upload (see control state drop down menu in Figure A.5).

As soon as the generated schedule is received by the Core Station, the control
algorithm is automatically disabled to prevent a new schedule generation in case
of a GSN restart (see Section 7.1.3.2). After the successful transmission of a new
sampling schedule, the control algorithm can be re-activated by the following
procedure:

1. Enable control algorithm by selecting on in the control state drop down
menu in Figure A.5

2. Reset schedule generation by selecting reset schedule generation in the
special action drop down menu in Figure A.5

3. Press upload button

Figure A.5: GSN web interface upload tab of sampler6712 algorithm control VS.

It is also possible to manually start a sampling series. This can be achieved
by selecting manual start schedule generation in the special action drop
down menu (see Figure A.5).

A.1.3 View Generated Schedule

The last schedule sent to the Core Station can be viewed in the schedule VS by
clicking on download next to the schedule field (see Figure A.6).

Listing A.1 shows an example of such a schedule file. For more details about
the formatting of the schedule file we refer to Section 5.3.4.3.
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Figure A.6: GSN web interface real-time tab of schedule VS.

Listing A.1: Example of a schedule file.

1 0 9 * * * plugin Sampler6712Plugin report_status

2 29 8 2 6 * plugin Sampler6712Plugin bottle (1) volume (100)

backward_tolerance_minutes =5

3 59 8 2 6 * plugin Sampler6712Plugin bottle (2) volume (100)

backward_tolerance_minutes =5

A.1.4 Advance

The following actions are only intended for expert users with GSN background
knowledge!

A.1.4.1 Manual Power On/Off of Core Station

The Core Station is running in the duty cycle mode, i.e. it is turned off if it does
not have to execute any tasks. Some manual actions (e.g. see Appendix A.1.4.4
or Appendix A.1.4.2) require the Core Station to be on. This can be achieved by
sending a Dozer command over the WSN to the Core Station (see Figure A.7).
To wake-up the Core Station the *arg has to be 1. When the Core Station
receives the wake-up command, it last about 2 minutes until it is ready to receive
a manual action. After the Core Station has received the wake-up command it
stays awake until the wake-up is cleared. That is, it has to be kept in mind that
the Core Station needs to be set back to the duty cycle mode after the manual
action is complete in order to reduce the power consumption! To return the Core
Station into the duty cycle mode the *arg has to be 4. When using *arg=2 the
Core Station wakes up and automatically goes back to sleep if it has nothing to
do. This can be used for example when the Core Station only has to collect a
new schedule file from the GSN (see Appendix A.1.4.3).

A.1.4.2 Manual Sampling

It is possible to manually initiate a single sampling. This can be done by a
GSN web interface upload where the ID of the Core Station the water sampler
is connected to, the bottle number, and the water volume to be drawn have to
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Figure A.7: GSN web interface upload tab of dozer command VS.

be specified (see Figure A.8). Before executing the upload, it has to be ensured
that the Core Station is powered on (see Appendix A.1.4.1). This upload is only
intended for debugging and testing! The control algorithm is not aware of a
manually initiated sampling, and therefore will overfill the manually filled bottle
when generating a new sampling schedule.

Figure A.8: GSN web interface upload tab of sampler6712 sampling VS.

A.1.4.3 Manual Schedule File Generation

It is possible to manually create a schedule file and subsequently send it to the
Core Station. For the manual creation of the schedule file we refer to the example
in Listing 5.3 as well as Section 5.3.4.3. After the creation of the schedule file
the following procedure has to be followed in order to send the file to the Core
Station:

1. Upload the schedule file with the device ID of the Core Station (see Fig-
ure A.9)

2. Wake-up Core Station (set *arg to 2, see Appendix A.1.4.1)

The transmission time field (see Figure A.6) has a valid time as soon as
the schedule file was received by the Core Station, previously it was null. The
control algorithm is not aware of a manually generated schedule file, and will
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overfill the bottles when generating a new sampling schedule! Therefore, it is
best to disable the control algorithm when controlling the water sampler with
manually generated schedule files.

Figure A.9: GSN web interface upload tab of schedule VS.

A.1.4.4 Manual Status Request

The Core Station periodically transmits the status of the water sampler 1. This
status query can be initiated manually by a GSN web interface upload (see
Figure A.10). It has to be ensured that the Core Station is powered on before
executing the upload (see Appendix A.1.4.1).

Figure A.10: GSN web interface upload tab of sampler6712 status VS.

A.2 Configuration

A.2.1 ISCO 6712

When installing a new 6712 water sampler, manual configurations need to be
done prior to connecting the 6712 to the Core Station:

• Set language to English and unit to meter (type 6712.8 in main menu, see
section 4.2.1)

1By the time of writing the status is sent every day at 09:00 UTC



Appendix B

Decagon 5TE

The 5TE sensor from Decagon can measure the volumetric water content, the
electrical conductivity and the temperature [36]. The valid range of the raw
electrical conductivity σRaw is 0 to 1022. A raw EC of 1023 is used to indicate
a malfunction of the EC sensor. The bulk EC can be calculated as follows:

If σRaw ≤ 700 then EC =
σRaw
100

[
dS

m

]
= σRaw · 10

[
µS

cm

]
(B.1)

If σRaw > 700 then EC =
700 + 5(σRaw − 700)

100

[
dS

m

]
(B.2)

= σRaw · 10(700 + 5(σRaw − 700))

[
µS

cm

]
(B.3)

The resolution is

If EC ≤ 7000

[
µS

cm

]
then the resolution is 10

[
µS

cm

]
(B.4)

If EC > 7000

[
µS

cm

]
then the resolution is 50

[
µS

cm

]
(B.5)

According to [37], sensors with firmware≥ R3.18 have a resolution of 0.001[dS/m] =
1[µS/cm] in SDI-12 mode. [

dS

m

]
=

[
103µS

cm

]
(B.6)
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Appendix C

ISCO 6712 Water Sampler

C.1 Communication

The following listings show the communication between computer and 6712. The
listings are produced by means of socat operating in the ’Data Transfer Loop’
(see Appendix G.2). ’>’ corresponds to data send from the computer to the 6712,
’<’ corresponds to data send from the 6712 to the computer.

C.1.1 Offline Mode after Reset

In this case five ? are necessary to connect to the 6712 Section 4.6.1. The
time between the last ? and the banner string is approximately 0.17s. It last
about 0.08s until the complete banner string, containing HW and SW revisions,
is displayed.

Listing C.1: Socat serial log of offline mode after reset.

1
2 > 2012/01/05 15:43:38.703290 length =1 from =88 to=88

3 3f ?

4 --

5 > 2012/01/05 15:43:39.105133 length =1 from =89 to=89

6 3f ?

7 --

8 > 2012/01/05 15:43:39.505085 length =1 from =90 to=90

9 3f ?

10 --

11 > 2012/01/05 15:43:39.905129 length =1 from =91 to=91

12 3f ?

13 --

14 > 2012/01/05 15:43:40.305084 length =1 from =92 to=92

15 3f ?

16 --

17 < 2012/01/05 15:43:40.317130 length =1 from =2635 to=2635

18 3f ?

19 --

20 < 2012/01/05 15:43:40.489125 length =8 from =2636 to=2643

21 0d 0a ..

22 2a 2a 2a 20 4d 6f *** Mo

89
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23 --

24 < 2012/01/05 15:43:40.498562 length =8 from =2644 to=2651

25 64 65 6c 20 36 37 31 32 del 6712

26 --

27 < 2012/01/05 15:43:40.505051 length =8 from =2652 to=2659

28 20 20 48 57 20 52 65 76 HW Rev

29 --

30 ...

31 ...

32 --

33 < 2012/01/05 15:43:40.541038 length =8 from =2684 to=2691

34 30 30 30 20 20 49 44 20 000 ID

35 --

36 < 2012/01/05 15:43:40.549017 length =8 from =2692 to=2699

37 31 32 38 31 37 38 30 38 12817808

38 --

39 < 2012/01/05 15:43:40.554024 length =8 from =2700 to=2707

40 38 34 20 0d 0a 84 ..

41 0d 0a ..

42 3e >

43 --

44 < 2012/01/05 15:43:40.562641 length =1 from =2708 to=2708

45 20

46 --

C.1.2 Menu Control Mode

In this case the computer is already connected to the 6712 Section 4.6.1. The
time between the last ? and the banner string is approximately 0.18s. It last
about 0.08s until the complete banner string, containing hardware and software
revisions, is displayed. Approximately 1s after the banner string, the menu is
displayd. It lasts about 0.25s until the complete menu is displayed. It has to
kept in mind that this value depends on the menu to display.

Listing C.2: Socat serial log of menu control mode.

1 > 2012/01/05 16:05:05.945692 length =1 from =103 to=103

2 3f ?

3 --

4 < 2012/01/05 16:05:05.958006 length =1 from =3021 to=3021

5 3f ?

6 --

7 > 2012/01/05 16:05:06.766090 length =1 from =104 to=104

8 3f ?

9 --

10 < 2012/01/05 16:05:06.777039 length =1 from =3022 to=3022

11 3f ?

12 --

13 > 2012/01/05 16:05:07.586145 length =1 from =105 to=105

14 3f ?

15 --

16 < 2012/01/05 16:05:07.769130 length =8 from =3023 to=3030

17 0d 0a ..

18 2a 2a 2a 20 4d 6f *** Mo

19 --

20 < 2012/01/05 16:05:07.778681 length =8 from =3031 to=3038

21 64 65 6c 20 36 37 31 32 del 6712
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22 --

23 ...

24 ...

25 --

26 < 2012/01/05 16:05:07.821037 length =8 from =3071 to=3078

27 30 30 30 20 20 49 44 20 000 ID

28 --

29 < 2012/01/05 16:05:07.829995 length =8 from =3079 to=3086

30 31 32 38 31 37 38 30 38 12817808

31 --

32 < 2012/01/05 16:05:07.841085 length =5 from =3087 to=3091

33 38 34 20 0d 0a 84 ..

34 --

35 < 2012/01/05 16:05:08.777112 length =2 from =3092 to=3093

36 0d 0a ..

37 --

38 < 2012/01/05 16:05:08.797004 length =8 from =3094 to=3101

39 20 20 20 20 20 20 20 3c <

40 --

41 < 2012/01/05 16:05:08.807903 length =8 from =3102 to=3109

42 53 54 3e 41 54 55 53 20 ST>ATUS

43 --

44 < 2012/01/05 16:05:08.814533 length =8 from =3110 to=3117

45 2d 20 47 65 74 20 63 75 - Get cu

46 --

47 < 2012/01/05 16:05:08.821067 length =8 from =3118 to=3125

48 72 72 65 6e 74 20 73 74 rrent st

49 --

50 < 2012/01/05 16:05:08.830380 length =8 from =3126 to=3133

51 61 74 75 73 20 69 6e 66 atus inf

52 --

53 < 2012/01/05 16:05:08.837067 length =8 from =3134 to=3141

54 6f 72 6d 61 74 69 6f 6e ormation

55 --

56 < 2012/01/05 16:05:08.846311 length =2 from =3142 to=3143

57 0d 0a ..

58 --

59 < 2012/01/05 16:05:08.858054 length =8 from =3144 to=3151

60 20 20 20 20 20 20 3c 30 <0

61 --

62 < 2012/01/05 16:05:08.865991 length =8 from =3152 to=3159

63 3e 2c 53 54 41 52 54 20 >,START

64 --

65 < 2012/01/05 16:05:08.873108 length =8 from =3160 to=3167

66 2d 20 53 74 61 72 74 20 - Start

67 --

68 < 2012/01/05 16:05:08.882094 length =8 from =3168 to=3175

69 61 20 70 72 6f 67 72 61 a progra

70 --

71 < 2012/01/05 16:05:08.890067 length =8 from =3176 to=3183

72 6d 20 57 41 49 54 49 4e m WAITIN

73 --

74 ...

75 ...

76 --

77 < 2012/01/05 16:05:08.986323 length =8 from =3261 to=3268

78 20 3c 51 3e 75 69 74 20 <Q>uit

79 --

80 < 2012/01/05 16:05:08.994266 length =8 from =3269 to=3276

81 2d 20 45 78 69 74 20 4d - Exit M

82 --

83 < 2012/01/05 16:05:09.006178 length =8 from =3277 to=3284
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84 45 4e 55 0d 0a ENU..

85 0d 0a ..

86 3e >

87 --

88 < 2012/01/05 16:05:09.010710 length =1 from =3285 to=3285

89 20

90 --

C.1.3 Status During Sampling

The following figures shows the behaviour of the 6712 state (STS in status reply,
see section 4.6.1.2) and the result of the most recent sampling (SOR in status
reply). The time of the ’sampling command’ is not exact. It only shows between
which two points the sampling was triggered. The status information shown in
the figures result from the following commands:

• 1st data point: reply on STS,2 (turn on 6712)

• 2nd data point: reply on BTL,x,SVO,y (take a sample)

• 3rd and following data points: reply on STS,1 (request status)

C.1.3.1 Valid Sampling

Figure C.1 shows the states during sampling. The settings are as follows:

• Rinses: 0

• Retries: 0

• Bottle number: 24

• Sampling volume: 10ml

The time between initiating the sampling (approximately at time 4) and its
completion (at time 32) last about 28s in this case. This time may be much larger
in case of larger sampling volume, higher rinses and retries numbers. Further-
more, the sampling time also depends on the current position of the distributor
and the bottle to use for storing the sample. The status of the 6712 is not conti-
nously on ’SAMPLE IN PROGRESS’ during the sampling. It happen that the
replies to two consecutive status request contained the same sampler’s current
time (TI), although the state was different! This has to be kept in mind when
using the sampler’s current time for some reasons.
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Figure C.1: 6712 water sampler state and sampling result during sampling.
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C.1.3.2 Invalid Volume

Figure C.2 shows the states when trying to take a sample with an invalid sampling
volume. The settings are as follows:

• Rinses: 0

• Retries: 0

• Bottle number: 24

• Sampling volume: 5ml

In case of an invalid sampling volume, the sampling result of the most recent
sample is not changed. Only the 6712 status is returns ’VOLUME OUT OF
RANGE’ when trying to initiate a sampling (BTL,24,SVO,5).
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Figure C.2: 6712 water sampler state and sampling result when initiating a sampling
with an invalid sampling volume.
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C.1.3.3 Invalid Bottle

Figure C.3 shows the states when trying to take a sample with an invalid bottle
number. The settings are as follows:

• Rinses: 0

• Retries: 0

• Bottle number: 30

• Sampling volume: 10ml

In case of an invalid bottle number, the sampling result of the most recent
sample is not changed. Only the 6712 status is returns ’INVALID BOTTLE’
when trying to initiate a sampling (BTL,30,SVO,10).
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Figure C.3: 6712 water sampler state and sampling result when initiating a sampling
with an invalid bottle number.
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C.1.3.4 No Liquid

Figure C.4 shows the states when trying to take a sample when the suction head
is placed outside water. The settings are as follows:

• Rinses: 0

• Retries: 0

• Bottle number: 24

• Sampling volume: 10ml

In case of placing the suction head on the air, the sampling result of the most
recent sample is set to ’NO LIQUID FOUND’. If the number of retries is higher
than 0, the process takes longer as the 6712 retries to draw water.
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Figure C.4: 6712 water sampler state and sampling result when suction head exposed
to the air.
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C.1.4 6712 Program State Determination

Sometimes the 6712’s reply on the ST command in the Menu Control mode is not
complete. For example in the serial log Listing C.4 line 20 (see also Listing C.3
line 5), the program status was not properly send by the 6712. This caused a
warning (Listing C.4) and a later retransmission of the ST command (not shown).

Listing C.3: Backlog info output

1 WARNING [UTC 08/02/2012 23:00:05 ,586] [Sampler6712 -Thread] (

Sampler6712Plugin.py :1035) Sampler6712Driver -

2 Program status not found in: "

3 ST\r\n

4 Sampler Status: Program Running\r\n

5 PrograPogram Status m\r\n

6 RAIN: 0.00 in \r\n

7 \r\n

8 \n

9 \r\n

10 <ST>ATUS - Get current status information\r\n

11 <S>CREEN_ <D>UMP - View 6712’s display\r\n

12 <P>AUSE - Enter the MANUAL PAUSE menu if running a program\r\n

13 <2>, RUN2 - Runs extended program 2 if currently at standby\r\n

14 <3>, RUN3 - Runs extended program 3 if currently at standby\r\n

15 <4>, RUN4 - Runs extended program 4 if currently at standby\r\n

16 <6>, ENABLE - Enables a program previously DISABLEd\r\n

17 CONTROL - Get control of 6712’s keypad\r\n

18 <Q>uit - Exit MENU\r\n

19 \r\n

20 > "

Listing C.4: Socat serial log

1 ...

2 > 53 54 0d ST.

3 --

4 < 53 54 0d 0a ST..

5 --

6 < 53 61 6d 70 6c 65 72 20 53 Sampler S

7 --

8 < 74 61 74 75 tatu

9 --

10 < 73 s

11 --

12 < 3a :

13 --

14 < 20 50 72 6f 67 72 61 6d 20 52 75 6e 6e Program Runn

15 --

16 < 69 6e in

17 --

18 < 67 0d 0a g..

19 --

20 < 50 72 6f 67 72 61 50 6f PrograPo

21 --

22 < 67 72 61 6d 20 53 74 61 74 75 gram Statu

23 --

24 < 73 20 s

25 --

26 < 20 20 20 20 20 6d m

27 --
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28 < 0d 0a ..

29 --

30 < 20 20 20 52 41 49 4e 3a 20 20 30 RAIN: 0

31 ...



Appendix D

Virtual Sensor Description
Files

D.1 Virtual Sensor Description Files

The following Listings show a selection of VSD files.

Listing D.1: Thur Sampler6712 Sampling.xml

1 <virtual -sensor name="Thur_Sampler6712_Sampling" priority="10" >

2 <processing -class >

3 <class -name>gsn.vsensor.BridgeVirtualSensorPermasense </class -name

>

4 <unique -timestamps >false</unique -timestamps >

5 <web -input password="test">

6 <command name="reinit_sampler">

7 <field name="core_station" type="*text" defaultvalue="

7000">the device_id of the receiving core station </

field>

8 </command >

9 <command name="take_sample">

10 <field name="core_station" type="*text" defaultvalue="

7000">the device_id of the receiving core station </

field>

11 <field name="bottle_number" type="*text" defaultvalue="1"

>bottle to place sample in</field>

12 <field name="volume" type="*text" defaultvalue="10">

volume to sample [ml]</field >

13 </command >

14 </web -input>

15 <output -structure >

16 <field name="DEVICE_ID" type="INTEGER" />

17 <field name="GENERATION_TIME" type="BIGINT" unit="unixtime"

index="true"/>

18 <field name="TIMESTAMP" type="BIGINT" unit="unixtime" />

19
20 <field name="SAMPLING_TRIGGER_SOURCE" type="INTEGER"/>

21 <field name="BOTTLE_NUMBER" type="INTEGER"/>

22 <field name="VOLUME" type="INTEGER" unit="ml" />

23 <field name="SAMPLING_RESULT" type="INTEGER" />

24 <field name="SAMPLER_MODEL" type="INTEGER" />

25 <field name="SAMPLER_ID" type="INTEGER" />

26 <field name="SAMPLER_TIME" type="DOUBLE" />

99
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27 <field name="SAMPLER_STATUS" type="INTEGER" />

28 <field name="MOST_RECENT_SAMPLE_TIME" type="DOUBLE" />

29 <field name="MOST_RECENT_SAMPLE_BOTTLE" type="INTEGER" />

30 <field name="MOST_RECENT_SAMPLE_VOLUME" type="INTEGER" />

31 <field name="MOST_RECENT_SAMPLE_RESULT" type="INTEGER" />

32 <field name="CHECKSUM" type="INTEGER" />

33 </output -structure >

34 </processing -class>

35 <description >This plugin allows to send commands to the 6712 water

sampler at the Thur deployment </description >

36 <life -cycle pool -size="10" />

37 <addressing/>

38 <storage />

39 <streams >

40 <stream name="data1">

41 <source alias="source" storage -size="1" sampling -rate="1">

42 <address wrapper="backlog">

43 <predicate key="remote -connection">permasense -thur -

hyd01.ethz.ch:9003 </predicate >

44 <predicate key="plugin -classname">gsn.wrappers.

backlog.plugins.Sampler6712Plugin </predicate >

45 <predicate key="status -data -type">sampling_result </

predicate >

46 </address >

47 <query> select * from wrapper </query>

48 </source >

49 <query> select * from source </query>

50 </stream >

51 </streams >

52 </virtual -sensor >

Listing D.2: Thur Sampler6712 Status.xml

1 <virtual -sensor name="Thur_Sampler6712_Status" priority="10" >

2 <processing -class >

3 <class -name>gsn.vsensor.BridgeVirtualSensorPermasense </class -name

>

4 <unique -timestamps >false</unique -timestamps >

5 <web -input password="test">

6 <command name="report_status">

7 <field name="core_station" type="*text" defaultvalue="

7000">the device_id of the receiving core station </

field>

8 </command >

9 </web -input>

10 <output -structure >

11 <field name="DEVICE_ID" type="INTEGER" />

12 <field name="GENERATION_TIME" type="BIGINT" unit="unixtime"

index="true"/>

13 <field name="TIMESTAMP" type="BIGINT" unit="unixtime" />

14
15 <field name="NB_OF_BOTTLES" type="INTEGER"/>

16 <field name="BOTTLE_VOLUME_IN_LIT" type="DOUBLE"/>

17 <field name="SUCTION_LINE_LENGTH_IN_M" type="DOUBLE"/>

18 <field name="SUCTION_LINE_HEAD" type="DOUBLE"/>

19 <field name="NB_OF_RINSE_CYCLES" type="INTEGER"/>

20 <field name="NB_OF_RETRIES" type="INTEGER"/>

21
22 <field name="MC_SAMPLER_STATUS" type="INTEGER"/>

23 <field name="MC_SAMPLER_STATUS_EXTENSION" type="INTEGER"/>

24 <field name="MC_PROGRAM_STATUS" type="INTEGER"/>

25
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26 <field name="EPC_SAMPLER_MODEL" type="INTEGER" />

27 <field name="EPC_SAMPLER_ID" type="INTEGER" />

28 <field name="EPC_SAMPLER_TIME" type="DOUBLE" />

29 <field name="EPC_SAMPLER_STATUS" type="INTEGER" />

30 <field name="EPC_MOST_RECENT_SAMPLE_TIME" type="DOUBLE" />

31 <field name="EPC_MOST_RECENT_SAMPLE_BOTTLE" type="INTEGER" />

32 <field name="EPC_MOST_RECENT_SAMPLE_VOLUME" type="INTEGER" />

33 <field name="EPC_MOST_RECENT_SAMPLE_RESULT" type="INTEGER" />

34 <field name="EPC_CHECKSUM" type="INTEGER" />

35 </output -structure >

36 </processing -class >

37 <description >This plugin allows to request the 6712 water sampler

status at the Thur deployment </description >

38 <life -cycle pool -size="10" />

39 <addressing/>

40 <storage />

41 <streams >

42 <stream name="data1">

43 <source alias="source" storage -size="1" sampling -rate="1">

44 <address wrapper="backlog">

45 <predicate key="remote -connection">permasense -thur -

hyd01.ethz.ch:9003 </predicate >

46 <predicate key="plugin -classname">gsn.wrappers.

backlog.plugins.Sampler6712Plugin </predicate >

47 <predicate key="status -data -type">sampler_status </

predicate >

48 </address >

49 <query> select * from wrapper </query>

50 </source >

51 <query> select * from source </query>

52 </stream >

53 </streams >

54 </virtual -sensor >

Listing D.3: Thur Sampler6712 Algorithm control Id7000.xml

1 <virtual -sensor name="Thur_Sampler6712_Algorithm__control__Id7000"

priority="10" >

2 <processing -class >

3 <class -name>gsn.vsensor.Sampler6712ControlAlgorithmVS </class -name

>

4 <unique -timestamps >false</unique -timestamps >

5 <init -params >

6 <param name="threshold">10</param> <!-- threshold in uS/cm -->

7 <param name="hold_time_in_min">10</param> <!-- once signal

the input has rised above the threshold , the hold time

determines how long the output stays low -->

8 <param name="window_size_in_min">720</param > <!-- window

size to use for the min/max value determination -->

9 <param name="min_nb_of_data_points_within_hold_time">3</param

> <!-- min nb of data points within hold time , otherwise

start condition check is skipped -->

10 <param name="destination_device_id">7000</param> <!-- id of

device to control (id of core station 6712 water sampler

is connected to)-->

11
12 <param name="core_station_wake_up_timeout_in_min">15</param>

<!-- time before wake -up is sent again to CS -->

13 <param name="core_station_wake_up_repetition_cnt">3</param > <

!-- nb of attempts to wake up CS -->

14
15 <!-- settings for static sampling -->
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16 <param name="sampling_start_delay_in_min">15</param> <!--

delay between threshold condition fulfilled and first

sampling , minimum value is 5min -->

17 <param name="sampling_scheme">

1 ,6 ,10 ,1000;7 ,12 ,30 ,1000;13 ,24 ,60 ,1000</param>

18
19 <!-- settings for sending new schedule to core station (http

post) -->

20 <param name="schedule_host_name">http:// whymper.ee.ethz.

ch:23001/</param> <!-- host name of schedule VS location:

PermaSense :: GSN - Test - Private -->

21 <param name="schedule_vs_name">thur_schedule </param> <!-- VS

name of schedule VS -->

22
23 <!-- settings for wake up of core station (http post) -->

24 <param name="dozer_command_host_name">http: // whymper.ee.ethz.

ch:22001/</param> <!-- host name of dozer command VS

location: PermaSense :: GSN - Private -->

25 <param name="dozer_command_vs_name">thur_dozer_command </param

> <!-- VS name of dozer command VS -->

26 </init -params >

27
28 <web -input password="test">

29 <command name="configuration">

30 <field name="control_state" type="select:leave_unchanged|

on|off">on/off of control algorithm </field>

31 <field name="special_action" type="select:none|

reset_schedule_generation|

manual_start_schedule_generation"></field >

32 </command >

33 </web -input>

34 <output -structure >

35 <field name="GENERATION_TIME" type="BIGINT" unit="unixtime"

index="true"/>

36 <field name="TIMESTAMP" type="BIGINT" unit="unixtime"/>

37 <field name="DEVICE_ID" type="INTEGER" /> <!-- device id of

core station (6712 water sampler) under control -->

38 <field name="DATA_TYPE" type="TINYINT" /> <!-- defines

whether sensor (0) or control (1) data -->

39
40 <field name="START_CONDITION_THRESHOLD" type="DOUBLE" />

41 <field name="START_CONDITION_HOLD_TIME_IN_MIN" type="INTEGER"

/>

42 <field name="WINDOW_SIZE_IN_MIN" type="INTEGER" />

43 <field name="MINIMUM_NB_OF_DATA_POINTS_WITHIN_HOLD_TIME" type

="INTEGER" />

44 <field name="START_CONDITION_FULFILLED" type="TINYINT" />

45 <field name="MIN" type="DOUBLE" />

46 <field name="MAX" type="DOUBLE" />

47 <field name="MIN_MAX_DELTA" type="DOUBLE" />

48
49 <field name="CONTROL_ALGORITHM_ENABLE_STATE" type="TINYINT" /

>

50 <field name="SCHEDULE_GENERATION_EVENT" type="VARCHAR (128)" /

>

51 <field name="SCHEDULE_GENERATION_STATE" type="VARCHAR (128)" /

>

52
53 <field name="AUTO_SCHEDULE_GENERATION_RESET_TIME_IN_MIN" type

="INTEGER" />

54 </output -structure >

55 </processing -class>
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56 <description >control algorithm for controlling 6712 water sampler at

Thur deployment </description >

57 <life -cycle pool -size="10" />

58 <addressing />

59 <storage />

60 <streams >

61 <!-- sensor data stream for control algorithm -->

62 <stream name="sensor">

63 <source alias="source" storage -size="1" sampling -rate="1">

64 <address wrapper="local">

65 <predicate key="query">

66 select * from Thur_OutlierNoiseFilter_Pos4__Ch4

67 </predicate >

68 </address >

69 <query> select noise_filter_value as sensor_value ,

generation_time from wrapper

70 </query>

71 </source >

72 <query> select * from source </query>

73 </stream >

74
75 <!-- schedule stream -->

76 <stream name="schedule">

77 <source alias="source" storage -size="1" sampling -rate="1">

78 <address wrapper="local">

79 <predicate key="query"> select * from Thur_Schedule

where device_id = 7000 </predicate >

80 </address >

81 <query> select * from wrapper

82 </query>

83 </source >

84 <query> select * from source </query>

85 </stream >

86
87 <!-- dozer command stream -->

88 <stream name="dozer_command">

89 <source alias="source" storage -size="1" sampling -rate="1">

90 <address wrapper="remote -rest">

91 <predicate key="query"> select * from

Thur_Dozer_Command where device_id = 7000 </

predicate >

92 <predicate key="remote -contact -point">http:// whymper.

ee.ethz.ch:22001/streaming/</predicate > <!--

PermaSense :: GSN - Private -->

93 </address >

94 <query> select * from wrapper

95 </query>

96 </source >

97 <query> select * from source </query>

98 </stream >

99
100 </streams >

101 </virtual -sensor >

Listing D.4: Thur Sampler6712 Status.xml

1 <virtual -sensor name="Thur_Sampler6712_Algorithm__eval" priority="10" >

2 <processing -class >

3 <class -name>gsn.vsensor.BridgeVirtualSensorPermasense </class -name

>

4 <unique -timestamps >false</unique -timestamps >

5 <output -structure >
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6 <field name="GENERATION_TIME" type="BIGINT" unit="unixtime"

index="true"/>

7 <field name="TIMESTAMP" type="BIGINT" unit="unixtime"/>

8 <field name="DEVICE_ID" type="INTEGER" />

9 <field name="DATA_TYPE" type="TINYINT" /> <!-- defines

whether sensor (0) or control (1) data -->

10
11 <field name="START_CONDITION_THRESHOLD" type="DOUBLE" />

12 <field name="START_CONDITION_HOLD_TIME_IN_MIN" type="INTEGER"

/>

13 <field name="WINDOW_SIZE_IN_MIN" type="INTEGER" />

14 <field name="MINIMUM_NB_OF_DATA_POINTS_WITHIN_HOLD_TIME" type

="INTEGER" />

15 <field name="START_CONDITION_FULFILLED" type="TINYINT" />

16 <field name="MIN" type="DOUBLE" />

17 <field name="MAX" type="DOUBLE" />

18 <field name="MIN_MAX_DELTA" type="DOUBLE" />

19
20 </output -structure >

21 </processing -class>

22 <description >sensor data evaluation of control algorithm for

controlling water sampler at Thur deployment </description >

23 <life -cycle pool -size="10" />

24 <addressing />

25 <storage />

26 <streams >

27 <stream name="data">

28 <source alias="source" storage -size="1" sampling -rate="1">

29 <address wrapper="local">

30 <predicate key="query"> select * from

Thur_Sampler6712_Algorithm__control__Id7000 where

data_type = 0 </predicate >

31 </address >

32 <query> select * from wrapper </query>

33 </source >

34 <query> select * from source </query>

35 </stream >

36 </streams >

37 </virtual -sensor >

Listing D.5: Thur Sampler6712 Status.xml

1 <virtual -sensor name="Thur_Sampler6712_Algorithm__config" priority="10" >

2 <processing -class >

3 <class -name>gsn.vsensor.BridgeVirtualSensorPermasense </class -name

>

4 <unique -timestamps >false</unique -timestamps >

5 <init -params >

6 <param name="scriptlet">

7 <![CDATA[

8 if (SCHEDULE_GENERATION_STATE == "

SCHEDULE_GENERATION ") {

9 // the mail recipients for error and exception

counter increase

10 def mailrecipients = [" burgani@gmx.ch", "

tgsell@tik.ee.ethz.ch", "philipp.schneider@geo

.uzh.ch"];

11
12 // Notify by email

13 def emailTitle = "[ PermaSense -GSN -Test] -

Schedule generated ";
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14 def emailContent = "New schedule

generated at " + (new Date(

GENERATION_TIME)).getDateTimeString ()

+ " for CoreStation with device id " +

DEVICE_ID;

15
16 org.apache.log4j.Logger.

getLogger(gsn.

processor.

ScriptletProcessor.

class).warn(

emailContent);

17 sendEmail(mailrecipients , emailTitle ,

emailContent);

18 }

19 ]]>

20 </param >

21 </init -params >

22 <output -structure >

23 <field name="GENERATION_TIME" type="BIGINT" unit="unixtime"

index="true"/>

24 <field name="TIMESTAMP" type="BIGINT" unit="unixtime"/>

25 <field name="DEVICE_ID" type="INTEGER" />

26 <field name="DATA_TYPE" type="TINYINT" /> <!-- defines

whether sensor (0) or control (1) data -->

27
28 <field name="CONTROL_ALGORITHM_ENABLE_STATE" type="TINYINT" /

>

29 <field name="SCHEDULE_GENERATION_EVENT" type="VARCHAR (128)" /

>

30 <field name="SCHEDULE_GENERATION_STATE" type="VARCHAR (128)" /

>

31
32 </output -structure >

33 </processing -class >

34 <description >algorithm configuration of control algorithm for

controlling water sampler at Thur deployment </description >

35 <life -cycle pool -size="10" />

36 <addressing />

37 <storage />

38 <streams >

39 <stream name="data">

40 <source alias="source" storage -size="1" sampling -rate="1">

41 <address wrapper="local">

42 <predicate key="query"> select * from

Thur_Sampler6712_Algorithm__control__Id7000 where

data_type = 1 </predicate >

43 </address >

44 <query> select * from wrapper </query>

45 </source >

46 <query> select * from source </query>

47 </stream >

48 </streams >

49 </virtual -sensor >

Listing D.6: Thur OutlierNoiseFilter Pos4 Ch4.xml

1 <virtual -sensor name="Thur_OutlierNoiseFilter_Pos4__Ch4" priority="10" >

2 <processing -class >

3 <class -name>gsn.vsensor.OutlierNoiseFilterVirtualSensor </class -

name>

4 <init -params >
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5 <param name="outlier_filter">one_sided_median_menold </param>

6 <param name="outlier_filter_threshold">8</param>

7 <param name="outlier_filter_min_nb_of_values_in_window">10</

param>

8 <param name="outlier_filter_window_width_in_minutes">60</

param>

9
10 <param name="noise_filter">mean</param>

11 <param name="noise_filter_window_width_in_minutes">20</param>

12
13 <param name="buffer_size">100</param>

14 </init -params >

15 <output -structure >

16 <field name="DEVICE_ID" type="INTEGER" />

17 <field name="POSITION" type="INTEGER" />

18 <field name="GENERATION_TIME" type="BIGINT" unit=

"unixtime" index="true"/>

19 <field name="TIMESTAMP" type="BIGINT" unit="

unixtime"/>

20
21 <field name="RAW_VALUE" type="DOUBLE" />

22 <field name="OUTLIER_FILTER_MEDIAN" type="DOUBLE" />

23 <field name="OUTLIER_FILTER_LOWER_BOUND" type="DOUBLE" />

24 <field name="OUTLIER_FILTER_UPPER_BOUND" type="DOUBLE" />

25 <field name="OUTLIER_FILTER_CLASSIFICATION" type=

"INTEGER" />

26 <field name="OUTLIER_FILTER_VALUE" type="DOUBLE" />

27 <field name="NOISE_FILTER_VALUE" type="DOUBLE" />

28 </output -structure >

29 </processing -class>

30 <description >outlier/noise filter for conductivity channel 4 at

position 4 at Thur deployment </description >

31 <life -cycle pool -size="10" />

32 <addressing />

33 <storage />

34 <streams >

35 <stream name="pos4_ch4">

36 <source alias="source" storage -size="1" sampling -rate="1">

37 <address wrapper="remote -rest">

38 <predicate key="query"> select * from

thur_dozer_decagonmux__conv where position = 4</

predicate >

39 <predicate key="remote -contact -point">http: //data.

permasense.ch:22001/streaming/</predicate > <!--

PermaSense :: GSN - Public -->

40 </address >

41 <query> select device_id , position , timestamp ,

generation_time , conductivity4 as raw_value from

wrapper </query>

42 </source >

43 <query>select * from source </query>

44 </stream >

45 </streams >

46 </virtual -sensor >

D.2 Output Data
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Appendix E

CD Content

The following directory structure is contained on the enclosed CD:

• Isco6712Tests: Test software to evaluate the behavior of the 6712 water
sampler.

• Literature: Literature used in this thesis (papers, datasheets etc).

• PermaSenseGSN: Source files for core station and GSN software written/added
during this thesis. For the current version we refer to the PermaSenseGSN
SVN repository.

• Presentation: Slides of initial, mid-term and final presentation.

• Report: The LATEX sources of this thesis.

• SimulationAndTest: Matlab scripts for different simulations and tests.
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Appendix F

Development Environment

The following chapters list information concerning the development environment
collected during this thesis.

F.1 Core Station

Execution Environment Gumstix

Configuration The configuration of the Core Station is defined in the back-
log.cfg file located at:

• CS: ./media/card/backlog/backlog.cfg

• CS: ./etc/backlog.cfg (link)

• PC: ./PermaSenseGSN/tools/backlog/python/

Plugin Plugins are programmed in Python. The plugins to be run need to be
configured in the configuration file (backlog.cfg). The plugins are stored in the
following folders:

• CS: ./media/card/backlog/python2.6/

• PC: ./tools/backlog/python/

A file can be uploaded from a PC to the Core Station with the following com-
mand: scp file1 file2 root@host:/media/card/backlog/python2.6/ (e.g.
scp fileName.py ...

... root@permasense-etz-bs02.ethz.ch:/media/card/backlog/python2.6/)
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Start/Stop Execution Before the backlog software on the Core Station can
be started a connection with the Core Station needs to be established. A con-
nection can be established with the SSH protocol (ssh root@host). After a SSH
connection has been established, the backlog software can be started with the
command /etc/init.d/backlog start. Starting the backlog software creates
a new screen called xxxx.backlog in which the software runs. For screen com-
mands we refer to appendix G.3. The backlog software is stopped by the short key
ctrl c (for this the backlog screen has to be attached). The backlog start and
stop procedure can be modified by manipulating the file /etc/init.d/backlog.
Because this file is write protected, the system has to be remounted to gain
temporary write access (listing F.1).

Listing F.1: Temporary write access on the Core Station’s filesystem.

1 mount -o remount ,rw /

2 ... do write stuff here ...

3 mount -o remount ,ro /

Logging The logging can be configured in the configuration file. Logs are
stored in /var/volatile/log/backlog.*.

Database The data from the sensors are temporarily stored in the following
file ./media/card/backlog/backlog.db.

Schedule The location and name of the schedule file of the schedule plugin is
configured in the configuration file (e.g. schedule file =

/media/card/schedule file).

F.1.1 Remote Control of Serial Interface

A remote control of the serial interface (/dev/ttyUSB0) can be established as
follows:

1. Stop backlog software if a plugin uses the serial interface

2. Established ssh connection (ssh root@permasense-etz-bs02.ethz.ch)

3. Run terminal program (socat -,raw,echo=0 /dev/ttyUSB0,

raw,echo=0,b19200)

F.2 GSN

Execution Environment PC or Server



F.2. GSN 115

Configuration There is not a specific configuration file to configure the plugins
to be run. The plugins are loaded depending on the VSD file in the folder
./virtual-sensors/*.xml. A general configuration file is ./conf/gsn.xml.

Plugin Plugins are programmed in Java. The plugins are located in the fol-
lowing folder ./src/gsn/wrappers/backlog/plugins/.

Start/Stop Execution The GSN server can be run on the computer. The ap-
plication is started with the command ./PermaSenseGSN ant gsn. To stop the
GSN server ./PermasenseGSN/PermaSenseGSN ant stop needs to be entered.

Logging The logging can be configured in the ./conf/log4j.properties file.
Logs are stored in ./logs/*.

Position Mapping ./conf/permasense/location-positionmapping.cvs lo-
cation = virtual-sensor name prefix (i.e. name before underscore in xml-file)

Database The location of the database is configured in ./conf/gsn.xml

F.2.1 GSN Test Private

Server Login ssh perma@whymper.ee.ethz.ch

Location of Test Private /home/perma/permasense gsn/gsn-test-private

Start/Stop Execution The GSN server is running in the screen
gsn-test-private. To stop the GSN server type ant stop in the location of
the GSN test private (/home/perma/permasense gsn/gsn-test-private ant

stop), not in the screen! To start the GSN Test Private attach to the screen
(screen -r gsn-test-private) and type ant gsn in the screen.

Plugin The plugins are located in the following folder

/home/perma/permasense gsn/gsn-test-private/ ...

... src/gsn/wrappers/backlog/plugins.
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Appendix G

Linux

The following chapters list Linux commands collected during this thesis.

G.1 Commands

cat filename displays the content of a file

dmesg — grep tty list serial ports

nano filename opens the file in a text editor

pgrep look up or signal processes based on name and other attributes

G.2 socat

socat is a relay for bidirectional data transfer between two independent data
channels. socat is installed on the Gumstix and used to access the serial port.

socat -,raw ,echo=0 /tmp/myttyUSB0 ,raw ,echo=0,b19200

Data Transfer Loop Transfer loop between virtual port and real port and
displaying of communication:

socat -v -x PTY ,link=/tmp/myttyUSB0 ,raw ,echo=0,isig=0,

icanon =0 /dev/ttyUSB0 ,raw ,echo=0,isig=0,icanon =0

icanon=1: Sets canonical mode to enable line buffering. If buffering is en-
abled
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-v: Writes the transferred data not only to their target streams, but also to
stderr. The output format is text with some conversions for readability, and
prefixed with > or < indicating flow directions.

-x: Writes the transferred data not only to their target streams, but also to
stderr. The output format is hexadecimal, prefixed with > or < indicating flow
directions. Can be combined with -v .

-d ... -d log message

-lf <logfile> Writes messages to <logfile> instead of stderr

G.3 screen

Screen is a full-screen window manager that multiplexes a physical terminal
between several processes. In the following some commands are listed.

G.3.1 Getting In

screen -ls list running sessions/screens

screen -x Attach to a not detached screen

screen -r <name> reattach to a detached screen process

screen -S <name>-d -m start a nwe screen session in detached mode

screen -S <name> start a new screen session with session name

screen -S <name>-X kill stop a detached session. There is a known problem
that ”A screen session started in detached mode cannot accept any commands
unless the the session is first attached, and then re-detached.” [38] Solution:
screen -S <name>-p 0 -X kill

G.3.2 Command Line Options

-L tells screen to turn on automatic output logging for the windows. All data
is logged into the file screenlog.n In case of logging on the core station it has to
be ensured that the screen is started at a location where write access is available
(e.g. /media/card)
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G.3.3 Getting Out

Ctrl-a d detach screen

Ctrl-a k kill current screen

G.3.4 Logging

Ctrl-a H Begins/ends logging of the current window to the file ’screenlog.n’
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Glossary

API application programming interface. 32, 79

EC electrical conductivity. 39, 61, 65–67, 69, 71, 73–76, 87

GPRS general packet radio service. 8, 9, 15

GSN global sensor networks. 8, 9, 35–40, 42, 44, 46, 49, 50, 52, 58, 73–76, 79,
81–84, 86

SDI-12 (Serial Data Interface at 1200 Baud) is a asynchronous, ASCII, serial
communication protocol developed for intelligent sensory instrumentation.
The communication is achieved by digital communications along a single
line. 19, 23, 30

SQL (Structured Query Language) is a special-purpose programming language
designed for managing data in relational database management systems
[39]. 44, 46

SSH (Secure Shell) is a network protocol for secure data communication be-
tween two networked computers [40]. 59

VS virtual sensor. 36–40, 42–46, 74, 82, 83

VSD virtual sensor description. 40, 42, 43, 45, 46, 75, 99, 115

WFD water framework directive. 1, 10

WLAN wireless local area network. 8, 9, 15, 35, 46, 79

WSAN wireless sensor actor network. 3, 5, 6, 13, 15

WSN wireless sensor network. 2, 3, 5–10, 13–17, 36, 38, 46, 71, 76, 79, 84
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