
Distributed
 Computing

SGT Toolbox – A Playground for
Spectral Graph Theory

Master’s Thesis

Michael König

mikoenig@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Tobias Langner, Barbara Keller

Prof. Dr. Roger Wattenhofer

April 4, 2012

Acknowledgements

I would like to thank my advisors, Tobias Langner and Barbara Keller, for their
steady support during the development of this thesis in spite of the at times
stagnant progress and changing topics of investigation. I am also thankful to
Yuval Emek for sharing his wisdom on Luby’s algorithm and providing the proof
idea for the zmax proof for general graphs. Further, I would like to thank Prof.
Dr. Roger Wattenhofer for overseeing this thesis and offering his approaches to
problems when needed.

i

Abstract

We present an interactive toolbox application we have developed to enable users
to gain an intuitive understanding of the “meaning” of eigenvalues and eigenvec-
tors of graph-related matrices. In addition, we explore spectral embeddings and
the effects of graph altering algorithms on the eigenvalues of a graph.

Furthermore, we examine Luby’s fast distributed randomized algorithm for
finding a maximal independent set (MIS) of a network of nodes. We compare
different graph classes with respect to how many rounds the algorithm takes to
complete on them on average. We suggest that certain graph classes exhibit a
logarithmic lower bound for this number of rounds.

Lastly, we prove a logarithmic upper bound for zmax, the largest distance
from any vertex to its nearest MIS vertex after one round of Luby’s algorithm,
once for path graphs and then for all graphs in general.

ii

Contents

Acknowledgements i

Abstract ii

1 Spectral Graph Theory 1

1.1 Motivation . 1

1.2 Definitions . 1

1.3 The SGT Toolbox . 3

1.4 Spectral Embeddings . 4

1.5 Impact of Graph Alteration on Eigenvalues 5

2 Luby’s Fast MIS Algorithm 8

2.1 Motivation . 8

2.2 Definitions . 8

2.3 Luby Score . 9

2.3.1 Pessimal Graphs . 10

2.3.2 Lower Bound . 12

2.4 An Upper Bound for zmax . 13

2.4.1 Path Graphs . 14

2.4.2 General Graphs . 16

Bibliography 18

iii

Chapter 1

Spectral Graph Theory

1.1 Motivation

Spectral graph theory (SGT) deals with the eigenvalues and eigenvectors of var-
ious matrices related to graphs and what they express about the graphs. There
are many applications: for example, bounds on graph-theoretical properties such
as a graph’s diameter have been proven in terms of some of the eigenvalues. And
eigenvectors can be used to generate embeddings of graphs which completely
disregard the vertex labeling — meaning two isomorphic graphs will always have
the same embedding.

SGT is a challenging field of research because it is hard to gain an intu-
itive understanding of the meaning of the eigenvalues/-vectors. The SGT Tool-
box was developed to enable interactively exploring how graphs relate to their
eigenvalues/-vectors and how small changes to a graph, such as removing a vertex
or changing an edge weight, perturb those values. Furthermore, we implemented
graph altering algorithms and studied their impact on a graph’s eigenvalues/-
vectors.

1.2 Definitions

Definition 1.1 (Graphs) A graph G = (V,E,w) is defined by its vertex set
V , its edge set E ⊆ {(u, v) | u, v ∈ V } and its edge weight function w : E → R+

(where R+ denotes the set of positive real numbers). 3

For reasons of brevity, we will write w(i, j) instead of w((i, j)) for the edge (i, j).

Definition 1.2 (Unweighted Graphs) An unweighted graph is a graph where
every edge has the same weight. We will simply write G = (V,E) to imply the
edge function ∀e ∈ E : w(e) = 1. 3

1

1. Spectral Graph Theory 2

Definition 1.3 (Undirected Graphs) A graph G = (V,E,w) is called undi-
rected if and only if for every edge (u, v) ∈ E

(u, v) ∈ E ⇔ (v, u) ∈ E ∧ w(u, v) = w(v, u)

holds. 3

All the graphs we will be examining will be undirected and most of them will be
unweighted. Without loss of generality we will always assume V = {1, . . . , n}.

The two graph related matrices considered most commonly in spectral graph
theory are the adjacency matrix and the Laplacian matrix:

Definition 1.4 (Adjacency Matrix) The adjacency matrix AG of a graph
G = (V,E,w) is defined as the n× n-matrix whose entries ai,j are given by:

ai,j =

{
w(i, j) if (i, j) ∈ E
0 otherwise

. 3

Definition 1.5 (Vertex Degree) The degree of a vertex v ∈ V in a graph
G = (V,E,w) is given by

degree(v) =
∑

(v,u)∈E

w(v, u) . 3

Definition 1.6 (Laplacian Matrix) For a graph G, let AG be its adjacency
matrix and DG be the diagonal n×n-matrix where the i-th diagonal entry is the
degree of vertex i, then the Laplacian matrix LG of G is defined as the n × n-
matrix given by

LG = DG −AG . 3

Definition 1.7 (Path Graphs) The path graph Pathn = (V,E) is defined as
follows:

V = {1, 2, . . . , n}
E = {(i, i+ 1) | 1 ≤ i < n} 3

Definition 1.8 (Gn,p Graphs) Gn,p is the class of random unweighted graphs
with n vertices, where every possible edge between two different vertices exists
independently of the other edges with probability p. 3

1. Spectral Graph Theory 3

1.3 The SGT Toolbox

The SGT Toolbox is a lightweight application which displays an undirected graph
alongside the eigenvalues and eigenvectors of its Laplacian and adjacency ma-
trices. It allows the user to edit the graph by adding or removing vertices and
edges one at a time or by running a graph altering algorithm on it. After editing,
the altered graph’s eigenvalues are placed into a table for easy comparison with
the eigenvalues of the previous graphs. (see fig. 1.1)

A variety of ways to generate new graphs is offered. While an adjacency
matrix can be entered directly, it is also possible to generate a graph choosing
one from several basic graph types such as hypercubes, star graphs, grids and
different kinds of random graphs. These basic graphs may be added to the
current graph or even substitute every vertex of the current graph. This allows
creating clustered graphs in a handy way.

Furthermore, the application supports displaying 2-dimensional spectral em-
beddings of graphs (cf. section 1.4). Adequate eigenvectors are chosen automat-
ically, unless the user manually selects which ones to use.

While the SGT Toolbox was originally designed to be used in the area of
spectral graph theory it has since been extended to offer features useful when
studying Luby’s fast MIS algorithm (see chapter 2).

1. Spectral Graph Theory 4

Figure 1.1: Main window of the SGT Toolbox. In the top left the current graph
is displayed. At the bottom the eigenvalues of its Laplacian are shown on the left
and various properties such as its diameter and its Luby score (cf. section 2.3)
are displayed on the right.

1.4 Spectral Embeddings

The elements of k eigenvectors of the Laplacian of a graph can be used to create a
k-dimensional embedding for the graph, which is called a “spectral embedding”.
The coordinates of vertex i are given by the i-th elements of each of the k
vectors. Figure 1.2 shows a few examples. Spectral embeddings appear to take
the inherent structure of the graph into account while not reflecting the labeling
of the vertices.

Because the eigenvalues and eigenvectors do not depend on the labeling of
the vertices of a graph, this gives us a way to test two graphs for isomorphism:
if their spectral embeddings (picking the same eigenvectors) match, save for a

1. Spectral Graph Theory 5

Figure 1.2: 2-dimensional spectral embeddings of Path20 using the first and
second eigenvectors (left), Path20 using the first and third eigenvectors (middle)
and a 3-dimensional hypercube using the first and third eigenvectors (right)

possible mirroring, the graphs might match, too. However, if the embeddings
do not match, there cannot be an isomorphism between the graphs. On a more
basic level just comparing the eigenvalues will allow for a similar test.

Another application of these embeddings is detecting vertex clusters in graphs.
Figure 1.3 shows two examples illustrating the idea. McSherry [1] proved that
this can be employed reasonably reliably for two clusters if we can make a few
assumptions about the graphs.

Figure 1.3: 2-dimensional spectral embeddings of a graph with two distinguish-
able clusters (left), Path5 with each vertex replaced by a Gn=7,p=0.5 (middle)
and Path5 for comparison (right) (first and second eigenvectors were used in all
three cases)

Note: the “first”, “second” etc. eigenvectors referenced in the captions of fig-
ures 1.2 and 1.3 refer to the eigenvector corresponding to the “smallest non-
zero eigenvalue”, the eigenvector corresponding to the “second smallest non-zero
eigenvalue”, and so on.

1.5 Impact of Graph Alteration on Eigenvalues

We hoped to discover that certain graph altering algorithms affected the spectral
properties of graphs in a predictable manner. In particular the smallest non-
zero eigenvalue λ2 of the Laplacian of a graph appeared promising as Cheeger’s

1. Spectral Graph Theory 6

inequalities relate it closely to the Cheeger constant of the graph. The Cheeger
constant of a graph is a measure for how well connected the graph is. For a
graph G = (V,E) it is given by

hG = min
{ |∂A|
|A|

∣∣∣ A ⊆ V, 0 < |A| < |V |
2

}
where ∂A is the set of edges crossing the boundary of A:

∂A = {(u, v) ∈ E | u ∈ A, v ∈ V \A} .

Cheeger [2] originally proved the relationship for manifolds. It was later
extended to graphs, but it seems unclear whom this extension goes back on.

At first we used the SGT Toolbox to test our hypotheses, but we felt that
doing this manually did not allow us to capture enough of the possible graphs.
We used the toolbox’s codebase to simulate different graph altering algorithms
on 30000 Gn,p graphs with 50 to 100 vertices and values for p from 0.2 to 0.8.
Specifically we tracked the largest and the three smallest non-zero eigenvalues of
the Laplacian before and after executing the graph altering algorithm. We then
examined the difference (old− new), the quotient (old

new) and the quotient of the

logarithms (log old
lognew) for each of the tracked values.

The algorithms we inspected were:

• Three separately tracked subsequent rounds of Luby’s fast MIS algorithm
(see algorithm 2)

• 1, 30 and 300 rounds of a spring embedder algorithm (given by algorithm 1)
initialized with random vertex positions; here we used the edge weight func-
tion used internally by the algorithm to compute the eigenvalues for the dif-
ferent embeddings before and after. Our implementation is using Coulomb
repulsion and Hooke attraction as was first suggested by Fruchterman and
Reingold [3].

• “Performing a min cut” on the graph, i.e. finding any minimal cut and
removing the edges it consists of from the graph

The results showed the following patterns:

Luby’s algorithm generally decreased the eigenvalues. The differences as well
as the quotients increased monotonously as n and p grew. With each subsequent
round on the same graph the change diminished.

The spring embedding also decreased all the tracked eigenvalues, and the
differences and quotients increased as n and p grew as well.

For Luby’s algorithm we repeated this experiment with the eigenvalues of
the adjacency matrix. The results were similar with a few exceptions. This time

1. Spectral Graph Theory 7

Algorithm 1 One Round of a 2-dimensional “spring embedder” using Coulomb
repulsion and Hooke attraction

Input: An undirected, unweighted graph G = (V,E) and a 2-dimensional
embedding e : V → R2 for G.

Compute the edge weight function w(u, v) =

{
|e(u)− e(v)| if (u, v) ∈ E
0 otherwise.

Compute the force f(u, v) = (
crepulsion
|u−v|)2 − cattractionw(u, v)|u− v|

Compute the new embedding eout(v) = e(v) +
∑
u∈V
u6=v

u−v
|u−v|f(u, v)

return eout

larger values of n decreased the quotient (while still increasing the difference),
and the differences did not monotonously grow for larger values of p, reaching a
maximum somewhere between p = 0.5 and p = 0.7.

Chapter 2

Luby’s Fast MIS Algorithm

2.1 Motivation

Luby’s algorithm is a distributed algorithm for finding a maximal independent
set (MIS) of a network’s graph. It was initially introduced by Luby [4] in 1985.
We will discuss an improved and simplified version based on the work of Métivier
et al. [5].

The algorithm terminates in at most O(log n) rounds with high probability
(n being the number of vertices), but on most non-random graphs it terminates
even faster. It is unclear which properties of a graph dictate how well Luby’s
algorithm performs on it. We want to find a graph class on which the algorithm
requires Θ(log n) rounds, thus making this bound tight.

In order to better understand the algorithm and make arguing about it easier
we also examine “zmax”, the maximum distance from any node to an already
determined MIS node after only one round of the algorithm.

2.2 Definitions

Let graphs and the graph classes Gn,p and Pathn be defined as in section 1.2.
We will, however, only be looking at undirected and unweighted graphs in this
chapter. Let dist(u, v) be defined as the length of the shortest path between the
vertices u and v.

Definition 2.1 (Independent Sets) Given an undirected Graph G = (V,E)
an independent set is a subset of nodes U ⊆ V , such that no two nodes in U are
adjacent (i.e. share an edge). An independent set is maximal if no node can be
added without violating this constraint. 3

Definition 2.2 (W.h.p.) We say a statement holds w.h.p. (with high proba-
bility) if it holds with probability at least 1− 1

nc for every c ≥ 1. 3

8

2. Luby’s Fast MIS Algorithm 9

This notation is usually used with statements incorporating some kind of asymp-
totical bound such as O(n), which allows masking the effect of any chosen c. It
is assumed that c is chosen reasonably low in practice. Luby’s algorithm was
shown to terminate in at most O(log n) rounds w.h.p. by Métivier et al. [5].

The pseudocode for the version of Luby’s algorithm we will discuss is given
by algorithm 2.

Algorithm 2 Luby’s Algorithm

The algorithm operates in rounds. It terminates once all nodes have termi-
nated.
A single round is as follows:
1) Each node v chooses a random value r(v) ∈ [0, 1] and sends it to its neigh-
bors.
2) If r(v) < r(w) for all neighbors w ∈ N(v), node v enters the MIS and
informs its neighbors.
3) If v or a neighbor of v entered the MIS, v terminates (v and all edges
adjacent to v are removed from the graph), otherwise v enters the next round.

2.3 Luby Score

Definition 2.3 (Luby Score) The Luby score of a graph or class of graphs is
the average number of rounds Luby’s algorithm takes to complete. 3

For n ≤ 1000 this score takes on values in the range from 1 to about 5 — that
is, Luby’s algorithm completely devours any graph with 1000 vertices in only 5
rounds on average!

Relating the Luby score to classic graph-theoretical properties is more diffi-
cult than one might at first suspect.

Most of the time, a higher edge connectivity and a higher number of edges in
general lead to a higher Luby score, but optimizing these values to the extreme
makes us arrive at the complete graph — which Luby’s algorithm never fails to
completely process in a single round.

Similarly, a graph’s diameter seems to correlate with its Luby score in that a
lower diameter generally increases the Luby score; however, the complete graph
has the lowest possible diameter, too.

There appears to be a certain “optimal” number of edges with regard to
Luby’s algorithm. On the one hand, the number needs to be high enough to
obtain a certain connectivity, but on the other hand, the number needs to be
low enough, to avoid losing too many vertices per vertex which enters the MIS.

2. Luby’s Fast MIS Algorithm 10

Finally, a higher number of vertices allows for a higher Luby score than a
lower number. This might appear somewhat obvious, but is certainly worth
being mentioned.

2.3.1 Pessimal Graphs

In this section we will describe the “worst” graphs we found — that is, the graphs
with the highest Luby score for a given number of vertices n. Algorithm 3 gives
instructions on how to create “Bad Luby” graphs and algorithm 4 shows how to
use two “Bad Luby” graphs to create a “Bad Luby×2” graph which has an even
higher Luby score.

Algorithm 3 Generation of “Bad Luby” graphs

V ⇐ {1, . . . , n}, E ⇐ ∅
Enumerate all possible edges {(u, v) | u, v ∈ V, u 6= v} and process them in a
random order.
for each edge (u, v) do

if dist(u, v) > 2 according to (V,E) then
E ⇐ E ∪ {(u, v)}

end if
end for
return (V,E)

Algorithm 4 Generation of “Bad Luby×2” graphs

V ⇐ {1, . . . , n}
Generate two “Bad Luby” graphs A = (V,EA) and B = (V,EB) each with n
vertices independently.
return (V,EA ∪ EB)

Originally, the idea behind the single Bad Luby graph was to create a graph
with the smallest reasonable diameter (namely 2) while using as few edges as
possible and avoiding “central” vertices. This already beat the “toughest” Gn,p

graphs we had found. But it turned out that drastically increasing the number
of edges increased the Luby Score even further.

Adding the edges of a third Bad Luby graph on top does not improve the
Luby score any further but instead worsens it. It is our understanding that Bad
Luby×2 happens to work so well because it gets close to the “optimal” number
of edges.

However, Gn,p graphs generated with p chosen such that the resulting number
of edges matches the number of edges of a Bad Luby×2 graph with the same n
consistently fail to reach the Luby scores which Bad Luby×2 graphs consistently
reach. Hence, there must be some property other than the number of edges

2. Luby’s Fast MIS Algorithm 11

about Bad Luby×2 which increases its score. This may be a topic for further
research.

The SGT Toolbox has options to generate Bad Luby graphs as well as merge
two such graphs as is necessary to obtain a Bad Luby×2 graph.

Figure 2.1 shows a comparison of the Luby scores of different graph classes
for different numbers of vertices. The top diagram uses a linear scale, while the
bottom one uses a logarithmic scale.

0 0.2 0.4 0.6 0.8 1

·104

1

2

3

4

5

6

Number of Vertices

L
u

b
y

S
co

re

Bad Luby×2
Bad Luby

Gn,p with p = 1√
n

Gn,p with p = 0.024

Random Bipartite, p = 1√
n

Paths
Hypercubes

101 102 103 104
2

3

4

5

6

7

Number of Vertices

L
u

b
y

S
co

re

Figure 2.1: Comparison of Luby scores between graph classes

It is to be noted that the Luby scores for individual Gn,p graphs actually
fluctuate significantly. For this plot the Luby scores of about 200 graphs were
averaged for each data point.

However, in turn, Bad Luby and Bad Luby×2 graphs exhibit a very stable

2. Luby’s Fast MIS Algorithm 12

Luby score.

Note that the curve of Gn,p with fixed p = 0.024 on the logarithmic scale
mostly resembles a straight line but seems to be overlaid with a periodic wave.
To verify that this was no coincidence, we increased the sampling rate of n for
this curve to 50 up to n = 500 and to 250 up to n = 3000.

As the period of the wave appears to coincide with the rate at which the
Luby score increases by 1, one might speculate that this is caused by some kind
of peculiar “end game” forming around the completion of the final round of
Luby’s algorithm.

2.3.2 Lower Bound

While it has been shown that Luby’s algorithm requires at most O(log n) rounds
w.h.p. for any graph, fig. 2.1 suggests that certain graph classes may actually
also exhibit a lower bound of Ω(log n): Gn,p both with fixed p and p = 1√

n
and

Bad Luby(×2) are candidates with their close to logarithmic curves.

Bad Luby graphs are not easily argued about due to the convoluted nature
of their generation. However, Gn,p seem simple enough to reason about.

While we did not succeed in proving the lower bound for Gn,p, we will outline
the proof attempted and show where it fails:

If we can show that (a) on average a constant percentage of all vertices of
the given graph survives a single round of Luby’s and (b) after each round of
Luby’s we again have a graph where every edge (between the remaining vertices)
has the same probability to exist, this implies exactly the lower bound on the
number of rounds we want to prove: a logarithmic one.

Part (a) seems easily shown: if every edge has the same fixed probability to
exist, there is also a fixed probability for every vertex to have only one neighbor
with at least two neighbors, which results in a chance of at least 1

6 for the
first vertex to survive. The probability for vertices to satisfy this criterion may
actually rise as the number of vertices decreases, however, it never increases
beyond a value around roughly 1

3 for any n or p.

Part (b), however, is impossible to show, because it is not quite true! While
the graphs which endured one round of Luby’s algorithm seem to be close to
proper Gn,p graphs (i.e. have the same probability for each edge), they do not
exactly agree for any probability p. A test over many thousands of instances of
Gn,p showed that after one round of Luby’s the distribution of vertex degrees
favored vertices with an average degree notably stronger than the vertex degree
distribution in a proper Gn,p (with adequatly set n and p to imitate the vertex
and edge count).

2. Luby’s Fast MIS Algorithm 13

2.4 An Upper Bound for zmax

In order to better understand Luby’s algorithm we will now focus on a single
round of it. In particular, we are interested in zmax, the maximum distance from
any node to an MIS node.

Definition 2.4 (z(v) and zmax) We call the distance of a vertex v to the clos-
est MIS vertex z(v). We call the largest such value zmax.

z(v) = min{dist(v, u) | u ∈MIS}
zmax = max

v∈V
z(v)

3

We want to show the following:

Theorem 2.5 (Upper Bound for zmax for Any Graph) For any graph G =
(V,E) the following holds with high probability:

zmax ≤ O(log n) 3

We first require the following lemma:

Lemma 2.6 For any graph G = (V,E):

z(v) ≤ O(log n) w.h.p. for every vertex v ∈ V ⇒ zmax ≤ O(log n) w.h.p. 3

Proof (Lemma 2.6) Consider the following:

P [zmax > O(log n)] = P [∃v ∈ V : z(v) > O(log n)]

≤
∑
v∈V

P [z(v) > O(log n)] (Union Bound)

≤ n · 1

ncleft

=
1

ncleft−1

⇒ P [zmax ≤ O(log n)] ≥ 1− 1

ncleft−1

where cleft is the “w.h.p.” constant of the left side of our implication. Let cright
be the “w.h.p.” constant of the right side. We can then choose cleft = cright + 1
to obtain

P [zmax ≤ O(log n)] ≥ 1− 1

ncright
. �

2. Luby’s Fast MIS Algorithm 14

2.4.1 Path Graphs

Let us first consider the bound only for the class of path graphs.

Theorem 2.7 (Upper Bound for zmax for Path Graphs) For any path
graph Pathn the following holds with high probability:

zmax ≤ O(log n) 3

For the proof we will need the following technical lemma:

Lemma 2.8 For any n ≥ 2 and c ≥ 1 the following holds:

(5c log n)!2 ≥ nc 3

Proof (Lemma 2.8) Using Stirling’s approximation we obtain:

(5c log n)!2 ≥
(√

2π5c log n
(5c log n

e

)5c logn)2

≥
((5c log n

e

)5c logn)2

=
(5c log n

e

)10c logn
= (5c log n)10c lognn−10c

Thus, all that remains to be shown is

(5c log n)10c lognn−10c ≥ nc

(5c log n)10c logn ≥ n11c

log((5c log n)10c logn) ≥ log(n11c)

10c log n log(5c log n) ≥ 11c log n

10 log(5c log n) ≥ 11

log(5c log n) ≥ 1.1

log 5 + log c+ log log n ≥ 1.1

We know log 5 ≥ 1.6, log c ≥ 0 (for c ≥ 1) and log log n ≥ −0.3666 (for n ≥ 2),
which leaves us with

1.6 + 0− 0.3666 ≥ 1.1 . �

2. Luby’s Fast MIS Algorithm 15

Proof (Theorem 2.7) Consider the set of the random values in the x-neighbor-
hood Nx(v) of a vertex v to be an ordering on those 2x + 1 vertices. Let u be
the vertex with the highest random value in Nx(v). Note that z(v) ≥ x holds
if and only if starting from u the random values of vertices in Nx(v) decrease
monotonically in both directions as you follow the path.

Assume u is given by being i hops from the vertex in Nx(v) with the lowest
index. Then, the number of different possible orderings for the remaining 2x
vertices is

(
2x
i

)
(the orderings on both sides of u are fixed, but there are “2x

choose i” ways to distribute the vertices among the sides). Thus, overall there

are
2x∑
i=0

(
2x
i

)
orderings which satisfy z(v) ≥ x.

Since there are (2x+ 1)! possible orderings and every ordering has the same
probability of occurring, we obtain:

P [z(v) ≥ x] =

2x∑
i=0

(
2x
i

)
(2x+ 1)!

≤
(
2x
x

)
(2x+ 1)

(2x+ 1)!

=

(
2x
x

)
(2x)!

=
(2x)!

(2x)!x!x!

=
1

x!2

P [z(v) ≤ x− 1] ≥ 1− 1

x!2

Note that for vertices within x− 1 hops of the first or last vertex of the path
P [z(v) ≥ x] is lower than for regular vertices. This is because there is only a
single ordering of the vertices in the x-neighborhood of v which allows this event
to happen: the highest random value at the “end” of the graph and the others
following in descending order. Hence, we can disregard these special cases for
our bound.

If we now choose x = 5c log n and apply lemma 2.8 we obtain

P [z(v) ≤ 5c log n− 1] ≥ 1− 1

nc

(for n ≥ 2 and c ≥ 1). And since 5c log n− 1 ∈ O(log n) we arrive at

z(v) ≤ O(log n) holds w.h.p.

Now we can apply lemma 2.6 to conclude the proof. �

2. Luby’s Fast MIS Algorithm 16

2.4.2 General Graphs

We can actually even prove that the same bound holds for any graph:

Proof (Theorem 2.5) For every vertex v consider its i-neighborhoods Ni,
their borders B(Ni) and the events Ai and A, which are defined as follows:

Ni = {u ∈ V | dist(v, u) ≤ i}

B(Ni) =

{
Ni \Ni−1 if i > 0

N0 if i = 0

Ai : “the maximum random value of all nodes in Ni lies in B(Ni)”

A : A1 ∧ · · · ∧A3c logn

Note that the events Ai are independent. We have:

P [A] = P [A1 ∧ · · · ∧A3c logn] =

3c logn∏
i=1

P [Ai]

P [Ai] =
|B(Ni)|
|Ni|

Now consider grouping the indices of the events into two sets Ilarge and Ismall:

Ilarge =
{
i
∣∣∣ P [Ai] >

1

2

}
Ismall =

{
i
∣∣∣ P [Ai] ≤

1

2

}
Note that i ∈ Ilarge implies the size of neighborhood doubled in step i (|Ni| >
2 · |Ni−1|). Since the graph only consists of n = 2log2 n vertices, this gives us an
upper bound for |Ilarge| and a lower bound for |Ismall|:

|Ilarge| ≤ log2 n

|Ismall| ≥ 3c log n− log2 n =
(

3c− 1

log 2

)
log n

From this we can obtain the following bound for P [A]:

P [A] ≤
(1

2

)(3c− 1
log 2

) logn
=
(
nlog

1
2
)3c− 1

log 2 =
1

n3c log 2−1

Note that 3 · log 2 ≥ 2.07 and thus for every c ≥ 1:

1

n3c log 2−1
≤ 1

nc

P [A] ≤ 1

nc

2. Luby’s Fast MIS Algorithm 17

Now observe that “z(v) > 3c log n” implies A, which gives us the following
bounds:

P [z(v) > 3c log n] ≤ P [A]

P [z(v) ≤ 3c log n] ≥ 1− P [A]

P [z(v) ≤ 3c log n] ≥ 1− 1

nc

Applying lemma 2.6 concludes the proof. �

Bibliography

[1] McSherry, F.: Spectral partitioning of random graphs. In: Proceedings of
the 42nd IEEE symposium on Foundations of Computer Science. FOCS ’01,
Washington, DC, USA, IEEE Computer Society (2001) 529–

[2] Cheeger, J.: A lower bound for the smallest eigenvalue of the laplacian.
Problems in analysis 195 (1970) 199

[3] Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed
placement. Softw. Pract. Exper. 21(11) (November 1991) 1129–1164

[4] Luby, M.: A simple parallel algorithm for the maximal independent set
problem. In: Proceedings of the seventeenth annual ACM symposium on
Theory of computing. STOC ’85, New York, NY, USA, ACM (1985) 1–10

[5] Métivier, Y., Robson, J., Saheb-Djahromi, N., Zemmari, A.: An optimal bit
complexity randomized distributed mis algorithm. Distributed Computing
23 (2011) 331–340 10.1007/s00446-010-0121-5.

18

	Acknowledgements
	Abstract
	1 Spectral Graph Theory
	1.1 Motivation
	1.2 Definitions
	1.3 The SGT Toolbox
	1.4 Spectral Embeddings
	1.5 Impact of Graph Alteration on Eigenvalues

	2 Luby's Fast MIS Algorithm
	2.1 Motivation
	2.2 Definitions
	2.3 Luby Score
	2.3.1 Pessimal Graphs
	2.3.2 Lower Bound

	2.4 An Upper Bound for zmax
	2.4.1 Path Graphs
	2.4.2 General Graphs

	Bibliography

