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Abstract

One important design goal of future networks would probably be the flexibility and
adaptability of the node local architectures. The Autonomic Network Architecture
(ANA) is one example of such flexible architectures. Currently all ANA implemen-
tations lack of hardware support. It was suggested in the research community to use
flexible architecture of ReconOS to equip ANA with hardware support. To this end,
ReconOS needs a high throughput data exchange infrastructure interconnecting its
building blocks. In this thesis we present a Network-on-Chip (NoC) implementation
that extends the ReconOS architecture with such an infrastructure.
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Chapter 1

Introduction

1.1 Motivation

The increasing number and diversity of networking devices is challenging the net-
work research community. More and more applications and protocols are developed
to address the needs of different platforms and use cases. For performance reasons,
these protocols and applications are often tightly bound to each other. The resulting
systems may then perform well, but lack of flexibility in the underlying architec-
ture. This inflexibility is well demonstrated by the long lasting and still ongoing
switch from IPv4 to IPv6 in the TCP/IP protocol stack of the current Internet
architecture.

The Autonomic Network Architecture (ANA) [2] targets this problem with a
fundamental change of paradigms. In ANA, all functionality is encapsulated in so
called functional blocks. The size of functional blocks is a priori not defined. It may
range from a minimalistic checksum calculation up to a huge holistic protocol stack.
ANA provides a set of abstraction models and generic communication methods
that the functional blocks use to interact with each other. This framework allows a
completely isolated development of the algorithms running in the functional blocks.
The operating system then interconnects the functional blocks and builds up an
individual protocol stack. The device chooses the functional blocks for this protocol
stack depending on the capabilities of the platform and the requirements of the
running applications. The result is a flexible and dynamic protocol stack, that is
able to adapt itself to any given situation and may change at runtime. Figure 1.1
shows such a dynamic protocol stack and compares it to the inflexible, static and
strongly layered protocol stack of the current Internet.

The existing implementations of ANA [2], [1] do not yet reach the performance
of the traditional Internet architecture. This is due to two reasons. First of all,
the level of indirection introduced by ANA trades some performance optimization
features of the application for a higher flexibility and modularity of the overall
system. The second reason is that the traditional Internet architecture benefits from
a wide range of hardware support in the networking interface cards, which is not
yet available for ANA. In order to compensate the performance penalty of ANA,
a hardware acceleration for ANA is needed. It is not feasible to use application
specific integrated circuits (ASIC) for this purpose, since the functionality of these
devices must be completely specified at design time. This static characteristic of
ASICs would conflict with ANA’s effort towards flexibility and adaptability.

The evolving partial reconfiguration capabilities of modern field programmable
gate arrays (FPGA) combine the flexibility of a software implementation with the
high-performance acceleration features of ASICs. Lübbers et. al. [9] and Keller et.
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Figure 1.1: a) The strongly layered static protocol stack of the current Internet, b)
The dynamically adaptable protocol stack of an ANA node

al. [4] therefore came up with the idea of porting ANA to a reconfigurable system
on chip (rSoC). On these devices, a microprocessor core (either soft- or hardcore) is
combined with a programmable logic fabric. The software running in the micropro-
cessor may then decide to offload the execution of computational intensive and fre-
quently used functional blocks from the microprocessor to the programmable logic.
Based on the partial reconfiguration features, this mapping of functional blocks to
hardware or software can be adapted at runtime.

In order to reduce the engineering effort, Lübbers et. al. [9] and Keller et. al. [4]
further suggest to use ReconOS [8] as base system. In ReconOS, partially reconfig-
urable logic slots are used as so called hardware threads. These hardware threads
appear to the software like normal software POSIX-threads. ReconOS enables the
hardware threads to access operating system objects like semaphores, message boxes
and shared memory. The combination of these mechanisms simplifiess the inter-
action of software and hardware elements. The suggested approach benefits from
the hardware acceleration provided by ReconOS by implementing some functional
blocks as hardware threads. Figure 1.2 shows the architecture of ReconOS and how
the functional blocks are mapped to the hardware threads.

However, the major problem of this approach is the shared bus architecture of
ReconOS. Especially with a data intensive application like ANA, the shared bus
soon becomes the bottleneck of the system.

1.2 Aims of this Thesis

In this thesis we present an extension of the ReconOS framework with a high-
throughput communication infrastructure shown in figure 1.3. This infrastructure
contains a packet based network on chip (NoC) that guarantees each hardware
thread a worst-case incoming and outgoing data throughput. Additionally, a ring
buffer based gateway is designed and implemented to speed up the transfer from
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Figure 1.2: a) The ReconOS architecture: partially reconfigurable logic slots are
used as hardware threads. b) Using ReconOS for ANA: a set of functional blocks is
executed in hardware threads.
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Figure 1.3: The high throughput communication interface guarantees the functional
blocks a worst case incoming and outgoing bandwith.

software to hardware and vice versa.

1.3 Related Work

The ANA project [13] started in 2006 and is founded by the European Union (EU).
Bouabene et. al. presents the major design principles of ANA and reports on a
first implementation [2]. A more performance orientated software implementation of
ANA, called Lightweight Autonomic Network Architecture (LANA), was developed
in [1] and published in [5].

Lübbers and Platzner first presented the idea of ReconOS in [7] and later refined
their work in [8]. Keller et. al. [4] and Lübbers et. al. [9] came up with the idea of
using ReconOS to extend the ANA architecture with a dynamic hardware support.

In the last decade, the research area of on-chip interconnection architectures
has made immense progress. An example of this research is Lee et. al. [6], which
presents a quantitative evaluation of different on-chip communication architectures.
The results in section 2.2 heavily depends on this work. Pande et. al. evaluated per-
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formance and design trade-offs for network-on-chip architectures [10]. Pionteck et.
al. further presented aspects of network-on-chip in partially reconfigurable FPGAs
[12], [11].



Chapter 2

Design

We start this chapter by introducing the design goals of the ReconOS extension in
section 2.1. This is followed by an evaluation of architectures and NoC topologies
in the sections 2.2 and 2.3, respectively. Section 2.4 describes the design of the
hardware/software data transfer mechanism.

2.1 Design Goals

In ReconOS, multiple hardware threads can execute tasks independent of the CPU.
To this end, the hardware threads and software running in the CPU still need to
exchange data with each other. ReconOS provides different mechanisms for this
purpose, most notably message boxes and shared memory. All of these mechanisms
have in common that they use a shared bus for data transmission. This shared
bus architecture is not well suited for networking applications like ANA. Imagine a
packet that has to be processed by a set of functional blocks, all of them mapped to
hardware threads. In this case, the bus has to repeatedly forward the whole packet
from one functional block to the next. The overall data transfer on the bus therefore
increases linearly to the number of participating functional blocks.

In this thesis, we want to extend the ReconOS architecture with a high-
throughput communication infrastructure. The data rate at which each functional
block can send data over the communication infrastructure to a specific destination
should be independent of the traffic passing by targeting a different destination.

We distinguish three different applications of data transfer:

• Data transfer from a hardware thread to a software thread

• Data transfer from a software thread to a hardware thread

• Data transfer from one hardware thread to another hardware thread

The case of data transfer from one software thread to another software thread is
out of the scope of this thesis.

ANA processes packets in two distinct directions. Ingress packets arrive at the
physical interface, traverse the protocol stack upward and finally reach the cor-
responding application. Egress packets have their origin in the application layer,
traverse the protocol stack downwards and then leave the device on the physical
interface.

Throughput In this thesis, we assume that the size of a packet does not signifi-
cantly change on its way through the protocol stack. We can therefore set an upper
bound of the total data rate at the input and output port of each functional block.

9
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This upper bound is equal to the data rate of the physical interface. In our develop-
ment environment we use a Xilinx ML605 evaluation kit [3]. Its physical interface
is a Gigabit Ethernet Module.

We therefore specify the following requirement for the communication infras-
tructure: The outgoing data rate of each functional block is upper bounded by 1
Gigabit/s. The communication infrastructure then forwards 1 Gigabit/s of data to
each hardware-mapped functional block, independently of the origin of the data.

Latency Data transfers that cross the hardware/software boundary cause an or-
ders of magnitudes higher latency than data transfers in the hardware domain [4].
This is caused by shared memory access and by the high overhead of unavoidable
interrupts. The total latency of an ingress or egress of packet is therefore mainly
influenced by the performance of the hardware to software or software to hardware
data transfer, respectively. We therefore neglect latencies caused by the communi-
cation infrastructure between hardware threads and focus on the latencies induced
by crossing the hardware/software boundary.

Hardware Resource Utilization The desired communication infrastructure is
only a helper construct for the actual application running on the device. Hence, we
want to keep it as small as possible, so that there is a maximum of programmable
logic still available for the application.

2.2 Evaluation of Architectures

In this section, we discuss possible design principles for the communication infras-
tructure. The discussion is based on the results of Lee et. al. [6]. In subsection 2.2.4,
we then conclude which design principle best fits to the design goals stated in section
2.1.

2.2.1 Point to Point Interconnection (P2P)

In a P2P architecture, all hardware threads are directly connected to each other.
The data transmission rate and the latency is optimal, since the packets do not
need to share resources with any other transmission. The receiving hardware thread
is responsible for the serialization of packets that concurrently arrive on different
input ports. Lee et. al. [6] show that the logic and routing resource utilization of
this architecture scales very bad with an increasing number of peers.

2.2.2 Multibus

The multibus architecture is a mixture of the original shared bus architecture of
ReconOS and the P2P architecture. In this architecture, all hardware threads read
from their own individual bus. In order to send a packet to a hardware thread, the
source hardware thread writes the packet to the bus of the destination hardware
thread. An individual bus arbiter is required for each hardware thread.

The data rate on this architecture is optimal, since each hardware thread can
receive data with the full data rate of its bus. The latency depends on the response
time of the bus arbiter. Since all hardware threads have their own bus that must
connect to each hardware thread, we assume that this architecture has a high routing
resource utilization. We further assume, that the long bus wires and the parasitic
capacities of the high impedance bus interfaces limit the clock rate on the bus when
the number of hardware threads increase.
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2.2.3 Network on Chip (NoC)

A NoC is a packet based communication architecture. Intellectual property (IP)
cores (hardware threads in the context of ReconOS) are connected to a dedicated
switch. The switches are then interconnected with each other according to a selected
topology. When a packet arrives on an incoming link of a switch, the switch selects
an outgoing link depending on the packet’s header and forwards the packet on this
link.

A NoC is subject to many configuration issues, e.g. the topology, the number of
IP cores per switch or the routing policy. This configuration possibility enables the
developer to adapt the NoC architecture to any given requirements.

The latency of the packets and the flow through the network strongly depend on
the selected topology and the routing policy. The NoC architecture has a higher la-
tency compared to the Multibus architecture. The reason for this is that the packets
must traverse the network hop by hop. Thereby every hop induces a latency of one
clock cycle and possibly an additional latency caused by the routing mechanism.
On the other hand, the length of the hop signals - and with this also their clock
rate - is independent of the number of IP cores. This is not the case for the Multibus
architecture. We can therefore state, that the NoC architecture scales better with
increasing number of hardware threads than the Multibus architecture.

2.2.4 Conclusion

Based on the discussion in subsections 2.2.1 to 2.2.3, we assigned grades from 1 to
10 to each presented architecture. The total grade of the architectures is a weighted
average of the individual grades. The grades are:

• Data Rate (weight 5): The average throughput of the architecture. 10 is the
highest throughput.

• Latency (weight 2): The average latency of the packets. 10 is the lowest
latency.

• Chip Area (Weight 3): The expected chip area consumed by the architecture.
10 is the smallest chip area.

• Engineering Effort (weight 2): The engineering effort for developing an
implementation of the architecture. 10 is the least effort (e.g. ReconOS as is).

• Scalability (weight 4): The scalability of the architecture in all the above
mentioned criteria for an increasing number of hardware threads. 10 is the
best scalability.

The assigned grades are shown in figure 2.1. As we expected, the global bus architec-
ture (weighted average 3.81) and the P2P architecture (weighted average 5.94) get
significantly lower grades than the Multibus architecture (weighted average 7.13)
and the NoC architecture (weighted average 7.63). The higher weighted average of
the NoC architecture compared to the Multibus architecture is mainly due to the
better scalability.

Based on these results, we decided to implement the communication infrastruc-
ture as NoC. An evaluation of NoC topologies is presented in section 2.3.

2.3 Evaluation of NoC Topologies

The performance of a NoC heavily depends on the topology used to interconnect the
switches and the corresponding routing policy. In this section, we first present the
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Figure 2.1: For each design goal a grade ranging from 1 to 10 is assigned to each
architecture. The weighted average of the grades represents the overall suitability
of the architectures for the problem at hand.

evaluated topologies and routing mechanisms in subsection 2.3.1. Subsection 2.3.2
then presents the total link flow measure used to estimate the resources consumed
by the links of a given NoC topology. In subsection 2.3.3, we then conclude which
topology fits the requirements best.

In this thesis we ignore load balancing since any benefit from this approach
would be cancelled out by the worst-case traffic pattern.

2.3.1 Topologies and Routing Policies

The topology of an NoC describes how the switches are interconnected with each
other and how the functional blocks are connected to the switches. The routing pol-
icy specifies the outgoing link of a switch on which an incoming packet is forwarded
depending on the destination address of the packet. The topology is specified at
design time and does not change at runtime. Each switch has therefore a global
knowledge on the topology and can use this knowledge for the routing decision.

Grid topology In the grid topology, the switches are arranged in a mesh. Fig-
ure 2.2 a) shows an example of the grid topology. We evaluated this topology with
the xy-routing policy. In this routing policy, an x- and an y-coordinate is assigned to
each switch. The switches forward packets in the x-dimension until the x-coordinate
of the destination address and the x-coordinate of the processing switch is equal.
The switches then forward the packets in the y-dimension until the packet reaches
its destination.

An advantage of the grid topology is, that it is easily mappable to the available
chip area. A big drawback is that it is not applicable to all possible number of
functional blocks. If the number of functional blocks is not a square number, the
resulting topology will not be optimal.

Torus topology The torus topology is build in the same way as the grid topology
with the exception that border switches are also interconnected. An example of the
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a) b) c) d)

Hardware Thread Switch

Figure 2.2: Examples of NoC topologies: a) Grid b) Torus c) Ring with one hardware
thread per switch d) Ring with two hardware threads per switch

torus topology is shown in figure 2.2 b). For the torus topology we also used the
xy-routing policy. The advantages and disadvantages of the torus topology are much
the same as for the grid topology.

Ring topology In the ring topology, the switches are arranged in a ring as shown
in figure 2.2 c) and d). We distinguish two different routing policies: unidirectional
routing and bidirectional routing. Switches using the unidirectional routing policy
forward all packets to the same switch. Therefore all packets travel in the same
direction, e.g. clockwise. Switches using the bidirectional routing mechanism first
determine the number of hops to the destination of the packet in the clockwise
and anticlockwise direction. They then send the packet in the direction where the
number of hops is smaller.

We further extend the ring topology by connecting multiple functional blocks
to the switches. The destination address of the packets then consists of a global
address and a local address. The global address represents the switch to which the
destination functional block is connected. The local address identifies the functional
block in the set of functional blocks connected to the same switch. The combination
of global and local addresses is then unique within the NoC.

The routing mechanism of the ring topology (especially when using unidirec-
tional routing) is easier than xy-routing. We therefore expect that a switch in the
ring topology requires less hardware resources than a switch in the grid- or torus
topology.

2.3.2 The Total Link Flow Measure

In order to guarantee the required throughput for the hardware threads, each link
in the NoC must be able to forward an individual worst-case data rate. We adapt
the capacity of each link to its worst-case data rate by manipulating the number of
parallel channels the link contains. We assume that the hardware resources needed
by a link is approximately proportional to its number of parallel channels.

We define the total link flow of a topology as the sum of the worst-case data rates
on the individual links of the whole topology. According to the above argumentation,
this measure is approximately proportional to the total hardware resources used by
the links of the NoC.

Algorithm In order to estimate the resources used by the links of an NoC, we
designed an algorithm that calculates the total link flow for an arbitrary NoC given
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the NoC’s topology and routing policy. In this algorithm we assume, that each
hardware thread is able to consume and produce data at exactly the rate 1.

The idea of the algorithm is to virtually send explorer packets from each hard-
ware thread to all other hardware threads, containing the ID of the source and
destination hardware thread. Every time a packet traverses a link, the link adds the
source and destination ID pair to a link-local list. This list is then interpreted as
a bipartide graph with the senders in one partition and the receivers in the other
partition. The worst-case data rate of a link is then determined by the cardinality
of the maximum matching of the bipartide graph.

Here is how the algorithm works:

1. Set up the network as a directed graph Gnet = (V,E) with

(a) V the set of all nodes v

(b) E the set of all links e = (vi, vj) able to forward packets from vi to vj .

2. Let Eout,i be the set of negative incident edges of node vi.

3. For all nodes vi in V select a routing policy Ri : vdest → eout where vdest "= vi
is the destination of the routed packet and eout ∈ Eout,i is the outgoing link
chosen to forward the packet.

4. Send explorer packets

(a) All nodes vsrc ∈ V send exactly one packet p = (vsrc, vdest) to all nodes
vdest ∈ V, vsrc "= vdest.

(b) All links ei ∈ E refer to a bipartide graph Glink,i = (Si ∪ Di, Li). Si,
Di and Li are initialized as empty sets. Upon forwarding packet p =
(vsrc, vdest) on the link ei, the link

i. adds vsrc to Si (if vsrc "∈ Si),

ii. adds vdst to Di (if vdest "∈ Di),

iii. adds the edge (vsrc, vdest) to Li.

5. Select the worst case data rate on all links ei

(a) For the bipartide graph Glink,i find a maximum matching Mi (e.g. using
the Hopcroft-Karp algorithm).

(b) From graph theory we know, that for a bipartide graph, the cardinality
|Mi| of a maximum matching is equal to the cardinality of the maximum
flow |fi| from one partition of the graph to the other.

(c) The worst-case data rate on the link ei is therefore equal to |Mi|.

6. The total link flow ftot of the given topology and routing policy is then ftot =∑
vi∈V |Mi|

Results We implemented the algorithm presented above using the Java program-
ming language. Table 2.1 presents the results for a set of topologies and routing
algorithms. Additionally, figure 2.3 shows a graphical visualization of the most rep-
resentative values.

We see from these results, that the simplest version of the ring topology (with 1
functional block per switch) has a much higher total link flow than the grid topology.
With an increasing number of functional blocks connected to the switches in the ring
topology, the difference in the total link flow decreases more and more. Finally, the
total link flow of the ring topology with 4 functional blocks per switch is comparable
to the total link flow of the grid topology.
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Nodes 1 4 6 9 12 16 20 25

Topology Routing
Grid XY 0 8 36 96 200
Torus XY 0 8 36 96 200
Ring (1 FB/SW) Unidirectional 0 12 30 72 132 240 380 600
Ring (1 FB/SW) Bidirectional 0 12 30 72 132 240 380 600
Ring (2 FB/SW) Unidirectional 0 12 24 53 84 144 220 349
Ring (3 FB/SW) Unidirecitonal 0 10 18 36 60 110 159 248
Ring (4 FB/SW) Unidirectional 0 8 16 33 48 80 120 197

Table 2.1: Total link flow of NoCs with a specific topology and routing algorithm.

The most surprising result is that the total link flow of the grid topology is
exactly the same as that of the torus topology. The total link flow of the various
ring topologies is also independent of the chosen routing algorithm.

2.3.3 Conclusion

The evaluation of NoC topologies results in a trade-off decision. On one hand we
have the grid topology with a relatively complex routing mechanism and a low
resource consumption for the links. On the other hand we have the ring topology
with a very simple routing mechanism and a high resource consumption for the
links. The ring topology with multiple functional blocks per switch seems to be a
good trade-off between these two extremes. We therefore decided to implement the
ring topology with an adaptable number of functional blocks per switch. Figure 2.4
shows an example of the resulting architecture with two functional blocks per switch
and three parallel channels between the switches.

2.4 Hardware - Software Data Transfer

In sections 2.2 and 2.3 we focused on the exchange of data between two hardware
threads. In this section we now want to concentrate on the data transfer between
hardware- and software threads.

2.4.1 Utilities provided by ReconOS

Message Boxes In ReconOS, a thread - either hardware or software - can write
32 bit words to a message box. These words stay in a message box until any thread
reads them. The write and read access of message boxes is automatically thread-
safe. When a thread reads from an empty message box, the corresponding system
call blocks until another thread writes data into the message box. ReconOS raises
an interrupt at the CPU whenever a data word is written to a message box. It is
therefore not feasible to handle high volume data transfers with message boxes, since
this would cause a very high interrupt load. Message boxes are more appropriate
for notifying other threads about infrequent events.

Shared Memory ReconOS provides hardware and software threads with con-
current access to shared memory. Typically, a software thread allocates the shared
memory segment and then sends the starting address of the segment to the hard-
ware threads using message boxes. The access to shared memory is inherently not
thread-safe. Therefore, threads must define appropriate critical sections when ac-
cessing the shared memory. The data transfer rate of shared memory is much higher
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Figure 2.3: Total link flow of the ring and grid topology
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Figure 2.4: An example of the resulting NoC topology: a ring with two functional
blocks per switch and three parallel channels between the switches
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Figure 2.5: Two dedicated hardware threads for a hardware-to-software and a
software-to-hardware gateway, respectively

than the data transfer rate of message boxes. However, threads waiting for new data
are not notified about a write access of other threads and must therefore poll the
shared memory.

2.4.2 Distributed versus Centralized

We can see from figure 2.4 that the hardware threads are now at the same time
connected to the NoC and the shared bus. The hardware threads can therefore
simultaneously transfer packets to other hardware threads via the NoC and to soft-
ware threads via the ReconOS interface.

This distributed approach is not optimal in the case where two or more hardware
threads send packets to the software at the same time. In this scenario, all sending
hardware threads raise interrupts at the CPU for notifying the software thread
about the availability of new data.

In order to avoid this problem, we decided to implement a more centralized ar-
chitecture. In this approach, two hardware threads form a hardware-to-software- and
a software-to-hardware gateway, respectively. Hardware mapped functional blocks
that want to transfer packets to a software thread send these packets via the NoC to
the hardware-to-software gateway. The gateway is then responsible for transferring
the packets to the software. The software-to-hardware gateway works just the same
way. Software threads send packets to the software-to-hardware gateway which then
redistributes the packets to their destination hardware thread using the NoC. Figure
2.5 visualizes this centralized architecture.

These gateways can aggregate multiple packets that have to cross the hard-
ware/software boundary within a specific time interval and therefore reduce the
total number of required interrupts. The higher latency of the packets caused by
the additional transfer on the NoC is well compensated by the reduced interrupt
handling time.
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Figure 2.6: The format a packet in the ring buffer

2.4.3 Ring Buffer

The hardware-to-software gateway and the software-to-hardware gateway are very
similar in concept. We therefore generalize the gateway’s mechanism in order to
reduce the documentation effort. Both gateways consist of a producer thread and a
consumer. In the hardware-to-software gateway, the producer is a hardware thread
and the consumer is a set of software threads. Conversely, in the software-to-
hardware gateway, the producer is a set of software threads and the consumer is a
hardware thread.

Both gateways transfer data across the hardware/software boundary by using
ring buffers in the shared memory. The producer and the consumer both hold a
copy of the read and write pointer of the ring buffer. When a packet is ready to be
transferred, the producer first checks whether there is enough free space available
in the ring buffer for the packet. If this is the case, the producer then writes the size
of the packet and the actual packet to the shared memory. A padding block may be
necessary to fill the gap between the end of the packet and the the next word offset.
After this write procedure, the producer sets its write pointer to the first offset after
the packet. Figure 2.6 illustrates the format of the packets in the ring buffer.

Eventually, the producer decides that it is reasonable to notify the consumer
about the packets in the ring buffer. The producer then writes its current write
pointer to a message box. Upon receiving a new write pointer via the message box,
the consumer knows that the area between the read pointer and the newly received
write pointer is filled with valid packets. After the consumer processed all packets
in this area, it updates its read pointer with the value of the received write pointer.
The consumer then writes its read pointer to another message box, which is read by
the producer. When the producer receives the newly read pointer of the consumer,
it knows that the corresponding area of the ring buffer can be used again for the
transfer of new packets.

The tricky question is now: when should the producer initiate such an exchange
of read and write pointers? The answer to this question is a trade-off. On one hand,
we want to aggregate as much packets as possible in order to reduce the interrupt
load. On the other hand, we need an upper bound for the latency of the packets. We
further want to provide a non-blocking write access to the producer. We therefore
require that a minimum amount of free space is always available in the ring buffer.
Additionally, some packets may be very delay sensitive. We want to support these
urgent packets and even allow them to decrease overall performance of the system.
We therefore specify the following rules for the pointer exchange:

• The producer starts a timer when it writes a packet to the ring buffer for the
first time after sending the write pointer to the consumer. An pointer exchange
is initiated when this timer expires. This guarantees that the packets are not
blocked in the ring buffer for more than one timer period.

• After the producer has written a packet to the ring buffer, it checks the amount
of free space in the ring buffer. If this value is below a specific threshold, the
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producer initiates a pointer exchange. This enables the producer to continue
writing packets to the ring buffer during the pointer exchange procedure.

• Delay sensitive packets have a specific flag set in their packet header. After
writing such packets to the ring buffer, the producer immediately initiates a
pointer exchange.
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Chapter 3

Hardware Implementation

3.1 Overview of Pcores

The contribution of this thesis to the ReconOS hardware architecture is divided
in four pcores. All of them are located in the reconos_v3/pcores folder. In this
section we present a short overview of these pcore’s content.

ana_v1_00_a The ana_v1_00_a pcore contains utilities that are frequently used
by the other contributed pcores and by user defined hardware threads. The anaPkg
package defines constants that specify the interface of the NoC, the packet header
structure and the ring buffer size. The packetEncoder entity provides an interface
for the user defined hardware threads to send packets via the NoC. Accordingly,
the packetDecoder receives packets from the NoC and decodes them for the user
defined hardware thread.

noc_switch_v1_00_a The noc_switch_v1_00_a pcore implements the switch of
the NoC. In addition to the normal pcore folder structure, the pcore contains a
coregen directory. It contains the coregen projects, sourcecode and netlists of the
interSwitchFifo and the fbSwitchFifo entities. The interSwitchFifo entity
connects two switches in the ring, while the fbSwitchFifo connects a functional
block with a switch.

ana_hwt_hw2sw_v1_00_a The ana_hwt_hw2sw_v1_00_a pcore contains the hard-
ware part of the hardware-to-software gateway.

ana_hwt_sw2hw_v1_00_a The ana_hwt_sw2hw_v1_00_a pcore contains the hard-
ware part of the software-to-hardware gateway.

3.2 NoC Packet Format

The data width of the NoC is 8 bit. A two byte header belongs to each packet and
is transmitted prior to the payload. All information needed by the switch to do the
routing decision is located in the first header byte. This allows the switch to run
the routing algorithm without the need to locally buffer any content of the packet.
Figure 3.1 shows the NoC packet header format. The meaning of the fields is define
as follows:

• Global Address (variable): The address of the switch to which the destination
hardware thread is connected.

21
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Figure 3.1: The format of the packets in the NoC

• Local Address (variable): Identifies the destination hardware thread within
the set of hardware threads connected to the switch with the given global
address.

• Priority (variable): The priority of the packet, where 0 is the least important
priority. If two packets arrive at the input ports of a switch at the same time,
the switch will first route the packet with the higher priority.

• Direction (1 bit): Identifies the packet either as an egress packet (’1’) or as
ingress packet (’0’).

• Delay Sensitive (1 bit): If this flag is set, the software-to-hardware and
hardware-to-software gateways will initialize the pointer exchange mechanism
immediately after writing the packet to the ring buffer. Users should rarely
use this flag, since these delay sensitive packets reduce the overall performance
of the whole system.

• Source IDP (4 bytes): The IDP of the sender functional block.

• Destination IDP (4 bytes): The IDP of the destination functional block.

• Payload: The actual payload of the packet.

The number of bits used for the global address, the local address and the
priority can be adapted to the needs of the topology by changing the values of
the respective constants in the anaPkg package. The only requirement is that all
values are positive integers and that they sum up to the value 8.

3.3 Packet Encoder and Decoder

The packetEncoder and packetDecoder entities provide an interface to the NoC
for the user defined hardware threads.

The packet decoder is responsible for interpreting the headers of incoming pack-
ets and present the containing information to the hardware thread. Whenever the
dataValid signal of the decoder is set, the data signal contains one byte of the
payload of the currently processed packet. If this byte is the first byte of the packet,
the startOfPacket signal is set. Alternatively, if the byte is the last byte of the
packet, the endOfPacket signal is set. The rest of the outgoing signals indicate the
corresponding values in the header of the currently processed packet. When the user
sets the readEnable signal, the value of the data signal changes to the next byte
of the payload of the packet. Setting the readEnable signal has no effect when the
dataValid signal is not set by the decoder. Figure 3.2 a) shows the interface of the
packet decoder.
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Figure 3.2: The interface of a) the packet decoder and b) the packet encoder

The packet encoder is responsible for generating packet headers and inject these
headers together with their corresponding payload into the NoC. When a hardware
thread wants to start the transmission of a new packet, the hardware thread applies
the values of the header fields to the corresponding input signals of the packet
encoder, assigns the first byte of the payload to the data port and then sets the
startOfPacket and the dataValid signal. After the dataValid signal is set, the
input signals of the packet encoder must not be changed until the encoder sets the
readEnable signal. By setting the readEnable signal, the packet encoder signals
that the currently applied payload byte has been successfully written to the NoC.
The hardware thread can then apply the next payload byte. If this byte is the last
byte of the packet the hardware thread additionally sets the endOfPacket signal.

3.4 Switch implementation

The implementation of the NoC switch is encapsulated in the noc_switch_v1_00_a
pcore. Figure 3.3 shows the boundary of this pcore and how several instances of this
pcores are interconnected with each other and with the corresponding hardware
threads.

There are two different types of FIFOs used in the pcore: the synchronous in-
terSwitchFifo and the asynchronous fbSwitchFifo. The interSwitchFifo di-
rectly connects the switches with each other. Since all the switches run with the
same clock source, common clock FIFOs can be used for this purpose. The fb-
SwitchFifo connects a switch with one of the switch’s hardware threads. We want
to allow the hardware threads to use the clock rate that best fits the needs of the
hardware thread. Hence, we use the fbSwitchFifo to cross the clock domain bound-
ary between the switch and the hardware thread and therefore implemented it with
individual read and write clock inputs. Both FIFOs are created by Xilinx’s coregen
and use BRAM as their underlying implementation technology.

Figure 3.3 additionally shows the basic architecture of the switch: a router entity
observes the input ports. Based on this observation, the router makes its routing
decisions and selects the input port of the multiplexers accordingly.

Figure 3.4 gives a much more detailed view on the architecture of the switch.
We can see there that the input signals for each incoming link consist of a empty
bit and 9 bits of data. The values of the data signal are only valid, if the empty
signal is not set. The first 8 bits of the data signal carry one byte of the transmitted
packet. If 9th data bit is set, this means that the current data byte is the last byte
of the transmitted packet. The output ports for the incoming links consist of only
one readEnable signal, which tells the FIFO at the input port that the current byte
of the packet has been read.
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Figure 3.3: A simplified view on the switch architecture, the dashed line represents
the boundary of the noc_switch_v1_00_a pcore

The interface of the outgoing links consist of a 9 bit data signal, a writeEnable
and a full bit. The data signal has the same meaning as the data signal of the
incoming links. The writeEnable signal tells the FIFO that the applied data are
valid. If the full signal is set, this means that the FIFO is not able to fetch any
more data.

For each incoming link, a headerDetector and a headerDecoder entity observe
the corresponding signals of the incoming link. When the first header byte of a
new packet is applied to the input link, these two entities initialize a routing re-
quest at the router entity. The router entity reacts on this request by setting the
corresponding entries of the rxPortMap and txPortMap signals. These signals then
control the multiplexers which connect the input and output links with each other.

Once a connection between an incoming link and an outgoing link is established,
the data signals of both links are directly connected to each other, the empty signal
of the incoming link is inverted and mapped to the writeEnable signal of the
outgoing link and the full signal of the outgoing link is inverted and mapped
to the readEnable signal of the incoming link. With this setting, the packet is
transferred from the input FIFO to the output FIFO without any intervention of
the switch.

When the last byte of a packet is transferred to the output FIFO, the endOf-
PacketDetector entities set the corresponding endOfPacket signal at the router
input. The router then resets the entries in the rxPortMap and txPortMap signals
to an idle state.

Figure 3.5 shows the internal architecture of the router entity. The values of
the routing requests are first stored in the headerFetch entities. In each clock cycle,
the headerSelect entity selects one of the valid headers. If more than one header
is valid at the same time, the headers are selected in the order of their priority.

The router has one instance of the txFifo entity for each outgoing link target.
This means that there is one txFifo instance for each hardware thread directly
connected to the switch and one additional txFifo instance for all other hardware
threads together. The purpose of these txFifo instances is to queue the routing
requests towards a specific target.
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Figure 3.4: Detailed architecure of the switch. n is the number of input links (here: 2),
m is the number of output links (here: 2)
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After selecting a valid header, the headerSelect entity forwards the destination
address of the selected header to the txFifoSelect entity. Based on the destination
address, the txFifoSelect entity then selects the correct txFifo instance. The
identifier of the input port at which the selected header is waiting is then stored
in the txFifo. The various {int|ext}txPortSelect entities then select one of the
currently unused output ports. The mapping of input and output ports is stored in
the {rx|tx}Port entities which drive the {rx|tx}PortMap signals.
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Chapter 4

Software Implementation

4.1 Application Programming Interface (API)

The software API for sending packets via the software-to-hardware gateway and re-
ceiving packets via the hardware-to-software gateway is defined in the reconosNoC.h
file. It consists of four functions:

• int reconosNoCInit(reconosNoC** nocPtr); Initializes the hardware and
software threads of both gateways. The allocated resources are stored in
nocPtr. Returns 0 on success.

• int reconosNoCStop(reconosNoC* nocPtr); Stops all software and hard-
ware threads of both gateways and cleans up all resources. Returns 0 on
success.

• int reconosNoCSendPacket(reconosNoC* nocPtr, reconosNoCPacket*
packet); Sends packet to the software-to-hardware gateway. nocPtr must
be initialized by reconosNoCInit before sending packets. Returns 0 on
success.

• int reconosNoCRegisterPacketReceptionHandler(reconosNoC* nocPtr,
int (*newHandler)(reconosNoCPacket*)); Adds newHandler to the
list of event handlers that are notified when a packet is received by the
hardware-to-software gateway.

A packet is represented by an element of type reconosNoCPacket. Listing 4.1 shows
the exact definition of this type.

Listing 4.1: The definition of the reconosNoCPacket type

typedef struct reconosNoCPacket {

// the l o c a l hardware address
char hwAddrLocal ;

// the g l o b a l hardware address
char hwAddrGlobal ;

// p r i o r i t y o f the packe t
char p r i o r i t y ;

// 1 f o r ingres s , 0 f o r e g r e s s
char d i r e c t i o n ;

29
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// 1 : packe t i s l a t ency c r i t i c a l ,
// 0 : packe t i s not l a t ency c r i t i c a l
char l a t e n c yC r i t i c a l ;

// src IDP of the packe t
u in t 32 t s r c Idp ;

// d s t IDP of the packe t
u in t 32 t dst Idp ;

// the l en g t h o f the pay load in by t e s
u in t 32 t payloadLength ;

// po i n t e r to the ac tua l pay load
char∗ payload ;

} reconosNoCPacket ;

4.2 Software-to-Hardware Gateway

The software part of the software-to-hardware gateway mainly consists of three
threads, the packetProcessingThread, the timerThread and the pointerEx-
changeThread.

The pseudocode for the packetProcessingThread is presented in Listing 4.2.
On line 3 the thread waits for the processOnePacket semaphore. The reconos-
NoCSendPacket function increments this semaphore after it has written the new
packet to the queue sent packets. The packetProcessingThread then writes the
packet to the ring buffer on line 10. On line 12 the thread decides, whether it is
necessary to immediately start the pointer exchange procedure. If this is the case,
the thread stops the running timer on lines 14 to 19 and then initializes the pointer
exchange on lines 20 to 21. Otherwise, the thread starts a new timer if it is not
already running on lines 25 to 29.

Listing 4.2: Pseudocode for the packet processing thread

1 while ( running )
2 {
3 sem wait ( processOnePacket ) ;
4
5 mutex lock ( mutex timer ) ;
6 mutex lock ( mutex pointers ) ;
7 i f ( ! enoughSpace ( ) )
8 cond wait ( cond of fsetUpdate , mutex pointers ) ;
9

10 copyPacketToBuffer ( ) ;
11
12 i f ( l a t e n c yC r i t i c a l ( ) | | almostFul l ( ) )
13 {
14 i f ( timerRunning)
15 {
16 timerRunning = 0 ;
17 s i g n a l ( cond abortTimer ) ;
18 }
19 startTimer = 0 ;
20 wr i t ePo in t e rD i r ty = 1 ;
21 s i g n a l ( cond exchangePointers ) ;
22 }
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23 else

24 {
25 i f ( ! timerRunning)
26 {
27 startTimer = 1 ;
28 s i g n a l ( cond startTimer ) ;
29 }
30 }
31 mutex unlock ( mutex pointers ) ;
32 mutex unlock ( mutex timer ) ;
33 }

Listing 4.3 shows the pseudocode for the timerThread. On line 6 the timer
thread waits for the command to start the timer. After the thread received this
command, it then waits on line 10 for the command to abort the timer. If the thread
receives no such command for the specified amount of time, the thread initializes
the pointer exchange procedure on lines 13 to 16. Otherwise, the thread just waits
for a new command to start the timer.

Listing 4.3: Pseudocode for the timer thread

1 mutex lock ( mutex timer ) ;
2 while ( running )
3 {
4 while ( ! s tartTimer )
5 {
6 wait cond ( cond startTimer , mutex timer ) ;
7 }
8 startTimer = 0 ;
9 timerRunning = 1 ;

10 wait t imedcond ( cond abortTimer , mutex timer ) ;
11 i f ( timerRunning)
12 {
13 mutex lock ( mutex pointers ) ;
14 wr i t ePo in t e rD i r ty = 1 ;
15 s i g n a l ( cond exchangePointers ) ;
16 mutex unlock ( mutex pointers ) ;
17 }
18 timerRunning = 0 ;
19 }
20 mutex unlock ( mutex timer ) ;

Listing 4.4 shows the pseudocode for the pointerExchangeThread. The thread
waits on lines 4 to 5 for the command to initialize the pointer exchange procedure.
Upon receiving this command, the thread sends a local copy of the write pointer to
the hardware using a ReconOS mbox on line 10. On line 11 the thread then waits
for the answer of the hardware containing the new read pointer. On line 15 the
thread then signals to the other threads, that the pointers have changed.

Listing 4.4: Pseudocode for the pointer exchange thread

1 mutex lock ( mutex Pointers ) ;
2 while ( running )
3 {
4 i f ( ! wr i t ePo in t e rD i r ty )
5 cond wait ( cond exchangePointers , mutex Pointers ) ;
6 wr i t ePo in t e rD i r ty = 0 ;
7 hwWritePointer = wr i t ePo in t e r ;
8 mutex unlock ( mutex Pointers ) ;
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9
10 mbox put ( hwWritePointer ) ;
11 hwReadPointer = mbox get ( ) ;
12
13 mutex lock ( mutex Pointers ) ;
14 readPointer = hwReadPointer ;
15 s i g n a l ( cond of fsetUpdate ) ;
16 }
17 mutex unlock ( mutex Pointers ) ;



Chapter 5

Evaluation

In order to evaluate the performance of the hardware and software, we build a demo
project that uses all the hardware and software elements developed in this thesis.
In this demo project, a software thread generates packets and passes them to the
software-to-hardware gateway. The software-to-hardware gateway then transmits
the packets via the NoC to a hardware thread. This hardware thread uses the
packet decoder to receive the packets, calculates a simple checksum for each packet
and appends this checksum to the end of the packet. The hardware thread then uses
the packet encoder to transmit the packets via the NoC to the hardware-to-software
gateway. A packet sink function is registered as packet reception event handler at
the hardware-to-software gateway. In this packet sink function measurements can
be made in order to evaluate the performance of the system. Figure 5.1 visualizes
the architecture of the evaluation project.

Table 5.1 shows the hardware resources used by the different elements in the
evaluation project. In the overall system contains a NoC with two switches, four
hardware threads and four parallel channels on each connection of two switches.

Unfortunately, a bug slipped through all the verification steps and causes the
system to freeze after an unpredictable amount of time. This time is in the range of
seconds to minutes. Since we did not find the location of the design flaw, we were
not able to take any accurate measurements on the performance of the contributed
hardware and software elements.

SW

HW

SW-to-HW 
Gateway

Packet
Source

NoC
Checksum
Calculator

NoC

HW-to-SW 
Gateway

Packet
Sink

Figure 5.1: Evaluation project that uses all the developed software and hardware
elements.
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ff lut muxfx bmem mult dmem
overall system 16058 15541 360 49 6 1104
switch pcore 606 731 1 8
fbSwitchFifo 80 37 1
interSwitchFifo 40 27 1

Table 5.1: Evaluation of the hardware resources used in the evaluation project.



Chapter 6

Summary

In order to use ReconOS as the underlying architecture of a hardware support
for ANA, ReconOS needs to be extended with a high throughput communication
infrastructure. This infrastructure should allow the hardware threads to exchange
data with each other at line rate.

In this thesis we evaluated possible design principles for this communication
infrastructure and concluded that a Network-on-Chip (NoC) is the best trade-off
between hardware resource consumption, data throughput, scalability and engineer-
ing effort. We further estimated the hardware resource consumption of the links of
several NoC topologies. Based on this estimation we decided to implement a NoC
where the switches are interconnected with each other in a ring topology and two
hardware threads are connected to each switch.

Additionally, we implemented a software-to-hardware gateway and a hardware-
to-software gateway. These gateways transfer ANA packet across the hardware/-
software boundary by using a part of the shared memory as a ring buffer. The read
and write pointers of the ring buffers are synchronized between the hardware and
software parts of the gateways with the help of ReconOS’s message boxes.

A performance evaluation of the resulting system was not possible because of an
undisclosured bug that freezes the evaluation project after an unpredictable amount
of time.

35



36 CHAPTER 6. SUMMARY



Appendix A

How-To’s

A.1 Install Xilinx USB Driver for Linux

Install required packets:

sudo apt-get install fxload
sudo apt-get install libusb-dev
sudo apt-get install libftdi-dev

Navigate to the directory where you want to install the driver. Get the driver source:

git clone git://git.zerfleddert.de/usb-driver

Build the driver:

cd usb-driver
make

Run the setup setup script:

./setup_pcusb

Restart the PC and plugin the JTAG cable.

A.2 Run the sort demo application

Be sure that you set up ReconOS V3 correctly. Compile the software:

cd $RECONOS/demos/sort_demo/linux
make all

Setup the hardware design:

$RECONOS/demos/sort_demo/hw/setup.sh

Synthesize hardware desing:

cd $RECONOS/demos/sort_demo/hw/edk
make clean all

Download the linux kernel (http://pc-techinf-25.cs.upb.de/ml605-linux/linux-2.6-
xlnx.tar.bz2) and extract it. Copy the device tree file from the ReconOS reference
design into the linux source.
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cp reconos_v3/designs/ml605_linux_13.3/device_tree.dts
linux-2.6-xlnx/arch/microblaze/boot/dts/

Compile the linux kernel

cd linux-2.6-xlnx
make CROSS_COMPILE=microblaze-unknown-linux-gnu- ARCH=microblaze
-j8 simpleImage.device_tree

Set up the NFS Server with the Root Filesystem. Install the xilinx usb calbe driver
Download the bitstream and the linux kernel to the FPGA:

dow reconos_v3/demos/sort_demo/hw/edk/implementation/system.bit
dow linux-2.6-xlnx/arch/microblaze/boot/simpleImage.device_tree

A.3 Setup NFS Server with Root Filesystem

Create the exported directory

mkdir /exports

Download the ReconOS root filesystem from http://pc-techinf-25.cs.upb.de/ml605-
linux/rootfs mb.tar into the created folder and untar it.

tar -xf /exports/rootfs_mb.tar

Set up a static ip for the NIC (assuming eth0 is connected to the board): Add the
following lines to /etc/network/interfaces

auto eth0
iface eth0 inet static

address 192.168.30.1
network 192.168.30.0
netmask 255.255.255.0
broadcast 192.168.30.255

Install the NFS server packet

apt-get install nfs-kernel-server

Configure the NFS server by adding the following line to /etc/exports:

/exports/rootfs_mb 192.168.30.2(rw,async,no_root_squash)

Verify that you set up reconos correctly. Copy the ReconOS libraries and scripts to
the root folder of the NFS filesystem.

cp $RECONOS/linux/fsl_driver/fsl.ko /exports/rootfs_mb/
cp $RECONOS/linux/getpgd/getpgd.ko /exports/rootfs_mb/
cp $RECONOS/linux/readpvr/readpvr /exports/rootfs_mb/
cp $RECONOS/linux/scripts/load_fsl.sh /exports/rootfs_mb/
cp $RECONOS/linux/scripts/load_getpgd.sh /exports/rootfs_mb/
cp $RECONOS/linux/scripts/rcS /exports/rootfs_mb/

To activate the changes restart the services or simply restart the host PC.
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A.4 Install Xilinx 13.3er Tools on Debian

Copy the DVD to a temporary directory on the harddrive. Change ownership of
/opt:

chown -hR <username> /opt

Change the file mode of the install scripts to be executable

chmod a+x <tmp dir>/xsetup <tmp dir>/bin/lin64/*

Execute the install script and follow the instructions on the screen. (Do not aquire
any license keys in the wizard.)

<tmp dir>/xsetup

Add the following lines to the .bashrc

export XILINXD_LICENSE_FILE=8181@lunghin.ee.ethz.ch
source /opt/Xilinx/13.3/settings64.sh

Create the following link:

ln /usr/bin/make /usr/bin/gmake

Establish a vpn connection to the ETHZ domain, start a new console and enter

ise

to start the ISE project manager.

A.5 Install Microblaze GNU Tools on Debian

There is a big endian and a little endian version in two different git repositories. The
ReconOS project requires the big endian version. First, clone into the git repository
hosted by xilinx (big endian):

git clone git://git.xilinx.com/xldk/microblaze_v2.0.git

Unpack the archive:

tar -xzf microblaze-unknown-linux-gnu.tgz

Add the path to the executables to your PATH environment variable

export PATH=$PATH:/<path to git repo>/microblaze_v2.0/microblaze-unknown-linux-gnu/bin

You may want to add this last command to your .bashrc so you don’t have to
retype it any time you want to use the cross compiler.

A.6 Install Modelsim SE on Debian

Before you can start with the installation of modelsim, you have to install sun’s
java. The installer does not work with open java. Download the software from the
modelsim website into a temporary directory. Set the environment variables for the
modelsim license file:

export LM_LICENSE_FILE=8161@lunghin.ee.ethz.ch
export MGLS_LICENSE_FILE=8161@lunghin.ee.ethz.ch
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Since you have to set these environment variables every time you want to work with
modelsim, we recommend to include these two lines in your .bashrc file. Change
permission of install.linux, execute it and follow the instructions on the screen.

chmod a+x install.linux
./install.linux

The recommended installation directory is /opt/modelsim/You can start modelsim
with the command

/PATH/TO/MODELSIM/modeltech/bin/vsim

Alternatively, you may add

export PATH=$PATH:/PATH/TO/MODELSIM/modeltech/bin

to your .bashrc file. If you did this, you can run modelsim with the command

vsim

A.7 Install Sun Java6 on Debian System

This How-To works with Debian 6.0.4-amd64 built on 28-Jan-2012.
In the default configuration of the packet manager, only the main section is

included in the packet sources. Because sun’s java is distributed under a different
license, the packet source list has to be adapted. Do this by opening the file

/etc/apt/sources.list

Search following lines

deb http://ftp.ch.debian.org/debian/ squeeze main
deb-src http://ftp.ch.debian.org/debian/ squeeze main

deb http://security.debian.org/ squeeze/updates main
deb-src http://security.debian.org/ squeeze/updates main

and add the non-free and contrib sections after the main section

deb http://ftp.ch.debian.org/debian/ squeeze main non-free contrib
deb-src http://ftp.ch.debian.org/debian/ squeeze main non-free contrib

deb http://security.debian.org/ squeeze/updates main non-free contrib
deb-src http://security.debian.org/ squeeze/updates main non-free contrib

Now update the packet headers:

aptitude update

Now you are ready to install the sun java6 packet

aptitude install sun-java6-jdk

Now you should remove all previously installed java packets. The packets start with
gcj, for example gcj-4.4-base.

aptitude purge gcj-4.4-base
aptitude purge gcj-4.4-jre-headless
[...]
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Time Schedule

• Working period: December 2011 - June 2012

• Schedule:

– Familiarization: 4 weeks (December 2011)

∗ Literature study: 2 weeks

∗ ReconOS familiarization: 2 Weeks

– Desing: 8 Weeks (Distributed: January, March 2012)

∗ Network-on-Chip (4 weeks)

∗ HW/SW gateways (4 weeks)

– Implementation: 8 Weeks (Distributed: February, April 2012)

∗ Network-on-Chip (4 weeks)

∗ HW/SW gateways (4 weeks)

– Documentation: 4 Weeks (May 2012)
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Appendix C

Original Task Description

C.1 Introduction

This master thesis is in the context of the EPiCS project. The goal of the EPiCS
project is to lay the foundation for engineering the novel class of proprioceptive
computing systems. Proprioceptive computing systems collect and maintain infor-
mation about their state and progress, which enables self-awareness by reasoning
about their behaviour, and self- expression by effectively and autonomously adapt-
ing their behaviour to changing conditions. Concepts of self-awareness and self-
expression are new to the domains of computing and networking; the successful
transfer and development of these concepts will help create future heterogeneous
and distributed systems capable of efficiently responding to a multitude of require-
ments with respect to functionality and flexibility, performance, resource usage and
costs, reliability and safety, and security.

In this thesis we focus on the networking aspect of EPiCS which we call Em-
bedNet. EPiCS uses the network architecture developed in the ANA project as a
basis. The ANA network architecture is a novel architecture that enables flexible,
dynamic, and fully autonomous formation of network nodes. In the EPiCS project
we develop the ANA architecture further. On the one hand we will develop mech-
anisms to adapt the functionality provided by the protocol stack at runtime, on
the other hand we will develop mechanisms that map the networking functionality
dynamically to either hardware or software.

The objective of this Masters Thesis is to refine the hardware architecture and
the hardware/software interface of EmbedNet.

C.2 Assignment

This assignment aims to outline the work to be conducted during this thesis. The
assignment may need to be adapted over the course of the project.

C.2.1 Objectives

The goal of this Master thesis is to develop a hardware architecture for future
dynamic protocol graphs. The developed architecture has to partition networking
functionality into individual blocks. The architecture should allow for the dynamic
reconfiguration of whole networking blocks as well as for the runtime configuration
of communication parameters in the networking blocks. An interconnect between
the functional blocks should be provided that allows for the forwarding of packets
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at line rate. The transmit data path should not interfere with the reception data
path.

C.2.2 Tasks

This section gives a brief overview of the tasks the student is expected to perform
towards achieving the objective outlined above. The binding project plan will be
derived over the course of the first three weeks depending on the knowledge and
skills the student brings into the project.

Familiarization

• Study the available literature on ANA, EmbedNet and Reconos [1, 2, 3, 4].

• Setup a FPGA development environment with the Xilinx tools 12.3 (exact)
and ModelSim SE version 6.1f (or higher).

• Familiarize yourself with git/github and clone the reconos source code repos-
itory [5].

• Install the eCos source code and cross compile toolchain [6].

• Verify your toolchain by running first the sort demo thermal and then the
pr demo.

• In collaboration with the advisor, derive a project plan for your master thesis.
Allow time for the design, implementation, evaluation, and documentation of
your software.

Architecture and hardware design

• Develop a dedicated communication interface between the different hardware
networking blocks. Adapt the hardware blocks where needed. The interface
should be able to forward data at line rate (1Gbit/s). Transmission and recep-
tion direction should be treated independently. The interface should support
different priorities of either sending networking blocks or individual packets.

• Develop a configuration interface for the hardware networking blocks. Each
hardware block needs to be configured with the information required for for-
warding the individual packets to the next protocol. The configuration in-
terface should be able to set, delete, and replace configuration entries. The
configuration should be initiated by a software program.

• Develop a data path for sending data between hardware and software net-
working blocks. Consider using two ring buffers per networking block, one
for packets to be transmitted and one for packets to be received. The read-
er/writer synchronization should be handled properly. An interface should be
developed to send and receive packets from software.

• Optional: Adapt the data path to work with the LANA protocol stack [7].

• Optional: Develop a monitoring framework for the measurement of hardware
parameter such as temperature, utilisation or power consumption. The frame-
work should collect the data in hardware and make them accessible to a soft-
ware program.
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Implementation

• Determine an appropriate version control system. The EPiCS project is hosted
at github. You might want to put your code in the same repository.

• Implement a static version of the dedicated communication interface together
with some dummy networking blocks for validation purposes.

• Add the possibility for partial reconfiguration of hardware networking blocks
to the communication interface.

• Implement the configuration interface. Depending on the overall EPiCS
project status use either the eCos operating system or the Linux operating
system (preferred).

• Implement the data path for the hw/sw interface. Depending on the over-
all EPiCS project status use either the eCos operating system or the Linux
operating system (preferred).

• Optional: Implement the interface to LANA.

• Optional: Implement the monitoring framework.

Validation

• Validate the correct operation of your implementation after each implemen-
tation step. Use for your evaluation different packet sizes (short, long, even or
odd number of bytes, etc.).

• Check the resilience of the implementation, including its configuration inter-
face, to uneducated users.

Evaluation

• Do a performance evaluation of your implementation.

• Optional: Determine the bottlenecks of your implementation.

• Optional: Do a performance comparison between packet forwarding for differ-
ent combinations of hardware and software networking functional blocks.

Documentation

• Appropriate source code documentation.

• Write a step-by-step how to that describes the compilation of your code, the
loading of the code into the hardware and the execution of your code.

• Write a documentation about the design, implementation, validation and eval-
uation of your work.

C.3 Milestones

• Provide a ”project plan” which identifies the mile stones.

• Two intermediate presentations: Give a presentation of 10 minutes to the
professor and the advisors. In this presentation, the student presents major
aspects of the ongoing work including results, obstacles, and remaining work.
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• Final presentation of 15 minutes in the CSG group meeting, or, alternatively,
via teleconference. The presentation should carefully introduce the setting and
fundamental assumptions of the project. The main part should focus on the
major results and conclusions from the work.

• Any software that is produced in the context of this thesis and its documen-
tation needs to be delivered before conclusion of the thesis. This includes all
source code and documentation. The source files for the final report and all
data, scripts and tools developed to generate the figures of the report must
be included. Preferred format for delivery is a CD-R.

• Final report. The final report must contain a summary, the assignment, the
time schedule and the Declaration of Originality. Its structure should in-
clude the following sections: Introduction, Background/Related Work, De-
sign/Methodology, Validation/Evaluation, Conclusion, and Future work. Re-
lated work must be referenced appropriately.

C.4 Organization

• Student and advisor hold a weekly meeting to discuss progress of work and
next steps. The student should not hesitate to contact the advisor at any time.
The common goal of the advisor and the student is to maximize the outcome
of the project.

• The student is encouraged to write all reports in English; German is accepted
as well.

• The core source code will be published under the GNU general public license.

C.5 References

[1] ReconOS: Multithreaded Programming for Reconfigurable Computers: Descrip-
tion of the hardware/software architecture
[2] Reconifgurable Nodes for Future Networks: Description of how we would like to
use the hw/sw architecture to build reconfigurable networks
[3] The Autonomic Network Architecture (ANA): Description of the ideas and sw
prototype for configurable networks
[4] https://github.com/EPiCS/epics-org/blob/master/deliverables/D3-
1 Architecture And Tool Flow/D3-1 Architecture And Tool Flow.pdf
[5] https://github.com/EPiCS/reconos/
[6] webpage: ecos.sourceware.org, a version that is compliant with reconos is in the
github repository, cross compilation tools: gcc-4.1.2 glibc-2.3.6
Webpages:
http://www.ana-project.org
http://www.epics-project.eu
http://www.reconos.de
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[9] Enno Lübbers, Marco Platzner, Christian Plessl, Ariane Keller, and Bernhard
Plattner. Towards Adaptive Networking for Embedded Devices based on Re-
configurable Hardware. In International Conference on Engineering of Recon-
figurable Systems and Algorithms (ERSA’10), pages 225–231, Las Vegas, NV,
USA, 2010. CSREA Press.

[10] Partha Pratim Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Perfor-
mance evaluation and design trade-offs for network-on-chip interconnect archi-
tectures. Computers, IEEE Transactions on, 54(8):1025 – 1040, aug. 2005.

[11] T. Pionteck, C. Albrecht, R. Koch, E. Maehle, M. Hubner, and J. Becker.
Communication architectures for dynamically reconfigurable fpga designs. In

47



48 BIBLIOGRAPHY

Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE In-
ternational, pages 1 –8, march 2007.

[12] T. Pionteck, R. Koch, and C. Albrecht. Applying partial reconfiguration to
networks-on-chips. In Field Programmable Logic and Applications, 2006. FPL
’06. International Conference on, pages 1 –6, aug. 2006.

[13] The ANA project. http://www.ana-project.org, February 2009.


