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Abstract

The rise of today’s Internet began with the emergence of the World Wide Web
and hasn’t come to an end ever after. The technological advances in the fields of
processor architectures and memory storage technologies in the last decade were
tremendous. As a result, new devices such as smartphones, tablets or sensor nodes
came to market that connect more users and machines to the Internet. This rapid
development stands in contrast to the evolution of the Internet which has been
going slowly. A static one-size-fits all protocol stack is no longer suited to provide
an efficient communication environment that takes the diversity of devices into
account. Imagine a sensor node running a full fledged TCP/IP stack which is highly
inefficient in terms of battery lifetime. Fortunately, more sophisticated approaches
have been proposed to take these resource constraints into account.

There have been substantial efforts in the field of dynamic and reconfigurable
communication protocol stacks: The Autonomic Network Architecture (ANA) is
a novel network architecture that enables flexible and dynamic rearrangements of
the protocol stack. A lightweight version of ANA called LANA makes use of those
principles and concepts and even provides a high-performance software framework
for network protocol stacks. Another research project, called EmbedNet has been
proposed as a hardware design of adaptive network nodes. Like LANA, it relies on
ANA and provides means for partial reconfiguration during run-time in hardware.

Those frameworks are meta-architectures which means they lack of protocol func-
tionality. To this end, the scope of this thesis is protocol development for network
modules that can be executed in hardware (EmbedNet) or software (LANA). In
order to allow for a run-time transition from software to hardware execution and
vice versa, we have developed a state transition mechanism.

With the implementation of Huffman (compression protocol) and CRR (reliabil-
ity protocol), we have shown that computationally expensive algorithms (Huffman)
offer more potential for optimized hardware implementations, than simple flow con-
trol protocols (CRR). Huffman coding, for instance, offers a lot of parallelism that
can be exploited, whereas CRR is limited by the width of its data bus. A Huffman
hardware module has been designed and implemented that runs up to 22 times
faster than the software module. The expected speed-up for the CRR hardware
implementation is rather small, because software and hardware execution is very
similar.

Memory access time to fill internal buffers is the common bottleneck that is shared
among software and hardware implementations. Additionally, the implemented
concept of state transition mechanism, allows flexible task migration for future
protocols added to the protocol stack. At last, this thesis brought the involved
frameworks one step further with respect to reliability, usability and functionality.
New mechanisms and extensions have been designed and implemented that will be
of great value for future projects.
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Chapter 1

Introduction

1.1 Motivation

The origins of today’s Internet reach back into the late 1950’s when the U.S. De-
partment of Defense wanted a command-and-control network that could survive a
nuclear war. As a consequence, the Advanced Research Projects Agency (ARPA)
was founded as a defense research organization. ARPA’s focus eventually turned
to networking, when it was trying to figure out how to provide remote access to
computers. It was not until the late 1960’s that an experimental network called
ARPANET went on air [2]. As time went by, additional networks were connected
to the ARPANET which became increasingly complex. As a result, new protocols
that are still being used today such as Domain Name System (DNS), were created
to organize hosts into a hierarchical system. The Internet exploded in size with the
emergence of the World Wide Web (WWW) in the early 90’s and has been growing
ever since.

The Internet has changed a great deal since the early days and its primary ob-
jective is no longer to survive a nuclear war, but to provide the base for its future
growth. The Internet is part of our daily life and changed not only in terms of
users, but also concerning usage and networking devices. There is a demand to be
connected at all times. Be it to communicate through social media, check emails,
do online banking, join a video conference, or browse the Internet for information.
In the last decade, new devices with a need to connect to the Internet showed up
on the horizon. Mobile phones turned into smartphones that offer more advanced
computing ability and connectivity. Sensor networks and other embedded systems
are used to gather and evaluate data from sensor nodes, or send data to remote
servers, for instance. The PermaSense project is an example for such a network
under extreme conditions [3]. Devices as well as their offered services have different
requirements to the underlying protocol stack regarding quality of service (QoS),
functionality, flexibility, performance, resource usage, power usage, reliability as
well as safety and security. A static one-size-fits-all protocol stack is unsuited to
fulfill these challenging requirements.

Let’s take a look at mobile and embedded devices: A critical requirement for
mobile devices is long operation time. Ways to extend operation time are to use
bigger batteries, which is rarely an option, or to reduce power consumption. A major
part of a sensor nodes’ energy consumption is caused by communication and data
transmission[4]. A sensor node may not need a full fledged communication stack
running on the device at all times. At times only basic connectivity is sufficient
to fullfil the needs, for instance by using a low-power protocol stack [5], whereas
at other ocasions some specific functionality may be required. The difficulty is
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10 1 Introduction

that with current protocol stacks, we are not able to change the stack dynamically.
We would need a flexible communication stack that can be changed during run
time, depending on our needs and external events. Further energy savings could
be achieved through custom-made packet structures which would result in smaller
header size and therefore less overhead. Another interesting approach is to migrate
functionality from software to hardware and vice versa, as required. Software offers
a higher level of flexibility, whereas hardware offers higher performance or lower
energy consumption, depending on its design goals.

In contrast to devices and network usage are the underlying protocols such as
TCP/IP that haven’t changed conceptually since they had been made public. At
the time IP was developed, no one expected such a widespread use as we are experi-
encing today. The Internet and especially IPv4 became victims of their own success:
IPv4 address shortage is a real problem, and as of 15 April 2011, APNIC was the
first regional Internet Registry to run out of freely allocated addresses [6]. The
potential IPv4 address shortage was recognized early and the IEFT began working
on the intended succeedor of IPv4 called IPv6 [7]. However, the IPv6 deployment
is proceeding slowly [8].

The cases above show both the inflexibility and inefficiency of the current protocol
stack and the difficulties to deploy changes. All of these weaknesses can be overcome
with a flexible protocol stack in hardware and software: A first step towards this goal
has been taken with the Autonomic Network Architecture (ANA) [9]. The objective
of autonomic networking is to enable autonomous formation and parametrization
of nodes, and to introduce self-awareness and self-expression into the system. This
means that the systems will sense its environment through sensors or its internal
states (self-awareness) and react appropriately in a smart way (self-expression).
The protocol functionality in ANA is split up in so called functional blocks (FB).
The functionality of such a FB can vary from a simple forwarding block up to a full
TCP/IP stack. Those blocks form a graph-like construct that abstracts the system’s
protocol stack. FBs can be added, removed, linked and delinked during run time.
Therefore functionality can be added, changed or removed from the protocol stack
without restarting the operating system or any of its networking components. See
Figure 1.1 for a comparison between a legacy network protocol stack and a flexible
ANA stack. A better performing and lightweight version of ANA (LANA) that runs
in the Linux kernel was developed [1].

To provide sufficient performance or energy efficiency, it is necessary that pro-
tocols can not only be executed in software but also in hardware. This implies
that not only the software but also the hardware protocol stack can be changed
during runtime. First steps towards such an adaptive networking environment have
been presented in Lubbers et al. [10] and Keller et al. [11] and follows the con-
cepts developed in the ANA project on a hardware level. Networking protocols are
split up into smaller blocks the same way it was introduced for ANA. The core
technology to enable flexibility is the utilization of run-time reconfigurable hard-
ware. The target system is a reconfigurable System on Chip, an embedded device
equipped with an FPGA. Further, an abstraction for programming reconfigurable
CPU/FPGA systems was provided [12] that hides software/hardware boundaries.
A multithreaded programming model had been extended towards reconfigurable
hardware. Thread interaction and integration of software and hardware threads
is built upon previous research which presented an execution environment called
ReconOS [12],[13]. Further research efforts combing ReconOS and ANA principles,
resulted in a reconfigurable networking environment called EmbedNet.

This master thesis focuses on the networking aspect of EPiCS[14] (EmbedNet).
EPiCS uses the network architecture presented from the ANA project as a basis.
LANA and EmbedNet are meta-architectures in the sense that they don’t offer any
protocol functionality. To this end, we develop a compression and reliability proto-
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col in this thesis that can be run as functional blocks in either software (LANA), or
hardware (EmbedNet). In addition, they can be migrated from software to hard-
ware or vice versa. To enable migration, a transition mechanism was necessary
which would transfer the internal protocol state and set up new functional blocks
accordingly.

Compression protocols are interesting for devices with limited resources such as
sensor nodes or embedded devices for efficiency reason. Compression can help to
increase the energy efficiency of sensor nodes when transferring data. Further, it
increases the bandwidth utilization, because the same amount of information can
be sent with less data. We chose to implement the Huffman coding algorithm,
because its algorithm offers a high level of parallelism that can be exploited. This
parallelism is required for a fast hardware implementation where we expect to see a
big speed-up. Further, the Huffman algorithm is often used as a back-end to other
combined compression methods such JPEG or Vorbis [15].

Reliability protocols are critical for correct data transmission between nodes.
We chose a Continuous Repeat Request protocol with selective repeat strategy,
because it offers flexibility and performance through the choice of its window size.
A reliability and compression functional block provide an efficient protocol stack to
transfer large amounts of data in a network.

Network

MAC

Phy

Application

Transport

Phy/MAC

Application

Figure 1.1: Static TCP/IP stack compared to a flexible ANA stack[1].

1.2 Goals

The goal of this master thesis is to develop several networking protocols for Em-
bedNet. Those developed protocols should run both in software and hardware. For
protocols to be exchangeable, it is critical that they have exactly the same function-
ality, such that tasks can be migrated. Those protocols need to be implemented in
C for execution in software and in VHDL for the execution in hardware. To allow
for dynamic changes in the mapping of protocols to either hardware or software,
a mechanism for transferring protocol state between the two implementations is
needed. Depending on the used protocol, this state transition mechanism trans-
fers internal data such as sequence numbers, frames or configuration data between
functional blocks.

The implemented functional blocks will be evaluated against their software and
hardware counterpart. Two protocols with specific characteristics and different
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expenses in computation time were chosen in order to evaluate system bottlenecks
as well as strengths and weaknesses of hardware and software implementations.

1.3 Outline

The structure of this thesis is as follows: Chapter 2 (Related Work and Back-
ground Information) presents the context of this thesis, the ANA architecture and
its principles in more detail. Next, the LANA framework, which was used as the
underlying foundation for the protocol stack in software, is presented. ReconOS as
the foundation of Embednet is introduced and also current research in the fields
of compression algorithms and reliability protocols. In chapter 3 (Design) we look
into the design and architecture of software and hardware components, as well as
the state transition mechanism. Chapter 4 (Implementation) delves into implemen-
tation specific details and presents implementation optimizations. We also point to
limiting factors, bottlenecks and faced challenges throughout the implementation
process. Functional verification and a performance evaluation where we compare
software and hardware execution is done in chapter 5 (Evaluation). Next, we present
testbenches and experiments used to test correct functionality. The conclusion and
an outlook into future work can be found in chapter 6 (Conclusion and Future
Work).



Chapter 2

Related Work and
Background Information

Research projects that are related to this thesis are covered in this chapter. We
will begin with a quick overview of ANA’s architecture and principles. Next, we
introduce its lightweight successor LANA, which is used as a software framework to
build a flexible software protocol stack. ReconOS provides our software-hardware
interface and is handled in the next section. Finally, we talk about compression
algorithms and reliability protocols, as well as available hardware implementations.

2.1 ANA

EmbedNet [11] is part of the EPiCS project and focuses on the introduction of self-
awareness and self-expression in computer networks and how to realize this goal in
hardware. ANA is the underlying concept of our software and hardware frameworks
and is presented in this section.

ANA defines a framework and execution environment that enables network stacks
to operate in a continuously changing environment. A major principle of ANA is
to strive for flexibility and genericity on all levels of its architecture. There are no
rigid specifications such as protocols or header fields. ANA is a framework to host
and interconnect different multiple heterogenous network instances. ANA, unlike
the Internet, does not know a unique and globally shared addressing scheme. The
core abstractions that build ANA’s architecture and allow to model communication
systems with a simple but structured framework concept are described next:

2.1.1 Architectural Abstractions

Network compartments model the ANA world from a coarse-grained point of
view. A network compartment is a homogenous network region with respect
to addresses, packet formats, transport protocols and other services. Each
compartment is free to use whatever addressing or routing protocols it wants.
However, each compartment must support a generic compartment API in
order to offer access to its communication services. Network compartments
can be modelled as black-boxes that support a generic communication API.
An Ethernet segment, an IPv4 network, or a peer-to-peer-system could be a
possible network compartment.

In each network compartment, a distributed set of protocol entities collaborate
in order to provide communication services to other compartments. Informa-
tion channels abstract the nature of those communication services (unicast,

13



14 2 Related Work and Background Information

multicast, broadcast, datagram, reliable stream, etc). When interacting with
a compartment, an entity really interacts with a software component imple-
menting the compartment’s operation. Those components are called function
blocks.

Functional Blocks (FBs) abstract any protocol entity generating, consuming,
processing and forwarding information in ANA. ANA’s protocol stack is built
of functional blocks, that can vary greatly in complexity and size. A functional
block can be as simple as a forwarding module or as complex as a full fledged
TCP/IP stack.

Information Dispatch Points (IDPs) are inspired by network pointers [16] and
are similar to file descriptors in Unix systems. Functional blocks are always
accessed via one or multiple IDPs attached to it. This binding of an IDP is
dynamic and can be changed during runtime which offers the possibility to
reconfigure the network stack. The binding between IDPs and FBs are stored
in the core forwarding table of the ANA node and are fully decoupled from
addresses and names. ANA’s next hop entity is always defined by an IDP.

Node compartments are basically ANA nodes that are a network themselves
composed by the functional blocks running on the host. Node compartments
are similar to network compartments, except that they don’t provide infor-
mation channels. This allows functional blocks to discover each other and
interact inside the node compartment like with other network compartments.

FB1

FB1

FB1

FB3

FB2

FB2

Information Channel

Functional
 Block

Information Dispatch
Point

ANA Node

Figure 2.1: ANA sample network
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2.1.2 Core Machinery

Information Dispatch Points (IDPs) are identified by a 32-bit integer and are
always accessed via their numerical values. The information dispatch table
(IDT) stores the bindings between IDPs and FBs in each ANA node. The
IDP object structure keeps track of various information such as its owner that
created the IDP, its callee that is bound to it, its status and its visibility.
A key feature of IDPs is the rebinding ability during run time on demand.
Since the data flow should not be disrupted, it is crucial that FBs are able
to continue using their IDPs, even during rebinding. When performing IDP
rebinding, it is necessary to migrate the state that a FB maintains for a given
IDP.

Event notification system allows the autonomic entities of a system to react
to networking changes. The system’s scope is node-local and allows certain
blocks to subscribe to certain events in order to be informed at a later stage, in
case any of these events take place. The supported events are such as when an
IDP is deleted, redirected, unpublished, busy, or ready to receive data. These
events allow a functional block to witness network changes and dynamically
adapt to new conditions. Such a behaviour is required to promote autonomic
algorithms and reduce human interventions.

2.2 LANA

This chapter covers the lightweight version of ANA which is called LANA [17]. It
shares the basics of its architecture and principles with ANA, so we will only point
out LANA-specific features, that are relevant to understand how it is operating. We
will look more into implementation details this time as compared to ANA, because
LANA was the framework used for our compression and reliability protocols in
software.

LANA is a complete redesign of ANA from scratch that aims at a slim code
size and better optimized code. Various optimizations took place such as pass
by reference, instead of value for network packets which are forwarded between
functional blocks. The whole code runs in Linux kernel space only which improved
the performance and reduced code size, because existing kernel functions and data
structures could be reused. As in LANA, functional blocks build up the protocol
stack. LANA’s core consists of the following elements:

Packet processing engine (PPE) calls all functional blocks that are connected
with each other in a graph. It basically works like a switch and forwards
packets to their next hop.

Functional block builder creates new functional block instances.

Functional block notifier dispatches event messages between functional blocks.

Functional block registry and other helper data structures manage created func-
tional block instances.

User space configuration interface performs various functional block configu-
ration tasks such as block binding.

Some functional blocks can be part of the virtual link layer (vlink), which rep-
resents the interface between device driver and the LANA system. The connection
between LANA and user space on the other hand is established through the BSD
socket layer.
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Figure 2.2: LANA sample configuration

2.2.1 Components

Figure 2.2 shows a sample configuration of LANA on our system. We will now
briefly discuss the different components and how they interact with each other.

Functional blocks build up LANA’s protocol stack. LANA is basically a meta-
architecture or a framework without any protocol functionality. Functional blocks
are indirectly accessed through their information dispatch point, similar to ANA.
The protocol stack is built by connecting different functional blocks with each other
and adding up more and more functionality.

Binding and unbinding is realized by event messages. Therefore, functional blocks
can subscribe to an arbitrary number of other functional blocks. Connected blocks
are automatically subscribed to each other. Event messages can also be used to
send protocol specific messages to other functional blocks. The message notifier
interface is independent from the packet data interface. During run time, it is
possible to replace functional blocks, possibly with a newer version, for maintenance
or updating reasons. The IDP can be transfered to the new block without other
functional blocks being aware of this.

We distinguish between functional block modules and functional block instances:

Functional block modules are Linux kernel modules that provide a constructor
and destructor for its functional block instance and further used functions.

Functional block instances are memory structures with a private data area which
is initialized and deinitialized by the corresponding functional block module.
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The functional block builder’s task is to create functional block object instances.
Two functions are registered to the functional block builder, namely the constructor
and destructor. Both of these functions need to be implemented specifically for each
functional block, because private data parts may vary between FBs. Some struct
members of the private data structure are mandatory, because they are used for
protocol stack configuration. Once an FB is no longer in use, it is the destructor’s
task to clean up internal data and to free allocated memory from this FB.

The functional block notifier notifies FBs about new events (e.g. binding)
or configuration instructions. The functional block notifier construct is distributed
across all FBs, which means that each block needs to keep track of its subscribed
block and its subscriptions to other blocks.

All active FB instances are stored within the functional block registry which
consists of two functionalities. A FB’s IDP can be retrieved through its name, and
a FB’s structure though its IDP. We can address a FB instance from user space by
its name, whereas in kernel space addressing is done through IDPs.

The core of LANA is called packet processing engine (PPE). Its main task
is to call one functional block after the other. Each FB provides a network packet
receive function handler that is invoked from the packet processing engine for every
packet passing through the protocol stack. It is also the FB’s responsibility to either
drop or forward a packet. Forwarding is done through writing source and destination
IDP into the private area of the socket buffer structure. The destination IDPs are
received through configuration notifications and stored internally in their private
data. The FB changes the private area of the socket buffer structure according
to its internal configuration in a similar way like a network router would change a
packet’s MAC address. Next, the receive handler returns by telling the PPE what
to do with this packet. In case the packet should be forwarded, the PPE maps the
IDP address to a pointer to the structure of the functional block instance. After
that, the receive handler function of the next FB in line is invoked. This procedure
continues until the protocol stack either reaches a dead end or the vlink/pf lana
socket.

The PPE further contains a backlog socket buffer queue, which can be used for
newly created socket buffers from inside a FB. Newly created packets can be placed
in the backlog queue from outside of the context of the PPE.

Besides the socket buffer, information about the path direction is given to the
PPE and the FB’s receive handler. We differentiate between ingress (towards user
space) and egress (towards PHY).

The virtual link can be seen as the entry/exit point for frames from/to the
PHY. It represents the glue from the OS to the LANA protocol stack. FBs in this
layer are special cases that behave differently than regular FBs and implement the
underlying network technology such as Ethernet, Bluetooth or others.

The BSD socket layer is similar to the virtual link layer except that it provides
the interface between LANA (kernel space) and our application that opened the
socket (user space). FBs in this layer need to provide common system calls from
the Berkeley sockets API.

Finally, all LANA configurations are controlled from user space through two user
space applications, fbctl and vlink. The fbctl tool on the one hand, performs
all FB related configurations like creation or deletion of FB instances, binding,
unbinding or subscription to other blocks, as well as replacing FB instances with
another during runtime. vlink, on the other hand, controls FB of the virtual link
layer.
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2.3 ReconOS

ReconOS [12] is an execution environment which is based on existing embedded
operating systems and extends the multithreaded programming model from the
software domain to reconfigurable hardware. ReconOS is targeting CPU/FPGA
systems for creating flexible multithreaded applications. Software and hardware
threads integrate and communicate seamlessly and transparently with the operating
system and its services.

2.3.1 Programming Model

Portability and flexibility are two major long term objectives of the ReconOS pro-
gramming model. Therefore ReconOS tries to reuse established interfaces and func-
tionalities from existing APIs. The following operating system objects are provided
for ReconOS applications:

Threads represent the basic units of execution that build an application in Re-
conOS. Synchronization and communication is achieved by using other oper-
ating system objects.

Semaphores and Mutexes control synchronization, protect critical code or man-
age access to shared resources.

Shared memory, message queues and mailboxes provide means for inter-process
communication. Mailboxes and message queues can provide both communi-
cation and synchronization at the same time.

Since all interthread activity uses those objects, it is not necessary for a ReconOS-
thread to know whether its communication or synchronization partners are located
in hardware or software. This not only provides complete transparency but also
portability to other platforms, as long as those operating system objects are sup-
ported.

ReconOS software threads are POSIX-threads and handled by the standard OS
scheduler, and therefore independent from ReconOS extensions. Things are differ-
ent from a hardware point of view: Hardware tasks run concurrently. Furthermore,
hardware description languages such as VHDL offer no mechanisms to implement
blocking calls. To this end, a hardware thread’s interacting operating system is
managed by a single sequential state machine. The state transition in the syn-
chronization state machine depends on control signals from the operating system
interface (OSIF). Only after a previous operating system call has returned, the next
state can be reached. It is the developer’s task to split a hardware thread into a
collection of user logic modules and a synchronization state machine.

Listing 2.1 shows the basic idea of such a state machine. We will remain in
STATE GET ADDR, as long as we haven’t received a message from a message
box. Only after that will be able to update the current state.

Hardware threads take the same scheduling and stack size parameters as a soft-
ware thread. These threads are used for the hardware thread’s associated delegate
thread running in software. Delegate threads will be explained in more detail in
Section 2.3.2. It is assumed that the hardware thread is already present in the
reconfigurable fabric, when creating a hardware thread in software.

Operating system objects will almost always be shared among different threads.
Software threads access shared resources through global variables, for instance, ac-
cessible by all threads. This approach does not work when dealing with hardware
threads. ReconOS therefore associates an array of resources with every hardware
thread. The thread designer needs to define integer constants that act as indices
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of the the resource array, and use the symbolic constants as arguments. Further,
ReconOS can directly access same memory areas as software threads, which allows
for efficient sharing of data among threads.

reconos_fsm: process (i_osif.clk ,rst ,o_osif ,o_mem ,o_ram) is
variable done : boolean;

begin
...
case state is

when STATE_GET_ADDR =>
osif_mbox_get(i_osif , o_osif , MBOX_RECV , addr , done);
if done then

if (addr = X"FFFFFFFF") then
state <= STATE_THREAD_EXIT;

else
len <= conv_std_logic_vector(RAM_SIZE ,24);
addr <= addr (31 downto 2) & "00";
state <= STATE_READ;

end if;
end if;

when STATE_READ =>
memif_read(i_ram ,o_ram ,i_mem ,o_mem ,addr ,X"00000000",len ,done);
if done then

sort_start <= ’1’;
state <= STATE_SORTING;

end if;
...
end case;
...
end process;

Listing 2.1: Code snippet from a ReconOS synchronization state machine

GET
ADDR

READ

WRITEACK

SORT

Memory Interface OS Interface

User LogicLocal
RAM

Hardware Thread

OS Sync FSM
sort_start=1

sort_done=1

read

write

mbox_get

mbox_put

sort_donesort_start

Figure 2.3: Hardware thread

2.3.2 Execution Model

Hardware threads require a run-time environment to connect them to an existing
operating system kernel. Carefully defined mechanisms for synchronization and
communication between hardware circuitry and the operating system are necessary.
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In Reconos this is the task of the operating system interface (OSIF) which connects
to the hardware thread’s OS synchronization state machine and local RAM. On the
other side, it connects to the system memory bus (PLB) and an OS control bus
(DCR).

A fundamental aim of ReconOS is transparency of thread-to-thread communica-
tion and synchronization. This way we can easily replace a software thread with
a functionally equivalent hardware thread. Every hardware thread in ReconOS is
associated with exactly one software thread, it’s delegate. The delegate thread’s
responsibility is to execute operating system calls on behalf of its corresponding
hardware thread. As a result, the hardware thread is hidden behind his delegate
thread and appears like a normal software thread to the operating system. Del-
egate threads are standard OS threads with additional parameters to access the
OSIF hardware.

2.4 Architecture

The given development environment for the reconfigurable system on chip (rSoC)
is a Xilinx ML605 evaluation board that comes along with a Virtex6 FPGA [18].
Among others, the ML605 offers, among others, the following features:

• Virtex 6 FPGA

• 512 MB DDR3 Memory

• 128 Mb Platform Flash

• System ACE CF and CompactFlash Connector

• 10/100/1000 Tri-Speed Ethernet PHY

Xilinx’ Microblaze softcore is used as a CPU in our system. It is a highly config-
urable 32-bit Harvard architecture processor [19]. This system provides the per-
formance to run a Linux system, which is used for the LANA software framework
and the ReconOS software-hardware interface. The FPGA is big enough to leave
additional space needed for our functional block modules.

Figure 2.4 shows the whole architecture of the rSoC. In the hardware domain, we
have a PHY from the Ethernet interface and several hardware functional blocks.
Those FBs are interconnected with each other and pass their frames from one block
to another. As in software, the complexity of those functional blocks can vary
significantly. The internal structure of those blocks are ReconOS-specific and were
presented in Section 2.3.1.

In hardware the passing of frames between FBs is independent from ReconOS
and is the task of a Network on Chip (NoC) [20]. The NoC works like a normal
network that consists of routers and switches in hardware that forward packets
along their way depending on their routing tables. The internal addressing of this
NoC follows ANA’s principles with each FB having different IDPs. It is basically
LANA’s counterpart in hardware.

The software hardware interface consists of ReconOS that is used to control the
hardware threads through an FSM, and the NoC that can pass frames from software
to hardware and vice versa. Frames are passed through a shared memory that
resides in RAM and acts as a ring buffer. ReconOS can also be used to configure
and initialize FBs. It can also be used to collect the state or internal data from a
hardware thread.

LANA that resides in Linux kernel space, builds the software protocol stack. The
vlink is responsible to forward and receive frames coming and going to the hardware.
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Figure 2.4: System on Chip including software and hardware

Sockets pass frames between kernel space and user space. The structure of the graph
can be configured through user space tools that bind FBs.

Finally, there are the applications running in Linux user space, that open LANA
sockets, used to interact with the LANA protocol stack.

2.5 Compression Algorithms

In this section we give an overview of suitable compression protocols for network
frames and their hardware implementations. What follows is an elaboration of those
different protocols and why we chose this specific protocol to implement. Finally,
we want to introduce some existing opencores and other research projects and point
out how they differ from my implementation.

The reasons to implement a compression protocol for a flexible network stack
are diverse: Compressed data not only increases the effective transmission rate,
but it also makes more efficient use of bandwidth. Further, smaller packet sizes
increase energy efficiency, because power consumption decreases. As a trade off,
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the compression and decompression may require additional cycles in software or
additional circuitry in hardware. This added complexity results in an additional
delay [21]. We argue here that the advantages outbalance the disadvantages, es-
pecially when compression and decompression runs in hardware. Besides payload
compression protocols, further header compression protocols exist such as described
in Degermark et al. [22], and Bormann et al. [23]. As opposed to other available
compression algorithms, our protocol needs to be lossless. After decompression, the
frame must be exactly the same as it was prior to compression.

2.5.1 IP Payload Compression (IPComp)

The IP Payload Compression protocol (RFC 3173) [24] reduces the size of IP data-
grams by compressing datagrams in order to increase the communication perfor-
mance between two nodes. This is especially useful when communication is over
a slow or congested link. It is proposed that compression and decompression are
realized through either CPU capacity or a compression coprocessor.

IPComp has the disadvantage that small datagrams are likely to expand as a
result of compression overhead. Hence, seperate protocol header is necessary which
is responsible for the expansion of small payloads. To this end, the protocol follows
a non-expansion policy, that only transmits packets in compressed form, when its
size is smaller than the original packet’s size. Before utilizing the IPComp protocol,
two nodes must first establish a connection, called IPComp Associaton (IPCA).
There is no default compression algorithm for IPComp and it is even possible to
choose different algorithms for each direction. IPComp is more like a compression
protocol framework, because it does not suppose any compression algorithms to be
used.

2.5.2 IP Payload Compression Using DEFLATE

RFC 2394 describes how to integrate the DEFLATE compression algorithm into
IPComp [25]. The DEFLATE algorithm is widely used today by the famous PKZIP
and gzip compressors, or by the freely distributed zlib library [26]. The algorithm
was designed by Phil Katz and its details can be found in Deutsch [27].

The DEFLATE algorithm can be used for an arbitrarily long input data stream,
using only an a priori bounded amount of intermediate storage, and hence is well
suited to be used in data communication. It further compresses data efficiently and
comparable to the best currently available general-purpose compression methods
and is not covered by any patents [27].

The achievable compression ratio is highly depending on the input data set. En-
glish texts usually compress better than executable files [27]. The algorithm is
made up from two other compression algorithms, namely Huffman coding [28]
and LZ77 compression [29].

Huffman coding is a form of prefix coding, which means that there is no valid
codeword in the system, that is a prefix of any other codeword [30]. For
instance {11, 10} would be a valid prefix code, wheras {11, 110} would
not, because after reading two bits it could either be the first code, or the
second code. The algorithm starts by sorting and assembling the alphabet
depending on their weight. Weight means the frequency or likeliness of a code
element. The two elements with the lowest weights are chosen and linked to
a parent node. Those two nodes are now the leafs of this parent node with
the smaller one being on the left side. The parent node’s weight is the sum
of his two children nodes. Next, the two nodes with the smallest weight are
chosen from all the nodes, including the parent nodes. They are linked to a
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parent node again and this continues, until we have one big tree with all the
nodes connected to it. In order to extract the code words, the tree needs to be
traversed for every character from our alphabet starting from the root node.
Taking the left edge results in adding a 0, wheras the right edge adds a 1 to
the bitstream. Figure 2.5 shows the resulting Huffman tree and Table 2.1 the
corresponding codes.
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Figure 2.5: Huffman Tree

Char Weight Code

A 1 0011
B 3 0010
C 5 000
D 7 01
E 9 1

Table 2.1: Huffman code table

LZ77 compression works by scanning the data for repeated patterns. A sliding
window is used to buffer the previous input data stream. When the next
sequence of characters from the data to be compressed has been seen before
in the sliding window, the input sequence will be replaced by a distance and a
length. The distance describes the position of this stream in the sliding window
and the length represents the number of characters, that are identical. RFC
2395 proposes using LZS compression algorithm for IPComp, which is similar
to LZ77 [31].
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The DEFLATE algorithm first uses the LZ77 algorithm to replace sequences that
occur multiple times in the data stream. Next, the Huffman coding module is
building its alphabet and code table from the already compressed data. In RFC
1951 the following Huffman coding schemes can be selected:

• Compression with fixed Huffman codes : The same code is used for all data
frames

• Compression with dynamic Huffman codes : For each data frame a specialized
code is created

2.5.3 Huffman

Our main field of application that we had in mind when looking for a compres-
sion algorithm was the transmission of different data types between nodes. As a
starting point, we are interested in applications such as a chat between nodes, or
to transfer books. We want our implementation to be feasible for small and large
packet sizes. Therefore, a large header structure, like IPComp is using, was not an
option. The same holds true for dynamic Huffman codes, that analyze bitstreams
and build the corresponding Huffman table on the fly. This would have resulted
in a much bigger design, not only for software, but also for hardware with higher
resource requirements and bigger latencies. Each packet would need to carry its
own Huffman table, which was used for encoding. The decoder would decode the
received data based on the transmitted Huffman table. Fixed Huffman codes are
fine for languages, because the frequency variations of each char are rather small.

The implementation of the DEFLATE algorithm in software and hardware was
simply out of this thesis’ scope. We therefore chose to implement a Huffman module
in software and hardware, which is also part of the DEFLATE algorithm. Since
functional blocks can be dynamically linked with each other, a later LZ77 module
could be used to build up the DEFLATE algorithm on our flexible protocol stack.

2.5.4 Huffman Hardware Implementations

In this section, we cover some existing Huffman implementations in hardware from
current research and existing open cores. Our main goal is to maximize the per-
formance throughput of our hardware modules and operate at high frequencies of
roughly 100 MHz.

A hardware implementation is described in Rigler et al. [32] for Huffman and
LZ77. The implementation was done for dynamic Huffman codes but does not
present any raw numbers such as frequency and performance or elaborate on code
sizes. [33] presents various Huffman implementations that follow JPEG, MPEG
and plain Huffman standards. JPEG and MPEG standards are lossy and therefore
not comparable to our implementation. The used code size remains unmentioned in
this paper, so it’s difficult to compare with our approach. The achieved frequency
of this implementation was close to 10 MHz which is too low for our reconfigurable
system on chip, and therefore not suitable. In fact most Huffman implementations
on FPGA from current research follow the JPEG compression standard such as
Acasandrei et al. [34] that achieved 100 MHz in a parallel design. Further examples
are Agostini et al. [35] and available OpenCores implementation for a JPEG decoder
[36].

Current research focused more on JPEG and MPEG codec implementations. Our
approach aims at a highly pipelined and parallel running encoder and decoder, that
offer the flexibility to dynamically change our code alphabet during run-time. The
architecture of our compression modules will be presented in the next chapter.
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2.6 Reliability Protocols

To implement a realibility protocol was a consequence of our first choice to imple-
ment a compression protocol. When developing a chat or file transfer application,
we need to be sure, that, i.) packets arrive at the destination host, and ii.) that they
arrive in the correct order. The transfer of large files is not possible without the
guarantee that packets arrive reliably and correctly. Todays most famous network
protocol that offers reliability is the Transmission Control Protocol (TCP).
TCP is the protocol of choice when a reliable link needs to be set up between two
nodes. Zandy et al. [37] extends the reliability of TCP by detecting failures to
TCP connections and preventing applications from becoming aware of them in the
context of mobility. Unfortunately, TCP’s implementation is very complex, and
thus not implementable in hardware with a reasonable amount of effort. Since TCP
is a flow control protocol, it is not well suited to be implemented in hardware any-
way, because the expected speed up is negligible. However, an approach to migrate
some parts of TCP to hardware gained in popularity in recent years: A so called
TCP Offload Engine [38] takes over CPU expensive tasks such as checksum and se-
quence number calculations, sliding window calculations, connection establishment
and other key features of TCP. The idea is to designate those tasks to hardware
to reduce interrupts to the host CPU, copy fewer bytes over the system bus and
reduce CPU requirements for the protocol stack processing.

The Reliable User Datagram Protocol (RUDP) is another transport layer
protocol that provides reliable data transmission [39]. It’s situated between TCP,
that adds too much complexity and overhead, and UDP, that lacks guaranteed-order
packet delivery. RUDP’s list of requirements is as follows:

• Reliable delivery of packets

• Only retransmit segments that were lost and not full blocks

• Sequenced delivery is optional

RUDP is not a formal standard and has not been proposed for standardization.
According to Partridge et al. [40] there were some problems with the specifications
that have never been fixed.

Most of the current research related to transport and reliability protocols, is done
in the context of sensor networks [41],[42]. Stann [42] evaluates on the placement
of reliability on different levels of the protocol stack. Those presented protocols are
designed especially for wireless links between sensors nodes. We are aiming at a
more general approach that fits our flexible protocol stack and can be used for a
wide variety of system architectures.

Tanenbaum [43] introduces a variety of reliable network protocols like Idle Re-
peat Request (IRQ) and Continuous Repeat Request (CRR) with changing
complexity. Some of these presented implementations are similar to our approach,
a CRR protocol, which will be presented in the next chapter.

Research in the field of reliability protocols outside of sensor networks seems to
be extensions to TCP for wireless/ad hoc communication, probably because of the
dominant role of TCP. Most of the presented papers deal with mobility and faulty
links in a sensor network context, but those problems are concerning layer one, the
physical link, and not the transport layer. Research and implementation towards
hardware seem inexistent. This is probably due to the inflexibility of hardware,
compared to software, and the small expected speed up from a hardware implemen-
tation.
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Chapter 3

Design

The following chapter shows the architecture of the used flexible protocol stack in
software and hardware. We explain the interactions between software and hardware
components and their interfaces. Additionally, design decisions concerning Huffman
compression and Continuous Repeat Request modules are presented from a software
and hardware point of view. Finally, we present the state transition from software
to hardware and vice versa.

3.1 Huffman Coding

3.1.1 Software Module

The Huffman Linux kernel module is encoding or decoding incoming payload data
for a given alphabet. This alphabet could be preset as a default alphabet, which
is used when the module is loaded, or it can be set dynamically at a later point
in time through a proc filesystem call [44]. The module consists of the following
components:

• Packet Reception Handler: Invoked for incoming and outgoing frames
(to/from FB)

• Event Notifier Handler: Binding and unbinding to other FBs

• FB Constructor: Allocation and intialization of the private data structure.
Is invoked when adding the FB

• FB Destructor: Deinitialization and deallocation of the private data struc-
ture. Is invoked when removing the FB

• Module Init/Exit: Linux kernel module constructor and destructor. Are
invoked by insmod and rmmod when loading/unloading the module

• Huffman Routines: All Huffman related functions responsible for building
the Huffman tree, extracting code words, encoding and decoding data

Next, we describe how the code base is extracted from our alphabet:
Our chosen area of application was the compression of text. We configured our

system with an alphabet for English language. However, the underlying system can
be used for any language. As a base for our alphabet we chose bytes, because for
most programming languages a char (1 byte) is used to express characters. There
are other languages that contain more characters than our alphabet, or special
characters such as the umlauts in the German language. In order to support those

27
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kind of languages, a base change to multiple bytes would be necessary, such as
UTF-16 or UTF-32 [45].

The American Standard Code for Information Interchange (ASCII) is a character-
encoding scheme that is based on the English alphabet. The alphabets we used,
mostly contain a subset of the ASCII alphabet including all characters, numbers,
punctuation characters and other special characters.

In order to obtain the weight of each member in the alphabet, it is necessary to
do a letter frequency analysis. We could use a precomputed letter frequency table,
or write a script that counts all the different letters in a large textfile, such as a
book for example. Next, all our letters are sorted from the smallest to largest weight
(frequency) in increasing order.

Once our alphabet with its weight is set up, we build our Huffman tree as it
was described in Section 2.5.2. Now that we have the Huffman tree, we extract the
Huffman code for each letter in the alphabet. We traverse the tree for all possible
leafs. Each leaf is a letter from our alphabet and its corresponding Huffman code is
the path, which was chosen to reach it. As mentioned earlier, the path on the left
adds a 0 and the path on the right adds a 1. The whole bitstream is stored as an
integer together with its length. The length is required, because the value 5 could
be 101 or 0000101, for instance. The values and lengths are stored in a lookup table
with 256 indices. The indices represent the ASCII value of the original character.

Therefore, encoding is just a quick jump to the right index in our table. Once we
read the code, we just need to shift it to the correct position and append it to the
encoded bitstream. The encoding procedure is shown in Figure 3.1(a).

The decoding is more complicated: We are faced with an arbitrary long bitstream
and don’t know how long our code word is going to be. Therefore, each time
we traverse the Huffman tree according to the bitstream starting from the root.
Once a leaf is reached, we can be sure that it is the decoded character, since all
characters are leafs in a Huffman tree. The reason being that Huffman is a prefix
code. Figure 4.4 shows how the Huffman tree is traversed until the original character
is extracted.
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Figure 3.1: Hufman Coding in software

3.1.2 Hardware Module

From a hardware point of view, we have more options and freedom to design our
architecture compared to software. We assume, the main problem and bottleneck
of our software implementation is the decoding. We need to process incoming data
bitwise, because we don’t know where the boundaries between different characters
will be. Possibilities to exploit parallelism are limited on today’s processor archi-
tectures. There are systems with up to 8 CPU cores, but the size of our code
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alphabet will be much larger than this. However, things look different for hardware
implementation using concurrent processes.
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Figure 3.2: Huffman hardware architecture

Figure 3.2 shows the structure of our Huffman FB in hardware. The hardware
module contains the following elements:

• Register Bank: A bank of 256 rows that store the codewords (comparable
to the LUT in software)

• 256-bit Register: A register that stores which codes were set in the register
bank

• Shift Register: A shift register is to process the header of a packet

• Status Records: Stores internal data

• Finite State Machine: Controls the data input and output flow of the
module

Register Bank

The most important part is provided by the memory(register bank): In order to
fully exploit possibilities of parallelism that we are given in hardware, and fullfil the
flexibility requirements, we need to store our codewords in clock enabled D-Flip-
Flops. The clock enable signal works like a write enable that makes sure that data
is not overwritten accidentally. A register bank is used to store the codewords and
their lengths. Those values need to be precomputed in advance and then written
to a Huffman module. In our design, we accomplish this through the ReconOS
interface from the operating system. Those register banks consist of 256 register
rows that store the values that are given from the ReconOS interface and the state
machine. Next to the register bank, there is another 256-bit long register that keeps
track of the ASCII chars that were set in the code alphabet. Each bit represents
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one row of the register bank. The codes are stored in the position of their ASCII
code. For instance, Figure 3.2 shows code words being stored in 22 bits. 17 bits are
used for the code word, and 5 bits for the length.

Finite State Machine

The finite state machine (FSM) is responsible to detect new incoming frames and
change its state accordingly. Before the module starts encoding or decoding, it
needs to know whether the packet is a valid Huffman packet. Therefore, it needs
to write the incoming data into a shift register to compare the Ethernet type of a
packet with its Huffman-specific header. Once a Huffman frame has been detected,
the FSM switches its internal state and the coding starts.

Buffer Control

When designing the architecture, one major difficulty was having variable code
lengths. The length of a code for our chosen alphabet may vary between 3 and 17
bits (or more for larger alphabets) depending on its weight and the total number of
members in the alphabet. The encoding maps a character of 8 bits to a code word
of 3 to 17 bits, whereas the decoding maps a code word of 3 to 17 bits to a character
of 8 bits, for instance. To overcome this challenge, an internal data structure that
keeps track of data buffer, data buffer pointer and packet length was introduced.
Those data structures in VHDL, called records, are very similar to the well known
structs from other programming languages.

I/O

All FBs are directly connected to an asynchronous First-In, First-Out (FIFO) mem-
ory. The FIFO not only contains the data of our frames, but it also controls the
Huffman-internal FSM through its signals. The FIFO signals when a new frame
starts and an old frame ends. On the other hand, our hardware modules need to
do the same when writing the data into the output FIFO. A more detailed low-
level description of the interface between hardware FB and FIFOs will take place
in Chapter 4.

3.2 Continuous Repeat Request

3.2.1 Software Module

The Continuous Repeat Request (CRR) module introduces a reliability protocol to
the LANA stack. Every data transfer is acknowledged on the receiver side such that
the sender knows a frame was transmitted successfully. The CRR FB in LANA is
made up of the following subroutines:

• Packet Reception Handler: Invoked for incoming and outgoing frames
(to/from FB)

• Event Notifier Handler: Binding and unbinding to other FB

• FB Constructor: Allocation and intialization of the private data structure.
Is invoked when adding the FB

• FB Destructor: Deinitialization and deallocation and of the private data
structure. Is invoked when removing the FB
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• Module Init/Exit: Linux kernel module constructor and deconstructor,
which are invoked by insmod and rmmod when loading/deloading the mod-
ule

• CRR Routines: Are responsible for queueing incoming frames, buffering
outgoing frames, controlling sequence numbers and windows

• Packet Timers: Timers are tracking open (unacknowledged) packets and
control the retransmission of lost or delayed packets

• Open Packets Buffer: Is a linked list, that buffers all open (unacknowl-
edged) packets. The oldest packet is in the first position. Buffering is neces-
sary, because we may need to retransmit frames in case of loss or delay

• Packet Queue: New packets are queued in a linked list, when the transmis-
sion window is full

The buffer is used to store packets that have been sent already and are kept in
the buffer until the appropriate acknowledgement has been received received. The
queue is a simplo FIFO queue that stores packets which are sent at a later point in
time. The CRR module was split up in a sender and a receiver. Next, we introduce
the architecture and concepts of both modules separately:

The CRR sender module is responsible for providing reliable data transmission
in our protocol stack. Each packet destined for transmission eventually invokes the
sender’s packet function handler. In contrast to Idle Repeat Request (IRQ) [46],
CRR offers the possibility and flexibility to send several packets at once. The
number of open (unacknowledged) packets is defined by the sender’s window size.
As long as the number of open (unacknowledged) packets is smaller than the window
size, arriving packet headers are tagged, processed accordingly, and sent out directly.
Note that all open packets need to be buffered, because of potential retransmission.
In case that the number of open packets has reached the maximum, which is the
window size, then the packet is stored in a queue for later transmission. If the packet
has been received successfully, we will receive an acknowledgement (ACK) from the
receiver, which states, that the frame was received successfully. The ACK triggers
a decrease of the number of open packets. Hence, the next frame can be sent. The
next frame will be fetched from the queue and buffered before transmission. Each
packet starts a timer before it leaves the sender module. Frames or ACKs that
are lost along the way cause a timeout to occur. If the corresponding ACK arrives
before the timer runs out, the timer is stopped and restarted when the next frame
is sent. If the timer runs out, we reschedule the oldest frame for retransmission and
move it to the end of the buffer list. The oldest packets reside in the beginning
of the buffer list, the same holds true for the queue. Again, the buffer stores open
(unacknowledged) packets, whereas the queue (FIFO queue) stores packets that are
sent next. The basic logic of the sender is pictured in Figure 3.3.

The CRR receiver module is the counterpart to the sender module and respon-
sible for forwarding data frames in the correct order to the higher level protocols, as
well as sending ACKs for each received frame. The architecture on the receiver side
is much simpler, because we only need a packet queue to store out of order packets.
The receiver expects to receive a frame with a certain sequence number. Sender
and receiver need to be configured in exactly the same way, such that they have the
same window size. When a frame is received, the sequence number is checked. If it
matches the expected sequence number, the frame is forwarded to the user space.
The expected sequence number is then incremented. If there are unforwarded pack-
ets in the queue (out of order packets), their sequence numbers are compared to the
next expected sequence number. If they match, they are forwarded as well and the
expected sequence number is incremented again. This continues until the queue is
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open pkts < window pkts in queue/buffer

New Packet ACK / Time Out

queue packet NOPbuffer packet

send packet

NO YES YES NO

Figure 3.3: CRR sender procedures

either empty or the sequence number doesn’t match. Each received frame that fits
the CRR frame structure and Ethernet type is acknowledged, even if it is an old
frame that has been received before. ACK frames could have been lost or delayed
along the way. This way, the sender doesn’t know that the receiver has already
received it successfully and retransmits the frame again. Figure 3.4 shows the basic
control flow from the receiver side for valid frames.

expected seq nr

New Packet

queue packet forward packet

NO YES

next seq nr in queue

YES

Figure 3.4: CRR receiver procedures

3.2.2 Hardware Module

The CRR hardware implementation differs from the Huffman module in many ways:
CRR is a control flow protocol that introduces reliability into our data transmission.
Unlike Huffman, it doesn’t involve computationally expensive operations that could
be done much more efficiently. CRR contains a lot of memory accesses e.g. frames
need to be buffered for potential retransmissions. The hardware module, in contrast
to the software module, does not contain a queue. Memory is sparse on an FPGA
and we simply cannot queue frames the same way as we did in software. Therefore,
we only buffer open (unacknowledged) packets and read a new packet every time
an ACK is received.
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There is a small delay introduced through the CRR module, because the header
needs to be received completely, before the module decides, whether it is a valid
CRR frame or if it’s an old CRR frame. However, the predominant part of the
delay is caused by the transmission time from sender to receiver and back, due to
the protocol design.
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FSM

Status Record(Seq, bitstrm)

FSM

SW

PHY

FIFO

FIFO

CRR_TX

CRR_RX

ACK Record (Header)

Shift Register
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FIFO
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DATA
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}

}
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0

1

... MTU

BRAM }
}
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Eof(1) Data(8)

0

1

... MTU

}
}

}
Figure 3.5: CRR hardware architecture

Figure 3.5 shows the structure of our CRR FB in hardware. The following ele-
ments make up for its functionality:

• BRAM: An area and performance optimized memory that is used to buffer
frames

• Shift Register: A shift register is used to verify the header of a packet

• Status Records: Stores internal data

• Finite State Machine: Controls the data input and output flow of the
module

• Timer Processes: Counters are used to control the timeout and retranmis-
sion of open packets

Memory is the most important resource of the CRR hardware module. It is
implemented using block RAM (BRAM) which is embedded on the FPGA. The
sender module uses the BRAM to buffer frames, because in case of a timeout
they would have to be retransmitted.

The receiver module needs to store out of order packets, that are forwarded at
a later stage, when the packet’s sequence number matches the expected sequence
number. Figure 3.5 shows the structure of the memory:

The memory’s data width is 9 bits. The first bit is used to mark the end of
the packet and the remaining 8 bits are used for the frame. Ethernet frames may
vary between 64 bytes and 1518 bytes including CRC checksum [47]. Therefore,
the dimension of the memory depends on the maximum transmission unit (MTU)
and the window size. In order to prevent possible problems of overlapping windows,
we set the maximum sequence number to twice the window size. This way, the
receiver can clearly differentiate between consecutive windows. The whole memory
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is MTU × 2 ×WIN SZ. For simple addressing of all frames in our memory, the
packets start at multiples of the MTU. The address of the frame with sequence
number i is:

Address[i] = MTU × (i− 1)

The shift register has the same functionality as for the Huffman module: It is used
to verify the header for a CRR frame and to extract the sequence number. The
FSM changes its state depending on the sequence number or on the type of the
frame.

The sender does not evaluate the header, because all frames arriving in the
sender module are tagged as CRR frames. This is done by changing the Ethernet
type and adding a small CRR header. For efficiency and performance reasons, the
frame is forwarded and stored in the BRAM in parallel.

A timer is started for each open packet that decrements its value each clock cycle.
When the timer runs out, thus it reached 0 before the corresponding ACK arrived,
the frame is retransmitted and the timer restarted. In case of several timeouts
at once, they are processed from oldest to newest packet. In order not to waste
bandwidth, the sender would read potential ACK frames first, before retransmitting
a packet that has timed out. It may be possible that an open packet times out and
at the same time, a new frames arrives that may be the awaited ACK frame. Thus,
it makes more sense to read the newly arrived frame first before retransmitting the
open frame.

The receiver, on the other side, needs to analyze the header of the frame. In-
valid frames (invalid sequence number) are dropped without ACK. CRR frames
with correct or incorrect sequence numbers are both acknowledged, because the
sender may not have received previous ACKs, hence, the retransmission of an old
(previously received) frame. Old frames are ignored internally, whereas out of or-
der frames, frames with sequence numbers larger than the expected number, are
acknowledged and stored in the memory. ACKs are sent while the corresponding
frame is still being received. The hardware receiver module works exactly the same
as the software module with regards to queued frames. Each correctly received
frame is forwarded to higher level protocols and results in the examination of the
queue. Thus, consecutive frames stored in the memory are forwarded subsequently.

The CRR modules share the same FIFO interface as we have seen for the Huffman
module. One difference to be noted is the fact that there are 3 interfaces for sender
and receiver each. The sender receives frames from the software side, ACKs from
the Ethernet-side, and sends frames to the Ethernet side. The receiver receives
frames from the Ethernet-side, sends ACKs to the Ethernet side, and forwards
frames to the software side.

3.3 State Transition

To be able to change and map functionality of our protocol stack dynamically to
either hardware or software, a mechanism for the state transition is needed. State
transition means the migration of a protocol from software to hardware, or vice
versa. The transition must guarantee that no frame loss occurs and that the end
user of the system doesn’t even notice the migration of protocols. For the continuous
and error-free processing before and after a state transition, a transfer of the protocol
state may be necessary. Further, it may be required to migrate some internal data
(buffered packets) of the module as well.

Let’s take a look at CRR, for instance: Our sender module runs in software and
we would like to change the execution to hardware for performance or energy effi-
ciency reasons. The software module stored some internal data (buffered packets),
which needs to be transfered to the CRR module in hardware before it can start
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operating. The state transition mechanism needs to transfer data such as next
sequence number, open packets, buffered packets and packets in the queue. The
hardware module then needs to initialize its internal structure properly, based on
the internal data from the software module. The whole process of swapping tasks
from software to hardware and vice versa is pictured in Figure 3.6.

controller.c

#include <stdio.h>

int main(void)
{

    return 0;
}

.....

CRR(SW)Packet Processing 
Engine
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+

-
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2.
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6.
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Add module (HW)

Set IDP state to transition

PPE loops packets

SYNC - getState()

SYNC - setState()

Update IDP state and link

Remove module (SW)

Figure 3.6: State transition mechanism

The component responsible for the state transition is a software component, called
controller.c in Figure 3.6, that is in charge of the whole process. The first step
(1) is to add the FB in hardware and to generate a hardware thread and its delegate
thread. The FB is now present in hardware, but still not linked to our protocol stack
or the packet processing engine.

Next, the state of the IDP belonging to the FB in software is set to TRANSITION

(2). As a consequence the PPE is not forwarding new packets to the FB with the
corresponding IDP anymore. Instead, the PPE keeps those packets in a loop (3)
until the TRANSITION state is no longer active. The binding of the FB to the PPE
depends on the FB’s protocol. To be correct here, FBs are not directly connected to
the PPE. They are connected to other functional blocks, but the PPE is responsible
for the forwarding of the packet. The Huffman module, for instance, could keep its
connection to the PPE. There may still be a packet inside the module that needs
to be processed and has just invoked the functional block receive handler, before
the state transition took place. It is cruical that any packet still being processed is
forwarded correctly from the Huffman module. However, things look different for
the CRR module.

The CRR sender may have several packets that time out during state transmis-
sion. Those packets could be caught in the loop (3) and would result in retransmis-
sions of those packets. Imagine the case when sender and receiver continue normal
operation. The receiver would send an ACK for each retransmitted frame, even
though it is an old frame. The sender on the other hand, receives all those ACKs
and doesn’t know what to do with it, because they don’t belong to open packets.
Even worse, they could be mistaken as an ACK of a newly sent frame. As can be
seen, this situation could potentially cause problems and malfunctioning of the CRR
modules. Contrary to the Huffman module, it is necessary for the CRR modules
to loop the packets and remove the link between PPE and CRR modules to avoid
problems. The two options are to either leave the link to the next FB as is, or
unbind it.

Next, the internal data needs to be extracted through a getStateSW() (4) and
a later setStateHW() (5) call. Totally, there are 4 different calls to migrate data
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from software to hardware and vice versa. The controller invokes a function of
the software module that starts creating the specific data structure. FBs may have
different internal data, thus resulting in custom functions responsible for the creation
of a data block. There is a specific data structure for those data blocks that is used
to encapsulate the internal data. The exact implementation specific details will be
discussed in the following chapter. The data is then passed back to the controller
module.

Now that the data is ready to be transfered to the hardware module, we call the
setStateHW() function. The data block is sent through the ReconOS interface and
stored in the local RAM of the hardware FB. As in the software module, the process
of extracting the internal state from the data block depends on the data’s structure.
It is the developer’s task to change the existing sample FSM to his own needs. The
FSM reads the data from the local RAM, and updates its registers accordingly. In
the case of CRR, it is necessary to transfer buffered packets into the designated
BRAM buffer of the module. Once the block data has been read, the hardware
module finished its initialization and is ready for operation.

Now it’s time to change the IDP’s state from TRANSITION back to normal oper-
ation (6). The hardware module was initialized and is ready to start processing
incoming packets and continue the operation. Therefore, the FB’s IDPs are updated
accordingly and all the packets that were looping before and destined for the FB’s
IDP are now being forwarded to the hardware module.

The only thing which is left to do now is to remove the module running in software
(7). This is the basic process of migrating modules from software to hardware. The
migration from hardware to software is exactly the same, but the getStateHW() call
from a hardware point of view, controls the FSM to fill the local RAM accordingly.
setStateSW() is reading the data block and updating its internals in software.



Chapter 4

Implementation

This chapter describes the implementation of the Huffman coding and Continuous
Repeat Request modules in software and hardware. We give a closer look into data
structures, header formats, interfaces and hardware logics. Finally, we discuss the
state transition mechanism, used to migrate tasks, and its implementation in more
detail.

In order to provide error-free communication between nodes with different pro-
cessor architectures, the order of transmission for bits and bytes was described in
RFC1700 [48] with the term network order. The network byte order uses big-endian
representation, which sends the most significant part first. Intel, for instance, uses
the little endian representation, which requires an endianess conversion for data
types with multiple bytes. The Berkeley socket API provides a set of functions to
convert 16-bit and 32-bit integers to and from network order [49]. Those functions
convert between host order (little endian) and network order (big endian). htonl(3)
transforms a 32-bit integer from host order to network order, whereas ntohs(3) con-
verts a 16-bit integer the other way around. Note that all Linux system functions
are referenced in bold letters with a reference to the section at which they are listed
in the Linux man pages. Those function calls are architecture dependent: htons(3)
will swap the bytes on an Intel architecture, but does nothing on a big endian CPU
architecture. All our modules expect to receive data in big endian format.

4.1 Huffman Coding

MAC SrcMAC Dst ETH Type Huff Len Payload

0 6 12 14 16 ... [60;1514]

Figure 4.1: Ethernet frame and Huffman header format (length in bytes)

The frame format of a Huffman packet is shown in Figure 4.1. It contains the
following fields:

• MAC Dst: Contains the MAC destination address of the receiver node

• MAC Src: Contains the MAC source address of the sender node

• ETH Type: The Ethernet type field 0xACDC is used to mark Huffman
frames

• Huff Len: Indicates the length of the original payload

37
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• Payload: The data part of the frame

The Ethernet Type field 0xACDC is used to tag Huffman frames, such that only
Huffman modules process frames of their kind. Other frames will not be processed.
The length field is required, because there can be bit or byte padding at the end of
the frame. Encoder and decoder cannot be sure when to stop processing otherwise.
Zero byte padding could be caused by frames shorter than the minimum Ethernet
frame size of 60 bytes, excluding the CRC [47]. Bit padding, on the other hand,
is often encountered, because it is unlikely that the length of the encoded stream
will be a multiple of bytes. Hence, to be able to stop decoding in time, the decoder
needs to know the length of the original payload.

A more sophisticated approach concerning headers, encapsulation and decapsu-
lation is needed to connect several functional blocks with each other. Header design
decisions have been made at an early stage of the thesis when the main goal was
single unit testing. To choose a suitable header structure and stripping technique
is an important design decision to be made for future functional blocks.

4.1.1 Software Module

Data Structures

Next to LANA specific members, each functional block has some specific private
data members. This data can be shared between CPUs, or can be CPU-local data.
Either way, proper locking techniques are necessary when reading from or writing to
this shared memory. Critical code sections need to be protected by locks to prevent
data inconsistency or race conditions. The private data struct of our Huffman
module is presented in Listing 4.1.

struct fb_huffman_priv {
idp_t port [2];
seqlock_t lock;
rwlock_t tree_lock;
struct language_book *mybook;
struct huffman_root *english_first; /* Huffman Tree */
struct code_book *code_en; /* Encoding Table */

};

Listing 4.1: Huffman private data structure

The port member is responsible for the binding and unbinding to other functional
blocks. There are two IDP ports: One for the ingress and one for the egress path.
The lock member is a seqlock that provides fast and lockless (nonblocking) access
to shared resources. They work for situations where the protected resource is small,
simple and frequently accessed, whereas write access is rare. The basic idea behind
this lock is to allow readers to access the resource freely, but check for collisions with
writers. In case of a collision, they retry the access. Seqlocks cannot be used to
protect data structures involving pointers, because the reader might follow a pointer
that is invalid while the writer changes the data structure [50]. What follows now
are Huffman-specific members of the struct:

The tree_lock is a reader/writer form of spinlocks. They allow any number of
readers into a critical section simultaneously, but writers need to have exclusive ac-
cess [51]. This lock protects all shared Huffman-specific resources. During normal
operation, all accesses to Huffman resources are read only. However, in the destruc-
tor or when changing the Huffman tree, write access is required. Since our Huffman
data is more complex than LANA’s private data, we cannot use a seqlock. Private
data that involves pointers, could result in dereferencing a NULL pointers, other-
wise. The language book, containing the number of characters, the actual characters
and their weights, is stored in a separate structure which can be accessed through
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the mybook pointer. The data to build the tree is extracted from this structure.
The english_first pointer represents the root of the Huffman tree. The Huffman
tree is mainly accessed for decoding purposes, when traversing the tree is necessary.
The encoding part, on the other hand, accesses the code_en structure. This look-up
table is used in exactly the same way as it was presented in Section 3.1.1.

The most important data structures for the Huffman module are presented next:

struct huffman_root {
struct huffman_node *first;

};

struct huffman_node {
unsigned char character;
unsigned int frequency;
struct huffman_node *next [2];
struct huffman_node *previous;

};

Listing 4.2: Huffman tree data structure

Listing 4.2 shows the structure of the root of the Huffman tree and its nodes. Huff-
man nodes store their character, if any, and their frequency (weight). The next

pointer is used to reach a node’s children and the previous member points to a
node’s parent. The previous field was introduced for the non-recursive deletion
and traversion of the tree. Recursive functions may need a lot of stack memory
depending on the recursion depth. Linux kernel stack size is limited to 8K [52] on
x86 64-bit CPU architectures. It might be even lower on our reconfigurable system
so it is necessary to avoid any recursive functions with variable recursion depths.
Recursive functions were rewritten as iterative functions and that required a pos-
sibility to traverse to previous nodes. This feature is required to traverse the tree
and extract the code words for each character in the alphabet. The idea is to store
a pointer to each character from our alphabet.

Now we begin with the node of a character and traverse the tree backwards, after
the Huffman tree has been created. We store the poiner of our start node and move
to the parent node. Now, we compare which of the two nodes matches our pointer
and write either a 0 when it is the node on the left or a 1 otherwise. We keep doing
this until we reach the root. Finally, we store our obtained code word in the code
book. This step is repeated for each element in the alphabet.

struct schedule_node {
struct schedule_node *next;
struct huffman_node *huffman;

};

Listing 4.3: Schedule node data structure

The schedule_node structure is needed, when building the Huffman tree and is
shown in Listing 4.3. The algorithm to design the tree was described in Section 2.5.2.
We basically choose the two schedule_nodes with the lowest weights. Those two
nodes are placed first in the schedule list, because it is a sorted list. Next, they
are linked to a parent node whose frequency is the sum of its children’s frequencies.
After that, this new parent node, which is actually a small Huffman tree, is inserted
in the schedule list, again at the right position. The next member points to the
next schedule node with a higher frequency. The huffman field is either a single
node with a character or a subset of the final Huffman tree. The algorithm ends
when there is but a single schedule node left, which carries a pointer to the complete
Huffman tree.



40 4 Implementation

struct language_book {
unsigned char length;
unsigned char character[ASCIISZ ];
unsigned short frequency[ASCIISZ ];

};

Listing 4.4: Language book data structure

Our alphabet is stored in the structure of Listing 4.4. The number of characters
in our alphabet is defined in the length field. The remaining two fields define the
characters and their corresponding frequencies.

struct code_book {
unsigned char alphabetsz;
unsigned int *code;
unsigned char *length;

};

Listing 4.5: Code book data structure

Finally, we come to our code book used to store code words and lengths. The
idea of the code book is basically a LUT and was described in Figure 3.1(a). Its
software data structure is displayed in Listing 4.5. The alphabetsz field has the
same meaning like the length field from the previous structure. The code and
length pointers are used to access arrays with 256 elements. The character’s ASCII
value is used to access the LUT.

Huffman Functions

The following functions provide the functionality for the Huffman module:

• unsigned char struct ctor(struct huffman root *root, struct sched-
ule node *sched, struct code book *book, unsigned char len): Ini-
tializes the Huffman tree, the schedule and also allocates memory for the code
book (LUT). The function returns with 0 in case of memory allocation failure

• struct schedule node *construct schedule(struct language book *book,
struct schedule node *first, struct huffman node **ptrArray): Builds
a linked list (schedule) out of all characters from the alphabet, which need to
be sorted in increasing weight order

• void insert schedule node(struct schedule node *node, struct sched-
ule node *tree): Inserts a schedule node at the right position in the list

• struct huffman node *extract huffman tree(struct schedule node *first):
Extracts and builds the Huffman tree from the existing schedule

• void traverse treev2(struct code book *code en, struct huffman node
*node, struct huffman node **ptrArray): Traverses the Huffman tree
iteratively and extracts codes and their lengths from the leafs. The name v2
refers to the iterative function

• unsigned char append code(unsigned int code, unsigned char length,
unsigned char free, int *bitstream, unsigned char mod): Adds a code
with a certain length to the bitstream

• unsigned int encode huffman(struct sk buff * const skb, char *out-
put, struct code book *code en): Encodes the original payload by looking-
up the character’s code and length in the LUT
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• unsigned int decode huffman(struct sk buff * const skb, char *out-
put, struct huffman node *node): Decodes the payload of a frame by
traversing the tree according to the bistream

• int fb huff proc show(struct seq file *m, void *v): Prints the language
book, when the module’s proc file is read

• ssize t fb huff proc write(struct file *file, const char user * ubuff,
size t count, loff t * offset): Creates a new Huffman tree from the language
book, which is written to the module’s proc file in increasing order

• void delete treev2(struct huffman node *tree): Frees all elements of
the Huffman tree iteratively

• void deconstruct schedule(struct schedule node *first): Destructs the
linked list (schedule) and frees all elements

fb_huffman_ctor/fb_huff_proc_write

struct_ctor

construct_schedule

traverse_treev2

extract_huffman_tree

insert_schedule_node

Figure 4.2: Overview of the Huffman constructor

Figure 4.2 shows in which order those functions are called to build the Huffman
tree. Afterwards the module is ready to process incoming and outgoing frames.

Encoding

All frames with EGRESS direction (PHY direction) that are forwarded to the Huff-
man module from the PPE and have the correct ETH TYPE (0xACDC) invoke the
encode huffman function. First, the length field is extracted from the header.
Next, the payload is encoded byte by byte. For each char the corresponding code
and length are extracted from the LUT. These values are passed to append code
where the code is appended to the new packet payload. After all chars have been
decoded, the function returns with the size of the new payload. It is possible that
the new payload length is much larger than the original. This could be the case
for unlikely characters. Depending on the outcome we either call the Linux kernel
function skb trim, which cuts the length of a buffer, or skb put, which extends
the data area of the buffer. Figure 4.3 shows this procedure for involved Huffman
functions.
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fb_huffman_netrx (EGRESS)

encode_huffman

append_code

Figure 4.3: Involved Huffman functions for encoding

Decoding

Huffman frames that invoke the receive handler through the INGRESS direction
(SW direction) are decoded. The process is similar to the encoding and starts with
extracting the length field as well. Now the decoder follows the payload bit by
bit and traverses the tree accordingly. Every time a leaf is reached, the according
character is written to the new payload. After all characters have been decoded,
the data buffer area is either reduced or enlarged in size. Figure 4.4 displays this
behaviour for participating Huffman components.

decode_huffman

fb_huffman_netrx (INGRESS)

Figure 4.4: Involved Huffman functions for decoding

Optimizations

In the following section, we present optimization techniques that improve the per-
formance of our software module.

There are many branches in our code, hence the program flow can vary greatly.
A CPU uses branch-prediction to improve its performance, which means that it will
try to guess which way an if-then-else structure will go before it is known. If it
turns out later that the correct branch was chosen the CPU continues executing,
whereas a misprediction flushes the pipeline and fetches the correct instruction this
time. Mispredictions cause a delay and therefore reduce performance. To reduce
the overall delay, it is possible to tell the compiler (gcc only) which branch should
be favoured and is taken most of the time. This helps to reduce the number of
mispredictions. We can use the likely and unlikely macros from the Linux kernel
in Listing 4.6 to indicate which branch is likelier to be taken during run time [53].

#define likely(x) __builtin_expect ((x),1)
#define unlikely(x) __builtin_expect ((x),0)

Listing 4.6: Likely and unlikely macros

The encoding and decoding options were written on a low level and close to CPU
opcode including AND/OR/SHIFT instructions. The compiler should be able to create
optimal and fast code for these parts.
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LANA can be run on multicore systems and therefore a proper locking technique
is very important. In Section 4.1.2 we explained our lock choice. After building
the Huffman tree and extracting the code words, we require read access to our
private data most of the time. An exception is a new alphabet which is written
into the module. The use of a per CPU-local data structure enables us to run the
Huffman coding in parallel on several CPU cores in a fast way. A rwlock_t allows
an unlimited number of readers into the critical section, but still allows to block
readers in case of write accesses.

4.1.2 Hardware Module

Before starting with specific hardware implementations, we introduce some imple-
mentation guidelines and concepts that were used.

We mostly followed the VHDL naming conventions presented from the Microelec-
tronics Design Center to introduce a logical and clear naming concept [54].

Another inspiration was the structured VHDL design method proposed by Jiri
Gaisler [55]. The LEON3 softcore processor was developed and implemented ac-
cording to this design method. It suggests implementing every VHDL entity around
two processes. One combinational and one sequential process that contains only
registers.

Further, the use of record types is highly recommended for readability reasons,
especially for large designs with a huge amount of signals. Not only the port list
becomes shorter and more readable, but making changes to the interface becomes
much easier. The same holds true for registers: When adding more registers, we
only need to add a new element to our record type definition instead of adding new
signals and adding them to the sensitivity list.

Not all designs are equally well suited to be implemented according to those
guidelines mentioned in the paper above, but some points, such as the use of records
hold true for most designs.
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Figure 4.5: Encoding and decoding in hardware
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The hardware level design of our Huffman coding modules is presented in Figure 4.5.
One byte at a time is read from the original bitstream and is used as the index to
choose the correct code word from the register bank. The retrieved code is then
appended to the encoded bitstream.

To decode the encoded bitstream, we need to compare the bitstream with all,
possibly 256, code words in parallel. Those code words have different lengths, but
we can be sure to have at most one match, because Huffman is a prefix code. This
means that each character is a leaf in the Huffman tree, which makes it impossible
to have more than one match. The correct character is then written to the original
bitstream. The big advantage of this hardware architecture is the exploitation of
parallelism, which cannot be achieved to that extent in software with today’s CPU
architectures to the same degree.

Data Structures

The encoder and decoder hardware module use the internal data structures shown
in Listing 4.7. It should be mentioned here that the current implementation accepts
code lengths between 3 and 17 bits. This is, because for our current design we use
a default code that uses code lengths between 3 and 17 bits. The maximum code
length is a constant that can be changed easily in the code. For the following figures
and discussion we assume a maximum code length of 17 bits. The bufferIn field
and its counterpart posbufferIn are used to buffer data. bufferIn holds 3 bytes
which is enough to store the longest code word. posbufferIn keeps track of read
and written bits and changes its position accordingly. len stores the number of
characters to be encoded or decoded and is extracted from the header. The eof bit
is set after the last data byte has been read from the FIFO. Even though encoder
and decoder share the same record, its usage is different. The process of encoding
and decoding will be presented later in this section. What follows are the interfaces
of our functional blocks:

type huffman_enc_type is record
bufferIn : STD_LOGIC_VECTOR (23 downto 0);
posbufferIn : integer range 0 to 24;
len : integer range 0 to 1600;
eof : STD_LOGIC;

end record;

type huffman_dec_type is record
bufferIn : STD_LOGIC_VECTOR (23 downto 0);
posbufferIn : integer range 0 to 24;
len : integer range 0 to 1600;
eof : STD_LOGIC;

end record;

Listing 4.7: Huffman encoding record

Interfaces

Every FB in hardware has a ReconOS interface and a NoC interface. The basic con-
nection between those two interfaces were shown in Figure 2.3 and Figure 3.2. We
focus on the interface between FB and NoC because it is responsible for the delivery
of frames to our module. It is important to know that ReconOS provides access to
a shared memory and uses mailboxes for communication and synchronization.

The interfaces to a FIFO for input and output can be seen from Figure 4.6. The
interface for incoming frames is as follows:

• DataInxD: The data signal with a width of 1 byte

• ValidInxS: Indicates the data’s validity
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Figure 4.6: FIFO interface between NoC and FB

• SofInxS: Goes high at the start of a frame

• EofInxS: Goes high at the end of a frame

• ReadyOutxS: Goes high when the modul is ready to fetch data and controls
the FIFO’s read enable

The interface for outgoing frames is similar:

• FullInxS: Is high when the FIFO is full

• DataOutxD: Is 10 bit wide and contains Sof & Eof & Data

• ValidOutxS: Indicates the validity of the data

Encoding module processes

The following processes are responsible for the main functionality of the encoder
module:

• encodeComb: Reads a character from DataInxD and returns the encoded
value which was read from the register bank

• controldataComb: Reads the data from encodeComb, updates internal data
and prepares the output of decoded data

• SYNC PROC: A sequential process that updates all registers

• Counter: A counter used to write the header into a shift register

• NEXT STATE DECODE: Determines the next state of the coding FSM

• reconos fsm: The synchronization FSM which controls the ReconOS inter-
face

The encoding is done in the encodeComb process, which reads a character, and
checks if its ASCII value has been set before. If so, the length of its code word is
read from the register bank at the correct index. Next, a code word with the correct
number of bits is read and assigned to a signal.

This code word is later read from controldataComb and buffered in the record
as in Section 4.1.2. This process also controls the ReadyOutxS signal: The length
of an encoded character may be between 3 and 17 bits, but we can only write 8 bits
per cycle at the output. Therefore we need at least 17 free bits in our buffer, before
reading a new character from the input. Each cycle 1 byte is written to the output,
whenever possible, which is, when there are more than 8 bits in the buffer.
SYNC_PROC is responsible for resetting and updating registers, states and records.

The reconos fsm process is used to initialize the register bank and mark each
entry as set. The memory structure has already been presented in Figure 3.2.
The initialization is done through ReconOS message boxes. The codes 0xDEADBEEF
enables code reception and 0xDEADDA7A disables it. This is to avoid unwanted
changes to our codes from other hardware modules, that may receive message boxes.
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Decoding module processes

The decoder’s functionality is made up from the following processes:

• decodeComb: 256 processes compare the encoded bitstream with all codes
from the register bank

• hot2binComb: This process performs a one hot to binary conversion

• controldataComb: Reads data from the input and controls a separate de-
coding FSM

• OUTPUT DECODE DECODE: Feeds decodeComb with new data and
acts as the output decoder of the decoding FSM

• SYNC PROC: A sequential process that updates all registers

• Counter: A counter used to write the header into a shift register

• NEXT STATE DECODE: Determines the next state of the coding FSM

• reconos fsm: The synchronization FSM which controls the ReconOS inter-
face

Encoder and decoder both share the same coding FSM, which controls the arrival of
new data and the analyzation of header fields. They also share the same ReconOS
synchronization FSM, because both need to initialize their memory (register banks)
before operation.

The decoder has another FSM which is solely responsible for decoding. In order
to meet design requirements, we had to introduce pipeline stages that shortened
our longest path which results in a higher maximal frequency. This decoding FSM
is controlled by controldataComb. Before starting a new decoding cycle, we need
to have at least 17 bits in our buffer. This is to be sure, that we have a match
when comparing all code words. The FSMs will be presented in the next section.
The decodeComb process was generated 256 times and process(i) compares the
input stream with code(i). In case of a match it sets a bit number i in a 256-bit
long bit vector to 1. The conversion from binary value of this vector to the position
value is done in hot2binComb. The decoding process was illustrated in Figure 4.5.

Finite State Machines

We will start this section with the introduction of the coding FSM, which is present
in the encoder and decoder module. Its task is to recognize new incoming frames,
check their headers, extract the length of the payload and detect the end of frames.
Figure 4.7 shows the existing states and their edges.

NEUTRAL is the starting state of the coding FSM. The next state ANALYZE is
reached upon the detection of a new frame.

ANALYZE is responsible for checking the header of incoming frames. Depending
on the Ether Type the packet is either forwarded as is through the FORWARD

state, or encoded/decoded through the PRECODE/WAIT_PRECODE state.

WAIT PRECODE is a transition state that is waiting for the module to become
ready to read new data. This may be the case when the output FIFO is full.
The length of the payload is also extracted in this state.

PRECODE extracts the length of the payload and moves on with the CODE state
similar to the WAIT_PRECODE state.
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Figure 4.7: Coding FSM

CODE is the state during which the coding takes place. We remain in this state
until the end of the frame has been detected which results in a change to
POSTCODE.

POSTCODE has to continue coding until all characters from the payload have
been processed. After this state a new cycle starts with NEUTRAL state.

FORWARD simply forwards the incoming packet byte by byte until the end of
frame has been detected, which results in a change of the state to NEUTRAL.

The decoder’s FSM will be presented next: Its task is to control the different pipeline
stages of the decoding process. It also controls the inner ready state of the module,
because during decoding it cannot fetch new data. Figure 4.8 shows the order,
states and connections of the FSM.

DecodeStart DecodeProc2

Neutral

MoreData

DecodeProc1

DecodeEnd

Figure 4.8: Decoder FSM
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Neutral is the initial state used to reset internal data and change the state to
MoreData.

MoreData is responsible for filling the internal data buffer and changing the buffer
pointer accordingly. More than 17 bits in the buffer forward the state to
DecodeStart.

DecodeStart is the first pipeline stage and starts the decoding by writing the
internal data buffer into a separate decode buffer.

DecodeProc1 is the second pipeline stage.

DecodeProc2 is the third pipeline stage and marks the data from the decoding
as valid.

DecodeEnd is the final pipeline stage. If there are still at least 17 bits in the inter-
nal buffer, we continue decoding with DecodeStart. Less than 17 bits result
in the MoreData state, whereas the end of the payload results in Neutral.

4.2 Continuous Repeat Request

There are two different kind of frames for CRR: Data frames and ACK frames. The
structure and interaction of those two packet types are presented next:

MAC SrcMAC Dst ETH Type Seq Nr Payload
0 6 12 14 16 ... [60;1514]

Window
15

Figure 4.9: Frame and CRR sender format (Data) (length in bytes)

Figure 4.9 shows the frame format sent from a CRR sender module, which con-
tains the following fields:

• MAC Dst: Contains the MAC destination address of the receiver module

• MAC Src: Contains the MAC source address of the sender module

• ETH Type: The Ethernet type field 0xABBA marks CRR data frames

• Seq Nr: Represents the sequence number of the current frame

• Window: Specifices the current data transmission window

• Payload: The data part of the frame

The Ethernet Type field value 0xABBA represents CRR module frames. The
sequence number is used to keep track of open frames. Frames start with the
number 1 and end with the number 2*WIN_SZ. Once all sequence numbers in this
range have been acknowledged, we start with a new transmission and the sequence
number 1. In order to have a similar header structure for sender and receiver
module, and to improve the performance, we chose to allow consecutive windows
to overlap. This way we only need to wait for missing ACKs after two windows
(the maximum sequence number), before starting over again with the first sequence
number. As a consequence, a window field is required. The window field contains
a value different from the ACK tag, to differentiate between CRR data and ACK
frames. It is changed every time we begin a new window and restart the sequence
number. This field helps the receiver to detect new windows. Otherwise, it wouldn’t
know whether the received frame is a retransmission, or belongs to a new window.
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Same header length of the two different CRR frames is mandatory, because payloads,
with a certain sequence of bytes, could cause a problem otherwise, which would lead
to mistaking data frames for ACK frames.

MAC SrcMAC Dst ETH Type Seq Nr Payload
0 6 12 14 16 ... [60;1514]

ACK
15

Figure 4.10: Frame and CRR receiver format (ACK) (length in bytes)

Figure 4.10 shows the remaining frame format for CRR receiver modules, which
are built in the following way:

• MAC Dst: Contains the MAC destination address of the sender module

• MAC Src: Contains the MAC source address of the receiver module

• ETH Type: The Ethernet ype field 0xABBA marks CRR ACK frames

• Seq Nr: Represents the sequence number of the frame to be ACK’ed

• ACK: Is used to mark the frame as an ACK for a certain sequence number

• Payload: The data part of the frame

ACK frames have the same structure as data frames, except, that the window field
changed. The ACK field carries a value of 0xFF in order to distinguish between
the two different frames. The window field of data frames cannot reach the same
value as the ACK field.

4.2.1 Software Module

Data Structures

The private data structure of our CRR sender module can be seen in Listing 4.8.
In contrast to the Huffman module, we need to have a single private data structure
shared among all CPUs. The reason being, that CRR involves heavy buffering and
queueing and each CPU needs to work with the same queues and buffers. Therefore,
we used pointers for all CRR specific data structures that point to the same memory
location on all CPU cores. This results in a single lock and private data structure
which is shared among all CPUs. Next, we present the private data of sender and
receiver module:

The same rwlock_t structure was used as for the Huffman modules. CRR in-
volves not only read accesses, like the Huffman module did, but also a lot of write
accesses. Read and write accesses are mixed up during the program flow which
made it more difficult to seperate the code into pure read and pure write sections.
To reduce any overhead caused by switching back and forth between read lock and
write lock, we chose to protect the whole critical section with a single write lock.

The mytimer structure is explained in more detail later on. We have 2*WIN_SZ

sequence numbers and therefore need the same amount of timers. tx_open_pkts

defines the number of unacknowledged packets that are outstanding, tx_seq_nr

presents the next sequence number to be used, and tx_win_nr the current window
number. bitstream is responsible to keep track of which sequence numbers have still
not been acknowledged. The bit at the first position is used for sequence number 1.
The state of the interface between user space and kernel space is expressed through
the wait_active value. We will talk about this requirement in Section 4.2.1.

There are two different linked lists involved in the CRR sender module: A
buffer list and a queue list that use the Linux kernel structure sk_buff_head.
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sk_buff_head is a doubly linked list and its structure members can be seen in
Listing 4.9. The buffer list is called tx_stack_list, because packets that are sent,
are stacked up on top of each other with the oldest packet at the bottom of the
stack. ACKs remove the packet from the stack and add newly sent packets on top
of the stack. The name is in no way related to the stack data structure, which
pushes and pops data on its stack. or the program stack. The tx_queue_list is
important for packets that can’t be sent, because of a full tranmission window, for
instance. Those packets are added to the queue and will be processed one by one
at a later time.

struct fb_crr_tx_priv {
idp_t port [2];
seqlock_t lock;
rwlock_t *tx_lock;
struct mytimer my_timer [2* WIN_SZ ];
unsigned char *tx_open_pkts;
unsigned char *tx_seq_nr;
unsigned char *tx_win_nr;
unsigned int *bitstream;
unsigned char *wait_active;
struct sk_buff_head *tx_stack_list;
struct sk_buff_head *tx_queue_list;

};

Listing 4.8: CRR sender private data structure

struct sk_buff_head {
struct sk_buff * next;
struct sk_buff * prev;

__u32 qlen;
spinlock_t lock;

};

Listing 4.9: sk buff head kernel structure

The CRR receiver private data structure in Listing 4.10 is very similar to its coun-
terpart. The only difference is the list, a linked list used to store out of order
packets. Each time a packet with the correct sequence number arrives, we look if
the following sequence number has been received before and is stored in this linked
list.

struct fb_crr_rx_priv {
idp_t port [2];
seqlock_t lock;
rwlock_t *rx_lock;
unsigned char *rx_win_nr;
unsigned char *rx_seq_nr;
unsigned int *rx_bitstream;
struct sk_buff_head *list;

};

Listing 4.10: CRR receiver private data structure

As mentioned before, every sequence number between 1 and 2*WIN_SZ has its own
timer structure presented in Listing 4.11. The pointers are equivalent to the struct
members of Listing 4.8. They all point to the same memory addresses. The Linux
kernel structure tasklet_hrtimer was chosen to handle timeout routines. It is used
to initialize a tasklet for a softirq callback.

struct mytimer {
unsigned char *open_pkts;
unsigned int *bitstream;
struct tasklet_hrtimer mytimer;
struct sk_buff_head *stack_list;
rwlock_t *tx_lock;

};

Listing 4.11: CRR sender timer data structure
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CRR Functions

The following functions provide the CRR functionality:

• struct sk buff *skb get nr(unsigned char n, struct sk buff head *list):
Returns the address of the sk_buff structure with sequence number n

• enum hrtimer restart fb crr tx timeout(struct hrtimer *self): Pack-
ets that timeout invoke this handler which retransmits the packet

• int notify fblock subscribers(struct fblock *us, unsigned long cmd,
void *arg): Is used to control the throughput between user space and kernel
space (LANA)

• u32 skb queue len(const struct sk buff head *list ): Returns the
length of the queue (Linux Kernel)

• void skb queue tail(struct sk buff head *list, struct sk buff *newsk):
Inserts an sk_buff at the end of the list (Linux Kernel)

• struct sk buff *skb dequeue(struct sk buff head *list): Removes the
head of the list (Linux Kernel)

• void skb queue head(struct sk buff head *list, struct sk buff *newsk):
Inserts an sk_buff at the start of the list (Linux Kernel)

• struct sk buff *skb copy(const struct sk buff *skb, int priority):
Makes a copy of an sk_buff and its data (Linux Kernel)

• int process packet(struct sk buff *skb, enum path type dir): Sched-
ules an sk_buff for immediate processing by the PPE (LANA)

• void skb unlink(struct sk buff *skb): Removes an sk_buff from the list
(Linux Kernel)

• void skb insert(struct sk buff *old, struct sk buff *newsk): Place a
packet before a given packet in the list (Linux Kernel)

• struct sk buff *skb get pos(unsigned char seq, struct sk buff head
*list): Returns the correct position for a frame with sequence number seq in
the receiver’s list

CRR Sender

The CRR sender module provides reliable data transmission between nodes. The
basic data transmission routine is as follows:

All frames with EGRESS direction and 0xABBA as ETH TYPE that invoke the
receive function handler are being sent as CRR data frames. At first, the packet
is tagged with the current sequence number which is incremented afterwards for
the next packet arriving at the module. Next, the window identifier is written into
the header. If the number of open (unacknowledged) packets is smaller than the
modules window size, we check the number of packets waiting in the queue. If the
queue is empty, we get to send the packet right away but not without buffering
it in the stack_list first and updating open_pkts and bitstream. However, if
the queue is not empty, we queue our packet at the end of the queue_list and
dequeue the first packet. This packet is then being sent the same way as in the
previous example. A fully used transmission window queues all incoming packets
in the queue_list. Those packets will be sent at a later time.
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There is a special case for frames carrying the sequence number 1: Sending a
packet with the first sequence numbers starts a new transmission window, which
should not overlap with the old one. Most CRR implementations don’t allow con-
secutive windows to overlap. This means that all packets within the window need
to be acknowledged first, before starting a new window. Our implementation allows
two consecutive windows (big window) to overlap with each other, but not more
than two. Therefore, before starting a new window with sequence number 1, the
previous two windows must have been acknowledged. The advantage of this little
tweak is a trade off between performance and memory. The sender needs to wait for
all ACKs to arrive only once per 2*WIN_SZ packets, instead of twice, but the receiver
needs to have enough memory to store 2*WIN_SZ-1 packets, instead of WIN_SZ-1.
As a consequence, before a packet with sequence number 1 is sent, we need to make
sure, that all ACKs of the previous two windows have been received. If not, the
packet is added to the queue.

Each packet, leaving the sender module, starts a timer, which stops when the
corresponding ACK has been received. If the ACK does not receive within time,
the time out of the timer will call its function handler. The time-out function
fb crr tx timeout is invoked with a self pointer of the hrtimer structure seen in
Listing 4.11. Through the container of Linux kernel function we are able to access
our mytimer struct. The sk_buff at the head of the stack_list is dequeued, copied
and resent again. The original is inserted at the end of the list again, because it will
be the last sent packet now. Before returning from the function, the appropriate
timer is restarted.

The remaining subfunctionality of the sender module is the ACK reception:
Packets on the INGRESS path with ETH TYPE 0xABBA, a correct sequence number,
and the ACK field set to 0xFF, are treated as ACKs. First of all, the corresponding
timer of this sequence number is stopped. Next, skb get nr returns the sk_buff’s
address that carries the sequence number which has been acknowledged. It is no
longer necessary to buffer this packet, hence it is unlinked, freed and its bitstream
bit is unset. The open_pkts value is decremented by one as well, which gives
opportunity to a new packet to be sent. From here things are exactly the same as
in the transmission part above. In the next section we present the program flow
of the receiver module.

CRR Receiver

The receiver’s responsibility is forwarding packets in the correct order and the trans-
mission of ACKs for each successfully received CRR data packet: The forwarding
routine reads the incoming packet’s window and compares it with the window of
the previously received frame. If they match, it means that they belong to the same
big window. A different window on the other hand, means that the sender module
has started a new window with sequence number 1. Therefore, all packets from
the previous window had been successfully acknowledged. As a consequence, the
bitstream value is reset to zero, which states that no packet from this new window
has been received yet. Next, the receiver module looks at the sequence number and
compares it with its own expected sequence number. If they match, the packet is
forwarded, the rx_seq_nr incremented and the corresponding bit in bitstream set.
It may be possible that some higher sequence numbers have arrived before and were
stored in the list. Therefore, we search this list for consecutive sequence numbers
and forward them as well. Each forwarded frame increments rx_seq_nr. Out of
order frames, on the other hand, are stored in the list and remain there until it is
their turn to be forwarded.

The receiver module sends an ACK for each successfully received frame. There-
fore, we copy the received frame and swap MAC addresses. Afterwards, we mark
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the packet as an ACK and let the PPE process it. The receiver module does not
make a difference between packets carrying the expected sequence number, out of
order packets, or previously received packets. An ACK is sent either way, because
we don’t know for sure if the ACK has been received by the sender side, or if it has
been lost.

Optimizations

We start this section with two problem descriptions which were two major challenges
when implementing the CRR modules:

Each send(2) call in a user space application sends a packet via the AF_LANA

socket directly into Linux kernel space. Now imagine an application that keeps
sending packets: The first couple of packets are sent directly, because the trans-
mission window offers free packet slots. After a while the transmission window fills
up and the first number of packets are inserted in the queue. There will be more
packets arriving in kernel space than leaving it, so the queue will grow steadily. The
queue can only hold a certain number of packets, before we run out of memory. It
is crucial to introduce an upper bound for the queue length.

We came up with the following solution: The CRR sender module keeps track of
it’s queue’s length at all times. In the event of a full queue, we need to block the
connection between user space and kernel space. The code snippet of Listing 4.12
shows the idea:

if (queue_len == MAX_QUEUE_LEN && *fb_priv_cpu ->p->wait_active == 0) {
notify_fblock_subscribers (( struct fblock *)fb, FBLOCK_SRC_WAIT , NULL);
*fb_priv_cpu ->p->wait_active = 1;
// printk(KERN_ERR "[TX]\ tWAIT ACTIVATED !\n");

}
else if (queue_len == MIN_QUEUE_LEN && *fb_priv_cpu ->p->wait_active == 1) {

notify_fblock_subscribers (( struct fblock *)fb, FBLOCK_SRC_WAIT_DONE , NULL);
*fb_priv_cpu ->p->wait_active = 0;
// printk(KERN_ERR "[TX]\ tWAIT DEACTIVATED !\n");

}

Listing 4.12: Blocking and unblocking incoming packets

When the queue length reaches the maximum length and wait_active has still
not been set, we call the notify fblock subscribers function which calls all FB
subscribed to our block. This results in the function fb pflana event being evoked.
Figure 4.11(a) pictures this connection. FBLOCK_SRC_WAIT sets a private struct
member of the FB fb_pflana named spinwait, whereas FBLOCK_SRC_WAIT_DONE

unsets it.

lana proto sendmsg evaluates the value of spinwait for each packet that is
sent from user space. As we can see from Figure 4.11(b) lana proto sendmsg
is invoked through send(2). Whenever spinwait is set, the packet is freed and
lana proto sendmsg returns with an error message telling the send(2) routine
that the packet could not be transmitted. The user space application needs to be
ready for this and either verify or retry transmission. Now the connection between
user space and kernel space is blocked, which results in an emptying queue. When
the queue length reaches a certain level called MIN_QUEUE in Listing 4.12, spinwait
is unset again and new packets are transfered to kernel space.

We faced the same problem for the opposite direction as well: Packets coming
from kernel space to user space are written to socket buffers. If the user space appli-
cation doesn’t read packets from the socket buffer fast enough, the socket buffer will
eventually fill up and discard incoming packets. To avoid this problem the socket
buffer size may need to be increased [56]. The socket buffer’s size should be pro-
portional to MTU*2*WIN_SZ, which is the maximal amount of data two consecutive
windows can carry.
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notify_fblock_subscribers

fb_pflana_event

(a) Notification hierarchy

send(2)

lana_proto_sendmsg

(b) Send hierarchy

Figure 4.11: Hierarchy of involved functions

Proper locking technique and branch prediction optimizations that were already
presented in Section 4.1.1 were reused for the CRR modules as well. We tried to
reuse existing Linux kernel functions and data structures, because on one hand
they made life a little easier during implementation, and on the other hand they
are optimized and perform well.

ACK frames were chosen as small as possible to not unnecessarily waste band-
width. Data flow control protocols don’t offer much freedom and flexibility for
optimizations. There is no parallelism to exploit, a rather long critical section and
plenty of memory accesses. The Huffman modules benefit much more when using
multicore systems, than CRR, because they can process packets in parallel, whereas
for CRR one core in the critical section, blocks all other cores from entering.

4.2.2 Hardware Module

Data Structures

The data structures in VHDL are closely related to the private data structures
from the software modules this time. The reason being, that CRR, unlike Huffman,
is all about control flow with many different branches and states. Computational
efforts are negligible, so CRR sender and receiver module resemble one huge FSM.
The records of sender and receiver module are presented in Listing 4.13. Most
record members are analogous to the software data structures and should be self-
explanatory. However, nextstate from CRR_RX_STATUS is used to store a future
state. We will elaborate on this future state, when talking about the FSMs. store
indicates that an out of order packet arrived and needs to be stored. Values different
from 0 for store define the sequence number and the address at which the packet
will be stored.

type CRR_TX_STATUS is record
bitstream : std_logic_vector (2*WIN_SZ -1 downto 0);
window : std_logic_vector (7 downto 0);
nextseq : std_logic_vector (7 downto 0);
openpkts : integer range 0 to MAX_SEQ_NR;

end record;

type CRR_RX_STATUS is record
bitstream : std_logic_vector (2*WIN_SZ -1 downto 0);
oldwindow : std_logic_vector (7 downto 0);
nextseq : std_logic_vector (7 downto 0);
nextstate : crr_rx_type;
store : integer range 0 to MAX_SEQ_NR;

end record;

Listing 4.13: CRR sender record

There is a separate ACK record for the CRR receiver module, that stores the
MAC source and destination address as well as the sequence number. The data
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record structure is required for the ACK process.

type ACK_HDR is record
macsrc : MAC_ADDR;
macdst : MAC_ADDR;
seqnumber : std_logic_vector (7 downto 0);

end record;

Listing 4.14: CRR ACK record

Interfaces

The same interfaces to ReconOS and NoC are shared like in Section 4.1.2. There
is a difference in the number of interfaces, which we have seen earlier in Figure 3.5.
The sender module, for instance, requires an EGRESS input and output path, as
well as an INGRESS input path. The reason being that ACK and data frames require
different paths is because otherwise potential deadlocks could occur when waiting
for ACK frames that are stored somewhere in the queue between data frames.

The receiver module, on the other hand, has INGRESS input and output path
as well as an EGRESS output path.

CRR sender module processes

The following processes contribute to the sender’s functionality:

• SYNC PROC: Updates registers, states and records

• SHIFT REG PROC: A shift register process for the CRR header

• BRAMAddrCnt: Addressing counter for storing and reading packets from
the BRAM

• HeaderCnt: Keeps track of the CRR header in the shift register

• RESENDCnt: One of the generated time-out counters

• ResendSeq: Detects packet time-outs

• NEXT STATE DECODE: Controls the module’s FSM

• OUTPUT DECODE: Controls the modules internal state, BRAM access
and written output data

The sender contains 3 subroutines, namely receiving ACKs, retransmitting old pack-
ets and transmitting new packets. Those three routines get executed in this partic-
ular order. Receiving ACKs has the highest priority, because it may prevent packets
from timing out and saves potential retransmissions. Packets that time out need
to be retransmitted as fast as possible, because unacknowledged packets may block
our module from sending further packets when restarting with sequence number 1,
for instance. Finally, the transmission of new packets is scheduled last.

For the most part, the CRR sender module follows the software approach and
accesses similar data structures. A timer in hardware is a simple counter that,
when reaching a certain value, triggers an event. In our case there are 2*WIN_SZ

counters in parallel that are initialized to 0. When a new packet is sent, bitstream
is updated, accordingly. Each of those counter processes examines the value of its
bit position in bitstream. If the bit is set to one, the process’ counter value is
increment by one on each clock cycle. When the counter reaches a certain time-out
value, a retransmission of the packet is scheduled. The processes RESENDCnt
and ResendSeq are responsible for the timer functionality and to detect time-outs.
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RESENDCnt is the counter process and ResendSeq schedules retransmissions. If
more than one packet has timed out, the packet with the smallest sequence number,
namely the oldest packet, is retransmitted first.

Transferring and storing packets happen at the same time and minimize delay
when sending CRR data frames.

CRR receiver module processes

Processes responsible for the receiver’s functionality are listed below:

• SYNC PROC: Updates registers, states and records

• SHIFT REG PROC: A shift register process for the CRR header

• AckCnt: This counter controls the transmission of ACK frames

• BRAMAddrCnt: Addressing counter for storing and reading packets from
the BRAM

• HeaderCnt: Keeps track of the CRR header in the shift register

• ProcShiftCnt: Another counter used to process the CRR header

• ACK PROC: Builds the ACK frames based on the ACK record structure

• NEXT STATE DECODE: Controls the module’s FSM

• OUTPUT DECODE: Controls the modules internal state and BRAM ac-
cess

Most processes are self-explanatory. We give a more thorough explanation of the
interaction between processes when introducing the state machines involved in the
next section.

Finite State Machines

Figure 4.12 and Figure 4.13 show the state machines responsible for correct opera-
tion of our CRR modules.

NEUTRAL

RECEIVE

RESEND

DROP

RECEIVE_PROC

ACK

RESEND_DONE

SEND_PROC

RESEND_PRE SEND

RESEND_DONE_WAIT

Figure 4.12: CRR sender FSM

NEUTRAL is the starting point of the CRR sender FSM. Next state is either
RECEIVE if there are packets to be received, RESEND_PRE if a packet timed out
and needs to be retransmitted, or SEND in case there are packets to be sent.
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RECEIVE resets the counter of the process HeaderCnt and moves to RECEIVE_PROC
in case of a new frame waiting to be read.

RECEIVE PROC waits for the complete header to show up in the shift register
and decides which state to go next depending on the header fields. Invalid
ETH TYPE, sequence number, or non ACK packets result in the packet being
dropped in the following DROP state, otherwise the FSM continues with the
ACK state. bitstream and openpkts are also adjusted in this state.

ACK reads the remaining part of the frame and returns to the NEUTRAL state in
the end.

DROP reads and clear the packet from the queue and returns to the NEUTRAL state
afterwards.

RESEND PRE is a transit state responsible for setting up the BRAM address.

RESEND increments the address and retransmits the packet stored in the BRAM.
Changes its state to RESEND_DONE after writing the last byte.

RESEND DONE resets the counter of the timed out packet and advances to
RESEND_DONE_WAIT.

RESEND DONE WAIT is a synchronization state and changes the state back
to NEUTRAL.

SEND awaits the start of an incoming frame and changes the window number
every time sequence number 1 is sent. Starts sending the packet and storing
it in BRAM. SEND_PROC will be the state that follows.

SEND PROC is updating bitstream, nextseq and openpkts after the end of
file byte has been detected. Afterwards we start over with NEUTRAL state.

CRR_PASS_OLD_DONE

NEUTRAL

START

PROC_HDRDROP OLD_PACKET

OLD_PACKET_POST

CRR_PASS

CRR_PASS_OLD

CRR_STORE

CRR_PASS_OLD_PRE2

CRR_PASS_OLD_PRE

Figure 4.13: CRR receiver FSM

NEUTRAL resets the internal data structures such as store and nexstate. Ar-
riving packets change the state to START.

START reads the packet header and extracts sequence number, ETH TYPE and the
window. Further, it stores the MAC addresses for potential ACK frames that
need to be sent later. Packets with invalid ETH TYPE or sequence number are
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dropped in the DROP state. Other possibilities are old packets that result in a
state change to OLD_PACKET, out of order packets move on to PROC_HDR and
set nextstate to CRR_STORE for later, or the expected sequence number
which also continues with PROC_HDR and sets nextstate to pass.

DROP Awaits the end of the packet and continues with NEUTRAL.

OLD PACKET reads and clears the old packet from the FIFO.

OLD PACKET POST waits for ACK to finish sending and starts a new recep-
tion round with NEUTRAL.

PROC HDR waits for the complete header to be processed, which means either
to be stored or forwarded. Afterwards we change the state to the value of
nextstate which was set in the START state.

CRR STORE continues storing the packet until the end of file byte has been
written to the BRAM. Changes state to NEUTRAL after that.

CRR PASS forwards the packet to the next FB. There are two possibilities upon
the end of file event: The following sequence number has been received before
and is stored in the BRAM, which results in CRR_PASS_OLD_PRE, or otherwise
we jump back to NEUTRAL state.

CRR PASS OLD PRE is a transit state to initialize some internal data.

CRR PASS OLD PRE2 is the second transit state.

CRR PASS OLD starts reading the BRAM and forwarding the packet to the
next FB. The end of file flag causes a state switch to CRR_PASS_OLD_DONE and
an update of nextseq.

CRR PASS OLD DONE checks if consecutive packets are stored in the BRAM
as well (CRR_PASS_OLD). If not, the next state is changed to NEUTRAL.

4.3 State Transition

We described the order of a state transition in Section 3.3 before. Now we will
talk about implementation specific details: The state transition mechanism enables
the migration of tasks running in software to hardware or vice versa. Modules
with internal protocol state need to transfer this state to their software or hardware
counterpart, which continues operation after initializing the internal state. Stateless
protocols, on the other hand, don’t need to collect and set the state before changing
the task execution from software to hardware. In order to transfer the protocol
state, a specific data structure is needed. To this end we created a data structure,
which can be used for all possible data structures and FBs.

The data structure can be seen in Figure 4.14. All existing data structures in C

have data sizes in multiple of bytes. Therefore, we can express every possible data
structure with the number of elements and the number of bytes for each element,
including padding elements. We chose to address 32-bit integer values instead of
bytes and introduced byte padding for unused memory space. This simplified the
state machine in hardware later on. The first two bytes at address 0 are used to
describe the number of elements. The following two bytes are padded. Afterwards
the data description starts with length of the data in bytes and the corresponding
data follows. This scheme is repeated for each element.
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Figure 4.14: Protocol state data structure

4.3.1 Software Module

The state transition mechanism is a LANA extension that provides the needed func-
tionality for getStateSW() and setStateSW() calls. The basic idea behind it was
to develop a single miscellaneous device driver, which is responsible for such opera-
tions on all functional blocks. Reading from the device represents getStateSW()
and writing it results in setStateSW(). The extensions are located in the file
xt_conf.c and include the following functions [17]:

• long ei conf ioctl(struct file *file, unsigned int cmd, unsigned long
arg): Is used to change the underlying configuration device parameter, for
instance the name of the functional block. Returns 0 when successful

• ssize t ei conf read(struct file *file, char user *buff, size t len, loff t
*ignore): Calls a specific function on the FB, which was configured on the
device to write its internal data to a buffer. Returns the data length when
successful

• ssize t ei conf write(struct file *file, const char user *buff, size t
len, loff t *ignore): Calls another specific function on the FB that extracts
its internal data from a buffer. Returns the data lenght when successful

lana_ei_cfg
FB

"fb_trans"

1. 2.

3.

1.

2.

3.

Set the FB for transition (ioctl)

Read/Write device file (cat/echo)

Copy protocol state (linearize/delinearize)

Figure 4.15: State transition in software

Figure 4.15 shows how the state transition is implemented in software: The first
step is to tell the lana_ei_cfg device the name of the functional block that should
write or read its internal data. Therefore we need to open the device file from user
space and access its file descriptor using ioctl(2) [57] with a device driver specific
message and the name of the FB, ”fb trans” in our example.

Next, we either read or write to the device file, depending if we set or get the
state. As a result, one of the above mentioned functions will be called. Internally,
the read and write functions first need to figure out the address of the earlier con-
figured functional block. With the extension of the state transition mechanism, two
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new functional block callback handler were introduced and added to the functional
block data structure. Those two functions are called linearize and delinearize.
linearize’s responsibility is to copy the FB’s internal state and data to a buffer,
whereas delinearize copies the buffer and sets its internal state and data accord-
ingly.

ei conf read allocates memory, calls the linearize function of the FB and copies
the retrieved protocol state data back to user space. ei conf write behaviour is
analogous except that data is copied from user space to kernel space. Note that it
is the developer’s task to change linearize and delinzearize functions to extract
or create the earlier mentioned data structure. The exact internal data structure is
unique for each FB.

4.3.2 Hardware Module

A hardware implementation of the state transition mechanism for CRR sender mod-
ule was implemented. The following examples and discussion should introduce the
basic operation, but in the end, it is the developer’s task to tailor the example FSM
to his specific needs. The existing design should be a good starting point for future
FBs.

Data Structures

Listing 4.15 shows the record structure that was used for the state transfer:

type TRANSITION_STATUS is record
addresscounter : integer range 0 to C_LOCAL_RAM_SIZE;
elemcounter : integer range 0 to 65535;
bitstream : std_logic_vector (2*WIN_SZ -1 downto 0);
len_index : integer range 0 to C_LOCAL_RAM_SIZE;
pktindex : integer range 0 to MAX_SEQ_NR;
pktbuffer : std_logic_vector (31 downto 0);
buffercounter : integer range 0 to 1600;

end record;

Listing 4.15: State transition record for CRR

The dual port RAM (DPR) of every hardware FB that is connected to ReconOS’
operating system and memory interface is the starting point of our module. Other
RAMs belonging to our FB that store protocol specific data need to be updated
to DPR, because we need to be able to read and write to all involved RAMs from
two different processes at the same time. The addresscounter is used to read or
write from and to the ReconOS DPR. The total number of elements is stored in
elemcounter. The bitstream field is used as a copy of the original bitstream and
is updated every time a packet has been processed and stored in the ReconOS DPR.
It acts like a packet copy schedule. All length values from the data structure are
stored in length_index in order to read the correct amount of bytes for each data
structure member. The current packet that is processed is written to pktindex,
which is responsible to write packets at the correct position in the CRR DPR.
ReconOS’s DPR’s data width is 32 bit and the DPR to store CRR packets has
a data width of 9 bits. The pktbuffer is used to buffer data while we write it
bytewise to the CRR DPR or from CRR DPR to ReconOS DPR in chunks of 32-
bit. Finally, buffercounter’s responsibility is the addressing for read and write
accesses to CRR DPR.

Finite State Machines

The state transition mechanism introduces an additional FSM, responsible for the
extraction and initialization of data, as an extension to the ReconOS FSM. It’s called
an extension, because it may just add those states discussed later to a preexisting
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FSM as an extension. We will begin with the extension to the ReconOS FSM that
is pictured in Figure 4.16:

GET OP is the intial state of the ReconOS FSM. In this state the operation is
determined, that could result either in GET_ADDR, or SET_ADDR.

GET ADDR receives the memory location at which we store our protocol state
later.

PROC GET STATE is the processing state of the getStateHW() call and will
lead to STATE_WRITE when finished.

STATE WRITE writes the content of the ReconOS DPR to the memory location
specified earlier and moves to STATE_ACK.

SET ADDR receives the memory location from which we need to read our data
block structure later.

STATE READ copies data from the previously given memory location to our
ReconOS DRP.

PROC SET STATE is the processing state of the setStateHW() call and leads
to STATE_ACK later.

STATE ACK is the final state of the ReconOS FSM and is responsible for feed-
back delivery after the command has been executed successfully.

PROC_GET_STATE

GET_OPGET_ADDR

STATE_ACK

STATE_WRITE

SET_ADDR

PROC_SET_STATE

STATE_READ

Figure 4.16: ReconOS state transition FSM

The remaining FSM reads the FB’s internal state and creates a data block struc-
ture as seen in Figure 4.14, or reads such a data block structure and initializes
internal record data structures and memories accordingly. The CRR state transi-
tion FSM can be seen in Figure 4.17 and is presented next:

NEUTRAL is the initial state and resets internal data records. Next state is
either GET_PROC_HDR in case of a getStateHW() call, or SET_PROC_HDR when
setStateHW() was detected.

SET PROC HDR extracts the number of elements and writes the value to el-

emcounter.
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SET PROC BITSTREAM extracts the length of the bitstream value and stores
it to bitstream in the next cycle.

SET PROC OPENPKTS does the same as the SET_PROC_BITSTREAM state but
for openpkts (internal record) that are stored in pktbuffer temporarily.

SET PROC WINDOW does the same like SET_PROC_OPENPKTS for window (in-
ternal record).

SET PROC NEXTSEQ does the same like SET_PROC_OPENPKTS for nextseq (in-
ternal record).

SET PROC RECORD initializes the internal data record structure for CRR
with the values written to pktbuffer register. Unacknowledged packets change
the state to SET_PROC_LEN, whereas no outstanding ACKS results in the state
DONE.

SET PROC PKT LEN extracts the packet’s length.

SET PROC PKT START acts as a transition state before regular processing
starts.

SET PROC PKT writes the pktbuffer bytewise to the CRR DPR and also con-
trols the continuous reading from the ReconOS DPR. When buffercounter

reaches len_index-2 we change to SET_PROC_PKT_END.

SET PROC PKT END sets the end of file bit at the beginning of the CRR DPR
data signal to indicate the end of the packet.

GET PROC HDR writes the number of elements in the first 16-bits of the Re-
conOS DPR.

GET PROC BITSTREAM stores length and value of CRR’s internal record
member bitstream.

GET PROC OPENPKTS stores length and value of CRR’s internal record
member openpkts.

GET PROC WINDOW stores length and value of CRR’s internal record mem-
ber window.

GET PROC NEXTSEQ stores length and value of CRR’s internal record mem-
ber nextseq. The next state depends on the fact if any packets need to be
stored. If so, the packet with the lowest sequence number is processed first in
GET_PROC_PKT. If there are no packets to store, we continue with DONE.

GET PROC PKT collects data from the CRR DPR in our buffer and writes the
data in 32-bit chunks to the ReconOS DPR. The state changes to GET_PROC_PKT_LEN,
when the end of file has been detected.

GET PROC PKT END writes the buffered data to the ReconOS DPR and pads
unused bits with 0.

GET PROC PKT LEN writes the length of the processed packet to the correct
address. If there are no other packets left to be processed and stored in
the ReconOS DPR anymore, we jump to the final state DONE. Otherwise we
identify the next packet in line to be stored in ReconOS DPR, reset some
internal state transition record members and return to GET_PROC_PKT.
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DONE communicates with the ReconOS FSM and signals that the processing has
come to an end. The ReconOS FSM will either move on with STATE_WRITE

when it was a getStateHW() call, or with ACK when it was setStateHW(),
to signal that the processing finished.

NEUTRALGET_PROC_HDR SET_PROC_HDR

GET_PROC_BITSTREAM

GET_PROC_OPENPKTS

SET_PROC_BITSTREAM

SET_PROC_OPENPKTS

GET_PROC_WINDOW SET_PROC_WINDOW

SET_PROC_NEXTSEQGET_PROC_NEXTSEQ

DONEGET_PROC_PKT SET_PROC_RECORD

GET_PROC_PKT_END

GET_PROC_PKT_LEN

SET_PROC_PKT_LEN

SET_PROC_PKT_START

SET_PROC_PKT

SET_PROC_PKT_END

Figure 4.17: State transition FSM
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Chapter 5

Evaluation

In this chapter, we elaborate on the methodology of functional verification and
present a performance evaluation of our implemented functional blocks. This chap-
ter is structured in hardware and software sections for Huffman and CRR modules.

5.1 Testing Platform

We used two machines with exactly the same hardware and software components
to run performance benchmarks and functional tests. Those systems include the
following main components:

• CPU: Intel Core 2 Quad, Q6600, 2.4GHz

• RAM: 4 GB

• NIC: Intel 82566DC-2 Gigabit Ethernet Controller

• OS: Linux Version 3.0.0, Debian 4.4.5-8

We ran all software benchmark on a transmitter-receiver setup that was connected
directly through Ethernet.

5.2 Testing Methodology

The performance values measured in this section represent the statistical median of
a series of measurements. Packet sizes were chosen as proposed in RFC2544 [47],
except that the maximum transmission unit was set to 1500 bytes. Complexity
tests in software and hardware were measured in terms of cycles. The advantage of
cycles as the unit of time are various:

• Smallest and most accurate unit of time to measure performance and com-
plexity

• Independent of processor frequency and should yield comparable results for
different processors of the same architecture

• Suitable to measure software execution time in Linux kernel space and hard-
ware execution time in simulation

This reasons justify cycles as the unit of time when comparing software and
hardware modules. The other chosen unit was packets per second to express and
measure the throughput.

65
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Hardware benchmarks run in simulation only need a single measurement, because
the result is exact and deterministic. Software benchmarks were tested in a series of
at least 6 measurements with a time duration of 10 seconds to compute the median.
This testing approach gave us an accurate number for most measurements and
the duration of at least 1 minute compensated for irregularities. Strong variations
during measurement resulted in increasing the measurement series to obtain more
accurate results. The exact testing process will be explained in the appropriate
chapter, because depending on the protocol, the involved tools and setup changed.

5.3 Huffman Coding

What follows is the presentation of our testbench and benchmark setups and their
results. We start the discussion with an examination of software modules and
continue with hardware implementations afterwards. Finally, we put the results in
relation to each other and discuss the speed-up and limiting factors.

5.3.1 Software Module

Compression and encryption protocols are challenging to verify and debug. When
things go wrong we end up debugging encoding and decoding on bit-level. Encoded
data does not contain a lot of information that can be used to conclude what went
wrong when things fail. One approach is to use data that is encoded into repeating
patterns. Once encoder and decoder work as single units they can be connected
which simplifies the debugging process immensely. The output should be exactly
the same as the input in an encoder-decoder setup. This was the approach for our
functional verification experiments in hardware and software.

Functional Verification

When designing and implementing the Huffman coding algorithm for the software
module, we wrote a user space application first in order to do the testing. Debugging
and running tests in a user space application has several advantages: Dereferencing
null pointers, or segmentation faults end up in program failures instead of kernel
crashes. As a consequence, it is easier to follow the program flow and analyze
program paths and diagnose outputs with the help of printf(3) calls, for instance.
There are kernel debuggers such as KGDB [58], but those are controversially discussed
in the Linux kernel hacker community [59]. Therefore, we decided to use gdb in user
space.

Finally, the testing had to be done in kernel space as a LANA FB module. The
setup can be seen in Figure 5.1.

eth0:vlink fb2:huff

fb2:huffeth0:vlink

PF_LANA_SOCKET

PF_LANA_SOCKET

APPLICATION

APPLICATION

Sender

Receiver

Figure 5.1: Huffman setup
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The basic setup consists of a sender and receiver node that have both loaded the
LANA framework in kernel space. Additionally, there is a Huffman coding module
linked between Ethernet and PF_LANA sockets. The socket was opened by a user
space application and is responsible for forwarding packets between user space and
kernel space. The application on the sender node creates packets and sends them to
the socket. The socket receives those, changes the IDP addresses in the control block
field of the sk_buff structure and forwards the packet to the PPE. The PPE sends
the packet to the Huffman coding block, which encodes the payload, updates IDP
addresses and returns the packet to the PPE. Eventually, the packet is being sent to
the Ethernet interface that creates a frame and sends it to the receiver node. When
the packet arrives at the receiver, it is forwarded to the Huffman coding module
that decodes the payload data. If everything worked out as expected, the packet
should carry its original data again when leaving the module. The user space on
the receiver side does not notice an effect of the encoding and decoding that took
place between sender and receiver user space.

To generate a realistic letter frequency distribution we chose the book The Count
of Monte Christo written by Alexandre Dumas from the Project Gutenberg [60].
Project Gutenberg offers downloads to various books in UTF-8 format. We wrote
a small Python script that opens the book file and scans the text couting different
letters. In the end the distribution is printed in sorted order. This alphabet was
later used as default alphabet for our Huffman coding modules in software.

Which experiment would be better suited than the encoding and decoding of the
book, which was used to generate our alphabet? As a positive side effect, we were
able to measure the compression ratio which could be achieved with an optimized
code book:

We wrote a user space application that opens the file of The Count of Monte
Christo, opens an AF_LANA socket, creates raw packets with a payload size of 1260
and sends the packets to a given receiver. The packet’s payload is filled with data
from the book. Those packets are encodeded, sent and decoded again in kernel
space of the receiver. On the receiving side runs another application that receives
packets from the previously opened AF_LANA socket and writes the payload in a file.

We connected an additional counter module to the LANA communication stack
on the receiver side seen in Figure 5.1. Then, we ran the experiment twice: Once
for a plain protocol stack without Huffman module between socket and vlink, and
once for a protocol stack including Huffman coding. From the counter module, we
extracted the number of packets and bytes that were received on the receiver side.
For the Huffman protocol stack, we compared the received file against the original
file with vimdiff(1). The two files were exactly the same which verifies correct
functionality of the encoder and decoder. Table 5.1 shows the extracted numbers
for compressed and uncompressed transmission.

Compressed Uncompressed
# Pkts 2551 2551
# MB 1.42 2.5

Table 5.1: The Count of Monte Christo transmission

Compression Ratio =
Compressed Size

Uncompressed Size
=

1.42

2.5
= 0.568

Performance Evaluation

In our first benchmark, we wanted to compare the maximal throughput of the Huff-
man coding module against a simple FB counter in LANA. Therefore, we connected
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two machines with each other: A traffic source and a traffic sink. The traffic source
generated encoded packets through trafgen [61], which is a high-performance zero-
copy network traffic generator. The pre-encoded packets that need to be sent were
stored in a file. We chose this setup, because it offers a higher throughput and more
flexibility than other tools such as packETH [62].

On the receiver side, we had two different setups for this test: Our first setup built
a LANA protocol stack similar to Figure 5.1 except that there was a FB counter
connected to vlink, which counts incoming packets and their size. The second setup
was the Huffman setup mentioned before with a FB counter after the Huffman
coding block. This way, we were able to measure the maximal throughput of our
system. The decoding process is much more complex than the encoding. Therefore,
our system is limited by the throughput which can be achieved through decoding.

This setup was tested for the different cases: Huffman codes have variable lengths:
We compared longest code lengths, average code lengths and shortest code lengths.
It should be mentioned here that the average code length was chosen to be 1 byte.
The reason being that likely characters have a length of less than 1 byte, whereas
unlikely characters have a length of more than 1 byte. All characters with a code
length of 8-bit need the same amount of memory in ASCII or Huffman represen-
tation. Before encoding takes place, each character is 1 byte long. Afterwards
a character may have a length between 3 and 17 bits, which needs to be taken
into account when testing performance. To be fair when compairing the effort and
complexity, all following packet sizes refer to the original payload data.

The measurement data was read from the FB counter via the proc filesystem

(cat(1)) from user space. Through watch(1) we read the counter value every 10
seconds and noted the value. We collected 6-7 measurements and computed the
median from our measurement series, as described in Section 5.2. The results are
presented in Figure 5.2.
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Figure 5.2: Huffman module throughput

The reason why values for packet sizes larger than 512 in the worst case disappear,
is that each original character is mapped to a 17-bit code. This means that the
encoded frame is more than twice as big, which exceeds the MTU size of 1500 bytes
and no fragmentation was implemented. The remaining results are as expected with
shortest code lengths causing the shortest tree traversions for decoding.

Our second benchmark compares the complexity between encoder and decoder



5.3 Huffman Coding 69

module. Therefore, we built the exact same setup as in Figure 5.1. This time
we wrote a small user space application that would keep sending frames to the
receiver node with the correct header set for Huffman frames. In both of the Huff-
man coding Linux kernel modules we measured the time for encoding and decoding
the frame. To measure the execution time as accurately as possible, we used the
get cycles function (provided by the Linux kernel), which returns a processor’s cy-
cle counter. The result of those tests are presented in Figure 5.3(a) for the encoding
and Figure 5.3(b) for the decoding process.
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Figure 5.3: Huffman complexity

The figures show that decoding is more computationally expensive than encoding.
Missing values on the decoder side are caused by packets larger than the MTU. One
interesting point in Figure 5.3(a) which needs further clarification is the fact, that
the complexity for average code lengths is lower than for shortest code legths. The
average code length was chosen to be 1 byte which is easier to append to an internal
data buffer of 32-bit. Further, there is no need to split up the code word, because
of code words crossing integer borders. This results in a lower complexity to encode
words with one byte code length.

5.3.2 Hardware Module

For the hardware function verification and performance evaluation we used the same
encoder-decoder setup as for the software part. Verification and evaluation was
done in simulation using ModelSim. The behaviour of our design built in hardware
should be exactly the same as our code running in simulation, when good care of the
synthetization process is taken to avoid errors and to control warnings. Verification
can be done through simulation with exactly the same setup as in software that is
illustrated in Figure 5.1: We need to design and create a flexible testbench that can
be resused to verify correct functionality for various test cases. This can be done
very efficiently and quick in simulation using scripts and file based testbenches. A
big advantage of hardware simulation is accuracy: Execution time can be measured
in clock cycles that is the most accurate unit of time for our measurements and we
can review the circuit of interest being isolated from other logic that may distort
our results otherwise.

Functional Verification

In this section, we present the testbench and setup used to verify correct function-
ality and operation of the Huffman module in hardware. One major challenge when
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writing testbenches is to write an efficient and reusable model that can be used
to test and verify all possible states of the module for all possible input vectors.
Figure 5.4 shows the testbench architecture:
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Figure 5.4: Huffman testbench

The core of the testbench was the Test pattern generator, which was a Python
script that creates stimuli and expected response test vectors for Huffman frames.
The art of software and hardware testing is an active research topic [63], because
even today software and hardware are still shipped with bugs [64]. To quote Dijkstra
here: ”Testing shows the presence, not the absence of bugs.” [65]. At first, we
began testing with some real world data such as magazine articles or newspaper
reports. Once those, somewhat random, data sets were successfull, we began testing
border values. We claim that those cases offer the highest potential for bugs and
misbehaviour, namely shortest and longest code words. We also added an average
data test case. Finally, we introduced a test case to verify correct operation in case
of filled FIFOs. Each FIFO can store up to 16 data units before it marks itself as
full. Every time a module wants to write data to a FIFO, it needs to check whether
the FIFO is still able to store new data or if it is full. The event of a full FIFO added
some complexity and difficulties to our testing setup. In theory, the full event could
be reached in every state of the Huffman module. Therefore, we added a separate
process, just for testing, that would only read the final FIFO of the model under
test (MUT) every 16th cycle. This would cause all other FIFOs to fill up quickly
and delay the internal processing of encoder and decoder until new data values have
been read from the final FIFO. The Python script, that we used contained three
constants: The number of packets, packet size and the other one being the char to
encode and decode.

This script not only generated stimuli test vectors, but at the same time also
the expected response vector, because those two should be exactly the same. Data
that passed the encoder and decoder stage should be the same as the original data.
Our Test pattern generator created two files: A Stimuli file and an Expected

response file. The Stimuli file not only contained packet data, but also ReconOS
data which was necessary to initialize the register banks in the Huffman encoder
and decoder module.

The testbench had a stim proc process, which was responsible to read stim-
uli from the designated file and apply those to the MUT. Further, there was a
response proc process that acquired the response of the MUT and wrote it to
another file.

After the simulation had finished, we compared the response file, with the Ex-

pected response file using vimdiff(1). This procedure offered a quick and flexible
way to compare responses. This test was run for the three cases mentioned earlier
and for packet sizes described in Section 5.2.
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Performance Evaluation

The previously explained testbench setup has been used to evaluate the performance
of the Huffman encoder and decoder. Again, we tested for worst, average and best
case in terms of code length. It should be noted here, that in order to measure the
performance of the hardware implementation, we changed the FIFOs as pictured
in Figure 5.4. The NoC implementation uses FIFOs based on BRAM modules that
offer very small storage sizes with a depth of 16. The problem with FIFOs that small
is that they fill up very quickly and once they are full, they block FB from working
properly and eventually slow down the whole system. Our Virtex-6 FPGA provides
built-in FIFOs that are much bigger (at least 512 bytes). Most FBs will probably
change their internal FSM states at some point depending on the header of a received
packet. This means that it will buffer the header in a shift register first and process
it after the whole header has been received. Hence, the previous FB sending data to
the current FB, will have to wait until our current FB finished processing the header
and fetches new data. Full FIFOs significantly reduce performance and therefore,
we should try to avoid or at least reduce the frequency of this event.

For the following tests we used built-in FIFOs with a depth of 512. Figure 5.5
shows the complexity of encoder and decoder in hardware.
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Figure 5.5: Huffman complexity

Figure 5.5(a) shows the complexity of the Huffman encoder in hardware. Encod-
ing for shortest and average code lengths roughly take 1 cycle per character,
whereas longest code words take 2 cycles. Shortest code words are 3 bits long
and average code words 8 bits. This means, we are able to read one 8-bit ASCII
character and write one 3-7 bit code word per cycle. Shortest and average code
lengths take exactly the same time, because as soon as there is at least one byte
to write to the output FIFO, the internal buffer is emptied. This way, we avoid
the unconvenient case for splitting up code words. Longest code words are 17-bit
long, which means that it takes more than 2 cycles to write those code words to
the output FIFO. In contrast to the previous cases, we do have the possibility of
overflowing internal buffers. To avoid this, we only read new data if we have at
least 17 bits of free storage in our internal buffer.

The complexity characteristic of the hardware decoder module is shown in Figure 5.5(b).
Decoding is done in a parallel fashion comparing all code words at once. Why does
it make a difference if they are decoded in parallel? Shouldn’t the curve look exactly
the same for all three cases? The decoding process and writing data to the output
FIFO takes the same time for all three cases. A code word between 3 and 17-bit is
read and converted into an 8-bit long ASCII character. The complexity difference
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is caused by the different code word lengths: To be sure that we can decode a char-
acter, we need to have at least 17-bit in our internal buffer. At first, the internal
buffer is empty. After reading 3 bytes, we have 24 bits stored in our internal buffer,
which is enough to start the decoding process. We could have a match for code
words between 3-bit and 17-bit. A match with a very rare code word (length 17)
would empty the buffer down to 7-bit. After that, we would need to read new data
for 2 more cycles, before starting over with decoding again. A 3-bit code word on
the other side, would empty the internal buffer down to 21, which would trigger a
new decoding round immediately. Decoding roughly takes 4,5 and 6 cycles for
shortest, average and longest code length.

Now that performance evaluation of software and hardware have been presented,
it is time to compare them against each other. An overview and comparison between
Huffman encoder in software and hardware is given in Figure 5.6.
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Figure 5.6: Encoder comparison

The speed up from software to hardware implementation depends on the type of
data that is sent: We see that the hardware implementation runs approximately
20 times faster when encoding character with average and short code word
lengths. For longest code words the hardware encoder still performs 13 times
faster.

Regarding the decoder comparison, Figure 5.7 presents the measured complexity
for both decoder implementations. Measured speed-ups from software to hardware
implementation are close to 6, 15 and 22 times faster for shortest, average and
longest code lengths.

The limiting factor of those numbers is memory access. Encoding and decoding in
hardware could be done even faster, if we had a wider data bus that would transfer
up to 32-bit. This would increase the performance of the encoder and decoder for
the longest code words. First, we could write a 17-bit code word, each cycle and
second, we could fill our internal buffer much faster for the decoding process. With
a data bus width larger than 17-bit, we could fill our buffer faster than we can
empty it. Additional performance gains could be achieved by increasing the clock
frequency of our Huffman hardware modules. The maximum achievable frequency
for encoder and decoder are presented in Table 5.2. Additional pipeline stages could
be used to increase the maximal frequency further, but the main problem at this
point is the data transfer between modules which slows down performance. When
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Figure 5.7: Decoder comparison

increasing the frequency we would have to increase read and write clock frequencies
of the involved FIFOs as well. A better approach would be to increase the data
width and keeping the frequency constant. This approach would only be possible if
we had more than 1 Gigabit of bandwidth from the network interface controller.

Max. Frequency
Encoder 142 MHz
Decoder 206 MHz

Table 5.2: Maximal frequency for encoder and decoder

5.4 Continuous Repeat Request

Within this section, we cover verification and evaluation for Continuous Repeat Re-
quest sender and receiver modules. One difference when comparing this setup with
the setup of Huffman modules is the fact that we have sender and receiver mod-
ules separately. This caused similar problems and challenges as were described in
the Huffman section before: Testing sender and receiver as single units is impracti-
cal, because involved CRR packets are dynamic and header fields change frequently.
Further, there is a tight connection between sender and receiver module. The sender
won’t continue operation unless it receives ACK frames from a receiver-like device.
In general, manual single unit testing is troublesome and inefficient. Therefore,
we had to test and debug a complete sender-receiver setup, which increased the
difficulty to locate the origin of errors.

5.4.1 Software Module

When thinking of a software implementation of CRR, most people might underes-
timate the difficulties and challenges involved in this task. The problems described
in Section 4.2.1 caused a lot of setbacks and wasted hours trying to figure out the
problem in the implementation, especially when the system runs in Linux kernel
space. Most of the faced problems were related to the development environment:
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Quite some changes, such as a LANA extensions to block user space packets from
entering the kernel space or increased Linux socket buffers were necessary to pro-
vide a solution for running a CRR protocol in Linux kernel space and the LANA
framework.

Functional Verification

Unlike the functional verification of the Huffman module, it was not practical to test
and debug CRR sender and receiver in a user space application before porting it
to Linux kernel space. The user space implementation would have been much more
sophisticated and less reusable than for the Huffman software module. Therefore,
we implemented and tested the functionality in kernel space from the start.

Luckily we were able to reuse many existing Linux kernel functions and data
structures. This sped up implementation time and reduced the amount of potential
bugs in our code. In fact, most of CRR’s functionality was built around already
existing functions and structures.

Once sender and receiver had been implemented, we could finally start testing
the system pictured in Figure 5.8.

eth0:vlink

eth0:vlink

PF_LANA_SOCKET

PF_LANA_SOCKET

APPLICATION

APPLICATIONfb2:crr_rx

fb2:crr_tx

Sender

Receiver

Figure 5.8: CRR setup

The setup consists of a CRR sender and receiver module that are part of a LANA
protocol stack. The setup is basically the same as in Section 5.3.1. It should be
noted, that connections between FBs are bidirectional. The sender module receives
its packet to be sent on the EGRESS path from the PF_LANA socket and forwards
its CRR data packets on the EGRESS path to vlink. CRR ACK packets are
received on the INGRESS path from the vlink. The receiver, on the other side,
receives CRR data packets from the INGRESS path by vlink, sends CRR ACK
packets to vlink through the EGRESS path, and forwards CRR data packets on
the INGRESS path to a PF_LANA socket.

To test the functional correctness of sender and receiver, we designed a user
space application for testing. This application should detect missing and out of
order frames. It should also be flexible enough to allow fast testing for different
packet numbers and sizes.

The application running on the sender side sends the number of packets with the
chosen packet size to the PF_LANA socket. The application also sets the header fields
of the frame such as MAC addresses and the correct Ether type. The first byte of
the payload is used as a packet counter that is increment for each packet that was
sent. Those packets are sent to the CRR sender module, which builds CRR data
frames out of it.

On the receiver side runs another application that extracts the counter value from
the payload and compares it with the last value which has been received. The newly
received value should be its previously received value incremented by one. If so, the
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application continues running. In case of a mismatch, the two packet numbers are
displayed using printf(3).

This test printed missing packet numbers, but missing packets would cause the
sender to retransmit those packets and stop sending new packets. Finding erroneous
or missing frames is tedious and time consuming, when roughly sending 20’000
packets, before the problem happened for the first time. The missing packets in
user space were present in kernel space which lead us to the conclusion that the
problem was caused by full socket buffers. The user space couldn’t keep up reading
arriving packets fast enough. The socket buffer got full and newly arriving packets
were discarded.

After this problem has been solved we started testing our setup with varying
packet numbers, packet sizes, and window sizes of the CRR modules. Those tests
verified correct operation of the sender and receiver module. More details of the
testing process such as packet lengths can be found in Section 5.2.

Performance Evaluation

To see how our CRR implementation performs in comparison to other reliability
protocols, we setup a benchmark to measure TCP’s performance. We used iperf to
measure the maximum bandwidth between a client and server setup. To test this
setup for various packet sizes, we had to disable the Nagle algorithm presented in
RFC896 [66]. The algorithm helps improving the efficiency of TCP/IP networks by
combining several small packets into one big packet. This would prevent us from
testing the performance of TCP for various packet sizes. The results are presented
in Figure 5.9.
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It is interesting to note how TCP’s packets per second rate ramps up from packet
sizes of 64 until 512 bytes. We would expect to see higher packet rates for small
packet sizes. For a packet size of 1500 bytes TCP’s performance is very close to
the maximal achievable performance with a bandwidth of 960 Mbit. Next, we
will compare it with the performance of a plain LANA stack, and a LANA stack
including CRR.

We used the setup from Figure 5.8 to run the software benchmarks and tested the
throughput for various window and packet sizes. We wanted to test the maximum
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performance of our module and tried to avoid any overhead caused by a full trans-
mission queue in the CRR sender. Therefore, we chose a maximum queue length,
that would be large enough to handle the transmission and transmitted bursts of
data with 32’000 packets. The user space application allows to choose to set the
number of packets and their size during run time. The user space application on
the receiver side started a timer and counted the number of received packets. It also
validated correct reception by checking the packet numbers stored in the payload.

Another reason for this setup was the fact, that high load eventually caused
the system to be less responsive and the sender’s performance to decrease. The
later was probably caused by the system being slow and working to capacity. The
origin of this problem still needs further clarifications. The localization is difficult,
because it could be the user space to kernel space interface, or a potential bug in the
CRR sender module. Further investigations are necessary to discover and fix this
problem. The problem does not seem to be related to CRR functionality, because
the transmission is still working although with reduced performance. This problem
does not manifest itself, when several data bursts of 32’000 packets are sent at once.
It seems to be related to data transfers with high load over a longer period of time.

The results for this benchmark are presented in Figure 5.10.
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Figure 5.10: CRR throughput

Unlike TCP, the throughput of our CRR module is flat for packet sizes between
64 and 1024 bytes. For larger packets, the additional effort for copying or sending
packets can be seen from the characteristic of the graph. We assume that a LANA
internal memory allocation strategy is responsible for this behaviour, because the
performance of the LANA stack looks exactly the same. This possible memory
bottleneck could prevent the protocol stack from reaching higher throughputs for
small packet sizes.

Another limiting factor is the transmission delay between sender and receiver and
the delay introduced by processing the packet at the receiver side. After sending
the last packet of the transmission window, we need to wait for all packets to be
acknowledged, before starting a new window. Imagine that all packets have been
acknowledged so far. After the last packet is sent, we need to wait a long time before
we receive the ACK. During this time, there won’t be other outstanding packets.
This fact heaviliy decreases the performance of the system, but is a characteristic
of CRR.
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In a next step, we should implement a CRR version with a larger maximal window
size and a sliding window implementation instead of static windows (similar to
TCP). This window would start at the position of the oldest oustanding ACK.
Each time an ACK is received, the window is shifted by one. If the window is big
enough we are able to send data continuously and only have to wait for ACKs in
the event of packet loss and retransmissions.

5.4.2 Hardware Module

The same sender-receiver setup from the software verification was used in hardware.
Presented results have been acquired from the simulation environment. The same
file-based testbench approach has been used as for Huffman coding modules in
hardware before. In the following section, we present our testbench for functional
verification.

Functional Verification

The testbench architecture of our CRR sender receiver setup is presented in this
section. The testbench and involved scripts are very similar to the previously pre-
sented approach in Section 5.3.2. In order to avoid redundancy, we will only discuss
keypoints that vary. The whole testbench can be seen in Figure 5.11.
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Figure 5.11: CRR testbench

A Python script is taking care of creating stimuli file vectors and expected re-
sponses. There is no need to initialize internal data structures in the CRR modules
before starting the operation. Therefore, CRR, as is, is not connected to the Re-
conOS interface. Between sender and receiver there are two FIFOs, that are used
for carrying CRR data and ACK frames. The script responsible for the Test pat-

tern generator was slightly different this time. The sender will alter the header of
the frame, before sending it. The effects of the sender could easily be precomputed
and a separate test vector for Expected responses was generated. It should be
noted here, that the hardware module expects the packets to arrive in the correct
order, which means that the packet size doesn’t need to be changed by the hardware
module. Therefore, header fields must be free, or will be overwritten. For instance,
the sequence number will be written after the Ethernet Type, so this field should
not carry any other data.

The Python script is configurable and allows the user to set packet sizes, number of
packets and payload data. After the test vectors had been generated, the simulation
for functional verification started. We sent between 10 and 1000 packets for different
packet sizes and window sizes. This setup already takes care of full FIFOs, because
of the sheer amount of data which is transfered and the transition states, which
would block data from entering the module.
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The testbench itself had the same processes as before. After the simulation came
to an end, we compared actual responses with expected responses using vimdiff(1)
again. This test resulted in identical responses for all our tests, which should be
sufficient to prove functional correctness. As a side note, we also created special
testing cases, that arise when things go wrong. In one case, we created all possible
permutations that could possibly show up on the receiver side, to see if packets
are forwarded in the correct order. Those permutations were tested for different
window sizes as well, which increases the test vector immensely. Additional test
cases were time-outs, retransmissions and duplicate frames. All those tests passed
successfully.

Performance Evaluation

In this section we used the previous testbench again. Unfortunately, our model
does not include transmission delays, so we measured the complexity of sender and
receiver modules. We used built in FIFOs again to run the performance benchmark,
and to not slow down our hardware blocks, because of full FIFOs during the header
processing stage. Figure 5.12 shows the results for the complexity evaluation for
sender and receiver modules.
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Figure 5.12: CRR complexity

There are three different cases that yield slightly different results: We measured
the time it took the sender module to send a packet and to receive an ACK.
For the receiver module we measured the time it took to receive a packet and
send an ACK. The overall equation for the number of cycles for a packet is:

#Cycles = #Bytes + Latency

We measured a latency of 1 cycle when sending a CRR data packet. A latency
of 1 means that a packet with a packet size of 60 bytes takes 61 cycles to be
processed. The additional cycle was used to initialize some internal data structure.
This additional delay is negligible for large packets.

We also measured the reception of ACK packets by the sender. Receiving an
ACK takes exactly the same amount of cycles that are necessary to read it. ACKs
don’t need to be forwarded to following FBs, which means that we only need to
look at the packet header to decide, what to do next.



5.4 Continuous Repeat Request 79

Finally, the receiver has a bigger latency than the sender module, because it
needs to wait for the whole header to be received, before making a decision on how
to continue. This causes a latency of 17 cycles when forwarding packets, and
18 cycles when sending the corresponding ACK of a packet.

The performance of the CRR hardware modules are close to optimal and suffer
from a small latency which is introduced by the header checking process. Possibili-
ties to improve this are to either increase the data width of the FIFO interface, or
to change the internal header structure. The data bus width is 8-bit and may run
at a frequency of 125 MHz, which is the maximal bandwith of our Gigabit Ethernet
controller. Increasing the data bus’ width is not an option unless we get to use a
faster Ethernet controller.

The packet header is the main source of latency. It takes 14 cycles to receive
MAC addresses and Ether type. A different internal header representation could
help to reduce latency. It would be possible to either rearrange header fields, such
that the module can extract its data of interest from the header much earlier, or
to introduce some specific encapsulation and decapsulation technique for headers.
Another option is to strip FB-specific headers before forwarding the packet to the
next FB. The achievable frequencies of the CRR modules are presented in Table 5.3.

Max. Frequency
CRR sender 122 MHz

CRR receiver 123 MHz

Table 5.3: Maximal frequency for CRR sender and receiver

In the current design FBs are clocked at a frequency of 100 MHz. The maximal
frequency of CRR sender and receiver module is slightly below the 125 MHz used in
the Gigabit Ethernet controller. There are 3 possible approaches to overcome this
problem:

• Shorten the longest path by adding pipeline stages which increases the maxi-
mum frequency

• A minor code or design modification may be sufficient to reach a maximum
frequency of 125 MHz

• Reduce the read and write clock frequency of the FIFOs connected to the FB,
but widen the data width. Transfer 32-bit per clock cycle and reduce the clock
frequency to 31.25 MHz in order to achieve Gigabit bandwidth.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Within this section we summarize and present the most important insights that we
gained during the work on this thesis:

We have seen two different protocols that were implemented as software and
hardware modules. Those protocols differ in terms of computational complexity,
expense and achievable speed-up for a hardware implementation. Huffman coding
provides a high level of parallelism that can be exploited in hardware. We realized a
hardware execution speed-up of up to 20 times depending on the code word length.
CRR on the other side, depends heavily on memory accesses such as buffering
and queueing packets. Its performance is further limited by transmission delays
between sender and receiver. Memory accesses are a common bottleneck for both
protocols: The Huffman coding hardware modules, for instance, could be further
improved with a wider data bus. Encoder and decoder modules cannot fill or empty
their internal data buffers fast enough, which forces our coding modules to idle. The
hardware implementation of CRR spends the majority of its cycles on data transfers.
Increasing the bandwidth of the data bus would be the most efficient improvement
in terms of performance. Unfortunately, the bandwidth is limited by the Ethernet
network interface controller which achieves Gigabit bandwidth on on our target
platform.

The following list summarizes major contributions of this thesis besides the report:

• Design and implementation of Huffman coding modules in software and hard-
ware. Software modules were implemented as LANA FB that run in Linux
kernel space. Hardware modules were implemented as EmbedNet FB. Both
implementations are flexible in the sense that they may change their Huff-
man tree and code book during run time. The hardware implementation uses
a high level of parallelism and runs up to 20 times faster than its software
counterpart.

• Design and implementation of Continuous Repeat Request modules in soft-
ware and hardware. We created sender and receiver modules for LANA and
EmbedNet. Operation parameter such as window size can be easily changed
in the source code.

• Design of the state transition mechanism in software and hardware. The
proposed mechanism was developed with respect to the needs of our chosen
protocols and are reusable for future protocols.
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• Implementation of the state transition mechanism for CRR modules in hard-
ware. A specific data block structure has been designed to transfer protocol
state between software and hardware. The implementation can be used as an
example for other protocols and can partly be reused.

• Functional verification and performance evaluation of our modules in software
and hardware. A lot of time was spent on the extensive testing of components
when debugging or simulating code.

Minor contributions include various scripts and user space programs that have
been written for testing reasons, building file based testbenches for simulating
the VHDL code, debugging our components and testing the LANA framework
extensively. We also discovered some bugs and problems in LANA, when
testing our components, or contributed to necessary LANA extensions from a
design perspective.

6.2 Future Work

The goal for future work is the integration of the various subsystems such as NoC,
LANA and EmbedNet to build a single system. Further implementation and testing
efforts are necessary to achieve this goal.

In the next step, a test system has to be built including software and hardware
components. The presented state transition mechanism could be used to migrate
tasks. So far, our software components have been tested and evaluated on a desktop
machine, but in the future, we plan to run both modules on the designated devel-
opment board. First testing experiences showed promising results when running
Huffman coding modules on a static protocol stack.

In order to run those various subsystems together at the same time, a common
addressing scheme is needed. Using IDPs for packet forwarding in software and
hardware is the obvious choice, because it has already been implemented in LANA.
Further design decisions and efforts are required to find an effective addressing
strategy. At the moment, LANA’s PPE is responsible for packet routing, but it
is highly inefficient to send packets to the PPE, if the following FB is located in
hardware. A PPE clone needs to be implemented in NoC, which forwards packets
to hardware FBs. Additionally, it should be clear from the address whether the
FB is located in software, or hardware. The PPE in software needs to know when
to forward a packet to the PPE in hardware and vice versa. At last, the address
of a FB in hardware, should be similar to the address of the same FB residing in
software. This would simplify the state transition between software and hardware.
Otherwise, the packets that are looped have no chance to reach their corresponding
FB, which is about to continue operation. If the address conversion was a simple
operation, the PPE could change the address for each packet in the loop, which
would enable correct forwarding of packets at a later stage.

Data paths between FB modules in hardware are unidirectional, whereas in soft-
ware each port offers bidirectional data transmission in both directions. Some pro-
tocols such as CRR, for instance, require several input and output ports. The CRR
sender module requires one input port for normal data packets and one for ACK
packets in order to work properly. Otherwise, a FIFO filled with data packets could
prevent ACK packets from entering the module. Therefore, we need to double the
amount of INGRESS and EGRESS paths in the NoC.

Unlike in the OSI model [67], the boundaries of our protocol stack are flexible
and may change during run time. We don’t have static layers and it is difficult to
define layers in a flexible protocol stack. The OSI communication model offers the
advantage of a well defined set of layers, that are distinguishable from each other.
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This concept gives way to data encapsulation and decapsulation. Such a technique
cannot be used in our flexible approach, because we don’t know in advance how
many other FBs are going to make use of a certain header structure. A well defined
common header format could help to avoid this problem and introduce some similar
data encapsulation technique.

At last, a possible future protocol could be a LZ77 compression protocol. The
DEFLATE algorithm, which has been presented in Section 2.5.2, is used as the un-
derlying compression algorithm for gzip and makes use of a combination of Huffman
coding and LZ77. This would result in an efficient compression network protocol.
In combination with a reliability protocol such as CRR, it could be used to transfer
large amounts of data across the network in an efficient manner.
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1 Introduction

This master thesis is in the context of the EPiCS project. The goal of the EPiCS project is to lay
the foundation for engineering the novel class of proprioceptive computing systems. Proprioceptive
computing systems collect and maintain information about their state and progress, which enables self-
awareness by reasoning about their behaviour, and self- expression by effectively and autonomously
adapting their behaviour to changing conditions. Concepts of self-awareness and self-expression are
new to the domains of computing and networking; the successful transfer and development of these
concepts will help create future heterogeneous and distributed systems capable of efficiently responding
to a multitude of requirements with respect to functionality and flexibility, performance, resource usage
and costs, reliability and safety, and security.

In this thesis we focus on the networking aspect of EPiCS which we call EmbedNet. EPiCS uses the
network architecture developed in the ANA project as a basis. The ANA network architecture is a novel
architecture that enables flexible, dynamic, and fully autonomous formation of network nodes. In the
EPiCS project we develop the ANA architecture further. On the one hand we will develop mechanisms
to adapt the functionality provided by the protocol stack at runtime, on the other hand we will develop
mechanisms that map the networking functionality dynamically to either hardware or software.

The objective of this Masters Thesis is to implement several protocols that can be mapped dynamically
either to hardware or to software.

2 Assignment

This assignment aims to outline the work to be conducted during this thesis. The assignment may need
to be adapted over the course of the project.

2.1 Objectives

The goal of this Master thesis is to develop several networking protocols for EmbedNet. The developed
protocols should run in both, hardware and in software. Therefore, a single protocol needs to be imple-
mented in C for execution in software and in VHDL for the execution in hardware. In order to allow
for dynamic changes in the mapping of the protocols to either hardware or software a mechanism for
transferring protocol state between the two implementations is required.
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2.2 Tasks

This section gives a brief overview of the tasks the student is expected to perform towards achieving the
objective outlined above. The binding project plan will be derived over the course of the first three weeks
depending on the knowledge and skills the student brings into the project.

2.2.1 Familiarization

• Study the available literature on ANA, LANA, EmbedNet and Reconos [1, 2, 3, 4, 5].

• Setup a Linux kernel development environment by following the ”Getting started with LANA”
tutorial provided in [4].

• Setup an FPGA development environment with the Xilinx tools 12.3 (exact) and ModelSim SE
version 6.1f (or higher).

• Familiarize yourself with the Linux kernel coding guidelines.

• Familiarize yourself with the git version control system and with github. Clone the reconos source
code repository [6].

• Install the eCos source code and cross compilation toolchain [7].

• Verify your toolchain by running first the sort demo thermal and then the pr demo.

• In collaboration with the advisor, derive a project plan for your master thesis. Allow time for the
design, implementation, evaluation, and documentation of your software.

2.2.2 Architecture and hardware design

• Together with your advisors determine a set of protocols that you would like to implement. Choose
protocols with different expected characteristics with regards to performance differences between
an execution in hardware and in software.

• Determine the exact functionality to be implemented, verify that you can implement it in both
hardware and in software.

• Design a unified interface to set and collect internal state for the protocols.

• Design your protocols for the implementation in hardware and software. Your design should follow
the ideas of ANA and the implementation constraints given by LANA and ReconOS.

2.2.3 Implementation

• Determine an appropriate version control system. The EPiCS project is hosted at github while
LANA is hosted at repo.or.cz. You might want to put your code in the same repositories.

• Implement a dummy protocol in software.

• Implement the system to set and collect state. Verify your system with the dummy protocol.

• Start with the implementation of the protocols in software, continue with the implementation of
the protocols in hardware.

• Optional: Develop different hardware implementations for your protocols with different optimization
goals (area, speed, power, etc.).

2.2.4 Validation

• Validate the correct operation of your implementation after each implementation step. Use for your
validation different packet sizes (short, long, even or odd number of bytes, etc.).

• Check the resilience of the implementation, including its configuration interface, to uneducated
users.
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2.2.5 Evaluation

• Do a performance evaluation of your protocols for the packet sizes specified in RFC 2544.

• Compare the performance for each protocol when it is run in hardware and in software.

• Optional: Determine the bottlenecks of your implementation.

• Optional: Do a performance comparison between packet forwarding for different combinations of
hardware and software networking functional blocks.

2.2.6 Documentation

• Appropriate source code documentation.

• Write a step-by-step how-to that describes the compilation of your code, the loading of the code
into the hardware and the execution of your code.

• Write a documentation about the design, implementation, validation and evaluation of your work.

3 Milestones

• Provide a ”project plan” which identifies the milestones.

• Two intermediate presentations: Give a presentation of 10 minutes to the professor and the advisors.
In this presentation, the student presents major aspects of the ongoing work including results,
obstacles, and remaining work.

• Final presentation of 15 minutes in the CSG group meeting, or, alternatively, via teleconference.
The presentation should carefully introduce the setting and fundamental assumptions of the project.
The main part should focus on the major results and conclusions from the work.

• Any software that is produced in the context of this thesis and its documentation needs to be
delivered before conclusion of the thesis. This includes all source code and documentation. The
source files for the final report and all data, scripts and tools developed to generate the figures of
the report must be included. Preferred format for delivery is a CD-R.

• Final report. The final report must contain a summary, the assignment, the time schedule and
the Declaration of Originality. Its structure should include the following sections: Introduction,
Background/Related Work, Design/Methodology, Validation/Evaluation, Conclusion, and Future
work. Related work must be referenced appropriately.

4 Organization

• Student and advisor hold a weekly meeting to discuss progress of work and next steps. The student
should not hesitate to contact the advisor at any time. The common goal of the advisor and the
student is to maximize the outcome of the project.

• The student is encouraged to write all reports in English; German is accepted as well.

• The core source code will be published under the GNU general public license.

5 References

[1] ReconOS: Multithreaded Programming for Reconfigurable Computers: Description of the hard-
ware/software architecture
[2] Reconifgurable Nodes for Future Networks: Description of how we would like to use the hw/sw archi-
tecture to build reconfigurable networks
[3] The Autonomic Network Architecture (ANA): Description of the ideas and sw prototype for config-
urable networks
[4] Lightweight Autonomic Network Architecture, Master Thesis of Daniel Borkmann
[5] https://github.com/EPiCS/epics-org/blob/master/deliverables/D3-1 Architecture And Tool Flow/D3-
1 Architecture And Tool Flow.pdf
[6] https://github.com/EPiCS/reconos/

3



[7] webpage: ecos.sourceware.org, a version that is compliant with reconos is in the github repository,
cross compilation tools: gcc-4.1.2 glibc-2.3.6
Webpages:
http://www.ana-project.org
http://www.epics-project.eu
http://www.reconos.de
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Project Plan
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SW CRR CRR

Implementation IRQ (SW) Design Proto LANA
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HW HW Huffman

Implementation Huffman (HW) Design Proto FPGA
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Implementation IRQ (HW) Design Proto. FPGA

9.3 3.4

State Trans. Final

Validation FPGA Test.
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ReconOS

Workshop

2.2 - 3.2

1st. 

Intermediate

Presentation

2nd.

Intermediate

Presentation

Final

Presentation



Appendix C

Getting Started

C.1 Loading Functional Blocks in LANA

LANA Environment Setup: Familiarization and installation of the LANA frame-
work according to the Getting Started with LANA section of [17]. NOTE: The
location of the repository changed to https://github.com/EPiCS/reconos.git
where LANA is located under reconos/linux/lana.

Loading the LANA Stack: The protocol stack is loaded using scripts such as
the one from Listing C.1. The syntax of the script is scriptname status

interface. Status is either up or down. The interface is the ethernet interface
that should be used.

Example: ./scriptname up eth0

Open AF LANA Socket First, we need to run the user space application that
opens the socket. The application needs to wait for the socket to be connected
at this point. At this point the socket shows up as a functional block. We
need to bind the socket functional block with the last functional block in our
graph. Now the user space application may continue its execution and is able
to send data to the LANA protocol stack. The whole process can be seen in
Figure C.1 and Figure C.2.

Send Packets: The easiest way to send packets is by creating raw Ethernet frames.
Make sure to respect the defined headers from Section 4, otherwise those pack-
ets will be filtered (wrong ETH type), or payload data may be overwritten.
Also see the sample applications on the CD.

Unloading the LANA Stack: Make sure that the socket is no longer connected
to a functional block, before unloading the LANA stack. After closing all
sockets we can unload the protocol stack with the help of our script.

Example: ./scriptname down eth0

The following points need to be emphasized:

• When compiling the Huffman kernel module, the old LANA version is needed
which is located on the CD.

• Make sure to convert data to big endian before passing it to kernel space!
(SW/HW)

• Use the defined headers! (SW/HW)
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#!/ bin/sh
# Huffman module initialization

if [ $1 = "up" ]
then
echo Huffman PF_LANA init running ...
cd /home/floriade/LANA/lana/src
insmod lana.ko
insmod fb_eth.ko
insmod fb_huff.ko
insmod fb_counter.ko
insmod fb_tee.ko
cd ../usr/
./vlink ethernet hook $2
./fbctl add fb2 tee
./fbctl add fb3 huff
./fbctl add fb4 counter
./fbctl add fb5 counter
./fbctl bind fb2 $2
./fbctl bind fb3 fb2
./fbctl bind fb4 fb3
./fbctl bind fb5 fb2
echo ... done

elif [ $1 = "down" ]
then
echo LANA deinitialization running ...
cd /home/floriade/LANA/lana/usr/
./fbctl unbind fb5 fb2
./fbctl unbind fb4 fb3
./fbctl unbind fb3 fb2
./fbctl unbind fb2 $2
./vlink ethernet unhook $2
./fbctl rm fb5
./fbctl rm fb4
./fbctl rm fb3
./fbctl rm fb2
rmmod fb_eth.ko
rmmod fb_counter.ko
rmmod fb_tee.ko
rmmod fb_huff.ko
rmmod lana.ko
echo ... done

else
echo Valid parameter are either up or down

fi

Listing C.1: Sample script for a Huffman stack

Figure C.1: Bind FB to a socket

Figure C.2: Waiting user space application



Appendix D

Content of the Attached CD

The following content can be found on the attached CD:

• The final report of this master thesis in Portable Document Format and its
source

• All intermediate and the final presentation and their sources

• All figures,plots and their sources or scripts to generate them

• An old LANA version to compile the Huffman kernel module

• All of the Huffman module source code in C and VHDL

• All of the CRR module source code in C and VHDL

• The state transition mechanism source code in VHDL

• All testbenches and scripts used for simulation

• The Huffman pCores for the Network on Chip
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