
Traffic Measurement on OpenFlow-enabled Switches
Semester Thesis

February 23, 2012

Jochen Mattes

Advisors: Dr. Wolfgang Mühlbauer and Jose F. Mingorance-Puga
Supervisor: Prof. Dr. Bernhard Plattner

Communication Systems Group

Department Information Technology and Electrical Engineering
Swiss Federal Institute of Technology Zurich (ETH Zürich)

Abstract

Fundamental network management tasks like Intrusion Detection Systems (IDS), ac-
counting or traffic engineering benefit greatly from accurate real-time traffic measure-
ments. These measurements are normally expensive and inflexible, when using custom
hardware, or inaccurate due to an aggressive sampling rate on the incoming packets
(c.f. NetFlow). We exploit the separation of control and data plane, provided by
OpenFlow, to install dynamic measurements on commodity switches. This gives us
the opportunity to take all data packets into account without using custom hardware
and therefore providing highly accurate and flexible measurements at reasonable cost.

Contents

1 Introduction 2
1.1 Introduction . 2
1.2 Related Work . 4

2 Background 5
2.1 Flow Definition . 5
2.2 Counters . 5
2.3 FlowVisor . 7

3 Measurement Framework 8
3.1 Introduction . 8
3.2 Obtaining the Right Counter Values . 8
3.3 Install Measurement . 12

3.3.1 Prevent Rule Modification by FlowVisor 12
3.3.2 Prevent Rule Explosion at the Switch 13

3.4 Report Measurements . 13

4 Sample Application: Hierarchical Heavy Hitters 15
4.1 Test Set-Up . 15
4.2 Application . 16
4.3 Simulation . 17
4.4 Results . 17

5 Conclusion 20
5.1 Conculsion . 20

6 Appendix 23
6.1 Task Description . 23
6.2 Declaration of Originality . 27

1

Chapter 1

Introduction

1.1 Introduction
Fundamental network management tasks like Intrusion Detection Systems (IDS), ac-
counting, traffic engineering benefit greatly from accurate (real-time) traffic measure-
ments.

Intrusion Detection Algorithms are rarely designed as packet streaming algorithms
and proposed systems normally use some sort of aggregated key figures as input e.g.
the traffic histogram (packets per flow) or the statistical entropy of the traffic histogram
[1]. Furthermore, close-real-time knowledge of the traffic is necessary to capacitate the
system administrator to make informed decisions. For Traffic Accounting an offline-
calculation of the traffic produced / consumed by a specific client is sufficient, yet high
accuracy is demanded.

In consequence we reason that a suitable measurement system (i) allows the ad-
ministrator to dynamically change what is measured, (ii) delivers traffic measurements
in close-real-time, (iii) produces accurate results with low error bound, (iv) introduces
low overhead and (v) is cost-efficient.

Current solutions fail to attain these requirements: NetFlow enables fine-grained
traffic measurements directly on the switch, but to keep the additional workload low,
an aggressive sampling rate on the packet stream is necessary, which has a undesired
effect on the error bound of the accuracy [2]. Data Streaming algorithms have been
proposed [3] [4], but they rely on custom hardware, as commodity switches do not
offer the required resources.

In this semester thesis we present a measurement framework that exploits the
separation of control and data plane provided by the widely supported OpenFlow
protocol and seek to meet the above-mentioned requirements.

The OpenFlow protocol allows live-manipulation of the flow tables of OpenFlow-
enabled commodity switches [5]. Here the data plane and control plane run on separate
hardware: the data is further-on handled by the hardware switch, which makes the
system fast and the control plane runs on a separate controller that might be a Linux

2

found matching
entry in flow table

execute associated
action

forward to
controller

decide what to do
with the packet

send back
to switch

process
packet

Switch

Controller

No

Yes

Figure 1.1: The incoming packet is matched against the flow table and forwarded to the
controller if no match is found. The controller decides what to do with the packet and
sends it back to the switch. The switch then executes the action which the controller
defined. If the packet matches an entry in the flow table the action is directly executed.

server, which makes the system flexible.
OpenFlow-enabled switches treat incoming traffic similar to conventional switches:

the incoming packet is matched against the flow table and the associated action (e.g.
forwarding/dropping the packet) is executed. The main difference is that a normal
switch would drop or maybe flood the packet if it has no matching rule in the flow
table. An OpenFlow-enabled switch can be configured to encapsulate the packet and
forward it to the controller, which can use the flexibility of software to analyze the
packet and decide what to do with the packet. It can then send the packet back to the
switch including the associated action. Figure 1.1 illustrates in a simplified way how
the packet is processed.

The controller can determine the behavior of the network switches by installing
flow table rules that consist of three parts: (a) the match fields, which define the flow
space for which the rule is valid (e.g. IP rage: 192.168.0.0/24), (b) a actions part
which defines what to do with packets that match the matching fields and (c) a coun-
ters section which comprises statistics about the rule [6].

The presented measurement framework runs as NOX-application (NOX being a
controller implementation) on the OpenFlow controller and makes use of the counter
values the switch keeps for every flow entry. The measurement application can install
an initial measurement flow that is inserted to the flow table once a switch registers
at the controller. The framework then repeatably requests the counter values and
informs the measurement application - using the framework - about the change of
counter values. Moreover it offers a safe way of installing and replacing measurement

3

flows while theoretically ensuring that all packets are counted.

1.2 Related Work
Measurements in Computer Networks is a well-studied field in the Computer Network
Community. Most research done relies on the collection of 5-tuple-statistics (Source
IP, Source Port, Destination IP, Destination Port, Protocol) via NetFlow [7] or Data
Streaming Algorithms that involve custom hardware [8],[9]. The approaches proposed
range from the solution for a very specific problem [9],[10] up to a whole framework [11].

During the work on this semester thesis Lavanya Jose et al. elaborated a very
similar problem in [12]. They developed a measurement framework that uses the per-
flow counters provided by OpenFlow to calculate the number of packets that were
forwarded by the switch in the last time period. They evaluate the results by writing
a measurement application that dynamically modifies the measurement rules to find
the hierarchical heavy hitters in the network (in the dimension of source or destination
IP). Even though the work is very similar, the results are hard to compare as they
use a different error measure. In their work the error is measured by the number of
misclassifications, meaning the false positives and false negatives whereas we use the
absolute difference of the counter values obtained in the simulation and the measure-
ment. This error measure seams more appealing as we are directly measuring the error
introduced by our framework and not the error introduced by the algorithm used to
find the hierarchical heavy hitters.

4

Chapter 2

Background

2.1 Flow Definition
A flow is commonly defined as an individual, unidirectional data stream between two
applications, and can be uniquely identified by the 5-tuple, (source IP address, source
port, destination IP address, destination port and the transport protocol)[13].” The
OpenFlow specifications allow a more flexible definition which we will refer to in the
later parts of this work:

A flow is a subspace of all possible header values in which a subset of the
fields in Table 2.1 are fixed to a specific value.

This definition has the advantage that the flow can be characterized by a single
entry in the flow table of an OpenFlow-enabled switch1[15].

2.2 Counters
The switch will keep a packet and a byte counter for every flow that is installed in the
flow table. If an incoming packet matches a rule, the packet counter is incremented
and the size of the packet is added to the byte counter. These counters overflow with
no indicator and appropriate measures have to be applied. Furthermore the switch
will keep a counter per table, port, queue, group and bucket but they are not relevant
for our work 2.

The OpenFlow Specifications state: “OpenFlow compliant counters may be imple-
mented in software and maintained by polling hardware counters with more limited
ranges [6]”. One consequence of that is that the current counter values associated
with a flow entry can only be calculated with the knowledge of the software and the

1Rob Sherwood et al. states in [14] that certain switches will internally expand rules that match
multiple input ports due to hardware limitations. We experienced that in our experiments as well.
The implications for our project are discussed in Section 3.3.2.)

2These counters are introduced in the OpenFlow Specifications 1.1.0.

5

• Ingress Port

• Meta-data (new in OpenFlow Specifications v 1.1.0)

• Ethernet type

• Ethernet source

• Ethernet source mask

• Ethernet destination

• Ethernet destination mask

• VLAN id

• VLAN priority

• MPLS label

• MPLS traffic class

• IPv4 source

• IPv4 destination

• IPv4 protocol / ARP opcode

• IPv4 ToS bits

• TCP / UDP / SCTP source port, ICMP Type

• TCP / UDP / SCTP destination port, ICMP Code

Table 2.1: We define a flow to be the subspace of all possible header values in which a
subset of the fields in this list are fixed to a value. The fields can only be fixed a value
in the valid value range (refer to the OpenFlow specifications [15]).

6

hardware counters. The Specifications leave it open to the switch designer, when the
software counters are updated. In consequence we expect varying accuracy depending
on the hardware used. The time resolution of measurements with OpenFlow is directly
limited by the update circle of the software counters and appropriate care has to be
taken when selecting the hardware.

2.3 FlowVisor
FlowVisor is an application that limits the flow-space that individual controller can
influence. To do so the switches are connected to FlowVisor which then is connected
to the controller and theoretically masquerades the communication between controller
and switch in a transparent way3. The system administrator defines a flow space
M (e.g. M={vlan_id: 13}) and assigns the flow-space to a controller. When this
controller sends the command to install a flow f , FlowVisor applies the flow space mask
M and installs the flow f2 = 〈f1,M〉 on the switch, where 〈f1,M〉 is the intersection
of flow space f1 with flow space M . For a more profound explanation please refer to
[14].

3Refer to Section 3.3.1 for the explanation of an imperfection.

7

Chapter 3

Measurement Framework

This chapter describes the details of our measurement framework and is organized
in the following way: Section 3.1 gives an overview of the functionality of our mea-
surement framework. Section 3.2 illustrates the timing problems we face and how we
circumvent them. Section 3.3 depicts the method used to install a new measurement
and finally Section 3.4 describes how the reply of the switch is rehashed and reported
to the measurement application.

3.1 Introduction
The custom measurement application is running as a NOX-coreapp on the controller
and can make use of our measurement framework to install, replace and delete measure-
ment rules on the switches, while the framework ensures that no packets go uncounted.
Every time instance (set by the application) the framework will report the number of
packets of the according rules to the application.

The framework provides an easy to use python interface as illustrated in the mini-
mal example shown in Algorithm 3.1 . This sample application asks the framework to
report the number of IP packets (dl_type 0x800) seen by the switch every second.

3.2 Obtaining the Right Counter Values
In order to generate the requested traffic statistics, we accumulate the packets be-
longing to a flow in the time dimension. This part is done by the switch. In the
simplest scenario the controller has a perfect clock and requests the statistics every
time interval (e.g. every second), there is no time delay introduced between the clock
interrupt and the dispatch of the TCP package, the request is sent through an ideal
network which introduces no time delay, the processing queue of the switch is idle, the
request is handled immediately and no data packets are processed by the switch while
generating the statistics (so that the counter values of the first flow entry are as old as
the counter values of the last flow entry) and the returned counter values represent the

8

Algorithm 3.1 Minimal example for the use of our framework.
from nox.lib.core import *
from flow_measurement.flow_measurement import *

class Example():
def __init__(self, ctxt):

Component.__init__(self, ctxt)
self.ctxt = ctxt

register the method that is called when
the framework reports a measurement
self.measurement.register_handler(XidEvent.NAME, \

self._report_measurements)

initialize a measurement with measurement period 1sec
self.measurement = FlowMeasurement(ctxt, 1)

def install(self):
tell the framework to install this measurment every time
a new datapath joins
self.measurement.install_initial_measurement(

MeasurementRule({’dl_type’: 0x0800}, openflow.OFP_DEFAULT_PRIORITY))

start the measurment
self.measurement.start_measurement()

def _report_measurements(self, event):
for dpid in event.pyevent.dpid_list:

print "flow stats for dpid %d: %s" %(dpid, \
event.pyevent.flow_stats[dpid])

refer the the NOX API documentation for an expl.
of the following lines
def getFactory():

class Factory:
def instance(self, ctxt):

return Example(ctxt)

return Factory()

9

current state of these counters. In that case the controller has to subtract the statistics
of two subsequent time intervals to calculate the number of packets that were seen by
the switch in the last measurement period. In reality none of the above idealizations
holds. We are describing the problems with the individual points and present possible
ways to minimize the introduced error.

Controller timing Installing clock interrupts on a non-real-time system with no
dedicated hardware always introduces a certain inaccuracy in precision. There are
ways to stabilize the interval time e.g. by calculating the sleep time for the next time
instance by (1 + i) ∗ tinterval − telapsed where i is the iteration variable, tinterval is the
theoretical time between to requests and telapsed is the time elapsed since the start. But
that still does not take into account the time shift that the local PC clock experiences.
The necessary precision is way smaller than the timing inaccuracy introduced by this
part of the system. Still we suggest to keep the workload of the controller low so that
the in-determinism introduced with the scheduler is kept small.

Network The communication between controller and switch relies on the normal
TCP/IP protocol stack, with all its benefits and drawbacks. Relevant to us is that
packets might be delayed in a non-deterministic way and can be lost in the network
so that they have to be sent again by the TCP layer. This adds to the inaccuracy
of measurements. To keep these effects low it is advisable to connect controller and
switch by a direct link.

Time is divided into time slices of constant length and ideally at the end of each
time slice the framework would report the number of packets that were counted in this
time slices. This aspiration is challenged by the asynchronous communication between
controller and switch. Suppose the controller has a perfect non-shifting clock and
requests the statics in constant intervals. The request of the framework will generate
a TCP/IP packet that is forwarded through the network either directly to the switch
or first to FlowVisor and then to the switch. As the in-between networks and the
controller are likely to experience a change in load, we cannot guarantee that the
requests arrive with constant time gaps. Even if they do, the requests are queued
at the switch and the time of processing depends on the internal state of the switch.
Figure 3.1 illustrates the communication between controller for the case that FlowVisor
is used as a mediator. None of the durations listed in the figure is fully deterministic.
Everything that happens after the counter value is copied from the internal memory of
the switch to the packet that is to be sent, does not alter the counter value reported to
the controller and therefore we concentrate on the time elapsing between triggering a
statistics request and the time the message is generated. The standard deviation of the
time that has an influence on the counter values Tinfluencial = tnet:con,fv+ tcomp:fv,1+
tnet:fv,sw + tqueue:sw (c.f. Figure 3.1) can be reduced by connecting the controller
directly to the switch and by ensuring that the load of the network between controller
and switch is sufficiently low. The OpenFlow specifications state that with the flow
statistics the duration since installation of the rule is transmitted to the controller.
[15]. This information could be used to examine the precision of the received counter

10

t_{net:con,fv}

t_{comp:fv,1}

t_{net:fv,sw}

t_{queue:sw}

t_{calc:sw}

t_{net:sw,fv}

t_{comp:fv,2}

t_{net:fv,con}

time

Controller FlowVisor Switch

Figure 3.1: This figure illustrates the request and response of flow statistics. The con-
troller sends the request, with delay tnet:con,fv FlowVisor receives the TCP/IP packet
and processes and forwards it after tcomp:fv,1. After tnet:fv,sw the packet is received by
the switch and queued for tqueue:sw. Then the counter value is copied and the response
is sent after tcalc:sw. The response is transmitted to FlowVisor (tnet:sw,fv), forwarded
(tcomp:fv,2) and transmitted to the controller (tnet:fv:con). The red colored part has
influence on the counter value that is reported to the controller.

values1. Yet not all implementations fully implement the standard and we therefore
omit the treatment of this feature.

Switch Besides the expected effects e.g. the switch might drop the request due to a
full queue or delay it because other requests in the queue have to be processed first.
But there is a more severe problem that introduces noise into the counter values as the
OpenFlow Specifications state: “OpenFlow compliant counters may be implemented in
software and maintained by polling hardware counters with more limited ranges [6]”. In
consequence the counter values that are returned by the switch after a statistics request
represent the state of the counters at the time of the last hardware counter polling.
This part of the switch-implementation directly influences the minimal attainable noise
level.

1The switch we used in our experiment (NEC IP8800/S3640) sets this value to zero. We therefore
do not use this feature and have to come up with a different solution.

11

Measuring with artificial time The time elapsing between the triggering of the
timer interrupt to generate the statics request and the generation of the statistics
response message at the switch is hard to estimate and as the OpenFlow Specifications
do not allot a time-stamp for the statistics reply it is hard to tell how far in time two
statics replies lie apart. To circumvent this problem we introduce an artificial time.
Therefore another python script is used to generate a known number of packets per time
unit and send these packets through the switch. The controller installs a measurement
rule specifically for this flow (we call is clock flow) and uses this counter-value as
time-stamp.

We can now program the measurement framework to send several statistics request
in a small time window around the theoretical end of each measurement period. The
measurement reply for which the counter value of the clock flow is closest to the ideal
value is than chosen for further calculations.

Our experiments suggest that the update circle of the switches of our testbed is
about one second with a variance of about 5 milliseconds. This renders our approach
to send several statistic-requests within a small time window useless, as the returned
statistics will be identical. The value of the clock flow is interesting never the less, as
it gives us an estimate of the time of the last hardware counter poll and might be used
in a post-processing step.

3.3 Install Measurement
The measurement application can request the framework to install a new measurement
at any time independent of the measurement period. The framework will instantly
translate the measurement request to a set of rules (c.f. Section 3.3.1 and Section
3.3.2) and install these rules on the switches that are connected to the controller.

3.3.1 Prevent Rule Modification by FlowVisor
Even though FlowVisor is designed to be transparent, the current version (v 0.8.2) does
not handle the flow statistics correctly2. Assume a switch is connected to FlowVisor
which itself is connected to our controller. Suppose further that the controller aims
to install a flow F1 (c.f. Section 2.1). FlowVisor will receive the request, intersect the
flow with the assigned slice mask Mfv =

⋃
j mj (where all mj ’s are slices) and send

the request with the modified flow definition R1 = 〈F1,Mfv〉 to the switch. When
the switch sends a flow statistics response, FlowVisor will not re-translate the flow
definitions3, but forward the statistics to the controller as they are. The measurement
framework will then fail at the attempt to match the flows {Fi} against the rules {Ri}.

To overcome this problem we exploit the fact that 〈〈Fi,Mfv〉,Mfv〉 = 〈Fi,Mfv〉
as follows: when the connection between data-path and controller (via FlowVisor) is
established for the first time, the controller installs the flow I that covers the whole

2The development team of FlowVisor is aware of this issue c.f. https://openflow.stanford.edu/
bugs/browse/FLOWVISOR-9.

3Be aware that in general: 〈〈Fi,Mfv〉,Mfv〉−1 6= Fi = Ri

12

space (all wild-card). The installed rules on the switch will then be 〈I,Mfv〉 = Mfv

and the controller obtains Mfv with the next flow statistics request and sets Mcon =
Mfv. To prevent FlowVisor from changing the measurement rules, the framework will
internally translate the flows to rules (Ri = 〈Fi,Mcon〉), store the mapping and send
Ri to FlowVisor, which will not alter the flow as 〈Ri,Mfv〉 = Ri. With this method,
re-translation of the flows is easily done at the controller.

3.3.2 Prevent Rule Explosion at the Switch
In the technical report of FlowVisor [14] Sherwood et al. states that: “Due to hardware
limitations, certain switches will internally expand rules that match multiple input
ports”. This might unnecessarily increase the number of rules that are used to measure
a flow. In the case where the flow is installed to measure the traffic generated by a
specific sub-net, it is likely that only one incoming port will contribute to the flow. We
can use this to reduce the number of rules installed on the switch. When the switch
connects to the controller for the first time it sends a feature reply message to the
controller which contains details about the physical port of the switch. From the list
of active ports {pi} we construct the new controller mask Mcon =

⋃
i

⋃
j m

con
i ∩ pj .

This will increase the number of flow installation requests that are sent to the switch,
but reduce the number of rules in the flow-table.

To further reduce the number of rules installed at the switch, the framework con-
stantly observes the flow statistics and deletes rules that are not applied. As unknown
packets are by default send to the controller the framework can install a port-specific
rule, should traffic for a certain rule arrive on a new physical port.

3.4 Report Measurements
The framework collects all the flow statistics from the various switches that might
be connected to the controller. After the response from the last switch arrived, the
framework takes the absolute counter values and subtracts the stored counter values
of the last time slice. If the rule has been installed in the last measurement period
there will be no stored counter value and a value of 0 is assumed. The measurement
is marked as invalid, because the rule was not installed for the whole measurement
period and the real number of packets seen in the last measurement period is likely to
be higher than the observed counter value.

13

Flow Stats Response

Rule1: c_1

Flow Stats Response

Rule1: c_2

Rule Installation

Flow 1

Measurement Event

Measurem. 1: c_2-c_1
full_period: True

Measurement Event

Measurem. 1: c_2-c_1
full_period: False

Framework

Application

time

Flow Stats Response

empty

Figure 3.2: Before the rule is installed the flow statistics response received from the
switch obviously does not include statistics for the flow. After the installation the
counter value will be c1, but the measurement rule was not active for the whole mea-
surement and therefore the full_measurement will be set to false.

14

Chapter 4

Sample Application:
Hierarchical Heavy Hitters

In order to elaborate the performance of our framework we wrote a simple application
that searches the hierarchical heavy hitters and compares the results to the ones of
the simulation.

4.1 Test Set-Up
The set-up is as simple as possible in order to reduce unrelated impacts. As physical
Switch we use a NEC IP8800 S3640, the controller is running on a virtual Xen ma-
chine on physical host I and for traffic generation we use another virtual Xen machine
(hereafter called traffic generator) on host II. The devices are connected with RJ-45
cables and run the standard IP protocol. Figure 4.1 depicts the architecture.

switch

host II (traffic gen.)

host I (controller)

Figure 4.1: Setup.tex

15

The traffic generator replays a tcpdump file1 at the fixed speed of 9000pps2.
The clock stream is generated on the traffic generator by a simple python script that
generates 100pps destined to a specific IP at a specific port. We choose 192.168.100.1:1
because the traffic traces we use, are of a backbone router and this address should not
occur there. Analysis of the traces confirms this assumption. To obtain a basis for the
simulation of the system we are running tcpdump on the traffic generator and record
both the traffic of tcpreplay and the clock flow script.

4.2 Application
The application divides the IP address space in sub-nets so that each of these sub-nets
contributes at most x percent of the traffic. Initially it installs two rules 0/313 and
231/31. If the traffic contribution of one of these parts is larger than x percent of
the total traffic, the application will split that specific address space into two parts of
equal size that cover the whole space of the replaced rule. Algorithm 4.1 describes the
application with pseudo code.

Algorithm 4.1 Sample application in pseudo code. adapt_address_spaces() is
called after each measurement interval.
address_spaces = (0/31 , 2^31/31)

function adapt_address_spaces(measurements){

for measurement_data in measurements{

if measurement_data > x% of total traffic {

cur_address_space = address_spaces[measurement_id]
remove cur_address_space from address_spaces

new_address_space1 = first half of cur_address_space
add new_address_space1 to address_spaces

new_address_space2 = second half of cur_address_space
add new_address_space2 to address_spaces

}
}

}

1We have been testing with the tcpdump files of http://mawi.wide.ad.jp/mawi/
2This is the parameter given to tcpreplay. The analysis of the generated tcpdump shows that we

are only sending about 8800pps
3integer representation of the ip address

16

Figure 4.2: Calculating the relative error.

4.3 Simulation
As ground truth for the validation of our framework we use the tcpdump files of the
traffic generator. We wrote a simple python script that analyzes the dump file and
generates a “perfect” measurement and stores it in the same format as the measurement
results. We use the number of measured packets in the first time interval to synchronize
measurement and simulation. That means if the framework measured n packets in the
first time interval, the simulation will skip the first n packets and start the simulation
with the second time interval and a synchronized clock.

4.4 Results
The results of measurement and simulation are two distributions that can be repre-
sented by two bar charts in which the bars have variable width as illustrated in Figure
4.2 (a) and (b). We calculate the relative error by subtracting the simulation from the
measurement results (Figure 4.2 (c)) and using the mass (Figure 4.2 (d)) as description
of the error made. In order to make the results comparable we normalize our results
by the mass of the simulation results (Figure 4.2 (b)) and obtain the relative error
shown in Figure 4.3.

Figure 4.3 shows the development of that relative error over time. The curve has
comparable shape to the one of the error before normalization, as the mass of the
simulated distribution is fixed in the range between 8600 and 8850pps.

Figure 4.4 (a)suggests the rate limited traffic generation by tcpreplay is not perfect:
even thought the rate with which tcpreplay is supposed to be sending is 9000pps the
analysis of the tcpdump file shows that it is only sending about 8800pps. Moreover
we can see that the measured value of the number of packets in the last time unit
sometimes oscillates around the simulated number. This might be explained by the
uncertainty of the measuring intervals. If the interval is too long, the number of
counted packets is too high; if it is too short, the number is too low. So if the time
difference between measurement one and three is correct, but the measurement two

17

Figure 4.3: Relative error of the measurement.

18

Figure 4.4: (a) number of packets in a measurement interval (b) accumulated difference
in packets

is a bit early, we will first observe a measurement with too few packets and then one
with too many. Figure 4.4 (b) is the running integral of the difference of the curves
in 4.4 (a) and depicts the accumulated difference in the number of counted packets.
That this curve is bounded between -100 and +100 packets suggests that the packets
send by the traffic generator are received and counted by the switch. If this curve had
a negative trend then we had evidence that some packets remain uncounted. As this
is not the case we conclude that the only source of inaccuracy is the uncertainty of the
interval length.

19

Chapter 5

Conclusion

5.1 Conculsion
Even though measurements were not the main focus during the definition of the Open-
Flow specifications v1.0.0, the offered capabilities might still be used to obtain mean-
ingful measurements. In our experiments we observed that the measurement error
was never larger than 2%, which makes our system a reasonable solution for a lot of
applications, such as intrusion detection or maybe even accounting.

The main problem with version 1.0.0 of OpenFlow is that in order to use the switch
as measurement-unit while maintaining the forwarding-functionality we have to apply
the cross-product between the measurement rules and the forwarding rules. This leads
to a massive amount of entries in the flow table, which is limited in size. It is therefore
not a practical solution. The Specifications v1.1.0 allow it do define multiple tables.
Therefore it would be possible to have a first table that does the forwarding and after
having a hit in the primary forwarding table, clone the packet, deliver the first version
and forward the copy to the measurement table. Yet, according to Nicholas Bastin
from the FlowVisor development team, version 1.1.0 is unlikely to be implemented so
it depends on the protocol specifications v1.2.0 whether or not traffic measurements
with OpenFlow will become a practical solution in the foreseeable future.

20

Bibliography

[1] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic feature
distributions,” SIGCOMM Comput. Commun. Rev., vol. 35, pp. 217–228, August
2005.

[2] B.-Y. Choi and S. Bhattacharrya, “On the accuracy and overhead of cisco sampled
netflow,” in ACM Sigmetrics Workshop on Large-Scale Network Inference (LSNI),
(Banff, Canada), June 2005.

[3] A. Lall, V. Sekar, M. Ogihara, J. J. Xu, and H. Zhang, “Data streaming algorithms
for estimating entropy of network traffic,” in IN ACM SIGMETRICS, pp. 145–
156, 2006.

[4] A. Kumar, M. Sung, J. J. Xu, and J. Wang, “Data streaming algorithms for
efficient and accurate estimation of flow size distribution,” 2004.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74, March 2008.

[6] The OpenFlow Switch Specifications 1.0.0.

[7] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better netflow,” in
Proceedings of the 2004 conference on Applications, technologies, architectures,
and protocols for computer communications, SIGCOMM ’04, (New York, NY,
USA), pp. 245–256, ACM, 2004.

[8] A. Kumar, M. Sung, J. J. Xu, and J. Wang, “Data streaming algorithms for effi-
cient and accurate estimation of flow size distribution,” SIGMETRICS Perform.
Eval. Rev., vol. 32, pp. 177–188, June 2004.

[9] H. C. Zhao, A. Lall, M. Ogihara, O. Spatscheck, J. Wang, and J. Xu, “A data
streaming algorithm for estimating entropies of od flows,” in Proceedings of the
7th ACM SIGCOMM conference on Internet measurement, IMC ’07, (New York,
NY, USA), pp. 279–290, ACM, 2007.

21

[10] J. Mikians, P. Barlet-Ros, J. Sanjuàs-Cuxart, and J. Solé-Pareta, “A practical
approach to portscan detection in very high-speed links,” in Passive and Ac-
tive Measurement (N. Spring and G. Riley, eds.), vol. 6579 of Lecture Notes in
Computer Science, pp. 112–121, Springer Berlin / Heidelberg, 2011. 10.1007/978-
3-642-19260-9_12.

[11] M. Singh, M. Ott, I. Seskar, and P. Kamat, “Orbit measurements framework and
library (oml): motivations, implementation and features,” in Testbeds and Re-
search Infrastructures for the Development of Networks and Communities, 2005.
Tridentcom 2005. First International Conference on, pp. 146 – 152, feb. 2005.

[12] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic aggregates
on commodity switches,” in Proceedings of the 11th USENIX conference on Hot
topics in management of internet, cloud, and enterprise networks and services,
Hot-ICE’11, (Berkeley, CA, USA), pp. 13–13, USENIX Association, 2011.

[13] S. S. Nalatwad, Self-Sizing Techniques for Locally Controlled Networks. PhD
thesis, North Carolina State University, Dec 2005.

[14] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, N. McKeown, and G. Parulkar,
“Flowvisor: A network virtualization layer,” tech. rep., Stanford University, 2009.

[15] The OpenFlow Switch Specifications 1.1.0.

22

Chapter 6

Appendix

6.1 Task Description
The Task description can be found on the following pages.

23

Semester Thesis
for

Jochen Mattes

Tutors: Jose Mingorance, Wolfgang Mühlbauer

Issue Date: XX.06.2011
Submission Date: 15.08.2011

Detecting Traffic Anomalies on OpenFlow-Enabled
Switches

1 Introduction

The OpenFlow framework enables fine-grained flow-level control of Ethernet switching. It offers high
flexibility, since forwarding rules can be dynamically adjusted at run-time. At the same time, Open-
Flow has been supported by hardware vendors (e.g., NEC and HP). Therefore, there exist commercial
OpenFlow-enabled switches with high forwarding performance.

A plethora of research proposals have been made that could benefit from the OpenFlow approach.
We focus on measurement-related applications. In addition to matching incoming packets against a
small collection of rules, OpenFlow-enabled switches update byte/packet counters if a packet matches a
certain rule. Importantly, the set of rules can be dynamically adjusted during run-time. For example, one
could dynamically tune the wildcard rules to quickly “drill down” to identify large traffic aggregates [1].
Overall, OpenFlow can pave the way for novel approaches in the area of network measurements, in
particular for smaller “edge” networks.

2 Requirements

The goal of this thesis is to design a measurement framework for OpenFlow-enabled switches and to
demonstrate its usefulness for one example application (e.g., anomaly detection, heavy hitter detection).

This task is split into four major subtasks:

1. Literature study: The student should actively study the literature and include a short survey in
the final report. The focus of this survey should be on OpenFlow-related measurements and on
topics that are related to the example application (e.g., anomaly detection).

2. Measurement framework: The student has to design and implement a measurement framework
that can be run on an OpenFlow controller (e.g., NOX). The framework should continuously collect
statistics from the OpenFlow switch by reading out byte/packet counters. In addition, it should pro-
vide an easy-to-use interface to increase the granularity of flow rules (“drill down”) or to decrease
it (“collapse”). The interface should be designed in a generic such that it can be useful for different
types of applications.

3. Example application: The student shows for one example application the usefulness of
OpenFlow-related measurements. To this end, he will implement a logic that runs in the controller
and that adjusts the granularity of flow rules depending on the needs of the example application.
This will be only a preliminary, proof-of-concept-like implementation. Possible example applica-
tions include anomaly detection (e.g., computing entropy values) or heavy hitter detection.

4. Evaluation: Finally, the student will do a preliminary evaluation of this approach, either on pro-
ductive or on synthetic traffic.

3 Deliverables

The following results are expected:
– Short survey on literature research.
– Measurement framework, see above
– Implementation of a small example application
– Evaluation of the example application
– A final report, including a concise description of the work conducted in this project (motivation, related

work, own approach, implementation, results and outlook). The abstract of the documentation has to
be written in both English and German. The original task description is to be put in the appendix of the
documentation. The documentation needs to be handed in electronically. The whole documentation,
as well as the source code, slides of the talk etc., need to be archived in a printable, respectively
executable version on a CDROM.

4 Assessment Criteria

The work will be assessed along the following lines:

1. Knowledge and skills

2. Methodology and approach

3. Dedication

4. Quality of results

5. Presentations

6. Report

5 Organisational Aspects

5.1 Documentation and presentation

A documentation that states the steps conducted, lessons learned, major results, and an outlook on
future work and unsolved problems has to be written. The code should be documented well enough
such that it can be extended by another developer within reasonable time. At the end of the project, a
presentation will have to be given at TIK that states the core tasks and results of this project. If important
new research results are found, the results can be published in a research paper.

2

5.2 Dates

This project starts on June XX, 2011 and is finished on August YY, 2011. At the end of the second week
the student has to provide a schedule for the thesis, that will be discussed with the supervisors.

An intermediate presentations for Prof. Plattner and all supervisors will be scheduled after one month.

A final presentation at TIK will be scheduled close to the completion date of the project. The presen-
tation consists of a 20 minutes talk and reserves 5 minutes for questions. Informal meetings with the
supervisors will be announced and organized on demand.

5.3 Supervisors

Jose Mingorance, mingorance@tik.ee.ethz.ch, +41 44 632 70 52, ETZ G 94
Wolfgang Mühlbauer, muehlbauer@tik.ee.ethz.ch, +41 44 632 70 17, ETZ G 90

References

[1] L. Jose, M. Yu, J. Rexford, Online Measurement of Large Traffic Aggregates on Commodity
Switches, in: Proc. 11th USENIX conference on hot topics in management of Internet, cloud, and
enterprise networks and services

21st June 2011

3

6.2 Declaration of Originality
The Declaration of Originality can be found on the following page.

27

����������� �� �����������

���� ���������������������� ������������ ���� �������� ������������ ��� ������� ����
���������� ��� ���������� ������������������ �� � ������� ������ ��� ������ �� ������� ���
������������� ��������� ��� �������� ��� ������ ������� ������ �� ���� ���� �� �� ��
�������� �� ����������� ��� ���������

� ������ ������� ���� ���� ������������ ���������������������� ��������������������� ���
������� ��

����� �� ��� ����

���������

���� ���� ����� ����

���� �� ���������� � ������ ��������
� ������ �������������� ����� �������� ������������������������������������

���
� �� ����������� �����������
� ��������������������������������
� ����������������������������� �������� ������������� ������������ ����� ���� ������

�����������������
� ���������������������������������������

������������ �������� ����� ������� ���� ��� �� ������ �������������� ���������������

Place, Date Signature*

����� ���������� �� ��� ������� ������������ ��� ���� ��������� �� �������� ����������� ������ ���
������������ �� ��� ����������� ��� ������� �������������� ���� ����� �����������

Traffic	Measurement	on	Openflow-enabled	Switches

Mattes Jochen

Albstadt,	21	November	2011

