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Abstract

The increasing number of smartphone users and the involved increased amount
of privacy critical information that these users carry around call for improved
methods to protect this data. Biometric authentication methods have one impor-
tant advantage when compared to a password. A biometric trait contains more
information, which is harder to copy, steal or reproduce. Modern smartphones
are generally touchscreen operated and therefore suitable to acquire hand-written
signatures from a user. The goal of this thesis is to implement a signature ver-
ification system that is suitable for the finger operated touchscreen devices of
today. In the process different signature verification approaches are discussed
and finally two separate verification systems are implemented. These are a Dy-
namic Time Warping based system and a global feature based system which
uses a Support Vector Machine for classification. These two systems are finally
combined to further increase classification performance.

Keywords: Online Signature Verification, Dynamic Time Warping, One-class
Support Vector Machine

CR Categories: Verification, Experimentation
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Chapter 1

Introduction

1.1 The Need for Mobile Authentication

Smartphones and notebooks are becoming increasingly popular. These devices
hold privacy critical information such as contact lists, email account access, web-
browser passwords, communication history with contacts and so on. Additionally
these devices are mobile and hence exposed to a higher risk of being accessed by
unauthorized users. Therefore it seems necessary to explore new ways to protect
this data using existing hardware. In the notebook industry, fingerprint readers
and file encryption are becoming increasingly popular. Modern mobile phones
provide lockscreens, which require a user to enter a code or draw a simple pat-
tern on the touchscreen. These authorization mechanisms help to protect critical
data more or less effectively. Fingerprint readers can be considered to be fairly
secure, whereas current lockscreens are rather easily bypassed. A code or pattern
entered on a touchscreen device can be observed either directly or by looking at
the smears left by the finger on the screen. The simplicity of the entered token
allows an adversary to easily observe and reproduce it. Compared to the finger-
print reader, a lockscreen code or pattern contains very little information which
can easily be stolen. Because acquiring a fingerprint requires special hardware,
this thesis is focused on exploiting a users signature as the basic authentication
token.

1.2 Biometrics

1.2.1 The Goal of Biometrics

The goal of biometrics is to validate the identity of a user by analyzing physical
or behavioural characteristics of said user. A good introduction to the known
biometrical traits was given by Jain et al. [1]. A password can be used for the
same purpose, but there are great differences between these two options. Usually
a password is relatively short, meaning it does not contain a lot of information.

1



1. Introduction 2

Even a password with twenty characters contains by far less information than
an iris or fingerprint scan. On one hand this leads to the previously discussed
advantage that more information tends to be harder to steal. On the other hand
a password has the advantage of being either valid or invalid, whereas a biometric
trait will never be perfectly valid or invalid but always somewhere in between.

1.2.2 Performance of a Biometric System

Because a biometric system most likely will not be able to perfectly distinguish
valid traits from forged ones, a measure for the verification performance is neces-
sary. Generally the task of a biometric system can be described as a classification
task with two possible results, namely valid or invalid. Classification performance
is characterized by three basic measures:

• False accept rate: The percentage of invalid test samples that are classified
as valid.

• False reject rate: The percentage of valid test samples that are classified
as invalid.

• Equal error rate: The error rate (false accept and false reject) which is
reached if the classifier is configured such that it produces a false accept
rate which is equal to the false reject rate.

To visualize the performance of a classification, Detection Error Trade-off
(DET) curves are used. Depending on the intended use of the biometric system,
it might be interesting to minimize either false accept-, false reject- or equal error
rate.

1.3 Online Signature Verification

The task of verifying a user identity based on the user’s signature is called sig-
nature verification. An offline signature verification method can classify a static
image of a signature whereas an online signature verification method also con-
siders the dynamics of the signing process. Signatures can be recorded using
different methods and hardware. Several online signature datasets are available.
For example the MCYT baseline corpus [2] or the dataset from SVC2004 [3].
Most commonly, digitizing tablets in combination with a pen are used to cap-
ture online signature data. Online signature verification methods are generally
categorized to either use global or local features to classify a given signature.
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1.3.1 Input Methods

Digitizing the dynamics of the signing process can be achieved using different
recording devices such as digitizing tablets, or touchscreen devices. Several dy-
namic signature databases are available for researchers to test and compare their
verification algorithms. These datasets are captured using some sort of pens (be
it on a resisitive touchscreen or an inductive digitizing tablet) [4]. This method
of signature aquisition is not applicable in todays environment of smartphones
with capacitive touchscreens which are operated using a finger instead of a pen.

In this work, a small database of signature is captured. Each signature is
entered using a finger instead of a pen. The problem of verifying signatures
captured using pens on either digitizing tablets or resistive touchscreens has
been studied before. However, no literature describing finger input signature
verification was found during this thesis. Using the finger instead of a pen to
input a signature on a touchscreen is a challenge since moving the finger in
different directions on the touchscreen results in different friction characteristics.
Also, the screen size of our recording device (3.7 inches) is very limited compared
to a digitizing tablet.

1.3.2 Feature-based Methods

As the name suggests, feature-based methods use features extracted from the sig-
natures to perform the verification task. In general two different types of features
are considered: global and local. Global features are related to the signature as
a whole, for instance the signature duration or the mean pressure applied. Local
features are based on single sample points. Examples for local features are the
maximum velocity or the highest curvature. A signature verification system us-
ing only such features was proposed by Lee et al. [5]. A large number of features
useful for signature verification was listed by Fierrez-Aguilar et al. [6].

The dimensionality of the feature vector can get arbitrarily big whereas the
training set usually is limited to a small number of signatures. Estimating too
many parameters from a small set of training samples deteriorates verification
performance as shown by Fierrez-Aguilar et al. [6]. This is why in general a
smaller set of more discriminative features is preferred. The issue of feature
selection in the signature verification task was extensively studied by Richiardi
et al. [7].

After having found a suitable feature vector, an arbitrary one-class classifi-
cation scheme can be used to perform the classification into valid and invalid
signatures. Since there is no negative training data available, the task of classifi-
cation is very similar to the task of outlier- or novelty detection. Several methods
to perform such a classification are known [8].
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1.3.3 Function-based Methods

Function-based signature verification methods are focused on building a signa-
ture model which accurately reflects the temporal behaviour of the signature.
Instead of extracting features that are used for verification, the emphasis of the
signature model lies in the (timed) sequence of strokes drawn during the signing
process. Comparing any signature to the model built during training will lead to
a match score which is based on the level of similarity between (timed) sequence
of strokes in the model and the signature under test. Function-based methods
are reported to deliver better performance than global feature based methods [6].
Two function-based methods are predominant in the literature: Hidden Markov
Model based methods and Dynamic Time Warping (DTW) based methods.



Chapter 2

Signature Verification System

2.1 Signature Acquisition

We used a Google Android smartphone (HTC Desire) with a capacitive 3.7 inch
touchscreen to record signatures. All the signatures were entered with a finger.
Technical properties of the touchscreen include a sampling rate which is not
constant but has a mean of 87 Hz and a standard deviation of 7 Hz as shown
in figure 2.1. In some very rare cases the sampling rate reaches up to 500 Hz.
From the device the following information is available:

• x(t): X-coordinate of touch location.

• y(t): Y-coordinate of touch location.

• p(t): Pressure value.

• a(t): Touch area estimation of the touching object

In order to reflect different usage scenarios, signatures were gathered from
users without restricting their body posture, some were standing and holding
the device, others were sitting. Some people signed by holding the device in one
hand, and signing with the other while others signed by putting the device on
a surface and holding it down to that surface with one hand while writing with
the other. Each user entered about 20 signatures. In addition to these genuine
signatures, users were asked to try to forge signatures of other users. Different
levels of knowledge about the signature to be forged were considered:

1. random forgeries: the signatures from other users

2. forgeries based on the knowledge of the sequence of letters

3. forgeries based on the knowledge of the image of the signature

5
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Figure 2.1: Sampling rate distribution on HTC Desire

4. forgeries based on the observation of the signing process

Forgery types 2-4 were only recorded for a subset of the recorded signatures.
Instead of explicitly acquiring random forgeries, we used signatures from different
users as random forgeries.

2.2 Feature-based System

The feature-based system extracts global and local features from the signature
samples. Compared to the work of Fierrez-Aguilar et al. [6] our feature vector
also contains features extracted from the pressure signal. See table 2.1 for the
complete list of features used in this work during the experiments.

Table 2.1: List of signature features

No. Rank Feature s Description

0 9 T Total signature duration

1 2 #Strokes Number of finger strokes

2 6 Ttouch Amount of time the finger
touched the display

3 18 Ttouch

T
Percentage of time with finger
on display

4 36 mean(|v|)
max(vx)

Average velocity / maximal
velocity in x direction
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No. Rank Feature s Description

5 10

#sign changes

ẋ

The number of sign changes

6 19 ẍ

7 13 ẏ

8 16 ÿ

9 14 ṗ

10 15 p̈

11 37

mean(s) = 1
T

∫ T

0 s

|j| |j| =
√...

x 2 +
...
y 2

12 1 ẋ

Mean of given signals

13 41 ẍ

14 11 ẏ

15 34 ÿ

16 8 p

17 52 ṗ

18 50 p̈

19 35

√

mean(s−mean(s))2

x

Standard deviation

20 20 ẋ

21 24 ẍ

22 22 y

23 23 ẏ

24 26 ÿ

25 12 p

26 17 ṗ

27 25 p̈

28 27

max(s)

ẋ

Maximum value

29 45 ẍ

30 43 ẏ

31 42 ÿ

32 4 p

33 40 ṗ

34 38 p̈

35 31

rms(s) =
√

1
T

∫ T

0 s

ẋ

Root mean square value

36 33 ẍ

37 28 ẏ

38 30 ÿ

39 3 p

40 21 ṗ

41 56 p̈

42 39
meanmax(s) = mean(s)

max(s)

p

43 54 dp
dt

44 48 d2p
dt2
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No. Rank Feature s Description

45 7

tmax(s) =
1
T
(t|s(t) = max(s(t)))

ẋ

Normalized point in time
when the maximal value of
signal s is reached

46 51 ẍ

47 44 ẏ

48 32 ÿ

49 47 p

50 53 ṗ

51 55 p̈

52 29

tmin(s) =
1
T
(t|s(t) = min(s(t)))

ẋ
Normalized point in time
when the minimal value of
signal s is reached

53 46 ẍ

54 5 ẏ

55 49 ÿ

The features in this table were selected according to the following criteria:

1. scale invariance

2. rotation invariance

3. high discriminative ration according to the work of Fierrez-Aguilar et al. [6]

The list of features is composed of top ranked features from Fierrez-Aguilar et
al. [6] as well as applying proposed functions (rms(s),std(s) etc.) to the pres-
sure signal. Because the recorded signals are not preprocessed, special attention
was paid to the scale and rotation invariance of the added features. There are
two reasons for this: Firstly, a rotated and/or scaled version of the signature
will be similarly hard to produce for an intruder, the false accept rate is not
expected to be influenced dramatically by rotation/scale invariance. Secondly, if
genuine users enter their signatures with another rotation or scale compared to
the training set, this should not affect the false reject rate.

2.2.1 Feature Selection

The features where ranked using the fisher discriminant ratio as previously de-
scribed in [6] and [9]:

FDRi(u) =
(µi,G − µi,F )

2

σ2
i,G + σ2

i,F

(2.1)

In this formula u signifies the user, i is the index of the feature, G represents
the set of genuine user signatures and F represents the set of forgeries. µ and
σ indicate the mean and standard deviation respectively. From the formula we
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can see that the FDR of a feature generally will be higher if the difference in
the mean scores is bigger. Also the FDR will be bigger if the two standard
deviations of the genuine-and forgery score distribution are lower. The higher
the mean FDR of a given feature i is, the higher it is ranked in table table 2.1.
No feature selection algorithm was utilized, but instead a set of feature vectors
was chosen to investigate their respective performance: (see table 2.1 for the
features corresponding to the indices). Note that 36% of all features are derived
from the pressure signal. In the 10 top ranked features we find 30% pressure
features, in the top 20 35% and in the top 30 30%. The relative importance of
the pressure related features therefore can be expected to be roughly the same
as for the x and y features. Pressure features are indicated by bold font.

1. all features: [0..55]

2. pressure signal related features: [9, 10, 16, 17, 18, 25, 26, 27, 32, 33,
34, 39, 40, 41, 42, 43, 44, 49, 50, 51]

3. non pressure signal related features: [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15,
16, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 35, 36, 37, 38, 45, 46, 47, 48, 52,
53, 54, 55]

4. 30 highest ranked features: [12, 1, 39, 32, 54, 2, 45, 16, 0, 5, 14, 25, 7, 9,
10, 8, 26, 3, 6, 20, 40, 22, 23, 21, 27, 24, 28, 37, 52, 38]

5. 20 highest ranked features: [12, 1, 39, 32, 54, 2, 45, 16, 0, 5, 14, 25, 7, 9,
10, 8, 26, 3, 6, 20]

6. 10 highest ranked features: [12, 1, 39, 32, 54, 2, 45, 16, 0, 5]

2.2.2 Feature Score Normalization

Since the different features presented before lead to feature values in very dif-
ferent co-domains, it is neccesary to apply a normalization scheme if we want
to relate them. This normalization will assure that different features are not
weighted differently because of their co-domain. As proposed by Hsu et al. [10]
for Support Vector Machines, we use the min-max normalization scheme to get
feature values in the range [−1, 1].

s′i = 2

(

si −min(Tsi)

max(Tsi)−min(Tsi)

)

− 1 (2.2)

Here, s′i is the normalized feature value, si is the non normalized feature
score and Tsi are the scores for feature i in the training set. Values outside
[−1, 1] therefore are possible after normalization, because only values inside
[min(Tsi),max(Tsi)] are mapped to [−1, 1]. However the probability of a value
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lying outside [−1, 1] is small and decreases as the distance to the interval grows.
The normalization should therefore serve the purpose of normalizing the effect
of each feature value in the detection process.

2.2.3 Single Class Classification – Anomaly Detection

In our case using negative training samples is not practical because finding a
signature set representative for all possible signatures is extremely hard if not
impossible. The performance would strongly depend on the chosen set of negative
training samples. Therefore we want to use a classification scheme that does not
rely on negative training samples. Several different methods suitable for this task
were proposed in the literature, Chandola et al. [8] summarized many different
approaches. We decided to use the following two methods for anomaly detection.

1. One-class Support Vector Machines: SVMs and their application to one
class problems are described in Schölkopf et al. [11, 12].

2. Mahalanobis distance: For each feature of the training set, µ and σ are esti-
mated.The Mahalanobis distance of a test signature can then be calculated
via

d =

#Features
∑

n=0

(

sn − µn

σn

)2

(2.3)

Classification is performed by applying a threshold to the distance value d.

The Mahalanobis distance was chosen because of its implementation simplic-
ity. First experiments using the Mahalanobis distance were used to get a working
system in a short period of time. The one-class SVM was chosen because of the
good results reported from SVMs in many classification tasks. In addition to
these two classifiers, the Weka OneClassClassifier [13] was also considered (and
implemented) but due to time constraints, it could not be added to the fusion
classifier.

2.3 Function-based System: Dynamic Time Warping

Function-based methods to perform signature verification compare the tempo-
ral behaviour of the recorded signals x(t), y(t), p(t) and a(t). In this work,
a dynamic time warping based method is used. The performance of a Hidden
Markov Model system might be higher than the DTW system performance but
the implementation complexity is much lower for the DTW system. Once again,
time was the crucial element in this decision. Dynamic time warping is a classic
dynamic programming algorithm that is also used in speech recognition.
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A signature verification system using DTW is reported by Martens and Clae-
sen [14]. DTW is a method to measure the similarity between two sequences
which may vary in time or speed. This similarity measure can be used to perform
signature verification. Comparing two sequences can be done in many different
ways such as correlation, integration of the difference of two signals etc. However
all these similarity measures cannot cope with non-linear time distortions which
we will have in the signature signals. If a user takes a little longer for the first
letter of the signature, the similarity measure should not deteriorate more than if
the user was taking a little longer on the last letter. The DTW method allows us
to compare two signatures while a small time distortion in the beginning of the
signature does not accumulatively deteriorate the similarity measure throughout
the whole signature.

In our DTW system no smoothing is carried out, also the signals are not
resampled. The preprocessing consists of center of mass normalzation and nor-
malization of x- and y coordinates according to their standard deviation.The
algorithm to obtain an optimal warp path between two given signatures is de-
scribed in algorithm 1.

Algorithm 1 Dynamic Time Warping

n = Length of Signature A
m = Length of Signature B
dtw[n][m] = DTW
for i = 1 → m do

dtw[0][i] = ∞
end for
for i = 1 → n do

dtw[i][0] = ∞
end for
dtw[0][0] = 0;
cost = 0;
for i = 1 → n do

for j = 1 → m do
cost = dist(Signature A, Signature B, i, j)
dtw[i][j] = cost + min(dtw[i− 1][j], dtw[i][j − 1], dtw[i− 1][j − 1])

end for
end for

The distance function dist() used in algorithm 1 computes a distance measure
between sample i in signature A and sample j in signature B. The distance
measure used in this work is:

√

√

√

√

#Features
∑

n=0

(An[i]−Bn[j])2 (2.4)
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An stands for the n’th feature of signature A, Bn analogously indicates the
n’th feature of signature B and i and j are the specific samples which are com-
pared.

Finding the best warping path through dtw[][] is done by iteratively back-
tracking from dtw[n][m] to the neighboring field with minimal cost value .The
value of dtw[n][m] gives the accumulated distances of the two signatures while
not accounting any cost to warping time (i.e. there is no cost associated with
high time shifts between the signatures A and B). As previously stated, DTW
allows us to compare two sequences by allowing time distortions between the
two sequences without lowering the similarity measure. This would mean, that
a signature which is similar in shape, but very different in writing speed would
still achieve a high similarity score. This certainly is not desirable. A difference
in writing speed should be penalized, but the penalty should be limited to the
section where the time behaviour actually is different. This is achieved by using
the derivatives of the signals x, y and p in the feature vector of the DTW.

2.3.1 Feature Selection

Similar to the feature-based method discussed previously, different feature vec-
tors are used to compare their performance.

1. All features: [p, x, y, ṗ, ẋ, ẏ]

2. Pressure features: [p, ṗ]

3. X-coordinate features: [x, ẋ]

4. Y-coordinate features: [y, ẏ]

2.3.2 DTW Signature Verification

Training the DTW signature verification algorithm is performed by calculating
the distance measure (dtw[n][m]) for all pairs of signatures in the training set.
The signature with the smallest mean distance measure to all the other signatures
is selected as the prototypical signature of the given user.

The DTW matching score of a signature to be verified is equal to the distance
measure dtw[n][m] between the prototypical signature found during training and
the signature under test.

2.4 System Fusion and Decision Function

The previously presented signature verification methods yield non-normalized
scores which can be used independently for verification. However, in order to
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maximize verification performance, the combination of both should be consid-
ered. Jain et al. [15] discussed Score fusion in biometric systems.

2.4.1 Positive Class Score Estimation

Because of the high inter-user variability of the means and standard deviations in
the score outputs, it is impossible to define global decision thresholds or probabil-
ity mappings. Therefore we use the estimated score distribution of the training
set to find good decision functions and probability estimators for each individual
user.

The score distribution of the positive class is estimated by performing cross-
validation on the training set. In each cross-validation step, exactly one score
is estimated, using all the other training samples for training. This leads to a
sparse score distribution estimate which will later be referred to as the training
set score distribution ST .

2.4.2 Decision Function

From a score, the decision about the class label is performed applying a threshold.
The threshold is calculated using the training set score distribution and a global
parameter T . This parameter is specific for each classifier and has to be estimated
from a dataset which is as large as possible. The parameter T which leads to
the smallest equal error rate on the entire dataset of signatures of all users is
used later on. The size of this parameter can also be used as a measure for the
quality of the classifier. A large T means the decision threshold can be set further
from the mean of ST which generally will lead to smaller false reject rates. The
decision threshold is then calculated as:

DecisionThreshold = mean(ST )− T · std(ST ) (2.5)

2.4.3 Probability Estimation

When combining classifier score outputs to obtain a combined classifier with
higher performance, it is crucial to limit the influence of each separate classifier
in a meaningful way. The tanh normalization scheme presented by Jain et al. [15]
proved to be insensitive to outliers in the training data as well as being robust
and efficient. The parameters µ and σ refer to the mean and standard deviation
of ST respectively. This tanh estimation scheme is used to normalize the raw
score from each score output which is used in the fusion step.

P [Score] = 1−
1

2

(

tanh

(

1

2

Score− µ

σ

)

+ 1

)

(2.6)
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2.4.4 Score Fusion

After normalization of each score that should be utilized in the fusion step, the
final score is calculated as the weighted sum:

scorefusion =

#Classifiers
∑

i=0
Ti · scoreclassifieri

#Classifiers
∑

i=0
Ti

(2.7)

The Ti are the decision function parameters discussed in section 2.4.2. To
understand why the thresholds Ti are used to weight the scores of the different
classifiers, note that the scores are normalized using eq. (2.6) before the thresh-
olds Ti are estimated. In the following we assume tanh() to be approximately
linear in the range of the inputs we reach with 1

2
Score−µ

σ
. Furthermore we assume

that the training set score distribution allows us to accurately estimate µ and
σ used in tanh estimation. With these two assumptions we can deduce that
the mean and standard deviation of the tanh estimated scores are the same for
any users score distributions. The threshold values Ti then can be interpreted
as measure for the spread between the positive and negative signature sample
scores. A small threshold value Ti means the EER is reached close to the positive
score distribution whereas a large threshold indicates that the false accept rate
starts rising further from the positive score distribution. The proposed fusion
scheme rewards classifiers with high threshold values Ti which means classifiers
which deliver a high spread between negative and positive signature scores.



Chapter 3

Experiments

In this chapter, the performance of the feature- and function-based systems is
analyzed. Because the two systems have free parameters (e.g. which feature vec-
tor to use, the one-class SVM parameters) we try to maximize the performance
of the systems before using score fusion to create the final verification system.
From the score fusion we expect to obtain a system which performs at least as
good as the best performing system used in the fusion step but ideally the fusion
system would deliver superior performance.

3.1 Experimental Protocol

The cross-validation scheme used in all the experiments described below is dif-
ferent from the one that is usually utilized. Instead of defining the number of
cross-validation steps, we define the training set size. Similar to a classical cross-
validation scheme, the set of positive samples is split into two parts: the training-
and validation set. The training sets of all cross-validation runs are disjoint from
each other. This method was chosen because we expect the training set size
to have a major influence on the performance of the system. For the following
experiments we use a training set size of 5.

3.2 Feature-based Verification System

For the complete list of features extracted from the signature traces see table 2.1.
In order to maximize the performance of the feature-based system, the feature
subsets described in section 2.2.1 were used.

DET curves and equal error rates were produced and calculated using the
decision threshold discussed in section 2.4.2. All DET curves show the false
reject rate along with the false accept rates for the four forgery types (random,
1, 2, and 3).

15
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3.2.1 Mahalanobis Distance

The Mahalanobis distance measure can be computed without any parameter
tuning. The resulting DET curves for all the feature vectors can be found in
fig. 3.1. The equal error rate is very similar throughout the experiments. Still
the performance of feature vector 2 has to be considered to be significantly lower
than the performance of all the other feature vectors. The equal error rate for
the random forgeries is not much higher compared to the other feature vectors,
but the range of thresholds that leads to a well performing system is very narrow
compared to the others. We expected to have generally lower performance on
the forged signatures. Surprisingly this is only true for feature vector 2. For
all other feature vectors, the forgery EER is consistently lower than the EER
of the random forgeries. Interestingly the forgery types 1, 2 and 3 behave as
expected. The more knowledge the forger has, the better the forgeries become.
The fact that skilled forgeries reach higher false accept rates could mean that
many features are similar amongst users when they sign with their own signature.
As soon as a user tries to forge a different signature, these features start to deviate
because the user is in an unnatural situation. As an example, consider the total
signature time. Many users have a total signature time which is smaller than
3 seconds. When trying to forge a complex signature, the total signature time
tends to increase and therefore lowering the false accept probability. In feature
vector 2 (pressure features) the fraction of features behaving like this seems to be
smaller compared to all the other feature vectors. Therefore the more knowledge
the forger has, the higher the false accept rate gets. The much lower performance
delivered by the pressure based feature vector 2 could be explained by a higher
variance of feature values in the training set or a higher feature value correlation
between users.



3. Experiments 17

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EER = 0.2, T = 1.7

Threshold

E
rr

or
 R

at
e

 

 

False Reject
False Accept (Rand)
False Accept (1)
False Accept (2)
False Accept (3)

(a) feature vector 1

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EER = 0.24, T = 0.25

Threshold

E
rr

or
 R

at
e

 

 

False Reject
False Accept (Rand)
False Accept (1)
False Accept (2)
False Accept (3)

(b) feature vector 2

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EER = 0.2, T = 1.8

Threshold

E
rr

or
 R

at
e

 

 

False Reject
False Accept (Rand)
False Accept (1)
False Accept (2)
False Accept (3)

(c) feature vector 3

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EER = 0.21, T = 1.8

Threshold

E
rr

or
 R

at
e

 

 

False Reject
False Accept (Rand)
False Accept (1)
False Accept (2)
False Accept (3)

(d) feature vector 4

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EER = 0.21, T = 1.7

Threshold

E
rr

or
 R

at
e

 

 

False Reject
False Accept (Rand)
False Accept (1)
False Accept (2)
False Accept (3)

(e) feature vector 5

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EER = 0.22, T = 1.7

Threshold

E
rr

or
 R

at
e

 

 

False Reject
False Accept (Rand)
False Accept (1)
False Accept (2)
False Accept (3)

(f) feature vector 6

Figure 3.1: Mahalanobis distance measure DET curves
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3.2.2 Support Vector Machine

The SVM implementation is based on LibSVM [16]. This library is publicly
available and has interfaces to a large number of programming languages. Lib-
SVM was modified such that no threshold is applied to the hypersphere distance
output of the classification. Instead of getting a binary decision, we would like
to get a distance measure (distance from hypersphere) which will be much more
helpful when performing score fusion. The one-class SVM has several different
parameters which influence its performance. Following Hsu et al. [10], we used
an Radial Basis Function Kernel. This leaves two independent parameters which
we have to tune for our problem: ν, γ. Note that getting a recall rate of 1 was
impossible using the decision threshold given by LibSVM, the precision however
was extremely high (≈ 1) for any set of parameters ν and γ and any forgery set.
A likely reason for this behaviour of the one-class SVM is model overfitting to
the training data.

Parameters ν and γ for each feature vector were found using a parameter
grid search. For the results of this grid search see fig. 3.2. For each parameter
set ν and γ under consideration, the equal error rate is shown. Generally values
for γ > 0.1 deliver lower performance than values γ < 0.1. Especially if the
feature vector has more elements (feature vectors 1, 3 and 4) the regions with
good equal error rates are smaller compared to the shorter feature vectors (2, 5
and 6).

Based on figure 3.2 the optimal parameters ν and γ are estimated for each
feature vector. The detection performance for each feature vector along with
the optimal set of parameters for the svm ν and γ is shown in figure fig. 3.3.
The equal error rates are very similar for all the feature vectors. However from
the DET curves we can see that fig. 3.3(a), fig. 3.3(b) and fig. 3.3(c) reach the
equal error rate at lower thresholds compared to the other parameter settings.
Also a small variation in the threshold results in a bigger variation in the error
rates. A classifier with a higher threshold and a lower sensitivity to the choice
of the threshold is very desirable because we can only estimate the threshold
based on the sparse training set. A higher threshold generally leads to higher
performance. To understand this, note that the scores are estimated using the
tanh estimation scheme presented in eq. (2.6). We expect scores with mean 0.5
and fixed standard deviation. The higher the threshold is, the larger the gap
between the positive and negative score values is.
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Figure 3.2: SVM grid search



3. Experiments 20

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EER = 0.14, T = 1.1

Threshold

E
rr

or
 R

at
e

 

 

False Reject
False Accept (Rand)
False Accept (1)
False Accept (2)
False Accept (3)

(a) feature vector 1, ν = 0.7, γ = 0.001
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(b) feature vector 2, ν = 0.8, γ = 0.01
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(c) feature vector 3, ν = 0.99, γ = 0.001
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(d) feature vector 4, ν = 0.3, γ = 0.001
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(e) feature vector 5, ν = 0.7, γ = 0.005
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(f) feature vector 6, ν = 0.4, γ = 0.005

Figure 3.3: SVM DET courves
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3.3 Function-based Expert – Dynamic Time Warping

The dynamic time warping algorithm does not have free parameters except the
choice of the feature vector which it utilizes. The performance was evaluated us-
ing the feature vectors presented in section 2.3.1. The resulting DET curves are
shown in fig. 3.4. We can see that unlike the results from the SVM experiments,
a longer feature vector seems to have a positive impact on the performance.
Comparing the equal error rates of feature vectors 2, 3 and 4, which are com-
posed of the signal value and the signal derivative value, we can see that the y

coordinate seems to deliver the best performance. The EER of feature vector 4
is even lower than the EER of feature vector 1. When it comes to the forgeries
however, feature vector 1 clearly delivers better performance.
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Figure 3.4: DTW distance measure DET courves
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3.4 Fusion of Feature and Function Expert

As we can see from the previous sections, the one-class SVM performs slightly
better than the Mahalanobis distance measure. A reason to use the Mahalanobis
distance could be the limited processing power of the target hardware. Since the
SVM based classifier works reasonably fast on the HTC Desire, only the SVM
score was utilized for score fusion.

In this section, fusion of the function-based DTW and feature-based SVM
signature verification method is evaluated. The fusion process is visualized in
fig. 3.6 which shows a single cross-validation run for a single user. The figures
fig. 3.6(a), fig. 3.6(b) and fig. 3.6(c) are the same except the forgery type shown.
As expected, the more information is revealed to the forger (forgery type 1
trough 3) the higher the scores of the forgeries get. The decision threshold line
visualizes where the weighted sum (2.7) of the DTW and SVM scores are equal
to the decision threshold (2.5). All samples to the upper right of the decision
threshold line are considered to be genuine, all samples to the lower left are
considered to be forgeries. Using only five training samples, the parameters T

used to weight the sum (2.7) are TSVM = 2 and TDTW = 4.3. When we project
the score distributions to the x- and y-axis respectively, we can see why the
two thresholds are that different. When projected to the x-axis (DTW) the
scores of genuine and forged samples can be separated whereas the projection to
the y-axis (SVM) leads to an overlap between genuine- and forged signatures.
The different threshold values lead to a decision threshold which prioritizes the
DTW score over the SVM score. The equal error rate of the combined DTW
and SVM classifier for random forgeries is only slightly lower than compared to
the individual systems.
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Figure 3.5: DET curve of combined SVM and DTW classifiers
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Figure 3.6: Score fusion visualization



Chapter 4

Conclusions

4.1 Summary

Signature verification is a well documented topic in the literature ( [17], [18], [9],
[4], [14], [5], [19], [20], [6], [21]). However, previous work was focused on signature
acquisition using a pen either on a graphical tablet or a resistive touchscreen. The
application of signature verification methods on capacitive touchscreens has been
discussed theoretically by Mendaza-Ormaza et al. [22]. The presented methods
to perform signature verification are not new, but the results show that even
a signature entered with the finger instead of a pen can be utilized to perform
signature verification with reasonable accuracy. In addition to this, the introduc-
tion of pressure signal related features in the global feature-based classifier was
analyzed. On one hand, using pressure features only did not improve detection
performance. On the other hand, pressure related features had similarly high
Fisher Discriminant Ratios as other features and therefore played a crucial part
in the experiments with the feature vectors containing high Fisher Discriminant
Ratio features only.

Even when extracting features from the pressure signal only, the performance
of the system delivers fair classification performance (see fig. 3.1(b), fig. 3.3(b)
and fig. 3.4(b)).

In addition to the experiments presented in chapter 3, the set of experiments
was performed using a training set size of 10 instead of 5. The results for both
training set sizes are summarized in section 4.1 and section 4.1. The equal error
rate of the SVM classifier is improved drastically. Also note that the feature
vector 5 and not feature vector 6 delivers the best performance when increasing
the training set size from 5 to 10. The increasing number of training samples
seems to allow the estimation of more features without overfitting the SVM.
The dynamic time warping score does not seem to gain EER performance. The
threshold at which the best EER is reached however differs a lot (2.7 instead of
4.3). During training, the DTW method finds a prototypical signature. If we
have more training samples, this prototypical signature will become better which

24
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means thatthe distribution of validation scores will become lower.

Classifier Parameters Tclassifier Equal Error Rate

DTW feature vector 1 4.3 7.9 %

SVM feature vector 6, ν = 0.4, γ = 0.005 2 14.2 %

Fusion see above 5.1 6.6 %

Table 4.1: Result overview with 5 training samples

Classifier Parameters Tclassifier Equal Error Rate

DTW feature vector 1 2.7 7.9 %

SVM feature vector 5, ν = 0.8, γ = 0.03 2.7 6.0 %

Fusion see above 4.3 5.5 %

Table 4.2: Result overview with 10 training samples

4.2 Limitations

The size of the gathered dataset is very limited. The results obtained from this
dataset have to be considered carefully. A single outlier in the dataset caused
a very big part of the equal error rate. A dataset this small is very sensitive to
outliers as well as the the signing behaviour of the sparse sample of signers. In
order to get harder results, a larger dataset is required.

The performance measures used to quantify the results presented in this
work are calculated using random forgeries only. Lower performance has to be
expected when considering forgeries also. The impact of more skilled forgeries on
the respective error rates can be seen in fig. 3.6. If good forgeries are available, the
equal error rate should be optimized with respect to the more qualified forgery
samples. A system optimized in such a way will most probably lead to good
performance against random forgeries also.

The general system performance highly depends on the combination of two
user properties. Firstly the variance in a users signature highly influences system
performance. Higher variance in the training set means that the system will allow
lower scores to be accepted as valid signature, whereas lower variance will lead to
more restrictive decision thresholds. Secondly the signature complexity is very
important as well. If a user has a very complex signature, it will be harder to forge
than a signature which is very simple. The overall system performance depends
on the combination of both, signature complexity and variance. Generally, low
variance and high complexity is the most desirable combination. In our dataset
either the signature complexity was high or the variance between signatures was
low such that forgeries could be detected with reasonable performance. However
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the performance can be nullified by training the system with signatures of low
complexity with very high variance. If trained in such a way, the system will
accept virtually any signature as valid because the training set score distribution
will require extremely permissive decision thresholds.

Practical limitations of the presented system lie in the fact that the training
set is acquired without using any quality control. An outlier in the training set
will lead to decision thresholds which allows an attacker to forge the signature
easier than necessary. Also a persons signature usually is not constant but evolves
over time. Since training only initially performed, the model against which
signatures are tested does not adapt. An increasing false reject rate therefore
has to be expected.

4.3 Future Work

The choices about classifiers and fusion methods during this work were drastically
limited by the time frame for this work. Additional classifiers could use the Weka
OneClassClassifier in conjunction with any two-class classification method. Also
other anomaly detection methods such as nearest neighbor, clustering or spectral
techniques could be applied to the problem of signature verification. Also the
score fusion approach was not tuned in any way. Instead of using a weighted
sum, one could try to combine the scores by simple multiplication.

The local algorithm could be further improved by using more than just the
cost of the best warping path, but also the mean, max, min time warp as a score
output. Also the feature vector used to calculate the cost function between two
samples could be expanded with additional features like the curvature, the accel-
eration etc. Additionally a Hidden Markov Model verification system would most
likely deliver superior performance compared to the presented DTW method.

Another issue in the current system is the sensitivity to outliers during the
training. If we have a big outlier in the training set, the threshold estimate will
be influenced because the standard deviation of the training set distribution es-
timate will increase. Methods to calculate outlier-insensitive mean and standard
deviations on the training set distribution could help in overcoming this problem.

In addition to the traditional approach of learning a model once and then
using this model to test all upcoming test samples, the system could be extended
to allow continuous learning. In a first step, the score distribution of the positive
class could be estimated more precisely with every testing sample. In a second
step, the model could be retrained after having collected additional positive
signature samples. Because a signature is not static but changes over time,
the ability of the algorithm to adapt to these changes is crucial and should be
considered.
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