
Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis

GasMobile: Operating Gas Sensors
with Mobile Phones

Silvan Sturzenegger
ssilvan@ee.ethz.ch

Prof. Dr. Lothar Thiele
Computer Engineering Group

Supervisors: David Hasenfratz
Dr. Olga Saukh

September 2011 – December 2011

Dept. of Information Technology and Electrical Engineering
Swiss Federal Institute of Technology (ETH) Zurich

Abstract

The objective of this semester project is to attach a small ozone sensor to a smart-
phone via USB, so the ozone measurements can be read from the sensor with an
Android application. To do this, the linux kernel has to be modified to enable USB
host mode, and an application has to be written to control the sensor and take the
measurements. Then the influence of wind on the ozone measurements is observed,
to get an idea of the impact it has in such a handheld application.

Contents

Contents i

1 Introduction 1
1.1 Problem Statement . 1
1.2 Choosing the Android Distribution 1

2 Activating USB Host Mode 3
2.1 USB Overview . 3
2.2 HTC Hero Smartphone . 3
2.3 Lack of Power in Host Mode . 4
2.4 Other Drivers . 5

3 Ozone Sensor 7
3.1 Communication Protocol . 7
3.2 Ozone Concentration Calculations 8

4 The Android Application 11
4.1 Emulator Setup . 11
4.2 Debugging Over SSH . 12
4.3 Application Design . 12

4.3.1 Serialport API . 12
4.3.2 GPS and Accelerometer Data 13
4.3.3 User Interface Design 13

5 Measurements 15
5.1 Power and Resource Consumption 15

5.1.1 Power Consumption of the Sensor Hardware 15
5.1.2 Resources Used by the Android Application 16

5.2 Wind Measurements . 16
5.2.1 Measurement Method 17
5.2.2 Ozone Sensor . 17
5.2.3 SO2 and NO2 Sensors 18

5.3 Discussion . 18

6 Conclusion and Future Work 21

i

ii CONTENTS

A Developer How-To 23
A.1 Android SDK and Eclipse Plugin 23
A.2 Patching and Building the Kernel 23
A.3 Installing the Modified Kernel 24
A.4 Secure Shell Access . 25
A.5 Building the Application . 26

References 27

1
Introduction

1.1 Problem Statement

The goal of this work is to find out if it is feasible to attach a USB sensor to a
smartphone, and control it with an Android application. It is divided into three
parts:

• Activating USB host mode: To attach the sensor, which is a USB device,
the smartphone has to support USB host mode. The used HTC Hero has a
chipset which supports USB host mode, but only the device mode is enabled
in the kernel provided by HTC. But there are patches available to enable it,
so the first needed step is to compile a custom kernel with the necessary host
mode enabled.

• Android Application: Once the phone supports USB host mode, an An-
droid application has to be written, which is able to communicate with the
sensor. With this application, the user can control the sensor and take mea-
surements.

• Measurements: Since a mobile sensor can be exposed to movement and
wind, the effects of increased airflow over the sensor is observed by taking
measurements.

1.2 Choosing the Android Distribution

To do the development, an Android distribution had to be chosen. Apart from the
stock Android distributed by the vendor, there are several other Android distribu-
tions available. CyanogenMod and VillainROM are two popular examples. For

1

2 CHAPTER 1. INTRODUCTION

this project CyanogenMod was chosen, because it has a lot of publicly available
documentation[1], and all of its source code is readily available on github[2, 3]. A
lot of these so called custom ROMs are already rooted, meaning that the user has
superuser privileges. This is certainly needed for this project, since custom kernels
need to be installed, kernel modules have to be inserted to activate the host mode
etc.

2
Activating USB Host Mode

2.1 USB Overview

USB (universal serial bus) is a host based bus technology. This means that every
bus needs a host controller, which is the master and coordinates all the communi-
cation. Multiple slave devices can then be connected to the bus.

Traditionally, cell phones have been slave devices which are connected to com-
puters (the host) to sync data etc. Now that the phones become ever more power-
ful, they start to have host capabilities themselves to support the USB On-The-Go
(OTG) standard. This enables the user to connect peripherals (e.g. mass storage
devices, cameras) to the phone without the use of an additional computer. The
USB-OTG capable controller is able to switch from the device to the host func-
tionality as required.

Using this functionality, it should be possible to connect the ozone sensor (with
an RS232↔USB converter) to the USB-OTG capable smartphone.

2.2 HTC Hero Smartphone

For this project, an HTC Hero smartphone is used, which is one of the earlier
Android models. This phone uses a Qualcomm MSM7200A chipset[4], which
supports USB OTG[5]. The problem is, that the Android kernel supplied by HTC
does not have the On-The-Go capability built in, they only provide USB device
drivers. Since there is no publicly available documentation for this chipset, it is
difficult to write a USB driver from scratch. However, Andrew de Quincey has
found out that the MSM7200A chipset uses the same USB controller hardware as
some Freescale chips. For these other chips there exists a host driver, which he was

3

4 CHAPTER 2. ACTIVATING USB HOST MODE

able to adapt so it works for the HTC Hero[6].
These host driver patches he wrote apply to the older 2.6.27 kernel, which is

for Android 1.5. In the meantime HTC released a newer kernel, based on the 2.6.29
tree. The recent distributions of the CyanogenMod custom ROM use a modified
version of this newer kernel, so it would be nice to apply the patches to this updated
kernel.

The basic USB host driver patch only needed some minor changes so it would
apply cleanly. However, a big part of the patch added the feature to make the
device driver unloadable, so it could be exchanged with the host driver on the fly,
as planned in the USB-OTG standard. Unfortunately, these parts of the kernel
changed quite a bit, and it would need a lot more work to get this working again.
Since the main feature (the host driver) worked, the project was continued without
applying the rest of the patch.

The main disadvantage of not having the USB device driver available is that the
phone cannot be connected to the computer to sync data, connect to the debugger
etc. To do this, the kernel needs to be replaced with the unpatched one and the
phone has to be rebooted. Most of the disadvantages can however be circumvented.
Data access can be done through SSH over wireless LAN, or the SD-card could be
removed to access it. To develop the application, the emulator of the Android SDK
can be used, which even provides the capability to connect a serial port of the
emulator to a physical one, so the whole communication with the sensor can be
done within the emulator.

2.3 Lack of Power in Host Mode

A normal USB host controller has to provide enough power on the 5V line to at
least power a low power peripheral. This means it would have to provide one unit
load, which is 100mA of current at 5V[7]. Since the HTC Hero was not designed
for host mode, the controller lacks the ability to power the USB port, even low
power ones. (Attempts to provide it have failed[8].) This means that the peripherals
have to be powered externally.

To test the host mode, a USB hub was used. There are hubs which use the
power provided by the upstrem port from the host controller to power its devices,
which is not suited for our purposes. Therefore an externally powered hub was
used, which uses its own power supply to power the peripherals. To connect the
hub to the phone, a non-standard cable is needed. Both devices have a USB Mini-B
receptable, for which there is no cable, since it would allow two hosts to be con-
nected (which could probably cause damage since both power lines would be con-
nected). Therefore, two standard A↔Mini-B cables were connected with a simple
gender changer, resulting in the desired non-standard Mini-B↔Mini-B cable.

First attempts were unsuccessful, until it was realized that the hub chip has
to be powered from the upstream port, even when the external power supply is
plugged in. This enables the hub to be operated like a bus powered hub when its

CHAPTER 2. ACTIVATING USB HOST MODE 5

Figure 2.1: The test setup with the self-powered hub. Connected to the phone are a
keyboard, a mouse and the ozone sensor.

power supply is disconnected, but unfortunately that doesn’t work in our case. So
a small modification was made, by simply adding a cable from the external 5V
power supply to the 5V line of the upstream port, which then powers the hub chip.

Later, when only the ozone sensor without the hub is connected, a battery pack
was added to provide 5V to the sensor and RS232↔USB converter.

2.4 Other Drivers

Once the USB host driver was available, the other drivers for all the connected de-
vices had to be compiled in as well. To test the functionality, the USB HID (human
interface device) driver was added, which enables keyboards and mice. Once the
kernel modules for the host mode and HID support were loaded, a keyboard and a
mouse could be connected to the powered hub, which is immediately recognised by
the operating system and usable. Surprisingly, when moving the mouse a pointer
appears and can be used like on a normal computer.

For connecting the sensor, the driver for the RS232↔USB chip is required.
After compiling and inserting the kernel module, the serial device shows up on the
phone as /dev/ttyUSB0.

6 CHAPTER 2. ACTIVATING USB HOST MODE

Figure 2.2: The final sensor setup, where the sensor is directly connected to the
phone. The RS232↔USB converter and the sensor are powered by the attached bat-
tery pack.

3
Ozone Sensor

The ozone sensor used is a MiCS-OZ-47 from e2v technologies. It has two ozone,
one temperature and one humidity sensor built in. The sensor can be controlled via
an RS232 connection, with a custom communication protocol.

To connect the sensor to the PC or smartphone via USB, a small RS232 ↔
USB converter is attached to the sensor board. Specifically, a TTL-232R-PCB
from FTDI is used[9], which is a compact PCB directly attached to a USB type-A
connector. The driver needed for this converter is already available in the linux
kernel sources, so it just has to be enabled when building the custom kernel.

During normal operation, only the first of the two ozone sensors is active. Since
the measured values can drift over the lifetime of the sensor, the second one is only
powered on from time to time to compare the measured values of the sensors.
Because the second sensor is only active for a fraction of the time, its values can
be used to correct the drift of the first one.

3.1 Communication Protocol

To communicate with the sensor, a simple, custom protocol is used. All the bytes
are encoded as ASCII characters. Every command and response is surrounded
by curly braces, {command} {response}. The first byte of the string within the
curly braces of the response is always the corresponding function code. To take
the measurements, only the functions in Table 3.1 are needed, which generate the
responses in Table 3.2. The rest of the functions are covered in the datasheet of the
sensor[10].

To encode hexadecimal numbers, the following scheme is applied: Every nib-
ble is encoded as one byte in the transmitted string. To every nibble 0x30 (decimal

7

8 CHAPTER 3. OZONE SENSOR

{A} Get a diagnostics message
{S} Activate auto updating
{M} Get a measurement

Table 3.1: Commands to send to the sensor.

{Axy} x and y represent the status of sensor 1 and 2.
0: Sensor is OK
?: Sensor is defect.

{S} Auto updating is enabled.

{Mxxxxxxxxxxxxxxx}

Byte 0-1: Ozone value of sensor 1
Byte 2-3: Ozone value of sensor 2
Byte 4-6: Resistance of sensor 1
Byte 7-9: Resistance of sensor 2
Byte 10-12: Temperature
Byte 13-14: Humidity

Table 3.2: Responses from the sensor.

48, ASCII character ’0’) is added, which means that the numbers are represented
as ASCII values in the range from ’0’ to ’?’. For example 0x5A would be encoded
to the bytes 0x353A, or as ASCII characters ’5:’.

3.2 Ozone Concentration Calculations

The ozone concentration can either be read from the measurement response, or
calculated from the resistance, temperature and the calibration values.

The resistance values are integers with the unit kΩ. The humidity value is an
integer representing the relative humidity as a percentage.

The temperature value has to be corrected to get the real temperature. The
value sent in the measurement string is an integer in the range 0-1638 (−40 ◦C to
123.8 ◦C). The corrected temperature is then

T =
Tmeasured

10
− 40.

The ozone concentration can be calculated from the resistance, the temperature
and some calibration coefficients. First, the measured resistance has to be temper-
ature corrected:

R@25 ◦C = R@T ekT (T−25 ◦C) (3.1)

where kT is the temperature coefficient, which is determined during calibration.

CHAPTER 3. OZONE SENSOR 9

The response curve of the sensor to the ozone concentration is quasi-linear and
is approximated with a third order polynomial. The ozone concentration can then
be determined with the polynomial

Ozone[ppb] = X3R
3
@T + X2R

2
@T + X1R@T + X0. (3.2)

The coefficients kT and X0−3 are stored in the EEPROM of the sensor and can
be read to calculate the concentration on the smartphone itself.

10 CHAPTER 3. OZONE SENSOR

4
The Android Application

After adding the USB host driver to the kernel, the phone was ready. So the devel-
opment of the application to control the ozone sensor could be started.

4.1 Emulator Setup

Normally the application under development can be tested and debugged directly
on the phone. To do this, the phone has to be connected via USB to the computer,
so the debugger has direct access to the phone. Since this application requires that
the USB controller is in host mode, it is not possible to debug it directly over USB.

The Android SDK includes an emulator, which has most of the functions a real
phone has, including providing fake GPS locations, emulating phone calls etc. The
most important feature for this application is the ability to forward the serialports
of the emulator to arbitrary ports on the host machine. This can be done by adding
the "-qemu -serial /dev/serialdevice" switch while launching the
emulator, where /dev/serialdevice is the path to the serial port on the host
computer.

For the first attempt to connect the sensor to the emulator, the emulator was
directly connected to the "/dev/ttyUSB0" device, which is the serialport of
the sensor. Unfortunately this didn’t work. It was suspected that the serialport
configuration used in the Android application didn’t apply to the host computer,
which prevented the communication. To test whether the serial port forwarding
really worked, the traffic instead was forwarded to minicom, where the connection
worked in both ways.

To now establish the connection with the sensor, a python script was created
to correctly configure the sensors serial port, and again forward all the data be-

11

12 CHAPTER 4. THE ANDROID APPLICATION

Emulator Python
script

Sensor

Figure 4.1: Diagram of the emulator setup.

tween the emulator and the sensor, as illustrated in Figure 4.1. This solution finally
worked and even allowed to intercept and print all the serial data, which could be
used to detect bugs and mistakes in the low level communication.

4.2 Debugging Over SSH

There is another possibility to debug the application, this time not on the emulator,
but on the real phone. When using the emulator, the debugger connects to it over
TCP/IP on port 5554/5555 (default values for the first connected emulator). When
an SSH tunnel is created from the host machine to the phone, forwarding the ports
5554 and 5555, the debugger is able to directly connect to it. This method was only
successfully tested but not used, because it is very slow and using the emulator is
so convenient.

4.3 Application Design

The following features should be implemented and integrated in a simple user in-
terface:

• Establish a serial connection with the sensor.

• Read measurements from the sensor (periodically).

• Get the current GPS location, so the position of the measurement is known.

• Access the accelerometers, for possible movement analysis.

• Log all the data to a file on the SD-card for further offline processing.

4.3.1 Serialport API

Android itself does not provide an API to access serial ports at this time, but there
is a project called android-serialport-api which implements this ability[11]. It pro-
vides functions for listing all available serial ports and configuring them (setting
the baudrate, stop bits etc). For reading and writing to the serial port, it provides

CHAPTER 4. THE ANDROID APPLICATION 13

standard Java InputStream and OutputStream interfaces. There are sample appli-
cations included which demonstrate the capabilities, and provide a good starting
point for developing the sensor application.

4.3.2 GPS and Accelerometer Data

For accessing the GPS and accelerometer data, there are APIs provided by Android.
There just have to be two listeners implemented, which listen to sensor changes and
update the application accordingly.

4.3.3 User Interface Design

Main Screen

The main menu (Figure 4.2a) is the first screen to appear when the application is
started. It features four buttons to access the main functionalities.

• Settings: Access the settings, to change permanent configuration values.

• Activate USB host mode: Activate the USB host mode by loading the nec-
essary kernel modules and load the RS232↔ USB converter driver.

• Take Measurements: Go to the measurement screen.

• Quit: Quit the application

Settings

The settings screen (Figure 4.2b) lets the user adjust different configuration values
of the application, which are stored permanently on the phone. It is accessed by
pressing the Settings button in the main menu.

• Device: The sensors serial device. It only appears when host mode is ac-
tive and the device driver is loaded. The sensor should appear as device
/dev/ttyUSB0.

• Baud Rate: The baudrate of the RS232 connection. The ozone sensor re-
quires a rate of 19200.

• Update Interval: The interval in which the measurements are taken when
auto updating is turned on.

• kT, X0, X1: The calibration values to calculate the ozone concentration from
the measured resistance and temperature. These can be set indepently from
the calibration values on the sensor itself.

14 CHAPTER 4. THE ANDROID APPLICATION

(a) Main menu (b) Settings screen (c) Measurement screen

Figure 4.2: The different user interface screens of the application.

Measurement Screen

In the measurement screen (Figure 4.2c), accessed with the Take Measurements
button in the main menu, the sensor can be controlled and measurements are read.
There are 4 buttons to control the measurements.

• Save to file: Enables the logging function. When pressed, all the mea-
sured data is logged to a file on the SD-card. The file is written to
/sdcard/measurements/ and has the current date and time in the file-
name.

• Init sensor: When pressed, the sensor is initialized. A diagnostics message
is requested, and the sensor is set to auto mode, so it regularly updates its
measurements. If it is successful, the button turns green and measurements
can be taken.

• Measure: Take a single measurement.

• Auto update: Let the application periodically update the measurements,
with the interval specified in the preferences.

The first five lines of the displayed data is the measured sensor data. The value
labeled with Ozone (Calculated) is the ozone concentration calculated with the
calibration settings in the application preferences, whereas Ozone (Sensor) is the
one reported from the sensor with its own calibration coefficients.

The other four lines are data reported by the phone. The acceleration value is
the absolute phone acceleration, calculated from the x,y,z components. If available,
the current GPS location is displayed, as well as the movement speed reported by
the GPS.

5
Measurements

5.1 Power and Resource Consumption

5.1.1 Power Consumption of the Sensor Hardware

Since the sensor is battery operated and should be mobile, there is a tradeoff be-
tween operating time and battery size. To operate the sensor, a battery pack with
four AAA NiMH batteries was chosen. Depending on the charge in the batteries,
the voltage is more or less at 5V, which is the required target voltage provided by
the USB port. To estimate the power consumption of the sensor, the combined
current of the RS232↔USB converter and ozone sensor is measured and listed in
Table 5.1.

When the sensor is power on, the sensing elements are initially overheated to
converge faster to a relevant measurement. This leads to a 3mA current increase
during the first minute.

There was no difference detected when comparing the power consumption
while idling and taking periodic measurements, where the data is exchanged over
RS232 and USB. There is however a 9mA increase in the current when the USB
cable is connected.

The used batteries have a nominal capacity of 2500mAh. To get an idea of how
long they would last, the capacity is divided by the drawn current:

2500mAh
43mA

= 58.14h (5.1)

This obviously isn’t an accurate equation, because the actual capacity could
be different or the sensor doesn’t work anymore when the voltage drops below a
certain level. But it gives the order of magnitude of how long it is possible to power

15

16 CHAPTER 5. MEASUREMENTS

the hardware.

USB disconnected 34mA
USB connected 43mA
Ozone sensor overheating +3mA
(After powering on)

Table 5.1: Power consumption of the ozone sensor and RS232↔USB converter.

5.1.2 Resources Used by the Android Application

If the Android application uses a lot of resources on the phone, it can dramatically
reduce its operating time. Therefore the used system memory and CPU is observed
and listed in Table 5.2. The ∼5.5MB unique to the application are more meaning-
ful, because the ∼25MB shared with other processes would be used anyway.

There is a rather large 10% difference in CPU consumption when the display
is off. The application is still running and the measurements are taken, but the
whole screen doesn’t have to be updated anymore. Since the application displays
the absolute acceleration which is updated in a short interval, this has a big impact.
Since the acceleration is of no significant interest to the enduser, it should be easy
to reduce the CPU consumption by disabling this feature.

System memory ∼5.5MB
(Unique to the application)
System memory ∼25MB
(Shared with other processes)
CPU ∼15%
(Display on)
CPU ∼5%
(Display off)

Table 5.2: Phone resources used while running the application.

5.2 Wind Measurements

The sensor is now attached to a smartphone and the user who takes the measure-
ments can move around. When the sensor is moving through the air or being ex-
posed to environmental effects like wind, the airflow around the sensor changes. To
observe the effects of this changed airflow, measurements are taken under different
conditions and the sensor values are checked for changes.

CHAPTER 5. MEASUREMENTS 17

0 100 200 300 400 500 600 700 800
Time [s]

10

15

20

25

30

35

T
e
m

p
e
ra

tu
re

 [
C

],
 R

e
si

st
a
n
ce

 [
kO

h
m

]

Fan On Fan Off

Resistance
Temperature

Figure 5.1: The influence of wind on the ozone sensor. As soon as the fan is switched
on or off, there is a jump in the measured resistance.

5.2.1 Measurement Method

To measure the effects on the sensor, it is set up inside a room where the ozone
concentration should be constant. To simulate wind which changes the airflow
around the sensor, a desk fan is used. When the fan is switched on, the relative
changes of the sensor values can be observed.

5.2.2 Ozone Sensor

The sensor is set up right in front of the desk fan, to maximize the airflow. First,
a series of measurements is taken for four minutes when the desk fan is off and
the surrounding air is still, to have a reference point. Then the fan is turned on
for four minutes, where changes in the sensed values can be observed. Finally
the fan is turned off again, to see the impact of reversing the effect. The whole
measurement series is logged to a file using the Android application. Figure 5.1
shows the measured resistance and temperature values.

The ozone concentration can be calculated using these two measured values,
using the calibration values and the formulas 3.1 and 3.2.

18 CHAPTER 5. MEASUREMENTS

0 100 200 300 400 500 600 700 800
Time [s]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
N

O
2

 C
o
n
ce

n
tr

a
ti

o
n
 [

p
p
m

]

Fan On Fan Off

Measurements
Average (+-10)

Figure 5.2: The influence of wind on the NO2 measurements. An offset can be ob-
served when the fan is turned on and the measurements return to their previous values
when turning it off again.

5.2.3 SO2 and NO2 Sensors

Two additional gas sensors were tested, to have additional measurements and a
broader overview of the wind influence. The tested sensors are for measuring NO2

and SO2 concentrations. These were however not connected to the smartphone,
the measurements were taken on a computer.

The exact same setup was used as with the ozone sensor, and the resulting
measurements are displayed in Figures 5.2 and 5.3.

5.3 Discussion

From the results of these tests can be seen clearly that the wind has an effect on the
measurements.

Especially when looking at the ozone measurements, right at the moment when
the fan is switched on there is a sudden jump in the measured resistance. After the
jump the resistance starts to drop again, but it is always above the level measured
when in still air. Likewise when the fan is switched off, there is a jump in the
negative direction and after about two minutes it is at the same level as before.

CHAPTER 5. MEASUREMENTS 19

0 100 200 300 400 500 600 700 800
Time [s]

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

S
O

2
 C

o
n
ce

n
tr

a
ti

o
n
 [

p
p
m

]

Fan On Fan Off

Measurements
Average (+-10)

Figure 5.3: The influence of wind on the SO2 measurements. As with the NO2 sensor,
there are jumps when the fan is turned on and off.

20 CHAPTER 5. MEASUREMENTS

One interesting point is the fact that the measured temperature decreases by
about 8◦C. Since the introduced wind shouldn’t change the actual temperature of
the sensor board, it is surprising that the measured value changes this much. There
is nothing mentioned of such a dramatic effect in the temperature sensors datasheet.
One explanation could be that the desk fan circulates the air in the room and cooler
air from the floor reaches the sensor, or that the wind increases the dissipation of
local heat sources on the sensor board itself. But it is unlikely that these effects
account for such a large heat differential.

Since the used ozone sensor was not calibrated, only raw values of the sensor
resistance and temperature were observed. An interesting additional measurement
would be to use a calibrated sensor, and check if the temperature and resistance
offsets would cancel each other out with the correct calibration coefficients. But
there certainly has to be some disturbance in the measurement, because right at
the moment when the wind is introduced there is a sudden jump in the resistance,
whereas the temperature only starts to drop gradually. So even if the effect would
be cancelled out in a constant wind environment, wind bursts would still falsify the
measured concentration.

When looking at the NO2 and SO2 measurements the effect is less visible,
because the variance of the individual measurements is high. When the values are
averaged around a window of ±10, the jumps are more visible, and there is an
offset introduced in both sensors when the airflow is high.

6
Conclusion and Future Work

From this work can be concluded that connecting sensors to a smartphone is cer-
tainly doable. Since the used sensors have rather simple communication protocols
and use serial connections, it should also be easy to extend the application to sup-
port other sensors as well.

Another important aspect of this work is that only low cost hardware was used.
This is especially important when participatory sensing wants to be done, and sen-
sors should be distributed in larger numbers.

The introduced mobility when the sensor can be controlled with a smartphone
only and there is no need to carry around equipment like computers and power
supplies offers numerous advantages. It is for example easier to calibrate the sensor
near a fixed measurement station, or further effects of mobility and wind can be
investigated.

There is a lot that can still be done:

• At the moment the host driver on the HTC Hero cannot be exchanged with
the device driver, which would be unacceptable for a regular user. Some
newer smartphones however have proper USB-OTG support, so the applica-
tion could be extended to make use of this feature.

• Add support for additional sensors.

• To better understand the influence of wind on the measurements, further
measurements have to be done.

• The sensor hardware can be improved. Everything could be integrated in a
small box and the power supply could be replaced by a regulated one, so the
voltage drop of the batteries is eliminated.

21

22 CHAPTER 6. CONCLUSION AND FUTURE WORK

A
Developer How-To

A.1 Android SDK and Eclipse Plugin

To build the Android application, connect to the phone etc, the Android SDK
is needed. It is available at http://developer.android.com/sdk/
index.html. If development is done with Eclipse, the ADT Eclipse plugin can
be used, which integrates a lot of the SDK directly into Eclipse and is available at
http://developer.android.com/sdk/eclipse-adt.html.

A.2 Patching and Building the Kernel

These instructions apply to version 7.1.0 of CyanogenMod.
First the kernel sources for the Android kernel are needed[3]. For the used

CyanogenMod 7.1, the tag flykernel-12a has to be checked out.

git clone https://github.com/erasmux/\
hero-2.6.29-flykernel.git
cd hero-2.6.29-flykernel/
git checkout flykernel-12a -b usb-host

Then apply the USB host patch.

patch -p1 < usb_host_patch

To compile the kernel, an ARM EABI toolchain is needed, for example the
Code Sourcery toolchain from https://sourcery.mentor.com/sgpp/

23

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html
https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription3053
https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription3053

24 APPENDIX A. DEVELOPER HOW-TO

lite/arm/portal/subscription3053. Additionally, a kernel configu-
ration file is required. Either the already modified version is used, or the configu-
ration can be extracted from the phone.

adb pull /proc/config.gz ./
gunzip config.gz

Add the new toolchain to the path variable and set the needed flags.

export PATH=$PATH:˜/path/to/toolchain/bin/
export ARCH=arm
export CROSS_COMPILE=arm-none-eabi-

Configure the kernel (or load the supplied configuration), and build it. Also install
the built modules to a local folder.

make menuconfig
make -j3
export INSTALL_MOD_PATH=./modules
make modules_install

A.3 Installing the Modified Kernel

To create a boot image, an old one from the phone is required. It can be extracted
with the following commands

adb shell
cat /dev/mtd/mtd2 > /sdcard/original_boot.img
exit
adb pull /sdcard/original_boot.img ./

Now the new boot image has to be created.

mkdir temp
cp original_boot.img temp/boot.img
cd temp/
extract-kernel.pl boot.img
extract-ramdisk.pl boot.img
rm boot.img-kernel
cp ../arch/arm/boot/zImage boot.img-kernel
mkbootfs boot.img-ramdisk | gzip > ramdisk-boot
mkbootimg --kernel boot.img-kernel --ramdisk \
ramdisk-boot --cmdline "no_console_suspend=1 \
console=null" -o boot.img --base 0x19200000
mv boot.img ../
cd ../
rm -r temp

https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription3053
https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription3053
https://sourcery.mentor.com/sgpp/lite/arm/portal/subscription3053

APPENDIX A. DEVELOPER HOW-TO 25

Now everything is ready to be copied to the phone. Replace the 2.6.29.6-custom-
flykernel-12a with the appropriate name if it is different.

adb push boot.img /sdcard/
adb shell mount -o remount,rw /system
adb push modules/lib/modules/\
2.6.29.6-custom-flykernel-12a/kernel \
/system/lib/modules/2.6.29.6-custom-flykernel-12a
adb push modules/lib/modules/\
2.6.29.6-custom-flykernel-12a/kernel/drivers/net\
/wireless/tiwlan1251/wlan.ko /system/lib/modules/

Finally, the boot image has to be written over the old one.

adb shell
cat /dev/zero > /dev/mtd/mtd2
flash_image boot /sdcard/boot.img
reboot

If everything worked correctly, the modified kernel should now be installed and
working.

A.4 Secure Shell Access

It is useful to have SSH to access the phone when the kernel is modified and USB
device mode is unavailable (connecting with adb won’t work). An SSH server is
already installed on the phone, it just has to be configured.

On the computer, if not already done, create an RSA keypair and copy the
public key to the phone.

ssh-keygen -t rsa
adb push ˜/.ssh/id_rsa.pub /sdcard/authorized_keys

Then connect to the phone

adb shell
mount -o remount,rw /system

and configure the SSH server.

mkdir /data/dropbear
chmod 755 /data/dropbear
mkdir /data/dropbear/.ssh
chmod 700 /data/dropbear/.ssh
cp /sdcard/authorized_keys /data/dropbear/.ssh/

26 APPENDIX A. DEVELOPER HOW-TO

chown root: /data/dropbear/.ssh/authorized_keys
chmod 600 /data/dropbear/.ssh/authorized_keys
dropbearkey -t rsa -f /data/dropbear/\
dropbear_rsa_host_key
dropbearkey -t dss -f /data/dropbear/\
dropbear_dss_host_key
dropbear -s

To run the server by default, modify the /etc/init.local.rc.

echo "# start SSH server on boot" \
>> /etc/init.local.rc
echo "service sshd /system/xbin/dropbear -s" \
>> /etc/init.local.rc
echo " user root" >> /etc/init.local.rc
echo " group root" >> /etc/init.local.rc
echo " oneshot" >> /etc/init.local.rc

Now everything should be ready to connect to the phone.

ssh root@IP

A.5 Building the Application

The easiest way to build the application is to use Eclipse with the Android Devel-
oper Plugin. A complete Eclipse project is available, where everything is config-
ured already. To install the application when USB is not available, it can be copied
to the SD-card and installed from there with the file manager on the phone.

References

[1] “CyanogenMod documentation.” http://wiki.cyanogenmod.com/
index.php?title=Main_Page. [Online; accessed 21-December-
2011].

[2] “CyanogenMod source code.” https://github.com/CyanogenMod/
android. [Online; accessed 21-December-2011].

[3] “HTC Hero kernel source code for CyanogenMod.” https://github.
com/erasmux/hero-2.6.29-flykernel. [Online; accessed 21-
December-2011].

[4] “HTC Hero Specifications.” http://wiki.cyanogenmod.com/
wiki/HTC_Hero_(28GSM)29. [Online; accessed 14-December-2011].

[5] “MSM7200A Chipset.” http://www.datasheetpro.com/node/
13806. [Online; accessed 14-December-2011].

[6] “HTC Hero USB host mode.” http://adq.livejournal.com/
95689.html. [Online; accessed 14-December-2011].

[7] “USB 2.0 Specifications.” http://www.usb.org/developers/
docs/usb_20_101111.zip. [Online; accessed 14-December-2011].

[8] “Bus power attempt on HTC Hero.” http://adq.livejournal.com/
100591.html. [Online; accessed 14-December-2011].

[9] “Datasheet for RS232 ↔ USB converter.” www.ftdichip.com/
Support/Documents/DataSheets/Cables/DS_TTL-232R_
PCB.pdf. [Online; accessed 22-December-2011].

[10] “Datasheet for the ozone sensor.” http://www.e2v.com/
e2v/assets/File/sensors_datasheets/Metal_Oxide/
mics-oz-47.pdf. [Online; accessed 21-December-2011].

[11] “android-serialport-api.” https://code.google.com/p/
android-serialport-api/. [Online; accessed 14-December-2011].

27

http://wiki.cyanogenmod.com/index.php?title=Main_Page
http://wiki.cyanogenmod.com/index.php?title=Main_Page
https://github.com/CyanogenMod/android
https://github.com/CyanogenMod/android
https://github.com/erasmux/hero-2.6.29-flykernel
https://github.com/erasmux/hero-2.6.29-flykernel
http://wiki.cyanogenmod.com/wiki/HTC_Hero_(28GSM)29
http://wiki.cyanogenmod.com/wiki/HTC_Hero_(28GSM)29
http://www.datasheetpro.com/node/13806
http://www.datasheetpro.com/node/13806
http://adq.livejournal.com/95689.html
http://adq.livejournal.com/95689.html
http://www.usb.org/developers/docs/usb_20_101111.zip
http://www.usb.org/developers/docs/usb_20_101111.zip
http://adq.livejournal.com/100591.html
http://adq.livejournal.com/100591.html
www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_PCB.pdf
www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_PCB.pdf
www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_PCB.pdf
http://www.e2v.com/e2v/assets/File/sensors_datasheets/Metal_Oxide/mics-oz-47.pdf
http://www.e2v.com/e2v/assets/File/sensors_datasheets/Metal_Oxide/mics-oz-47.pdf
http://www.e2v.com/e2v/assets/File/sensors_datasheets/Metal_Oxide/mics-oz-47.pdf
https://code.google.com/p/android-serialport-api/
https://code.google.com/p/android-serialport-api/

	Contents
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Choosing the Android Distribution

	2 Activating USB Host Mode
	2.1 USB Overview
	2.2 HTC Hero Smartphone
	2.3 Lack of Power in Host Mode
	2.4 Other Drivers

	3 Ozone Sensor
	3.1 Communication Protocol
	3.2 Ozone Concentration Calculations

	4 The Android Application
	4.1 Emulator Setup
	4.2 Debugging Over SSH
	4.3 Application Design
	4.3.1 Serialport API
	4.3.2 GPS and Accelerometer Data
	4.3.3 User Interface Design

	5 Measurements
	5.1 Power and Resource Consumption
	5.1.1 Power Consumption of the Sensor Hardware
	5.1.2 Resources Used by the Android Application

	5.2 Wind Measurements
	5.2.1 Measurement Method
	5.2.2 Ozone Sensor
	5.2.3 SO2 and NO2 Sensors

	5.3 Discussion

	6 Conclusion and Future Work
	A Developer How-To
	A.1 Android SDK and Eclipse Plugin
	A.2 Patching and Building the Kernel
	A.3 Installing the Modified Kernel
	A.4 Secure Shell Access
	A.5 Building the Application

	References

