
Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis

at the Department of Information Technology

and Electrical Engineering

Task Migration for Multi-Processor
Systems

AS 2011

Tobias Scherer

Advisors: Lars Schor

Devendra Rai

Professor: Prof. Dr. Lothar Thiele

Zurich

20th March 2012

Abstract

The ever-increasing demand for computational power leads embedded sys-
tems to shift from single processor systems to multi-processor systems-on-
chip. However, it is difficult to exploit the full potential for this new class
of processors. In particular, dynamically reacting to changes in the environ-
ment is an open problem for distributed memory systems.

In this thesis, we propose a method for individual task migration of single
processes on a distributed memory system. Task migration will allow the
system to remap single processes during runtime to other processors. The
designed approach allows light-weight task migration suitable for embedded
systems. Furthermore, it will guarantee successful task migration independ-
ent from the network topology for Kahn process networks. The approach was
implemented on a distributed Linux environment using the message passing
interface as a communication framework. An enhanced case study serves as
proof of concept of the proposed methods.

— II —

Acknowledgements

First of all I would like to express my sincere gratitude to Prof. Dr. Lothar
Thiele for giving me the opportunity to write this semester thesis in his
research group.

I wish to express my warm and sincere thanks to my advisors Devendra
Rai and Lars Schor for their many enriching discussions and their extensive
support during the thesis. It was a pleasure to work with you and also to
contribute to your future research.

Furthermore I would like to thank to my family, my friends and also my
girlfriend Tanja for their constructive motivation and patience during this
thesis.

— III —

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 1
1.3 Related Work . 2
1.4 Outline . 2

2 Objective 3
2.1 Model of Computation . 3

2.1.1 Kahn Process Networks 3
2.1.2 Multi-Processor System-on-Chip Architecture 4

2.2 Requirements . 4
2.3 Motivational Example . 5

3 Approach 6
3.1 Setup . 6

3.1.1 Conditions . 7
3.2 Stopping a KPN Process . 7

3.2.1 Releasing Channels . 8
3.2.2 Stop Token . 9
3.2.3 Summary of the Stopping Stage 10

3.3 Migration . 11
3.4 Restarting . 11

4 Implementation 12
4.1 Control Hierarchy . 12
4.2 Protothreads . 12

4.2.1 Possible Obstacles . 13
4.3 Coordinated Shutdown . 13
4.4 Case Study . 14

5 Conclusion and Outlook 17

— IV —

5.1 Conclusion . 17
5.2 Outlook . 17

A Acronyms 19

B Presentation Slides 20

— V —

List of Figures

2.1 Temperature distribution for MPSoC 5

3.1 Partial KPN with one node to be migrated. 7
3.2 Semantic of KPN processes 8
3.3 Disconnected KPN with remaining data tokens on the channel. 9
3.4 Finite state machine model of KPN processes 9

4.1 Case study 1 . 15
4.2 Case study 2 . 16

— VI —

1
Introduction

1.1 Motivation

Embedded systems are more and more executing real-time multimedia and
signal processing applications, which typically require high computational
power. Thus, embedded systems are shifting from single processor systems
to multi-processor systems-on-chip (MPSoC). These architectures offer the
required computing power, are small, and very efficient in terms of power
consumption. However, up to now, it is still not possible to exploit the full
potential of these systems. One remaining challenge is for example, to op-
timally utilise all processors, in terms of performance or temperature. The
missing key functionality is the ability to react to environmental changes
during runtime. A transparent runtime environment should be able to de-
cide where to run processes and eventually change the process to processor
assignment at runtime in case of an external event. State-preserving task
migration is needed to enable this funcionality.

1.2 Contributions

In this semester thesis, we propose a method to migrate a single process on
a distributed memory system in case of an external event. The designed
approach allows light-weight task migration which is suitable for embedded
systems. Furthermore, it will guarantee successful task migration independ-
ent of the network topology for Kahn process networks (KPN) [1]. The

— 1 —

1.3. RELATED WORK

approach is implemented on a distributed Linux environment using the mes-
sage passing interface (MPI) [2] as a communication layer. A case study
serves as proof of concept of the proposed methods.

1.3 Related Work

The considered applications are formally defined as KPN [1] which is a special
class of reactive process networks (RPN), for which Geilen and Basten [3]
discussed the operational semantics. Their implementation was based on
YAPI [4], a programming interface to model signal processing applications
as process networks.

MPI Checkpointing [5] allows task migration on MPI level, that is, the migra-
tion of whole virtual processor instances. This apporach lacks in flexibility,
since it is not possible to migrate individual processes. Mapping each pro-
cess to one processor would be the only way to circumvent this restriction.
However, this would create a big overhead and is therefore not a feasible
solution for embedded systems.

Kalé et al. proposed a programming language called CHARM++ [6][7].
They also offer an communication framework called adaptive MPI and a
memory management system called isomalloc. However, the proposed meth-
ods will not give any guarantee, that deterministic task migration is possible,
since the migration of blocked processes is not intended.

Furthermore, the reconfiguration overhead of different task migration ap-
proaches is compared in [8].

1.4 Outline

In Chapter 2, the considered model of computation is introduced and the
objective is defined. In Chapter 3, we describe the proposed approach for
task migration. In Chapter 4, we describe the implementation of the ap-
proach followed by a case study, which serves as proof of concept. Finally,
we conclude in Chapter 5, and present an outlook for further work.

— 2 —

2
Objective

The objective of this thesis is to design a method to dynamically change
the assignment of processes to processors at runtime, in order to react to
environmental changes. A static mapping of processes onto processors lacks
in flexibility, because the assignment of processes has to be fixed at compile-
time and can never change. Hence, the designated functionality is remapping
of individual processes during runtime from one specific processor to another.
This shall work without restarting processes, meaning, the migrated process’
state has to be preserved.

2.1 Model of Computation

Similar to the distributed application layer (DAL) [9] framework, we describe
an application as a KPN. These process networks are mapped onto a dis-
tributed Linux environment running on a MPSoC architecture designed for
embedded systems. All processes are connected by a built-in network-on-
chip (NoC) and there is no shared memory. On top of the NoC, the MPI is
used as a communication framework.

2.1.1 Kahn Process Networks

Applications are modelled using the KPN specification, which describes an
application as a network of concurrent autonomous processes. The commu-
nication is performed by using point-to-point FIFO channels. From now on,

— 3 —

2.2. REQUIREMENTS

the KPN is denoted as (V,E), where V identifies the set of processes, and E
the set of channels. Correspondingly, v 2 V and e 2 E denote a specific
entity in the respective set. In the original specification, the READ semantic
is described as blocking and the WRITE semantic is non-blocking. However,
this implies either the use of unbounded memory, or the loss of tokens in
case that the FIFO is full. Since there is only bounded memory in practice,
the model must be refined. In order to preserve the syntax of the KPN
specification, channels are bounded in size with blocking READ and WRITE

semantics [10] [11]. Blocking, in this sense, means that a process stalls on
the attempt of reading from an empty channel, or writing to a full channel.
Only applications which show a consistent behaviour over time are considered
in this thesis, i.e. there is no mechanism to deal with erroneous applications
or processors.

2.1.2 Multi-Processor System-on-Chip Architecture

Each of the KPN processes is mapped onto one specific processor of the
MPSoC architecture. The KPN edges are modelled as FIFO channels with
bounded size. Without loss of generality, we assume, that we have one FIFO
on both interconnected processors [12]. These FIFOs are connected over the
NoC. We assume, that the NoC has some storage capacity, meaning that
there might be data in transit. In our model we only allow synchronous
communication schemes for the NoC.

2.2 Requirements

The DAL is ported to this specific model of computation. The main focus
of DAL is found in embedded system applications, which yields to some
important requirements concerning the task migration implementation.

A solution for task migration:

• should allow the individual migration of every single KPN process,
• has to be lightweight in terms of memory usage,
• must preserve the application in a defined state, and
• shall be transparent to the developer.

All the before-mentioned prerequisites yield to a general problem description,
which is detailed in the following chapter.

— 4 —

2.3. MOTIVATIONAL EXAMPLE

2.3 Motivational Example

Nowadays, the reliability of embedded systems is threatened by exceeding
threshold temperatures due to increasing on-chip power density. Embedded
systems - as the term suggests - are usually small and integrated into a larger
context. The increasing demand of performance has lead to a shift towards
multi-core processors. These kind of processors provide great performance
per unit area, but face various thermal issues. For example, the temperature
might increase at one processor, because of unbalanced workload. The main
idea suggests to distribute the load of the concerned core regions, such that
the processor temperature is more equalised over the whole MPSoC area, or
to temporarily move a certain task to cool down the affected region. In order
to react to temperature changes, task migration is needed; it must be possible
to remap individual processes during runtime. This is one specific example
among many others, where task migration is an important requirement for
solving various problems.

CPU CORE CPU CORE

CPU CORE CPU CORE

CPU CORE CPU CORE

CPU CORE CPU CORE

8

81 32

4 5 6
7

1 32

4 5 6 7

Figure 2.1: Temperature distribution for MPSoC is unbalanced [left] and
about to exceed the threshold temperature of this chip region. Task migra-
tion of one specific process (8) allows to cool down that region and to get a
more equalised temperature distribution [right].

— 5 —

3
Approach

Successful task migration of individual KPN processes (KP) requires at least
that the process to be migrated (vmig) is stopped on the original processor
and finally restarted on the targeted processor. By the definition of a KPN
with bounded buffer size, the successor (Vsuc) and predecessor (Vpre) pro-
cesses have to be blocked at their READ or WRITE statements during the time
vmig is being migrated. The terminologies are illustrated in Fig. 3.1 and
formally defined as:

vmig : process to be migrated
Vpre := { u 2 V | 9 (u, vmig) 2 E }
Epre := {(u, vmig) 2 E | u 2 Vpre }
Vsuc := { u 2 V | 9 (vmig, u) 2 E }
Esuc := {(vmig, u) 2 E | u 2 Vsuc }

(3.1)

A three-way task migration approach is elaborated in this chapter. First,
the setup and the preconditions are defined, and then, the subsequent task
migration steps are detailed.

3.1 Setup

A known set of applications is mapped onto the MPSoC architecture. The
applications are modelled as KPNs consisting of a distinct set of processes.
Processes can either communicate over data channels with their predecessors
and successors or exchange messages over a special event channel e as shown
in Fig. 3.2. In this thesis, only event messages from the set {Stop, Restart,

— 6 —

3.2. STOPPING A KPN PROCESS

vmig

}
Epre
}

EsucVpre

}

Vsuc

}

Figure 3.1: Partial KPN with one node to be migrated.

Pause, Resume} are considered. They are used to control the process model
that can be illustrated as a finite state machine as shown in Fig. 3.4.

3.1.1 Conditions

The approach described in this chapter relies on some important assump-
tions:

1. All treated KPNs do not contain any loops.
2. All buffers have finite size.
3. KPNs are consistent and connected at any time.
4. Each KP can eventually release its blocked READ and WRITE statements

to execute the task migration logic.

3.2 Stopping a KPN Process

The simplest way of stopping a KP, that is, interrupting the process between
two consecutive firings, shows some major flaws. Since the definition of a
KPN allows almost every reasonable topology, this approach highly depends
on the fact that one firing is completed at some future point in time. Fur-
thermore can neither timing bounds be given, nor is it possible to give a
formal proof that stopping works for any KPN. Any approach dependent on
the network topology is therefore discarded from the very beginning.

From vmig’s point of view, the network topology is defined by its READ

and WRITE statements, that allow the process to communicate with Vpre and
Vsuc. Therefore, we are looking for the ability to stop a KP at each of the
before-mentioned communication semantics. However, this feature must not

— 7 —

3.2. STOPPING A KPN PROCESS

P

e

di,1

di,2

do,1

do,2

Figure 3.2: A single KP which has two input and two output data channels
(di,x and do,x), and one special event channel (e).

only allow to stop a process, but also to reenter at the corresponding state-
ment on another processor. In our approach we use the well-established
Protothreads [13] framework to enable the desired functionality. At com-
pile time, C address labels are introduced at each of the READ and WRITE

statements. The labels are named with the corresponding line number of
the source code and the line number is stored within the local state of vmig

during the stopping stage.

3.2.1 Releasing Channels

Task migration shall be deterministic, therefore all channels must not con-
tain any data. Releasing the predecessor channels (Epre) is performed by
collecting all remaining data tokens as shown in Fig. 3.3. This data is even-
tually migrated with the process as well. The collection is only possible if
we can define an upper bound on the amount of data remaining in Epre.
Hence, all processes in Vpre have to be stopped to give the guarantee that
no more tokens are written into Epre. Though, the stopping problem then
also applies to Vpre (and could be solved as described for vmig). In this case
we would finally pause the whole network. But, in contrast to vmig it is not
necessary to actually stop v 2 Vpre, i.e. it is sufficient to pause v 2 Vpre. In
other words, it must only be guaranteed, that the process does not continue
to write data into d 2 Epre. Using this property as a prerequisite, the upper
bound of data (Nmax Bytes) can be calculated as:

Nmax(d) = 2 ·NFIFO(d) +NNoC(d) 3 ·NFIFO(d) 8d 2 Epre . (3.2)

In Section 2.1.2 we decided to use equally sized FIFOs (NFIFO Bytes) at
both ends of the channels. For any synchronous communication scheme, the
data in transit (NNoC) is smaller or equal to NFIFO.
The upper bound calculated in (3.2) will allow releasing all d 2 Epre and then
collecting the remaining data tokens. The suggested proceeding is detailed
in the subsequent sections.

— 8 —

3.2. STOPPING A KPN PROCESS

vpre vmigNoC}

NFIFO

}
NFIFO

}

NNoC

Figure 3.3: Disconnected KPN with remaining data tokens on the channel.

3.2.2 Stop Token

Once vmig has stopped, the processor hosting vmig will launch a new cleanup
process (vcleanmig), which is responsible for flushing the channel by collecting
and storing the remaining tokens. Then vcleanmig waits for all u 2 Vpre to
be paused (will be signalled over the event channel e at some point in the
future). On the other hand, all u 2 Vpre will ultimately write a unique
data token (ST) onto the channel to flag the last token on each d 2 Epre.
Then, vcleanmig will receive data from all d 2 Epre and store the remaining data
tokens in the memory. The memory needed is bounded by (3.2), we decided
to use a backup buffer of the very same size. Once vcleanmig has received ST
on all channels d 2 Epre, all data has been collected. We neglected so far
that d 2 Esuc might also contain data. These channels must also be flushed
before migration. Luckily, we can apply the same principles which were
discussed here to all u 2 Vsuc. However, we do not actually want to stop
u 2 Vsuc. Important here is the discrimination between stopping and pausing
of a process as denoted in Fig. 3.4. Stopping is used for vmig. vmig terminates
itself and will therefore not exist anymore. Pausing on the contrary will only
guarantee, that a process does not continue until it is finally triggered to
resume. If this discrimination cannot be done, all predecessor and successor
nodes have to be stopped as well, which will ultimately result in stopping
the whole KPN.

Paused Stopped

Running

Pause

Resume Sto
p

Re
sta
rt

Figure 3.4: Processes (KP) can be either running, paused or stopped mod-
elled with this finite state machine.

— 9 —

3.2. STOPPING A KPN PROCESS

3.2.3 Summary of the Stopping Stage

The previous sections have explained a procedure to stop one single KP of a
KPN in order to enable the migration of that process. The shown approach
is independent of the network topology for the considered class of KPN.
However, the proposed approach can be applied to any class of KPN if all
processes are stopped to migrate a single process.
As a summary, the approach used the following subsequent steps to stop one
single KP:

1. Stop the process to be migrated; Pause the predecessor and successor
processes.

2. Insert a unique stop token to flag the last token on each channel.
3. Start a cleanup process to collect the remaining data tokens on all

channels.
4. Receive data from channels until the unique stop token arrives.

The three basic properties which were used in this stage are:

• The ability to stop a KP at every READ and WRITE semantic and con-
sequently restart the KP at the very same line.

• The discrimination between stopping and pausing of a process as mod-
elled in Fig. 3.4.

• The prerequisite that the steps are subsequent, i.e. coordination hap-
pens among the KPs over the event channel e defined as in Fig. 3.2.

— 10 —

3.3. MIGRATION

3.3 Migration

In this stage, the relevant data is taken and then sent to the target processor.
All preliminary steps were already done in the stopping stage. To recap
shortly, the following data is at least needed to enable a deterministic restart
of vmig.

• The line number of the corresponding READ or WRITE statement, where
the process has actually stopped.

• The local variables of the process.
• The buffer content of all READ FIFOs.

Having this data, it is possible to properly restart the KP and correctly
reconnect the KPN. Therefore, the actual task migration stage consist of
first storing and then transferring the before-mentioned data to the target
processor.

3.4 Restarting

The restart stage will finally allow the KPN to continue its operation. It
only takes the stored data from the previous migration stage. Since vmig has
been migrated to another processor, the channels (Vpre and Vsuc) have to be
reconnected. This is not a problem, because all of their data was collected
during the stopping stage. Therefore, they can only be re-instantiated and
reconnected.
The required steps are:

1. Reinitialise vmig.
2. Restore the local variables of vmig.
3. Refill the FIFO buffers with the data that has been collected by vcleanmig .
4. Jump to the line number, where the process has stopped.
5. Reconnect the KPN (Vpre and Vsuc).
6. Restart vmig and resume all u 2 {Vpre \ Vsuc}.

After this, the process is running from the very same statement as it has left
and the application just continues its operation in a consistent behaviour as
it was proposed in the objective.

— 11 —

4
Implementation

The implementation part of this thesis serves as proof of concept of the
proposed task migration approach.

4.1 Control Hierarchy

The DAL framework elects one of the MPSoC processors as a master. All
other processors are then called slaves. The master coordinates the slaves
and controls the execution of KPs. In particular, the master decides where
to start and stop processes and is also able to trigger task migration of an
individual KP. Furthermore, it is the master ’s duty to set up the channels
and to reconnect them after task migration.

4.2 Protothreads

In the approach we assumed to have the ability to release each blocked
READ and WRITE semantic. Once, these semantics are released we use the
well-established Protothreads framework [13] to store the line number of the
corresponding READ or WRITE statement. The release functionality must be
added as an additional feature of the READ and WRITE functions triggered by
a signal. Once, the process received the release signal, it must not continue
its computations, but has to store the line number and terminate itself.
The protothread library is used to implement the latter functionality. At
compile time, C address labels are introduced at each of the READ and WRITE

statements. The labels are named with the corresponding line number of the
source code. The line number is then stored within the local state of vmig

— 12 —

4.3. COORDINATED SHUTDOWN

during the stopping stage.

4.2.1 Possible Obstacles

Protothreads enables some very neat functionalities, but it also entails some
difficulties. In this section, we discuss possible obstacles and the remedies.

Possible Obstacles Remedies
No threads can be used within the
process itself.

Instead of using threads, one should
use DAL processes and let the DAL
code generator decide where to run
them.

No support for dynamic memory;
i.e. no malloc() or calloc(). This
also implies, that one should not
use C++ objects.

Usage of a unique system-wide vir-
tual memory address space per pro-
cess. A special DAL_malloc() and
DAL_free() macro could then take
care of the occupied memory re-
gions. For task migration, one
would then copy these regions to
another processor and insert it at
the very same address. For more
details, refer to the isomalloc()

principle of CHARM++ [6][7].
Data tokens cannot be read within
functions.

Precompiler could resolve this.

4.3 Coordinated Shutdown

For simplification, we did not discriminate between stop and pause for pro-
cesses. Therefore, we are pausing the whole KPN in the prototype imple-
mentation. The stopping of the KPN requires some synchronisation among
the slaves. In the first phase, all KPs have to terminate. Then, in the second
phase, the remaining data tokens are collected. The size of this data is only
bounded if the first phase, that is, stopping of all KPs, has finished at that
point. Therefore, the slaves report to the master after each phase and will
then be triggered again to continue to the next phase. The last confirmation
will inform the master that stopping was successful. Finally, the master can
trigger the next stage, namely the task migration. So it is important to have
at least these two different barriers:

1. Confirmation that Vpre, Vsuc, and vmig have been terminated.

2. Confirmation that a cleanup process vclean has collected all the remain-
ing tokens on the incoming channels of each v 2 V .

— 13 —

4.4. CASE STUDY

4.4 Case Study

We tested our task migration approach with a 5-KP MJPEG application,
where each KP is assigned to a different slave processor. In Figures 4.1 and
4.2 the output of each KP can be seen. The whole network is started and
asynchronously stopped several times. This means, that the master triggers
each slave to stop its KP without any assumption on timing or ordering
constraints. In the period when all KPs are stopped, the slaves persist
as homogenous instances. Finally, after some random delay, the master
triggers the slaves again to restart the KPs. In our testing we did not
consider the actual migration due to the lack of time. But since the slaves
are homogeneous, it will certainly also work after a process has been migrated
to another slave processor.

— 14 —

4.4.
C

A
SE

ST
U

D
Y

Figure 4.1: Proof of concept with a 5-KP MJPEG application [right]. Process table [top left] shows running KPs. All KPs
run on a different virtual MPI processor on the same physical six-core machine. Therefore each of the processes in the process
table corresponds to one virtual processor runtime environment.

—
15

—

4.4.
C

A
SE

ST
U

D
Y

Figure 4.2: Master [bottom left] triggered all KPs to stop. Process table shows that only slave processes are running, the KP
threads are gone (compare to Fig. 4.1).

—
16

—

5
Conclusion and Outlook

5.1 Conclusion

This semester thesis proposed a state-preserving task migration approach for
an MPSoC architecture with distributed memory. In order to guarantee task
migration independent of the Kahn process network topology, the approach
must be able to unblock processes at their READ and WRITE semantics. We
proposed a method, that allows to migrate individual processes by making
sure that the predecessors of the corresponding process to be migrated are
not writing tokens to their channels. This allowed us to set an upper bound
on the amount of memory used to collect the remaining data on the channels.
A unique data token is used to flag the last token on each channel. In the
migration phase, we transfer the line number, the collected data, and the
state information of the process to be migrated to another processor. The
process is restarted on its new processor and the application can continue
the execution where it has left.
The overhead for the proposed task migration consists mainly of the line
number, the buffer content, the local variables, and the overhead of the
communication layer. Finally, a prototype implementation was developed to
show the viability of the considered approach.

5.2 Outlook

There are several ways to extend the current work. First, the proposed
approach can be integrated to the DAL design flow to automatically provide
task migration into all DAL applications. Second, a task migration interface

— 17 —

5.2. OUTLOOK

can be implemented with the knowledge gained from this thesis. Third, it
would be nice to have detailed performance measurements test the timing
requirements. Furthermore, it would be interesting to extend the approach
to any class of KPN and to formally prove the task migration approach.

— 18 —

A
List of Acronyms

API Application Programming Interface
DAL Distributed Application Layer
FIFO First-In First-Out
KPN Kahn Process Network
RPN Reactive Process Network
KP Kahn Process
MJPEG Motion JPEG
MPI Message Passing Interface
MPSoC Multiprocessor System-on-Chip
NoC Network on Chip

— 19 —

B
Presentation Slides

— 20 —

Task Migration
 for Multi-Processor Systems
Semester Thesis of Tobias Scherer
Advisors: Lars Schor, Devendra Rai

Monday, January 16, 2012 D-ITET/TIK/TEC

Motivation

2

CPU CORE CPU CORE

CPU CORE CPU CORE

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

1 2 3

4 5 6 7

8

Monday, January 16, 2012 D-ITET/TIK/TEC

Motivation

2

CPU CORE CPU CORE

CPU CORE CPU CORE

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

1 2 3

4 5 6 7

8

Monday, January 16, 2012 D-ITET/TIK/TEC

Motivation

2

CPU CORE CPU CORE

CPU CORE CPU CORE

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

1 2 3

4 5 6 7

8

Monday, January 16, 2012 D-ITET/TIK/TEC 3

Objective - Task Migration

! Kahn Process Network (KPN)

! Distributed Linux environment

! Message Passing Interface (MPI) for
communication of KPN nodes

! No shared memory between KPN nodes

Introduction
‣Motivation
‣Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

Monday, January 16, 2012 D-ITET/TIK/TEC 4

P C

Objective - Task Migration

Introduction
‣Motivation
‣Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

Monday, January 16, 2012 D-ITET/TIK/TEC 5

C

P

Objective - Task Migration

Introduction
‣Motivation
‣Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Monday, January 16, 2012 D-ITET/TIK/TEC

Related Work

6

! CHARM++ with AMPI
➡ Assign unique virtual address range for all processes and

 then copy the this segment to another processor
➡ Big overhead → not suitable for embedded applications

! MPI Checkpointing
➡ Migrates virtual processor instances in one piece

Introduction
‣Motivation
‣ Objective
‣Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Monday, January 16, 2012 D-ITET/TIK/TEC

Content

! Motivation and Objective
! Basic Principles
! Approach for Task Migration
! Demo
! Limitations
! Conclusion

7

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Monday, January 16, 2012 D-ITET/TIK/TEC

Basic Principles

! Protothreads
! Well established
! Being able to stop a process at every READ or WRITE statement

! Controlled and managed stopping
! No lost tokens
! Coordination is crucial
! Killing threads is no valid possibility

8

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN

9

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN

10

P C

F

R / I

R / I

W / O

W / O

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 1

11

P C

F

R / I

R / I

W / O

W / O

PAUSEPAUSEPAUSE

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 1

11

P C

F

R / I

R / I

W / O

W / O

PAUSE

PAUSE

PAUSE

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 1

11

P C

F

R / I

R / I

W / O

W / O

PAUSE

PAUSE

PAUSE

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 2

12

P C

F

R / I

R / I

W / O

W / O

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 2

12

P C

F

R / I

R / I

W / O

W / O

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 3

13

P C

F

R / I

R / I

W / O

W / O

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 3

13

P C

F

R / I

R / I

W / O

W / O

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 3

13

P C

F

R / I

R / I

W / O

W / O

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 3

13

P C

F

R / I

R / I

W / O

W / O

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 3

13

P C

F

R / I

R / I

W / O

W / O

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 3

13

P C

F

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 4

14

P C

F

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 4

14

P C

F

Struct
{
Local_state(P)
Line_number(P)

}

Struct
{
Local_state(F)
Line_number(F)
FIFO_content
}

Struct
{
Local_state(C)
Line_number(C)
FIFO_content
}

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 4

14

Struct
{
Local_state(P)
Line_number(P)

}

Struct
{
Local_state(F)
Line_number(F)
FIFO_content
}

Struct
{
Local_state(C)
Line_number(C)
FIFO_content
}

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Stop KPN - Phase 4

14

Struct
{
Local_state(P)
Line_number(P)

}

Struct
{
Local_state(F)
Line_number(F)
FIFO_content
}

Struct
{
Local_state(C)
Line_number(C)
FIFO_content
}

P

F

C

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Migration

15

P

FF

C

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Migration

15

P

FFC

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Restart

16

P

FFC

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Restart

16

P

FFC

P

C F

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Restart

16

P

C F

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Network on Chip

MASTERSLAVE

SLAVESLAVE

Monday, January 16, 2012 D-ITET/TIK/TEC

Approach - Restart

16

P

C F

R / I

R / I W / O

W / O

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Monday, January 16, 2012 D-ITET/TIK/TEC

Case Study - Recap

17

Stop
Store
Local State
Line number
Buffer content

Migrate Restart

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Monday, January 16, 2012 D-ITET/TIK/TEC

Case Study - Implementation

! MJPEG Kahn Process Network
! One network node per processor

18

SS SF Dec

MBMS

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Monday, January 16, 2012 D-ITET/TIK/TEC

Limitations

! No threads within KPN nodes
➡ Parallelise application and let DAL code generator chose where to

 execute process
! No support for malloc / calloc within KPN nodes

➡ Hard to deal with unknown, unbounded memory within embedded
 applications

➡ Decision to support lightweight applications
! Tokens cannot be read or written inside functions

! Explicit RETURN statements in the process implementation
are not supported

! All local variables have to be in the process state

19

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣ Conclusion

Monday, January 16, 2012 D-ITET/TIK/TEC

Conclusion

20

Stop
Store
Local State
Line number
Buffer content

Migrate Restart

Introduction
‣Motivation
‣ Objective
‣ Related work

Approach
‣ Basic Principles
‣ Stop
‣Migrate
‣ Restart

Case study
‣ Demonstration

Conclusion
‣ Limitations
‣Conclusion

! Coordinated, controlled and managed shutdown of KPN
triggered by a MASTER node.

! Ability to terminate from within a KPN process
at every READ and WRITE statement.

Monday, January 16, 2012 D-ITET/TIK/TEC

Protothreads

! Using C macros for the READ and WRITE functionality

! C address labels to jump to a specific line number (only at
entry points)

! The FIFO pop function must have the ability to unblock

21

B

Monday, January 16, 2012 D-ITET/TIK/TEC 22

B

Monday, January 16, 2012 D-ITET/TIK/TEC 23

B

— 28 —

Bibliography

[1] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming,” Information Processing, 1974.

[2] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing Interface, 1999.

[3] M. Geilen and T. Basten, “Reactive Process Networks,” in Proc. ACM
Int’l Conf. on Embedded Software (EMSOFT). ACM, 2004, pp.
137–146.

[4] E. De Kock, W. Smits, P. van der Wolf, J. Brunel, W. Kruijtzer,
P. Lieverse, K. Vissers, and G. Essink, “YAPI: Application Modeling
for Signal Processing Systems,” in Proc. Design Automation
Conference (DAC). ACM, 2000, pp. 402–405.

[5] S. Sankaran, J. Squyres, B. Barrett, V. Sahay, A. Lumsdaine, J. Duell,
P. Hargrove, and E. Roman, “The LAM/MPI Checkpoint/Restart
Framework: System-initiated Checkpointing,” International Journal of
High Performance Computing Applications, vol. 19, no. 4, pp. 479–493,
2005.

[6] L. Kalé, B. Ramkumar, A. Sinha, and A. Gürsoy, “The CHARM
Parallel Programming Language and System: Part I-Description of
Language Features,” 1995.

[7] B. Ramkumar, A. Sinha, V. Saletore, and L. Kale, “The Charm
Parallel Programming Language and System: Part II-The Runtime
System,” IEEE Transactions on Parallel and Distributed Systems,
1994.

[8] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Supporting
Task Migration in Multi-Processor Systems-on-Chip: A Feasibility
Study,” in Proc. Design, Automation and Test in Europe (DATE),
2006, pp. 15–20.

[9] “Distributed Application Layer,” 2012. [Online]. Available:
http://www.tik.ee.ethz.ch/~euretile/

— 29 —

http://www.tik.ee.ethz.ch/~euretile/

BIBLIOGRAPHY

[10] T. Parks, “Bounded Scheduling of Process Networks,” Ph.D.
dissertation, University of California, 1995.

[11] M. Geilen and T. Basten, “Requirements on the ecution of Kahn
Process Networks,” Programming Languages and Systems, pp.
319–334, 2003.

[12] K. Huang, W. Haid, I. Bacivarov, and L. Thiele, “Coupling MPARM
with DOL,” ETH Zurich, Technical Report, Tech. Rep., 2009.

[13] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying Event-driven Programming of Memory-constrained
Embedded Systems,” in Proc. Int’l Conf. on Embedded Networked
Sensor Systems. ACM, 2006, pp. 29–42.

— 30 —

	Introduction
	Motivation
	Contributions
	Related Work
	Outline

	Objective
	Model of Computation
	Kahn Process Networks
	Multi-Processor System-on-Chip Architecture

	Requirements
	Motivational Example

	Approach
	Setup
	Conditions

	Stopping a KPN Process
	Releasing Channels
	Stop Token
	Summary of the Stopping Stage

	Migration
	Restarting

	Implementation
	Control Hierarchy
	Protothreads
	Possible Obstacles

	Coordinated Shutdown
	Case Study

	Conclusion and Outlook
	Conclusion
	Outlook

	Acronyms
	Presentation Slides

