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Abstract

Battery state of charge models are either complex and computationally intensive or require
special purpose hardware components, such as a coulomb counter, available to the sys-
tem. This drives up production cost of implementations, especially in the case of low-cost
WSN devices. Therefore, this thesis proposes a lightweight battery model which relies fully
on closed-loop voltage and drain current measurements. The model’s only requirement is
the presence of an off-the-shelf charge controller with a well defined cut-off voltage which
allows the definition of the 0% state of charge in terms of voltage. In addition, the behav-
ior of the battery under different load situations is learnt from traces and transformed into
an approximative model. In addition, the model considers temperature and aging effects
implicitly by their effects on the battery voltage. To sum up, this lightweight battery state
of charge model requires no hardware modification if voltage and current sensors are
available and provides a low operational overhead which favors wireless sensor network
deployments. Although, the initial effort for generating the traces and the determination of
the model coefficients is not negligible.
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CHAPTER 1

Introduction

Wireless Sensor Networks (WSN) are used for a wide variety of applications. In most of
the use cases, energy consumption is a crucial design requirement. This is particularly
true if a WSN operates in remote areas and thus must rely on batteries due to unavailable
power infrastructure. Moreover, these sensor nodes must obey a very strict power budget
to successfully fulfill their duties while still providing an acceptable lifetime.

To increase the lifetime, a sensor node may gain energy out of natural resources such as
wind and solar. These energy-harvesting sensor nodes try to operate in a energy-neutral
state by not using more energy than provided by the energy-harvesting system in the long
term. To prevent the death of the sensor node by running out of battery energy, the node
may decide to run or not to run energy-hungry tasks while maintaining a well defined
baseline operation. In order to achieve such a state, the sensor node must keep track of
the energy available in the battery, commonly referred as the State of Charge (SoC).

1.1. Motivation

Battery state of charge determination is either based on complex, computationally in-
tentsive models or requires special purpose hardware components, such as a coulomb
counter, available to the system. This drives up the production costs of an implementation,
especially in case of a low-cost WSN device. Therefore, this thesis proposes a lightweight
battery model which relies fully on closed-loop voltage and drain current measurements.
The behavior of the battery under different load situations is learnt from traces. Although
this model requires a considerable effort for generating these traces and extracting the
behavior from them, it implies only a minimal operational overhead.
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1.2. Contribution

1.2. Contribution

The semester thesis contributions are the following:

• modeling of a state of charge approximation of a lead-acid battery based on closed-
loop voltage and current measurements.

• design and implementation of a feasible battery monitoring module for the
Permasense/X-Sense [PermaSense Consortium, 2012] Core Station [Buchli et al.,
2011], acting as a basis for an energy-dependent task scheduler.

1.3. Related Work

Many different battery models are described in the literature. Their approaches vary from
very extensive electro-chemical models over analytical models to high-level stochastic
models. Electro-chemical models as proposed by Doyle et al. [1993] describe the chemical
processes of a battery in a very detailed way which is too complex for WSN devices to com-
pute. Therefore, analytical methods were proposed to abstract from the chemical process
and model the battery on a higher level. The simplest one is Peukert’s Law [Rakhmatov
and Vrudhula, 2001] which describes the non-linearities of a battery by two coefficients.
Nevertheless, Peukert’s law is limited to constant load scenarios and thus not performing
well in WSN applications. For this reason, Rakhmatov and Vrudhula [2001] proposed an-
other analytical model which models the diffusion process in detail. The performance of
this model is superior to Peukert’s law. In spite of that, it is still based on heavy compu-
tational operations and is not suitable for a WSN device. Manwell and McGowan [1993]
proposed a battery model called KiBaM which is intuitive and is based on the chemical ki-
netics process [Jongerden and Haverkort, 2008]. The KiBaM model was slightly modified
by Rao et al. [2005] to fit the needs of embedded systems setups.

1.4. Outline

Chapter 2 defines the specifications of the system architecture and the functional specifi-
cations which have to be considered in the implementation phase. In chapter 3 the battery
model is covered in detail. This includes a brief description of the battery processes and
a corresponding finite-state machine for tracking these processes. Furthermore, the trace
generation and their transformation into the battery state of charge model is specified.
Chapter 4 covers the proof of concept implementation of the proposed model. The setup
of the evaluation and its results are discussed in chapter 5. Finally, chapter 6 presents a
short conclusion.
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CHAPTER 2

System Requirements

2.1. System Architecture

When an energy harvester operates with a battery, the WSN mote should be aware of the
energy stored in the battery for efficiently schedule its tasks and to enlarge its lifetime. To
keep track of the battery’s state of charge various battery models are proposed as outlined
in section 1.3. However, these models often rely on special sensors or become too complex
in case a charge controller is enforcing a cut-off voltage to prevent deep-discharge cycles.
This thesis proposes a lightweight approach which exploits the presence of the charge
controller for defining the state of charge in terms of voltage and drain current. Figure 2.1
illustrates the setup which is briefly discussed in the following.

Energy Harvester

Charge Controller

Battery

System Platform

Figure 2.1.: Block diagram of system architecture
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2.2. Functional Specifications

2.1.1. System Platform
The battery model does not depend on any special purpose hardware for energy moni-
toring such as a coulomb counter. However, low-cost voltage and current sensors have to
be available on the system. Such low-cost off-the-shelf sensors are present on many sys-
tem platforms and thus not considered as special purpose hardware for energy monitoring.
Therefore, no hardware modifications are required on existing platforms where voltage and
current sensors are available.

2.1.2. Battery
There exists a large number of different batteries suitable for WSN devices. On the
one hand, they vary in the chemistry (e.g. Lead-Acid, Nickel-Cadmium, Lithium-Polymer,
Lithium-Ion, Lithium-Phosphate, etc. ). On the other hand, they vary in the nominal capac-
ity they provide. The proposed battery model intents to model high-capacity (30Ah+) 12V
lead-acid batteries. As this is not a restriction per design, it may also be adopted for other
types of batteries operating at different nominal voltages and other types of chemistry.

2.1.3. Charge Controller
Batteries operated with energy harvesting systems such as photovoltaic cells or micro
wind turbines often employ an off-the-shelf charge controller for cost reasons. The charge
controller protects the battery from over-charging and over-voltage and disconnects the
load from the battery when the battery voltage drops below a voltage threshold, called cut-
off voltage. This is to protect the battery from deep discharge cycles and thus essentially
extend the battery’s lifetime.

2.2. Functional Specifications

A proof of concept of a battery monitoring system with the proposed state of charge battery
model is implemented. This implementation covers the following specification:

Autonomous Measurements and Computation: The battery monitoring system per-
forms autonomous measurements and automatically updates the information of the
battery state, the current remaining time and the state of charge.

Polling Interface: The implementation provides an interface for polling information of the
current state of charge and the remaining time at the current and at a specified load.
The goal is that the information of the battery monitoring system can be extended to
allow for energy dependent scheduling.

Modular Design: The design of the monitoring system is modular with regard to different
battery types. The battery dependent implementation is separated from the func-
tional behavior of the system. This enables the system to adapt the functionality to
different batteries within a reasonable time or to refine the battery model indepen-
dent of the interface and measurement implementation.
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2.3. Host Platform Requirements

2.3. Host Platform Requirements

Charge Controller is the essential hardware component which has to be present in the
setup. Furthermore, the cut-off voltage of the charge controller must be well-known
and independent of temperature. In addition, the internal resistance of the charge
controller must be known.

Voltage and Current Sensors must be present on the system for measuring the system’s
input voltage and its drain current.

Cable Resistance must be known because the systems’s input voltage is not equal to
the battery’s voltage in general. Therefore, the voltage drop of the cable must be
considered for an accurate modeling of the battery.
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CHAPTER 3

Model

The battery model discussed in this chapter can be classified as a trace-based state of
charge approximation model. The model can achieve battery state of charge estimations
with measurements of low-cost voltage and current sensors combined with a finite-state
machine. The battery model is based on battery characterization using discharge and
charge traces.

3.1. Battery Charge and Discharge Classification
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Figure 3.1.: Qualitative illustration of the charging and discharging process

The behavior of a battery can be classified into two main processes: charging and dis-
charging. The charging process can be further divided into three sub-phases. The charg-
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3.2. Finite-State Machine

ing and discharging processes are illustrated in figure 3.1 and briefly discussed in the
following.

Discharging. During discharging the battery is drained with a certain current which defines
the battery discharge rate. The voltage of the battery is monotonically decreasing if the
battery is drained with a constant current. If there is a sudden increase of the load in terms
of power, the drain current increases and the battery voltage drops as illustrated in figure
3.1a). In contrast, if there is a sudden decrease of the load, the drain current will decrease
and the battery voltage will increase accordingly.

Bulk. The first battery charging sub-phase is commonly called the bulk phase and is
shown in phase 1 of figure 3.1a) and b). In an ideal charging case with a stable charg-
ing source, the bulk phase can be characterized by a monotonically increasing battery
voltage (phase 1 of figure 3.1a) which depends on the charging current (phase 1 of figure
3.1b).

Absorption. The battery reaches the absorption phase as soon as the voltage has
reached the absorption voltage level. In this phase, the charging current is declining expo-
nentially (phase 2 in 3.1b). The value of the absorption voltage depends on the tempera-
ture and the battery type.

Float. The float phase is reached when the battery is fully charged. The battery volt-
age drops from the absorption voltage to the float voltage. During this phase the battery
charging current remains on a constant level which is usually about 2-10% of the capacity
depending on the battery type. The float phase is illustrated in phase 3 of figure 3.1. If the
battery is used too heavily while being charged, the float phase is not reached.

3.2. Finite-State Machine

For observing the behavior of a battery over time, it is appropriate to define a Finite-State
Machine (FSM) to track each of the specified phases of the charging and discharging
processes. Figure 3.2 shows an overview of the proposed FSM including its states and
transitions. The individual states are briefly explained in the following.

UNKNOWN is the starting state. While being in the UNKNOWN state, the system gath-
ers information to determine in which state the battery is. It monitors the evolution of the
voltage and current for detecting the conditions of the transitions to the other states. If it
detects a discharging behavior, the FSM changes over to the DISCHARGE state. The dis-
charging behavior is detected by a falling voltage tendency combined with a constant or
decreasing current tendency.

Likewise, if the system detects a bulk behavior, it transitions into the BULK state. The
bulk behavior is detected by an increasing voltage tendency combined with a constant or
increasing current tendency.

The FSM changes over to the ABSORPTION state if the voltage reaches the absorption
voltage level Vabsorption. If the voltage remains stable at the float voltage level Vf loat , the
system transitions to the FLOAT state.
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3.2. Finite-State Machine
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Figure 3.2.: Overview of the finite-state machine with its states and abstract transitions

DISCHARGE represents the discharging process of the battery. The battery remains in this
state as long as the battery is discharging. In the DISCHARGE state the system monitors
the voltage and the drain current for detecting a bulk behavior that is characterized by
a monotonically increasing voltage. As soon as a bulk behavior is detected, the system
transitions into the BULK state.

BULK is the first state of the three-step charging process introduced in section 3.1. As soon
as the voltage reaches the absorption threshold voltage Vabsorption, the FSM changes over
to the ABSORPTION state. Otherwise, when the battery is discharging which is indicated
by a falling voltage tendency or even a sudden voltage drop, the system changes over to
the DISCHARGE state.

ABSORPTION can only be reached from the BULK or UNKNOWN state. This is because
a charging process always follows the path from BULK to ABSORPTION. The typical char-
acteristic of the absorption phase is that the battery voltage does not increase anymore
as in the bulk phase. When the battery voltage drops to the float voltage level Vf loat the
system changes over to the FLOAT state. When the battery voltage falls below absorp-
tion threshold voltage Vabsorption and monotonically decreases, the battery is not charged
anymore. In this case the FSM transitions to the DISCHARGE state.

FLOAT is the final state of the charging process. In this state, the battery is fully charged
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3.3. State of Charge Approximation

and is kept at 100% with a small charging current. If the voltage drops below the float
voltage level Vf loat , the battery is discharging and thus the system transitions into the
DISCHARGE state.

3.3. State of Charge Approximation

To capture the behavior of the battery several traces of the charging and discharging pro-
cesses are recored. A single trace consists of voltage and drain current measurements of
a charging or discharging process. In the discharging case several traces at different load
levels are recorded. Likewise, a few traces with different charging currents are recorded
for the charging process. Afterwards, these traces are used to generate an approximative
model of the state of charge depending on the load and voltage. At first, the voltage curve
of each load level is approximated. The resulting coefficients of each voltage curve are a
function of the drain current which is approximated in a second step. This section describes
the idea of this trace-based state of charge approximation in detail.

3.3.1. Battery Measurements
Figure 3.3 shows an off-the-shelf setup with a photodiode representing the charging
source, a charge controller, a battery and a system platform. As figure 3.3 shows the volt-
age sensors of the system platform can only measure the system input voltage Vsys. How-
ever, for modeling the behavior of the battery the battery voltage Vbat is relevant. There-
fore, the voltage drop over the cable and the charge controller Vdrop must be considered.
Equation 3.1 shows the relation of Vbat to Vsys. The voltage drop Vdrop is dependent on
the resistance of the charge controller and the cable resistance as equation 3.2 shows.
Furthermore, the resistance of the cable Rcable depends on the specific resistance ρ , the
length lcable and the cross area A of the cable (see equation 3.3).

Charge Controller

+

Cable

S
y
s
te
mVbat Vsys

Vdrop

Isys

Figure 3.3.: Simplified model of the voltages and currents of the system platform

Vbat =Vsys +Vdrop (3.1)

Vdrop = (Rcharge controller +Rcable) · Isys (3.2)

Rcable = ρ · lcable

A
(3.3)
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3.3. State of Charge Approximation

3.3.2. Trace Generation
For approximating the discharging and charging behavior of a battery, discharge traces
at different discharging currents and charge traces with different charging currents are re-
quired. A trace consists of fixed interval measurements of the system input voltage or of
battery voltage and system drain current. A qualitatively good trace is achieved by measur-
ing the battery voltage directly on the battery. This excludes a potential error of correcting
the voltage drop over the cable.

In the discharging case, the discharging currents Isys have to be chosen in such a way, that
the traces are covering the entire operational range with respect to their load. Accordingly,
the charge traces have to be generated with charging currents covering the entire range of
possible charging currents experienced in operation. Furthermore, for modeling the charg-
ing behavior the exact charging current have to be recorded besides the system’s drain
current and the system’s input voltage.

3.3.3. Discharge Approximation
The load on the battery imposed by the drain current Isys is relative to the nominal capacity
of the battery Cbat . For example, a high current on a high-capacity battery imposes a similar
load as a lower current on a low-capacity battery. Therefore, the behavior of both batteries
are similar. For that reason, the relative load RL is introduced. It normalizes the load of
the discharging current with respect to the battery’s nominal capacity. The relative load is
defined by equation 3.4.

RLsys =
Isys

Cbat
(3.4)

The discharge approximation maps the measured discharge trace for each relative load
to an according depth of discharge1 curve as shown in figure 3.5. The depth of discharge
curve of each trace can be approximated as a function of battery voltage Vbat and the
relative load RL. In the following, this mapping process and the depth of approximation is
explained in detail.

The discharge traces in figure 3.4 show the voltage curves over time for two different
discharging currents denoted as high load and low load. Clearly, the battery drains faster
at higher load. As it is to be expected, when the load is higher, the battery voltage is lower. If
the voltage is equal to the cut-off voltage of the charge controller, the load is disconnected
by the charge controller.

The start of each trace is represented by point A in figure 3.4. The battery is considered
fully charged and therefore, the depth of discharge is equal to 0% DoD at that point. Sim-
ilarly, the time when the battery voltage equals the cut-off voltage of the charge controller
is defined as tcuto f f (points B and C in figure 3.5). For these points the depth of discharge
is defined 100% DoD, since these correspond to the voltage when the charge controller
disconnects the load. In between, the depth of discharge is assigned linearly in time. This
process can be considered as changing the time domain of the trace to a depth of dis-

1Depth of Discharge (DoD) is the complement of the state of charge (SoC), i.e. SoC = 100%−DoD
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3.3. State of Charge Approximation
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Figure 3.4.: Qualitative illustration of discharge traces at two different load levels with the
charge controller specific cut-off voltage indicated by points C and B
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Figure 3.5.: Depth of discharge curves achieved by domain transformation and inversion
of the discharge traces shown in figure 3.4
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3.3. State of Charge Approximation

charge domain which is defined for [0,1]. In order to change the time domain, the depth of
discharge domain transformation is defined as in equation 3.5.

DoD(t) =
t

tcuto f f
(3.5)

After applying this domain transformation, each trace represents a voltage curve as a
function of depth of discharge. However, for the discharge approximation, the depth of
discharge must be a function of voltage. Therefore, the traces are inverted and the resulting
traces are shown in figure 3.5.

Subsequently, the depth of discharge approximation define a well-matching function for the
depth of discharge curves shown in 3.5. To this end, the depth of discharge approximation
D̂oD can be defined as a polynomial approximation of order n for each depth of discharge
trace as shown in equation 3.6. The choice of the approximation order n is a trade-off
between computation complexity and the fitness of the traces.

D̂oD = an ·V n
bat +an−1 ·V n−1

bat + · · ·+a1 ·Vbat +a0 (3.6)

Since the coefficients ai for all i∈ {0, . . . ,n} are different for each trace, they can be viewed
as dependent of the relative load of each trace. This implication leads to equation 3.7.

D̂oD = an(RLsys) ·V n
bat +an−1(RLsys) ·V n−1

bat + · · ·+a1(RLsys) ·Vbat +a0(RLsys) (3.7)
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Figure 3.6.: Interpolated approximations by relative load

Furthermore, the resulting coefficients ai of all traces can be viewed as discrete data points
of the relative load RLsys. These data points can be expressed by a polynomial approx-
imation of order m for interpolating the coefficients for different relative loads other than
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3.3. State of Charge Approximation

the measured traces. This polynomial approximation of the coefficients ai is defined in
equation 3.8. A qualitative illustration of the interpolated polynomial DoD approximation is
shown in figure 3.6. The blue curves represent the approximations of the traces, while the
red curves are approximations with interpolated coefficients for relative loads other than
the measured traces. The approximation order m must be chosen in such a way that the
resulting interpolation fits all coefficients the best.

ai(RLsys) = bi,m ·RLm
sys +bi,m−1 ·RLm−1

sys + · · ·+bm,1 ·RLsys +bm,0 ∀i ∈ {0, . . . ,n}
(3.8)

3.3.4. Charge Approximation
In case of the battery charging process, the state of charge approximation is also done
by measuring the system voltage and the system drain current as in the discharge case.
A further complication is that the charging current Icharge cannot be measured directly,
because the system can only measure the system drain current Isys as figure 3.7 illustrates.
The charging source is represented by a photodiode. The charging current Icharge is split
up by the charge controller into Ibat and Isys. Depending on the amount of the charging
current, the resulting net current flowing into the battery Ibat may be positive or negative.

Charge Controller

+

Cable

S
y
s
te
m

Ibat

Icharge
Isys

Figure 3.7.: Overview of the currents. The photodiode represents a charging source.

Isys > Icharge⇐⇒ Ibat < 0 (3.9)

Isys < Icharge⇐⇒ Ibat > 0 (3.10)

If Ibat is negative, the battery is discharging because the system current Isys is higher than
the charging current Icharge as in equation 3.9. In this case, the model will calculate the
state of charge as in a normal discharging case. However, the model does not know that
the battery is charged and the current flowing out of the battery is effectively lower than
the system drain current. Therefore, the voltage of the battery will remain more stable than
in the discharging case where all current is supplied by the battery alone. For this reason,
the state of charge approximation will remain more stable as well. In case of a positive Ibat
as shown in equation 3.10, there is a net current flowing into the battery and is thus raising
its charge.
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3.3. State of Charge Approximation

The relative charge RC can be defined similar to the relative load by equation 3.11. A
charging current’s contribution to the state of charge is relative to the nominal capacity of a
battery. If a battery is charged for a certain amount of time with a charging current Icharge,
the increase of the state of charge of the battery is relative to the nominal capacity Cbat .

RCbat =
(Icharge− Isys)

Cbat
(3.11)

The availability of state of charge information during the charging process is not mandatory
because the new state of charge can be determined precisely as soon as the battery is
discharging again. If the implementation of the battery model is targeting a low-resource
architecture, the charge approximation can be neglected and the last state of charge of the
discharging state can be assumed. This represents a worst-case state of charge during
the entire charging process. However, the approximation of the charging process’s state of
charge is a nice improvement and is quite useful for energy dependent task scheduling.

Bulk Approximation

In the ideal charging case, the bulk charging current flowing into the battery Ibatbulk is con-
stant and the voltage is increasing monotonically. The relative charge RCbatbulk can be used
to determine the current state of charge in bulk in a conservative way2. There is for exam-
ple a bulk phase for 3 hours and a relative charge of 3A

30Ah = 0.10h−1 = 10%h−1. This value
can be interpreted as an increase in state of charge of 10% per hour, resulting in a 30%
increase during the entire bulk period. Nevertheless, this increase in state of charge is rela-
tive to the state of charge of the previous state, i.e. DISCHARGING. Hence, the calculation
of the state of charge during bulk must rely on the last state of charge before entering the
bulk state. Furthermore, the battery model must remember the time of entering the state
bulk for calculating the time in bulk tbulk.

SoC = SoCprevState +RCbatbulk · tbulk (3.12)

Since it is assumed that the bulk charging current cannot be measured directly by the sys-
tem, the exact relative charge RCbatbulk is not known. Therefore, it has to be approximated
indirectly by the slope of the voltage: δV

δ t . This can be done because of the fact that the
voltage is increasing slower if the relative charge is lower. Figure 3.8 shows two qualitative
voltage traces of the bulk charging process of the same battery for a low battery net charg-
ing current Ibat,1 and a higher net charging current Ibat,2. The bulk charging process with
the higher current, and thus with the higher relative charge RCbat,2, reaches the absorption
voltage threshold faster. The voltage slope can be easily approximated by a linear regres-
sion. Since the relative charge of the traces are known, the corresponding voltage slopes
of each trace are used to define the coefficients c0 and c1 of the first order approximation
of the relative charge R̂Cbatbulk shown in equation 3.13.

R̂Cbatbulk = c1 ·
δV
δ t

+ c0 (3.13)

2This is a conservative interpretation because the current is relative to the nominal capacity of the battery
and not to the effective capacity. The effective capacity is smaller than the nominal capacity due to the
charge controller which prevents deep discharge cycles.
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3.3. State of Charge Approximation

Consequently, for determing the state of charge, equation 3.12 has to be slightly modified
to use the approximated relative charge R̂Cbatbulk instead of RCbatbulk as equation 3.14
shows.

SoC = SoCprevState + R̂Cbatbulk · tbulk (3.14)
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Absorption Voltage Level

dV(Ibat2)

dV(Ibat1)
dt

dt

Figure 3.8.: Linear approximation of the voltage slope of two different net charging currents

Absorption Approximation

As explained in section 3.1, the absorption phase is characterized by a constant battery
voltage and an exponentially decreasing charging current. The absorption charging current
starts to decrease exponentially from the bulk charging current level which is Ibatbulk . For
determining the state of charge in absorption the relative charge is used as in the bulk
case. However, the charging current cannot be approximated by the battery voltage due
to the constant battery voltage in absorption. Hence, there is no approximation based on
voltage or current measurements. The only possibility to approximate the relative charge
is to consider the fact that in the ideal case the current decays exponentially from the bulk
charging current. This assumes that the current source is not influenced externally and
changes its behavior. This is an ideal case and especially for energy harvester such as
photovoltaic cells or micro wind turbines this may not be true.

In consequence, the relative charge in the absorption phase RCbatabsorption decays expo-
nentially starting from RCbatbulk as equation 3.15 shows. The parameter λ is the decay
constant and is dependent on the relative charge of the bulk phase because RCbatbulk de-
fines the initial level of the charging current in absorption. The higher this level the quicker
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3.3. State of Charge Approximation

the absorption charging current decreases due to electrochemical effects.

RCbatabsorption(t) = RCbatbulk · e(λ (RCbatbulk )·tabsorption) (3.15)

For approximating RCbatabsorption only the decay constant λ and RCbatbulk have to be known.
Since RCbatbulk is already approximated by the bulk approximation, it can be replaced by

R̂Cbatbulk . The decay constant λ of each trace is found by an exponential approximation of
the corresponding net charging current curve. Then, as equation 3.16 shows λ can be ap-
proximated by a linear interpolation of the relative charge R̂Cbatbulk of bulk. The coefficients
d1 and d0 are found by a linear regression of λ and RCbatbulk for each trace.

λ̂ (R̂Cbatbulk) = d1 · R̂Cbatbulk +d0 (3.16)

R̂Cbatabsorption(t) = R̂Cbatbulk · e(λ̂ (R̂Cbatbulk )·tabsorption) (3.17)

For determining the state of charge, a similar method as in the bulk approximation is ap-
plied. However, the relative charge is decreasing over time and therefore, the state of
charge must be updated differentially for each discrete approximation step ∆t as shown in
equation 3.18.

SoC(t) = SoC(t +∆t)+ R̂Cbatabsorption(t) ·∆t (3.18)

3.3.5. Aging and Temperature Effect

Battery Aging

Each discharging and charging process of a battery implies some irreversible chemical
reactions which are gradually decreasing the actual capacity of the battery over time. Since
available capacity and voltage are directly related, the lower capacity will lead to a lower
battery voltage. Furthermore, the lower voltage combined with the slightly higher drain
current for delivering the same power to the load yields a lower state of charge. Therefore,
the proposed battery model considers the aging effect indirectly via the effect of the aging
on voltage and drain current.

Temperature Effect

As Rao et al. [2003] point out, temperature effect has a strong impact on the battery’s dis-
charging and charging behavior. Low temperatures reduce the electrochemical activity and
increase the internal resistance which results in a reduced capacity. The proposed state
of charge model takes the temperature effect indirectly into account. Since the internal
resistance and the reduced chemical activity leads to a lower battery voltage and a higher
drain current, the state of charge approximation yields a lower state of charge than at room
temperature. It is important to state that the temperature does not affect the 0% state of
charge because the charge controller disconnects the load on a temperature independent
voltage level.

The temperature affects the absorption and float voltage levels which have to be consid-
ered by the FSM to correctly determine the battery state as explained in section 3.2.
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CHAPTER 4

Implementation

4.1. Software Implementation

4.1.1. Framework Overview
As a proof of concept, the proposed battery model is implemented for an existing software
framework called Backlog which runs on top of a linux operating system optimized for
embedded systems [Buchli et al., 2011]. As figure 4.1 shows, Backlog can be functionally
separated into two scopes: core functionality and plug-in functionality. The core of Backlog
provides basic maintenance functionality, hardware abstraction, a connection handler for
the Global Sensor Network middleware (GSN) [Aberer et al., 2006] and a plugin-API. This
plugin functionality allows to easily register plugins for periodic activities invoked by the
Backlog core. The plug-ins perform for example measurements and prepare messages to
other sensor nodes or the GSN backend.

4.1.2. Power Monitor Module
The Power Monitor Module implements the proposed battery model as a proof of concept
implementation specific to the needs of the Permasense / X-Sense Project [PermaSense
Consortium, 2012]. The Power Monitor Module is implemented as a separate thread of
the Backlog Core and provides an interface to core libraries and plugins. The functional-
ity of the Power Monitor Module is divided into two classes: The Power Monitor and the
Battery Class. The Power Monitor is responsible for all measurement tasks and the polling
interface. The Battery Class implements the battery model discussed in chapter 3 with its
approximation and the corresponding finite-state machine.

Besides the state of charge approximation, the Battery Class estimates the remaining time
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Figure 4.1.: Backlog Software Framework

based on the state of charge approximation and with respect to a short-term average load.
This average load is determined by a weighted moving average with a configurable history
size. Moreover, it provides an interface for questioning the remaining time of a specific load
which is useful for scheduling purposes.

The absorption and float voltage threshold detection considers the current temperature
and its effect on the float voltage level and absorption voltage level. Thus, these voltage
levels are defined with respect to temperature. Moreover, the state is not changed unless
the voltage drops below a configurable offset. This prevents unnecessary state changes
in unstable charging situations. In addition, a weighted moving average is applied on the
voltage measurements to smooth the voltage curve. This further reduces the noise on
the voltage measurements and guard against unnecessary state changes at the cost of a
reduced reaction time of real state changes.

4.1.3. Core Station Status Plugin
The core station status plugin is extended by the information provided by the Power Mon-
itor Module. This plugin is responsible for sending status information such as voltages,
currents, temperature and errors to the GSN backend. By extending the existing informa-
tion with the battery state of charge, battery voltage and remaining time, the behavior and
state of the battery can also be viewed from the backend. This is particularly useful for
example for determining unhealthy batteries and schedule them for replacement. The core
station status plugin uses the polling interface of the Power Monitor Module.
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4.2. Host Platform

For evaluating the proposed battery model the proof of concept implementation for the
PermaSense / X-Sense core station is used. The hardware of this core station is explained
in detail by Buchli et al. [2011].

The battery used to power this system platform is the lead-acid battery Lifeline-GPL U1M
with a nominal capacity of 34Ah. Further technical details of the battery may be found in
the technical manual of the manufacturer Lifeline Batteries Inc [2012].

The charge controller SunSaver-6 (SS-6L-12V) is an off-the-shelf component produced by
Morningstar. This charge controller enforces a lower voltage bound of 11.5V. Morningstar
Corporation [2012] provides further technical details.

A solar cell is used as charging source in operation. However, the kind of energy harvester
is irrelevant as long as it provides enough energy for charging the battery.
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CHAPTER 5

Evaluation

5.1. Model Coefficients

In the following, the approximation and interpolation coefficients of the Lifeline-GPL U1M
battery are discussed. These coefficients correspond to the notation used in chapter 3.

Discharge Approximation

Figure 5.1 shows three traces of the discharge process of the Lifeline-GPL U1M battery.
In this case, the depth of discharge is approximated by a quadratic fit (n = 2) of the battery
voltage. Table 5.1 shows the coefficients of the trace approximation shown by equation 3.7.
The value of R2 of this approximation is an indicator for the goodness of the fit. The residu-
als in figure 5.1 yields that the quadratic discharge approximations are almost in the entire
voltage band within an accuracy of±2%. The voltages are relative to the cut-off voltage of
11500mV. As figure 5.1 shows, only at the start of the traces is the accuracy inferior than
±2%. This can be explained by the high dynamic of the transition from charging to dis-
charging. For capturing this dynamic more precisely, at least a cubic approximation must
be applied. However, the quadratic approximation fits the need of this model well enough,
because an error at a high state of charge can be accepted.

D̂oD = an(RLsys) ·V n
bat +an−1(RLsys) ·V n−1

bat + · · ·+a1(RLsys) ·Vbat +a0(RLsys) (3.7)

Since the model relies on three traces at different loads the interpolation can only be done
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5.1. Model Coefficients

Trace Relative Load RL Coefficient Value R2

1 0.004710
a0 101.6

0.999537a1 -0.05356
a2 -8.836e-06

2 0.011942
a0 100.7

0.999657a1 -0.04573
a2 -1.537e-05

3 0.016381
a0 101.2

0.999977a1 -0.05152
a2 -1.516e-05

Table 5.1.: The coefficients of equation 3.7 for each of the three discharge traces

quadratic (m = 2). The coefficients for the load interpolation from equation 3.8 are shown
in table 5.2. For increasing the accuracy of the model, the number of traces has to be
increased.

ai(RLsys) = bi,m ·RLm
sys +bi,m−1 ·RLm−1

sys + · · ·+bm,1 ·RLsys +bm,0 ∀i ∈ {0, . . . ,n}
(3.8)

Coefficient Value

b0,0 100
b0,1 0
b0,2 0

Coefficient Value

b1,0 -0.07018
b1,1 4.492
b1,2 -204.7

Coefficient Value

b2,0 -8.321e-9
b2,1 -0.002257
b2,2 0.08133

Table 5.2.: The coefficients of equation 3.8 used for the curve interpolation
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5.1. Model Coefficients

Bulk Approximation

The bulk traces are shown in figure 5.2 and the details of the traces are listed in table 5.3.
The violet trace is denoted as trace 1 and the green trace as trace 2. The coefficients c0
and c1 of the approximation of the relative charge, R̂Cbatbulk , are shown in table 5.4.
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Figure 5.2.: Linear approximation of the voltage slope of two different charging currents

Trace Charge Current Relative Charge RC Voltage Slope δV/δ t R2

1 2.4639 A 0.072468 0.051614 mV/s 0.999900
2 1.1125 A 0.032720 0.020945 mV/s 0.999925

Table 5.3.: The voltage slope approximation of the two charge traces.

R̂Cbatbulk = c1 ·
δV
δ t

+ c0 (3.13)

Coefficient Value

c0 0.005573
c1 1.296

Table 5.4.: The coefficients for the bulk approximation

Absorption Approximation

The coefficients for the decay constant λ approximation of equation 3.16 are shown in
table 5.5.

26 Daniel Aschwanden



5.2. Evaluation Setup

Coefficient Value

d0 -0.003891
d1 -0.1091

Table 5.5.: The coefficients for absorption approximation

λ̂ (R̂Cbatbulk) = d1 · R̂Cbatbulk +d0 (3.16)

Float Approximation

The state of charge of the float phase has not to be approximated since the battery if fully
charged when it reaches the float phase. However, the float voltage is temperature depen-
dent. The data sheet of the battery provides detailed information about the temperature
effect on the voltage. The approximation of Vf loat with respect to temperature T is shown
in equation 5.1

Vf loat(T ) = max{13000,0.239 ·T 2−35.94 ·T +14040} (5.1)

5.2. Evaluation Setup

For evaluating the model, a discharge process is recorded with an external coulomb
counter [Maxim Integrated Products, 1998] and with the proof of concept implementa-
tion of the battery model. The coulomb counter is placed between the charge controller
and the battery as figure 5.3 shows. The coulomb counter measures the charge flowing
through the counter. These measurements are then transformed into the state of charge.
At the beginning of the discharge process the state of charge is defined as 100% and
when the charge controller disconnects the load the state of charge is defined as 0%. This
allows the comparison of the actual state of charge inferred by the coulomb counter and
the approximated state of charge of the battery model.

Energy Harvester

Charge Controller

Battery

System Platform

Coulomb Counter

Figure 5.3.: Block diagram of experimental setup
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5.3. Experimental Results

5.3. Experimental Results

Figures 5.4 a) and b) show the results of the experiment. The dashed curve of figure 5.4a)
represents the actual depth of discharge inferred by a coulomb counter. The red curve
is the depth of discharge of the model computed by the proof of concept implementa-
tion. Since the coulomb counter is placed between the battery and the charge controller,
it introduces an additional resistance which was not considered in the cable resistance.
Therefore, the battery voltage is not computed accurately because the voltage drop over
the cable, the charge controller and the coulomb counter was not determined correctly.
This introduced an additional error of around 2− 3% as shown in table 5.6. The green
curve is the state of charge approximation inferred by corrected voltage measurements.
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Figure 5.4.: a) Approximative and real state of charge over time, and b) the error of the
approximation

Figure 5.4b) shows the actual error of the depth of discharge approximation to the ac-
tual depth of discharge deduced by the coulomb counter. The actual error curves of both
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5.3. Experimental Results

approximations are decreasing with lower state of charge because the cut-off voltage is
getting closer and state of charge curves of different loads are converging to each other.
This implies that the closer the voltage gets to the cut-off voltage the smaller is effect of the
load on the state of charge approximation. However, if the voltage drop is considered too
small, as in the measurement of the red curve, the 0% state of charge is assumed before
the load is actually disconnected. Therefore, the error is not reaching zero at the end. On
the other hand, the error of the corrected state of charge is almost going to zero at the
end. The approximation of the state of charge is in the entire range negative. This means
that the actual state of charge is always underestimated.

Corrected Temperature Relative Load RL Average Error Max Error Min Error

yes 26° C 0.0103 4.720% 7.257% 0.000%
no 26° C 0.0103 6.798% 9.681% 0.003%

Table 5.6.: Error of the corrected and uncorrected SoC of the evaluation discharge process

5.3.1. Temperature Effect
Besides the evaluation of the model based on the experiment at 26° celsius, another dis-
charge process at the same load is recorded at the temperature -6° celsius. The results
of this experiment are shown in figures 5.5a) and b). The results of the discharge experi-
ment at 26° celsius are shown as well in figure 5.5a) and b) for comparison. The coulomb
counter inferred a 20 percent reduction in capacity at -6° celsius with respect to the 26°
celsius case. As outlined in section 3.3.5 the temperature effect is indirectly considered
through the effect of the temperature on the battery voltage. Table 5.7 shows the details of
the error analysis of the low temperature compared with the room temperature scenario.

Temperature Relative Load RL Average Error Max Error Min Error

26°C 0.0103 4.720% 7.257% 0.000%
-6°C 0.0101 1.223% 3.113% 0.003%

Table 5.7.: Details of SoC determination at different temperatures
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Figure 5.5.: a) Approximative and real state of charge over time at the same load but at
different temperatures, and b) the error of the SoC approximations
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CHAPTER 6

Conclusion

The proposed state of charge battery model relies fully on closed-loop voltage and drain
current measurements and does not require any special purpose hardware for energy
monitoring. Therefore, if the target platform provides voltage and current sensors, no
changes on existing platforms are required.

The recording of battery charge and discharge traces and the approximation of the state of
charge with drain current and voltage implies some initial effort. However, if the traces are
recorded and the state of charge model is fully defined, this model implies a low operational
overhead with a reasonable accuracy. Furthermore, the accuracy may be increased by
refining the approximation model with additional traces. The accuracy of the model heavily
depends on the quality of the traces and the number of the traces at different loads.

The main drawback of the proposed model is that the approximation model must be de-
fined for each battery type. Furthermore, the approximation accuracy of the battery state of
charge heavily depends on the voltage drop of the cable from the battery to the measure-
ment sensor that can be also temperature dependent. If the resistance of the cable and
of the charge controller cannot be exactly determined an additional non-negligible error is
introduced.

To conclude, the proposed battery model implies some initial effort for generating the traces
of a battery type and determine the coefficients of the model. Nevertheless, this light-
weight battery state of charge modeling approach provides a reasonable accuracy and it
imposes only a minimal operational overhead with no hardware modifications required.
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APPENDIX A

Appendix

A.1. Matlab Model Generation Script

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Discharge Trace Approximat ion
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 c l ea r ;
5 load . . / . . / data /data_discharge_150mA_2 .mat ;
6 load . . / . . / data /data_discharge_400mA .mat ;
7 load . . / . . / data /data_discharge_560mA .mat ;
8
9

10 % F i l t e r the data and normal ize i t . .
11
12 [I_AVG_150mA,V_AVG_150mA]=Normalize_Data(I_V12DC_IN_150mA, V12DC_IN_150mA) ;
13 [I_AVG_400mA,V_AVG_400mA]=Normalize_Data(I_V12DC_IN_400mA+I_V12DC_EXT_400mA, V12DC_IN_400mA)←↩

;
14 [I_AVG_560mA,V_AVG_560mA]=Normalize_Data(I_V12DC_IN_560mA+I_V12DC_EXT_560mA, V12DC_IN_560mA)←↩

;
15
16 % Define the measurement cable res i s tance and the b a t t e r y capac i t y
17 R_cable = 0 .26 ;
18 Capacity = 34;
19
20 % Calcu la te the b a t t e r y Voltage , add the Cable drop . .
21 V_BAT_150mA = V_AVG_150mA + R_cable*I_AVG_150mA/1000;
22 V_BAT_400mA = V_AVG_400mA + R_cable*I_AVG_400mA/1000;
23 V_BAT_560mA = V_AVG_560mA + R_cable*I_AVG_560mA/1000;
24
25 % S h i f t the Vol tage to r e l a t i v e base (0 = 11500 mV) , the min o f the t races
26 % are the 11500mV th resho ld !
27 V_SHIFTED_150mA = V_BAT_150mA − min (V_BAT_150mA) ;
28 V_SHIFTED_400mA = V_BAT_400mA − 11500;
29 V_SHIFTED_560mA = V_BAT_560mA − min (V_BAT_560mA) ;
30 % we have to l i n e a r l y extend the 400mA trace , s ince the t race does not
31 % cover the l a s t 108mV . . . ( t h i s pa r t i s qu i t e l i n e a r ! )
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32 Extension = V_SHIFTED_400mA(8000 :1 : end ) ;
33 X = [8000:1:8000+ s ize (Extension, 1 ) −1] ' ;
34 P = p o l y f i t (X ,Extension, 1 ) ;
35 X_0 = −(P ( 2 ) /P ( 1 ) ) ;
36 X = [ s ize (V_SHIFTED_400mA) +1 :1 :X_0 ] ' ;
37 V_SHIFTED_400mA = [V_SHIFTED_400mA ; P ( 1 ) *X+P ( 2 ) ] ;
38
39 % The cu r ren t must be i n terms of capac i t y . . .
40 I_RATED_150mA = I_AVG_150mA / (Capacity*1e6) ;
41 I_RATED_400mA = I_AVG_400mA / (Capacity*1e6) ;
42 I_RATED_560mA = I_AVG_560mA / (Capacity*1e6) ;
43
44 % Create the percentage values o f the Depth o f Discharge
45 DoD_150mA = l inspace (0 ,100 , s ize (V_SHIFTED_150mA, 1 ) ) ;
46 DoD_400mA = l inspace (0 ,100 , s ize (V_SHIFTED_400mA, 1 ) ) ;
47 DoD_560mA = l inspace (0 ,100 , s ize (V_SHIFTED_560mA, 1 ) ) ;
48
49 createFittedCurves(V_SHIFTED_150mA,DoD_150mA,V_SHIFTED_400mA,DoD_400mA,V_SHIFTED_560mA,←↩

DoD_560mA) ;
50
51 a=[fittedmodel_150mA .p1 ,fittedmodel_400mA .p1 ,fittedmodel_560mA .p1 ] ;
52 b=[fittedmodel_150mA .p2 ,fittedmodel_400mA .p2 ,fittedmodel_560mA .p2 ] ;
53 c=[fittedmodel_150mA .p3 ,fittedmodel_400mA .p3 ,fittedmodel_560mA .p3 ] ;
54 I_RATED_150mA_AVG = mean(I_RATED_150mA) ;
55 I_RATED_400mA_AVG = mean(I_RATED_400mA) ;
56 I_RATED_560mA_AVG = mean(I_RATED_560mA) ;
57 x = [I_RATED_150mA_AVG, I_RATED_400mA_AVG, I_RATED_560mA_AVG ] ;

1
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Helper Funct ion f o r Discharge Trace Approximat ion
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5
6 f u n c t i o n createFittedCurves(V_SHIFTED_150mA,DoD_150mA,V_SHIFTED_400mA,DoD_400mA,V_SHIFTED_560mA,←↩

DoD_560mA)
7 %CREATEFIT Create p l o t o f data sets and f i t s
8 % CREATEFIT( V SHIFTED 150MA ,DOD 150MA, V SHIFTED 400MA ,DOD 400MA, V SHIFTED 560MA ,DOD 560MA)
9 % Creates a p lo t , s i m i l a r to the p l o t i n the main Curve F i t t i n g Tool ,

10 % using the data t h a t you prov ide as i npu t . You can
11 % use t h i s f u n c t i o n wi th the same data you used wi th CFTOOL
12 % or wi th d i f f e r e n t data . You may want to e d i t the f u n c t i o n to
13 % customize the code and t h i s help message .
14 %
15 % Number o f data sets : 3
16 % Number o f f i t s : 3
17
18 % Data from data set ”DoD 150mA vs . V SHIFTED 150mA ” :
19 % X = V SHIFTED 150mA :
20 % Y = DoD 150mA :
21 % Unweighted
22
23 % Data from data set ”DoD 400mA vs . V SHIFTED 400mA ” :
24 % X = V SHIFTED 400mA :
25 % Y = DoD 400mA :
26 % Unweighted
27
28 % Data from data set ”DoD 560mA vs . V SHIFTED 560mA ” :
29 % X = V SHIFTED 560mA :
30 % Y = DoD 560mA :
31 % Unweighted
32
33 % Auto−generated by MATLAB on 03−Feb−2012 16:03:50
34
35 % Set up f i g u r e to rece ive data sets and f i t s
36 f_ = c l f ;
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37 f i g u r e (f_) ;
38 set (f_ , ' Un i ts ' , ' P i xe l s ' , ' Pos i t i on ' , [ 1 120 1389 755] ) ;
39 % Line handles and t e x t f o r the legend .
40 legh_ = [ ] ;
41 legt_ = {} ;
42 % L i m i t s o f the x−ax is .
43 xlim_ = [ I n f −I n f ] ;
44 % Axes f o r the p l o t .
45 ax_ = axes ;
46 set (ax_, ' Un i ts ' , ' normal ized ' , ' Ou te rPos i t ion ' , [ 0 0 1 1 ] ) ;
47 set (ax_, ' Box ' , ' on ' ) ;
48 g r i d (ax_, ' on ' ) ;
49 axes (ax_) ;
50 hold on ;
51
52 %−−− P lo t data t h a t was o r i g i n a l l y i n data set ”DoD 150mA vs . V SHIFTED 150mA ”
53 V_SHIFTED_150mA = V_SHIFTED_150mA ( : ) ;
54 DoD_150mA = DoD_150mA ( : ) ;
55 h_ = l i n e (V_SHIFTED_150mA,DoD_150mA, ' Parent ' ,ax_, ' Color ' , [0 .333333 0 0 . 6 6 6 6 6 7 ] , . . .
56 ' L ineS ty le ' , ' none ' , ' L ineWidth ' , 1 , . . .
57 ' Marker ' , ' . ' , ' MarkerSize ' ,12) ;
58 xlim_( 1 ) = min (xlim_( 1 ) , min (V_SHIFTED_150mA) ) ;
59 xlim_( 2 ) = max(xlim_( 2 ) ,max(V_SHIFTED_150mA) ) ;
60 legh_( end+1) = h_ ;
61 legt_{end+1} = 'DoD 150mA vs . V SHIFTED 150mA ' ;
62
63 %−−− P lo t data t h a t was o r i g i n a l l y i n data set ”DoD 400mA vs . V SHIFTED 400mA ”
64 V_SHIFTED_400mA = V_SHIFTED_400mA ( : ) ;
65 DoD_400mA = DoD_400mA ( : ) ;
66 h_ = l i n e (V_SHIFTED_400mA,DoD_400mA, ' Parent ' ,ax_, ' Color ' , [0 .333333 0.666667 0 ] , . . .
67 ' L ineS ty le ' , ' none ' , ' L ineWidth ' , 1 , . . .
68 ' Marker ' , ' . ' , ' MarkerSize ' ,12) ;
69 xlim_( 1 ) = min (xlim_( 1 ) , min (V_SHIFTED_400mA) ) ;
70 xlim_( 2 ) = max(xlim_( 2 ) ,max(V_SHIFTED_400mA) ) ;
71 legh_( end+1) = h_ ;
72 legt_{end+1} = 'DoD 400mA vs . V SHIFTED 400mA ' ;
73
74 %−−− P lo t data t h a t was o r i g i n a l l y i n data set ”DoD 560mA vs . V SHIFTED 560mA ”
75 V_SHIFTED_560mA = V_SHIFTED_560mA ( : ) ;
76 DoD_560mA = DoD_560mA ( : ) ;
77 h_ = l i n e (V_SHIFTED_560mA,DoD_560mA, ' Parent ' ,ax_, ' Color ' , [ 0 0 0 ] , . . .
78 ' L ineS ty le ' , ' none ' , ' L ineWidth ' , 1 , . . .
79 ' Marker ' , ' . ' , ' MarkerSize ' ,12) ;
80 xlim_( 1 ) = min (xlim_( 1 ) , min (V_SHIFTED_560mA) ) ;
81 xlim_( 2 ) = max(xlim_( 2 ) ,max(V_SHIFTED_560mA) ) ;
82 legh_( end+1) = h_ ;
83 legt_{end+1} = 'DoD 560mA vs . V SHIFTED 560mA ' ;
84
85 % Nudge ax is l i m i t s beyond data l i m i t s
86 i f a l l (isfinite(xlim_) )
87 xlim_ = xlim_ + [−1 1] * 0.01 * d i f f (xlim_) ;
88 set (ax_, ' XLim ' ,xlim_)
89 else
90 set (ax_, ' XLim ' ,[−26.451534999999921638 , 2671.6050349998986349]) ;
91 end
92
93 %−−− Create f i t ”150 mA f i t ”
94
95 % Apply exc lus ion r u l e ”0 100&0 1600 ”
96 ex_ = (V_SHIFTED_150mA < 0 | V_SHIFTED_150mA >= 1600) | (DoD_150mA < 0 | DoD_150mA >= 100) ;
97 fo_ = fitoptions( ' method ' , ' L inearLeastSquares ' , ' Robust ' , 'LAR ' ) ;
98 ok_ = isfinite(V_SHIFTED_150mA) & isfinite(DoD_150mA) ;
99 i f ˜ a l l ( ok_ )

100 warning( ' GenerateMFile : Ignor ingNansAndInfs ' , . . .
101 ' I gno r i ng NaNs and I n f s i n data . ' ) ;
102 end
103 set (fo_, ' Exclude ' ,ex_(ok_) ) ;
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104 ft_ = fittype( ' poly2 ' ) ;
105
106 % F i t t h i s model using new data
107 i f sum ( ˜ex_(ok_) )<2
108 % Too many po in t s excluded .
109 e r r o r ( ' GenerateMFile : NotEnoughDataAfterExclusionRule ' , . . .
110 ' Not enough data l e f t to f i t ' '%s ' ' a f t e r app ly ing exc lus ion r u l e ' '%s ' ' . ' , . . .
111 ' 150 mA f i t ' , ' 0 100&0 1600 ' ) ;
112 else
113 cf_ = fit(V_SHIFTED_150mA(ok_) ,DoD_150mA(ok_) ,ft_,fo_) ;
114 end
115 % A l t e r n a t i v e l y uncomment the f o l l o w i n g l i n e s to use c o e f f i c i e n t s from the
116 % o r i g i n a l f i t . You can use t h i s choice to p l o t the o r i g i n a l f i t aga ins t new
117 % data .
118 % cv = { −8.8362984306375879793e−06, −0.053563780522033831166, 101.55394381263083403};
119 % c f = c f i t ( f t , cv { :} ) ;
120
121 % Plo t t h i s f i t
122 h_ = p l o t (cf_, ' f i t ' , 0 .95 ) ;
123 set (h_ ( 1 ) , ' Color ' , [ 1 0 0 ] , . . .
124 ' L ineS ty le ' , '− ' , ' L ineWidth ' , 2 , . . .
125 ' Marker ' , ' none ' , ' MarkerSize ' ,6 ) ;
126 % Turn o f f legend created by p l o t method .
127 legend off ;
128 % Store l i n e handle and f i t name f o r legend .
129 legh_( end+1) = h_ ( 1 ) ;
130 legt_{end+1} = ' 150 mA f i t ' ;
131
132 %−−− Create f i t ”400 mA f i t ”
133
134 % Apply exc lus ion r u l e ”0 100&0 1600 ”
135 ex_ = (V_SHIFTED_400mA < 0 | V_SHIFTED_400mA >= 1600) | (DoD_400mA < 0 | DoD_400mA >= 100) ;
136 fo_ = fitoptions( ' method ' , ' L inearLeastSquares ' , ' Robust ' , 'LAR ' ) ;
137 ok_ = isfinite(V_SHIFTED_400mA) & isfinite(DoD_400mA) ;
138 i f ˜ a l l ( ok_ )
139 warning( ' GenerateMFile : Ignor ingNansAndInfs ' , . . .
140 ' I gno r i ng NaNs and I n f s i n data . ' ) ;
141 end
142 set (fo_, ' Exclude ' ,ex_(ok_) ) ;
143 ft_ = fittype( ' poly2 ' ) ;
144
145 % F i t t h i s model using new data
146 i f sum ( ˜ex_(ok_) )<2
147 % Too many po in t s excluded .
148 e r r o r ( ' GenerateMFile : NotEnoughDataAfterExclusionRule ' , . . .
149 ' Not enough data l e f t to f i t ' '%s ' ' a f t e r app ly ing exc lus ion r u l e ' '%s ' ' . ' , . . .
150 ' 400 mA f i t ' , ' 0 100&0 1600 ' ) ;
151 else
152 cf_ = fit(V_SHIFTED_400mA(ok_) ,DoD_400mA(ok_) ,ft_,fo_) ;
153 end
154 % A l t e r n a t i v e l y uncomment the f o l l o w i n g l i n e s to use c o e f f i c i e n t s from the
155 % o r i g i n a l f i t . You can use t h i s choice to p l o t the o r i g i n a l f i t aga ins t new
156 % data .
157 % cv = { −1.536702977058373762e−05, −0.045725818152965745644, 100.65650851932394971};
158 % c f = c f i t ( f t , cv { :} ) ;
159
160 % Plo t t h i s f i t
161 h_ = p l o t (cf_, ' f i t ' , 0 .95 ) ;
162 set (h_ ( 1 ) , ' Color ' , [ 0 0 1 ] , . . .
163 ' L ineS ty le ' , '− ' , ' L ineWidth ' , 2 , . . .
164 ' Marker ' , ' none ' , ' MarkerSize ' ,6 ) ;
165 % Turn o f f legend created by p l o t method .
166 legend off ;
167 % Store l i n e handle and f i t name f o r legend .
168 legh_( end+1) = h_ ( 1 ) ;
169 legt_{end+1} = ' 400 mA f i t ' ;
170
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171 %−−− Create f i t ”560 mA f i t ”
172
173 % Apply exc lus ion r u l e ”0 100&0 1600 ”
174 ex_ = (V_SHIFTED_560mA < 0 | V_SHIFTED_560mA >= 1600) | (DoD_560mA < 0 | DoD_560mA >= 100) ;
175 fo_ = fitoptions( ' method ' , ' L inearLeastSquares ' , ' Robust ' , 'LAR ' ) ;
176 ok_ = isfinite(V_SHIFTED_560mA) & isfinite(DoD_560mA) ;
177 i f ˜ a l l ( ok_ )
178 warning( ' GenerateMFile : Ignor ingNansAndInfs ' , . . .
179 ' I gno r i ng NaNs and I n f s i n data . ' ) ;
180 end
181 set (fo_, ' Exclude ' ,ex_(ok_) ) ;
182 ft_ = fittype( ' poly2 ' ) ;
183
184 % F i t t h i s model using new data
185 i f sum ( ˜ex_(ok_) )<2
186 % Too many po in t s excluded .
187 e r r o r ( ' GenerateMFile : NotEnoughDataAfterExclusionRule ' , . . .
188 ' Not enough data l e f t to f i t ' '%s ' ' a f t e r app ly ing exc lus ion r u l e ' '%s ' ' . ' , . . .
189 ' 560 mA f i t ' , ' 0 100&0 1600 ' ) ;
190 else
191 cf_ = fit(V_SHIFTED_560mA(ok_) ,DoD_560mA(ok_) ,ft_,fo_) ;
192 end
193 % A l t e r n a t i v e l y uncomment the f o l l o w i n g l i n e s to use c o e f f i c i e n t s from the
194 % o r i g i n a l f i t . You can use t h i s choice to p l o t the o r i g i n a l f i t aga ins t new
195 % data .
196 % cv = { −1.5162123533972063255e−05, −0.051518259237075779422, 101.17883146215153545};
197 % c f = c f i t ( f t , cv { :} ) ;
198
199 % Plo t t h i s f i t
200 h_ = p l o t (cf_, ' f i t ' , 0 .95 ) ;
201 set (h_ ( 1 ) , ' Color ' , [0 .666667 0.333333 0 ] , . . .
202 ' L ineS ty le ' , '− ' , ' L ineWidth ' , 2 , . . .
203 ' Marker ' , ' none ' , ' MarkerSize ' ,6 ) ;
204 % Turn o f f legend created by p l o t method .
205 legend off ;
206 % Store l i n e handle and f i t name f o r legend .
207 legh_( end+1) = h_ ( 1 ) ;
208 legt_{end+1} = ' 560 mA f i t ' ;
209
210 %−−− Fin ished f i t t i n g and p l o t t i n g data . Clean up .
211 hold off ;
212 % Disp lay legend
213 leginfo_ = { ' O r i e n t a t i o n ' , ' v e r t i c a l ' , ' Locat ion ' , ' NorthEast ' } ;
214 h_ = legend (ax_,legh_,legt_,leginfo_{ :} ) ;
215 set (h_ , ' I n t e r p r e t e r ' , ' none ' ) ;
216 % Remove l a b e l s from x− and y−axes .
217 x l a b e l (ax_, ' ' ) ;
218 y l a b e l (ax_, ' ' ) ;

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Charge Trace Approximat ion
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5
6 % CoreStat ion Vol tage Measurements o f 1A charging
7 V_BULK_1A = V_BAT_1A( end :−1:1) ;
8 V_BULK_1A = V_BULK_1A(1 :1 :2700) ;
9 time_bulk_1A = generation_time_1A( end :−1:1) ;

10 time_bulk_1A = time_bulk_1A(1 :1 :2700) ;
11 time_bulk_1A = time_bulk_1A −time_bulk_1A( 1 ) ;
12 time_bulk_1A = time_bulk_1A/1000;
13
14 % CoreStat ion Vol tage Measurements o f 3A charging
15 V_BULK_3A = V_BAT_3A( end :−1:1) ;
16 V_BULK_3A = V_BULK_3A( 1 : 1 : 9 3 0 ) ;
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17 time_bulk_3A = generation_time_3A( end :−1:1) ;
18 time_bulk_3A = time_bulk_3A( 1 : 1 : 9 3 0 ) ;
19 time_bulk_3A = time_bulk_3A−time_bulk_3A( 1 ) ;
20 time_bulk_3A = time_bulk_3A/1000;
21
22 % Calcu la te the load of the Cores ta t ion and c a l u c a l t e the ne t to charge
23 % cur ren t o f the b a t t e r y !
24 I_V12DC_BULKLOAD_1A = I_V12DC_TOT_1A( end :−1:1) ;
25 I_V12DC_BULKLOAD_1A = I_V12DC_BULKLOAD_1A(1 :1 :2700) ;
26 I_V12DC_BULKLOAD_3A = I_V12DC_TOT_3A( end :−1:1) ;
27 I_V12DC_BULKLOAD_3A = I_V12DC_BULKLOAD_3A( 1 : 1 : 9 3 0 ) ;
28 I_BAT_NETTO_1A = CurrAvg10_1A*1000 − mean(I_V12DC_BULKLOAD_1A) ;
29 I_BAT_NETTO_3A = CurrAvg_3A*1000 − mean(I_V12DC_BULKLOAD_3A) /1000;
30 I_BAT_NETTO_3A = I_BAT_NETTO_3A( 3 5 : 1 : end ) ; % there i s a weird da tapo in t a t index 34! ( every th ing←↩

before 34 i s 0)
31 % only cons ider the BULK phase . . .
32 I_BAT_NETTO_1A_BULK = mean(I_BAT_NETTO_1A(1 :1 :853232) ) ;
33 I_BAT_NETTO_1A_BULK_RATED = I_BAT_NETTO_1A_BULK/34000;
34 I_BAT_NETTO_3A_BULK = mean(I_BAT_NETTO_3A(1 :1 :290356) ) ;
35 I_BAT_NETTO_3A_BULK_RATED = I_BAT_NETTO_3A_BULK/34000;
36
37 % CURVE FITTING
38
39 % Regression o f ra ted BULK CURRENT by slope . .
40 I_BULK_CURRENT = [I_BAT_NETTO_1A_BULK,I_BAT_NETTO_3A_BULK] ' / 3 4 0 0 0 ;
41 VOLTAGE_SLOPE = [BULK_1A_FIT .p1 , BULK_3A_FIT .p1 ] ' ;
42
43
44 % ABSORPTION FITTING . . .
45 I_ABSLOAD_1A = I_V12DC_TOT_1A( end :−1:1) ;
46 I_ABSLOAD_1A = I_ABSLOAD_1A(2701 :1 : end ) ;
47 I_BAT_NETTO_1A_ABS = CurrAvg10_1A*1000;
48 I_BAT_NETTO_1A_ABS = I_BAT_NETTO_1A_ABS(853232:1: end ) ;
49 I_BAT_NETTO_1A_ABS_RATED = I_BAT_NETTO_1A_ABS/34000;
50 I_BAT_NETTO_1A_ABS_RATED = downsample(I_BAT_NETTO_1A_ABS_RATED, 200) ;
51 I_BAT_NETTO_1A_ABS_RATED_LN = log (I_BAT_NETTO_1A_ABS_RATED) ;
52
53
54 I_ABSLOAD_3A = I_V12DC_TOT_3A( end :−1:1) ;
55 I_ABSLOAD_3A = I_ABSLOAD_3A( 931 :1 : end ) ;
56 I_BAT_NETTO_3A_ABS = CurrAvg_3A*1000;
57 I_BAT_NETTO_3A_ABS = I_BAT_NETTO_3A_ABS(290356:1: end ) ;
58 I_BAT_NETTO_3A_ABS_RATED = I_BAT_NETTO_3A_ABS/34000;
59 I_BAT_NETTO_3A_ABS_RATED = downsample(I_BAT_NETTO_3A_ABS_RATED, 200) ;
60 I_BAT_NETTO_3A_ABS_RATED_LN = log (I_BAT_NETTO_3A_ABS_RATED) ;
61
62
63 % Selec t the l i n e a r pa r t o f the LN cur ren ts
64 I_BAT_NETTO_1A_ABS_RATED_LN_LIN = I_BAT_NETTO_1A_ABS_RATED_LN(1 :1 :1000) ;
65 I_BAT_NETTO_3A_ABS_RATED_LN_LIN = I_BAT_NETTO_3A_ABS_RATED_LN( 1 : 1 : 5 0 0 ) ;
66
67 % create t imevec to r i n terms of seconds ( sample i n t e r v a l i s 104ms)
68 pa_time_1A = [0 :104 :104* s ize (I_BAT_NETTO_1A_ABS_RATED_LN_LIN, 1 ) −1]/1000 ' ;
69 pa_time_3A = [0 :104 :104* s ize (I_BAT_NETTO_3A_ABS_RATED_LN_LIN, 1 ) −1]/1000 ' ;
70
71
72 % CURVE FITTING
73 LAMBDA = [ABS_1A_LAMBDA .p1 ABS_3A_LAMBDA .p1 ]
74 CUR_BULK = [I_BAT_NETTO_1A_BULK_RATED, I_BAT_NETTO_3A_BULK_RATED ]
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Battery and Energy Harvesting Modeling

1 Introduction

For this semester thesis you will be part of an exciting real world project, the X-Sense project [7]. This
joint-project between geosciences and engineering has the goal of developing a Di↵erential-GPS (DGPS)
system that can monitor alpine slope movements at sub-centimeter accuracy over extended periods.

2 X-Sense Background

The successfully deployed WSN infrastructure [5, 7, 1], which collects measurements of numerous physical
parameters, has been enhanced with GPS-equipped sensor nodes (see Figure 1) to provide relative position
and movement information of the observed agent. To achieve high-accuracy positioning at reasonable cost,
the system leverages low-cost GPS receivers in combination with o✏ine post-processing of the collected
data [4].

Figure 1: GPS-equipped Sensor Node Prototype.
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3 Project Aim

Due to operation in remote areas, wireless sensor nodes are generally battery operated devices. However,
due to size and cost restrictions, batteries cannot be arbitrarily large to satisfy the energy requirement.
Furthermore, inaccessible deployment sites complicate the replacement of batteries significantly. Therefore
sensor nodes must adhere to a very stringent power budget to achieve acceptable lifetimes of months to
years. Unfortunately, GPS receivers are very power-hungry devices, and the di↵erential processing approach
employed further exacerbates the energy requirement by depending on measurement periods in the order of
multiple consecutive hours per day.

Contrary to common assumption in many WSNs, the radio module of the nodes is not necessarily the main
energy consumer. Certain applications may rely on sensors that have power requirements exceeding that
of common radio modules. Coupled with possibly long acquisition times, the sensing operation, rather
than the data communication, can become the main energy consumer. For this reason, energy harvesting
techniques, such as photo-voltaic energy harvesting, are often used to recharge the batteries, permitting
continuous operation of the sensor network. However, the amount of energy that a PV-system can harvest
depends on deployment site, particular location and orientation of the solar panel, and the solar radiation.
While the radiation at the selected deployment site can be computed a priori, actual values will vary due to
non-deterministic weather patterns and site specific factors, resulting in varying energy input.

To schedule energy-hungry sensors as e�ciently as possible and maintaining extended operation, knowledge
about the available energy as well as expected future energy input is required. Unfortunately, exactly
determining a batterys fill level is only possible with no load connected, and, for run-time measurements,
requires hardware support. To provide a light-weight solution to this problem, the state of charge can be
approximated by monitoring the battery voltage and measurement of drain current under load. Due to the
inaccuracies of this method, state information must be maintained in software to adjust for non-idealities
and improve the approximation accuracy.

Figure 2: Battery Monitoring and Harvesting Prediction.

4 Project Goals

As part of this project, you will devise and implement a model for tracking energy input and estimating
available energy stored in the battery using the light-weight approach introduced above. Then you will
implement the model for the backlog application running on the CoreStation [2, 3] and evaluate its perfor-
mance and accuracy (compared to a coulomb counter). As a second step, you will implement functionality
that allows runtime adaption of individual components’ duty-cycles based on the available energy stored in
the battery. Time permitting, you will implement a simple energy input prediction model and simulate and
evaluate its performance compared to optimal scheduling (full knwoledge of future input), as well as static
scheduling.
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5 Project Plan

1. Investigate battery charge measurement techniques and define a model that can be implemented with
low computational and component overhead.

2. Prepare a project plan and clearly describe milestones thematically, and chronologically

3. Familiarize yourself with the infrastructure, and research related work.

4. Set up development environment and become accustomed to the infrastructure.

5. Carefully document your work, write a project report, and prepare a final presentation to be presented
at the TIK group meeting.

6 Project Requirements

• Meet with your supervisor on a weekly basis to discuss progress, planned course of action, and any
potential issues. In case of unexpected problems, changes to the project plan may be necessary. Clearly
document and explain any deviations from the inital project proposal.

• Research related work, and discuss the project applicability with your supervisor.

• You have been given a Workstation and/or Laptop, as well as access to the project repository. Upon
completion of the project, check in your well-documented source code and configuration files, and
return all property of TIK.

• Although the student is allowed to perform the project in German, delivering the written work in
English is highly encouraged.

7 Deliverables

• Initial project presentation at the TIK groupmeeting. To be completed within 2 weeks of the project
start date.

• Weekly status report, including a short summary of related work.

• Final project presentation. To be completed within 2 weeks of the project end date.

• Final report (appended with this project description and the declaration of originality), and all relevant
files and directories (including reports, presentations, etc.) burned onto CD/DVD.
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