
Specification and Implementation of
the Twimight Server

Semester Thesis

Raphael Seebacher
raphasee@ee.ethz.ch

Communication Systems Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Theus Hossmann, Dominik Schatzmann

Prof. Dr. Bernhard Plattner

February 3, 2012

mailto:Raphael Seebacher<raphasee@ee.ethz.ch>

Abstract

As recent natural disasters have shown, microblogging services, such as Twitter,
have more and more become a heavily used medium for spreading and acquiring
disaster-relevant information. This development has particularly been favoured
by the increasing availability of smartphones. However, the availability of fixed-
infrastructure networks, which might very well be disrupted as a consequence of
a disaster, is crucial for smartphone communication.

In order to reduce the dependency on fixed-infrastructure networks for com-
munication during disasters Twimight, the mighty Twitter client for the Android
Operating System, has been implemented. Twimight stands out from the mass
of Twitter clients in that it additionally provides a disaster mode that relies on
opportunistic Bluetooth communication, rather than only on the common mode
that solely uses fixed-infrastructure networks. Opportunistic communication, as
implemented in Twimight, raises various problems compared to the common
mode: Apart from the question of how to route and flood packets in the op-
portunistic network and how to minimize energy consumption of a given mobile
device, we identify the role of confidentiality, integrity and authenticity as being
a fundamental problem, due to the absence of any connection to the trusted
Twitter API.

A hybrid solution to this problem has been proposed in [12]. The approach
is tagged hybrid since it relies on certain initialization steps to be completed
by each Twimight client before the actual diaster happens, i.e., it depends on
fixed-infrastructure networks, and is, hence, not purely opportunistic.

This semester thesis realizes the aforementioned hybrid solution. It therefore
provides the specification and implementation of the Twimight Server, which
consists of a web interface and of an application programming interface (API).
Using this API, the Twimight Server acts as a certificate authority, issuing cer-
tificates to Twimight clients. Furthermore the API is designed such as to be
extendable for future needs.

i

Contents

Abstract i

Contents ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Outline of the Thesis . 3
1.2 Motivation . 3
1.3 Acknowledgements . 3

2 Background 4
2.1 Twitter . 4

2.1.1 The Usage of Twitter during Disasters 5
2.2 Twimight . 5

2.2.1 Delay Tolerant Networks 8
2.3 Twimight Server . 8

2.3.1 Further Twimight Server Services 9
2.4 Web Technologies . 9

2.4.1 Hypertext Transfer Protocol and HTTP over SSL/TLS . 9
2.4.2 OpenSSL . 9
2.4.3 Lighttpd . 11
2.4.4 PHP . 11
2.4.5 MySQL . 11
2.4.6 JavaScript Object Notation 12

2.5 Security Considerations . 12
2.5.1 Common Attack Vectors 12

2.5.1.1 Cross-Site Scripting 12
2.5.1.2 Cross-Site Request Forgery 12
2.5.1.3 SQL Injection 13
2.5.1.4 Directory Traversal and Forceful Browsing . . . 14

3 Twimight Server Specification 15
3.1 Basic Building Blocks the Twimight Server 15
3.2 A Two Interface Approach . 15
3.3 API Interface Specification . 16

ii

Contents iii

3.3.1 Request Format . 16
3.3.1.1 Structure of auth request object 17
3.3.1.2 Structure of location request object 17
3.3.1.3 location report 18
3.3.1.4 Structure of neighbor request object 18
3.3.1.5 Structure of ff certificates request object 19
3.3.1.6 Structure of revocation list request object 19
3.3.1.7 Structure of certificate request object . . . 19

3.3.2 Response Format . 19
3.3.2.1 Structure of auth response object 20
3.3.2.2 Structure of location response object 20
3.3.2.3 Structure of neighbor response object 21
3.3.2.4 Structure of ff certificates response object 21
3.3.2.5 Structure of revocation list response object 21
3.3.2.6 Structure of cert response object 22
3.3.2.7 error missing parameters 22

3.4 Web Interface Specification . 23

4 Twimight Server Implementation 25
4.1 The MVC Pattern . 25
4.2 Building the Framework . 26

4.2.1 Folder Structure . 26
4.2.2 Configuration Files . 28
4.2.3 MVC Framework . 28

4.2.3.1 Models . 29
4.2.3.2 Views . 29
4.2.3.3 Controllers . 29

4.2.4 Design of the Relational Database 30
4.3 API Implementation . 30

4.3.1 General Additions to the MVC Framework 30
4.3.1.1 Views . 30
4.3.1.2 Controllers . 31

4.3.2 The authentication message element 31
4.3.2.1 Follower-and-Friend Update Script 33

4.3.3 The certificate message element 33
4.3.4 The revocation list message element 33
4.3.5 The ff certificate message element 34
4.3.6 The location message element 34
4.3.7 The neighbor message element 34

4.4 Web Interface Implementation . 35
4.4.1 Server-side Implementation 35
4.4.2 Client-side Implementation 36

5 Conclusion 38

Contents iv

5.1 Future Work . 39

A Twimight Server Setup A-1

B Twimight Server Development B-1

C JavaScript Object Notation C-1

D Database Structure D-1

E References E-1

List of Figures

2.1 Comparison of social networks regarding active users. 6
2.2 Tweets and Retweets from Japan after the 2011 earthquake . . . 7
2.3 Personal messages from and to Japan after the 2011 earthquake . 7
2.4 Twimight Server operation . 10

3.1 The Twimight Server Web Interface 24

4.1 The model-view-controller pattern. 26
4.2 The folder structure of the Twimight Server. 27
4.3 Error message on the web interface after an invalid request. . . . 37

C.1 JSON object . C-1
C.2 JSON array . C-1
C.3 JSON value . C-1
C.4 JSON string . C-2
C.5 JSON number . C-3

v

List of Tables

1.1 The eight socio-temporal stages of a disaster. 2

D.1 Structure of table server credentials D-1
D.2 Structure of table user . D-1
D.3 Structure of table user certificate D-1
D.4 Structure of table user connection D-2
D.5 Structure of table user credentials D-2
D.6 Structure of table user follower D-2
D.7 Structure of table user location report D-2

vi

Old programmers never die.
They just can’t C as well.

Anonymous

Chapter 1

Introduction

In the past years various smaller and larger natural disasters, like for example
the Japan earthquake in March 2011, have hit the world. In such a situation the
ability to communicate is regarded as a crucial factor in order to find community,
organize rescues, survive until professional forces have arrived and to support
disaster relief.

The combination of the popularity of social networks and the availability of
smartphones has improved communication capabilities of people during disas-
ters, especially in stages 3 to 5 of a disaster (cf. table 1.1). However, despite the
usefulness of this sort of communication, it has a very fundamental drawback.
Currently, this communication requires a fixed-infrastructure network, typically
cellular networks of mobile phone providers, to be available. In a disaster this
fixed-infrastructure is prone to damage, which will eventually result in network
outages and disruption of services. Thus, all the advantages from combining so-
cial networks and smartphones are on the verge of being lost, since the disruption
of fixed-infrastructure networks is quite likely in a disaster case.

A solution to circumvent this disadvantage is provided by Twimight, the
mighty Twitter client for the Android operating system. Rather than only sup-
porting common communication over fixed-infrastructure cellular networks, or
over WiFi, Twimight additionally implements a disaster mode that is based
on opportunistic Bluetooth communication. Twimight clients in disaster mode,
hence, establish delay tolerant networks, which are current topics in research.

Still, Twimight lacks one very important feature: security. While during
normal operation the Twitter API provides security mechanisms, there is no
connection to the Twitter API in disaster mode and consequently a distributed
solution to the problem should be implemented. Unfortunately, reliable dis-
tributed solutions in delay tolerant networks are very difficult to implement and
therefore a hybrid security architecture has been proposed in [12].

The proposed architecture relies on fixed-infrastructure communication for
certain setup steps and not only on opportunistic communication and is therefore

1

1. Introduction 2

Stage 0 Pre-Disaster
State of social system preceding point of impact

Stage 1 Warning
Precautionary activity includes consultation with members of own social net-
work

Stage 2 Threat
Perception of change of conditions that prompts survival action

Stage 3 Impact
Stage of “holding on” where recognition shifts from individual to community
affect and involvement

Stage 4 Inventory
Individual takes stock, and begins to move into a collective inventory of what
happened

Stage 5 Rescue
Spontaneous, local, unorganized extrication and first aid; some preventive mea-
sures

Stage 6 Remedy
Organized and professional relief arrive; medical care, preventive and security
measures present

Stage 7 Recovery
Individual rehabilitation and readjustment; community restoration of property;
organizational preventive measures against recurrence; community evaluation

Table 1.1: The eight socio-temporal stages of a disaster. (Source: [7, 25])

called hybrid. An essential part of the architecture is the so-called Twimight
Server, which is further specified as well as implemented in the course of this
thesis.

As specified, the Twimight Server provides two separate interfaces, an API
for connecting to Twimight clients, i.e. to the Android app, and a web interface
for data retrieval and deletion, as well as for certificate revocation. Primar-
ily the Twimight Server acts as a certificate authority and issues certificates
for Twimight users and distributes the certificates among the Twimight clients.
In addition, it maintains and provides the certificate revocation list. Further-
more the Twimight Server allows Twimight clients to store location reports in
his database and supports clients by providing information about neighboring
clients. For the implememtation of the Twimight Server we relied on a combi-
nation of PHP, MySQL, OpenSSL and Lighttpd and chose a MVC approach for
the actual application.

Even though the Twimight Server is implemented and working as specified,
remains just a basic building block for helping in disaster relief. However, many
ideas for future development exist and are presented as a conclusion of this thesis.

1. Introduction 3

1.1 Outline of the Thesis

In chapter 2 background information on Twitter, its use during disasters, Twi-
might, including delay tolerant networks, as well as on web technologies is pro-
vided. Then, in chapter 3, the Twimight Server API as well as its web interface
is specified. We illustrate the actual implementation of the Twimight Server in
chapter 4. Finally, we conclude this thesis in chapter 5 by offering thoughts on
how to further develop the Twimight Server.

1.2 Motivation

The apparent utilization of Twimight and, hence, the Twimight Server in disaster
cases proved to be a highly motivational factor, i.e., noting that what we develop
in this thesis might actually be of direct use and is not just a pure academic
issue. Even though writing this thesis finally turned out to be quite a challenge,
mainly due to the various technologies involved, the benefit from learning all
those technologies, programming languages et cetera will, hopefully, but almost
certainly, prove to be valuable for future projects.

1.3 Acknowledgements

I would like to first of all thank Prof. Dr. Bernhard Plattner for having given me
the opportunity of writing this semester thesis at the Communication Systems
Group.
Furthermore I do and did greatly appreciate the continuous support throughout
the duration of the thesis and all the valuable inputs I had been given by Theus
Hossmann and Dominik Schatzmann, by email or during one of the various
meetings, and I am indeed really grateful for that.
Last but not least I want to thank Lorenz Koestler for his helpful inputs regarding
PHP programming, MySQL queries and optimization, as well as design patterns
in general.

Software and cathedrals are much the same.
First we build them, then we pray.

Samuel T. Redwine Jr.

Chapter 2

Background

In this chapter we provide various background information related to this thesis:
Insights into the microblogging service Twitter, especially its increasing usage
during disasters in section 2.1 and information about the Twimight Twitter
client, with a focus on delay tolerant networks in section 2.2. Twimight Server
concepts, as specified in [12], are summarized in section 2.3. Furthermore an
overview of current web technologies is given in section 2.4, since the Twimight
Server implementation is based on these. Finally, this chapter is rounded off
with considerations on security in section 2.5.

2.1 Twitter

The microblogging service Twitter was founded in March 2006 and quickly gained
worldwide popularity. At its core are the so-called Tweets, messages of 140
characters at most, published by Twitter users. Twitter is used by individuals,
organisations and companies alike. A comparison between Twitter and other
social networks in terms of active users is provided in fig. 2.1.

In order to view Tweets, users can follow each other. User A following user
B is said to be a follower of user B, whereas user B is referred to as friend of
user A. The set of Tweets sent by a user’s followers is displayed on the respective
user’s timeline. Furthermore direct messages can be sent to and only read by a
specific friend of a given user.

Today Twitter can be accessed using various platforms, such as personal
computers, tablets, smartphones, and with custom applications developed for
those platforms, not only with the offical Twitter clients. This is due to the
Twitter API, which provides full access to a users data. Applications using the
API have to be registered on Twitter and have to ask each user for the right to
use his data. This authorization process uses OAuth1.

1http://oauth.net

4

http://oauth.net

2. Background 5

For further general information on Twitter we refer the reader to https:

//twitter.com/about, for information regarding the Twitter API the reader
may have a look at https://dev.twitter.com.

2.1.1 The Usage of Twitter during Disasters

Because of the widespread use of smartphones and the simplicity and brevity of
Tweets, Twitter became utterly important for communication during disasters.
Consequently, researchers started to focus on the usage of Twitter, and other
social networks, during disasters. Below we provide a sample of papers that
focus on various aspects of Twitter’s use in the event of a disaster:

• Research focusing on the usefulness of Twitter for emergency response can
be found in [20].

• Whether we can trust what we retweet in a crisis has been studied in [19].

• Analysis of Twitter usage in emergency events compared to normal usage
is provided in [14].

• [1] focuses on facilitation of collaborative work during disasters by using
Twitter.

• How to find community through information and communication technol-
ogy during disasters is addressed [25].

For illustrative purposes about how Twitter has been used during disasters, we
provide fig. 2.2 and fig. 2.3, which illustrate Twitter usage in the aftermath of
the 2011 earthquake in Japan, a disaster with immense consequences for the
country.

2.2 Twimight

Twimight, the mighty Twitter client for the Android Operating System, stands
out from the mass of Twitter clients in that it provides two modes of communi-
cation:

Normal Mode
In its normal mode Twimight essentially provides many things every Twitter
client does, like displaying the timeline, sending tweets, retweeting, etc. Twi-
might uses fixed-infrastructure networks, either cellular network or, if available,
Wireless LAN.

Disaster Mode
In the disaster mode, Twimight provides the same basic Twitter functionality as
described above, but now relies on opportunistic communication. Furthermore

https://twitter.com/about
https://twitter.com/about
https://dev.twitter.com

2. Background 6

Figure 2.1: Comparison of different social networks regarding their amount of
active users. (Source: [16])

2. Background 7

Figure 2.2: Tweets and Retweets from Japan after the 2011 earthquake: Tweets
from senders in Japan are shown in red; Retweets by their followers in green.
(Source: [5])

Figure 2.3: Personal messages after the 2011 Japan earthquake: Replies directed
to users in Japan are shown in pink; messages directed at others from Japan are
shown in yellow. (Source: [5])

2. Background 8

tweets are now marked as disaster tweets and are epidemically flooded through
the network. Disaster tweets are highlighted in red and displayed on every de-
vice in that opportunistic network, regardless of follower relations, which helps
to greatly improve disaster awareness. Upon returning to normal mode, all dis-
aster tweets are published to Twitter only by their author to prevent duplicates
from being published.

For further details on Twimight see [4] and [12].

2.2.1 Delay Tolerant Networks

The disaster mode, which was introduced by Twimight, establishes what is com-
monly referred to as a delay tolerant network (abbr. DTN). Their principal goal
is to establish a network between a set of nodes without having to rely on any
infrastructure. These networks further distinguish themselves from well-known
approaches in that they do not require permanent connection between all nodes.
Due to this lack of continuous end-to-end paths common routing protocol fail to
establish routes. Routing in DTNs is researched in [15].

Examples of delay tolerant networks are, amongst others, PodNet2, Haggle3,
SARAH4 and Bytewalla5.

2.3 Twimight Server

So far Twimight has communication capabilities for use in disaster, i.e., its dis-
aster mode. However, in the disaster mode we observe that we cannot provide
authenticity and confidentiality due to the lack of connectivity to the Twitter
API. To mitigate this problem a security architecture has been proposed in [12].
The hybrid architecture described therein relies on fixed-infrastructure, i.e., on
the Twimight Server and its API, as well as the Twitter API. The Twimight
Server essentially serves as a certificate authority and public key infrastructure,
but also provides additional services. Authentication of clients is achieved using
OAuth and the Twitter API. Thus, the Twimight Server does need to imple-
ment an additional authentication processes. For performance reasons client
credentials, i.e., the access token and the corresponding secret, are cached.

In the hybrid architecture each client generates a private key and a certificate
signing request (abbr. CSR). The CSR is then sent to the Twimight Server,
which signs the CSR with its private key and returns the certificate to the client.
The root certificate of the Twimight Server corresponding to its private key
is embedded in the Twimight client application. This in turn enables every
Twimight client to verify certificates and signatures of messages and tweets, as

2http://podnet.ee.ethz.ch
3http://haggleproject.org
4http://www-valoria.univ-ubs.fr/SARAH
5http://www.tslab.ssvl.kth.se/csd/projects/092106/

http://podnet.ee.ethz.ch
http://haggleproject.org
http://www-valoria.univ-ubs.fr/SARAH
http://www.tslab.ssvl.kth.se/csd/projects/092106/

2. Background 9

well as to encrypt and decrypt direct messages. The Twimight Server is also
responsible for the distribution of certificates and furthermore maintains and
issues a certificate revocation list (abbr. CRL). Mainly for explicit certificate
revocation, but also for reviewing the data stored for a specific user the Twimight
Server provides a web interface. A sketch of the functionality described above is
given in fig. 2.4.

2.3.1 Further Twimight Server Services

To further enrich services of the Twimight Server is extended by the two following
features:

On the one hand the Twimight Server enables Twimight clients to store
location reports on the server. We define a location report as the 5-tuple
(latitude, longitude, timestamp, location provider, accuracy).

On the other hand, the Bluetooth pairing process could be speeded up, if the
MAC address of the other device is known, which consequently results in less
energy having to be used. In order to do so, we allow Twimight clients to cache
their MAC address on the Twimight Server. We then use the location reports
that were stored on the Twimight Server to provide the client with a list of MAC
addresses of potential neighbors, which can then be used for making Bluetooth
pairing more efficient.

2.4 Web Technologies

In this section we give a brief overview of selected web technologies that have
been used for this thesis. Note that this chapter is deliberately held short and
the reader is given pointers for acquiring further knowledge after the description
of each technology.

2.4.1 Hypertext Transfer Protocol and HTTP over SSL/TLS

The Hypertext Transfer Protocol (cf. [8]) is an application layer protocol to
transport data over a network, which is mainly used in today’s world wide web.
Communication between client and server is stateless. A message sent from client
to server is referred to as a request, upon which the server replies with a response.
Such a message consists of two parts, a message header and a message body.

HTTP over SSL/TLS (HTTPS, cf. [24]) results from stacking the application
layer protocol HTTP on top of the transport layer protocol SSL/TLS, which
provides a secure channel. Syntactically HTTPS does not differ from HTTP.

2.4.2 OpenSSL

OpenSSL is an open source implementation of the Secure Socket Layer/Transport
Layer Security (SSL/TLS) protocols. It is implemented in C and provides various

2. Background 10

Infrastructure Part

Twimight Server

OAuth, Authorize User,

Cache Followers/Friends

Review Stored Data,

Revoke Certificate

user

Distributed Part

encrypted direct messages,

signed disaster tweets

store locations

get MAC of neighbors

send certificate to sign

get certificates

get CRL

Figure 2.4: Twimight Server operation (Source: [12])

2. Background 11

cryptographic functions, as well as a commandline interface, that can be used to
request, issue, revoke certificates. More information on OpenSSL, as well as the
documentation can be obtained on the official homepage http://openssl.org.

2.4.3 Lighttpd

Lighttpd (pronounced lighty) is a free, open-source web server optimized for
speed and scalability. Originally, Jan Kneschke, the developer of Lighttpd, im-
plemented the web server as a proof of concept for the C10K-problem6. However
his implementation quickly gained worldwide popularity. Today, various major
websites, such as Youtube, Wikipedia or SourceForge, make use of Lighttpd to
provide their services.

Compared with the popular Apache7 web server, Lighttpd runs in a single
process and therefore is able to answer queries faster while minimizing CPU
load and its memory footprint. Benchmarks comparing Apache and Lighttpd
show that the latter scales much better for a large number of requests, while the
difference between the two is negligible under non-heavy load8.
The official homepage of Lighttpd can be found at http://lighttpd.net.

2.4.4 PHP

First published as Personal Home Page Tools in 1995, and later renamed to PHP:
Hypertext Preprocessor, PHP is today the most widely used server side scripting
language9. PHP is implemented in C and its syntax has been influenced by
Perl as well as C. Recent versions of PHP provide support for object-oriented
programming. Furthermore PHP comes with support for various databases and
libraries (e.g. OpenSSL). More details regarding PHP can be acquired on the
official PHP homepage http://php.net.

2.4.5 MySQL

MySQL is a very popular, open-source relational database management system
that partly implements the SQL standard. It is often used in conjunction with
PHP to serve dynamic websites. Popular users of MySQL are, amongst others,
YouTube, Google, Flicker and Twitter.

For high-performance applications, MySQL can be run on clusters and pro-
vides means of synchronization for multiple MySQL servers, where one server
acts as master. For detailed information, documentation as well as downloads
please refer to http://mysql.com.

6http://www.kegel.com/c10k.html
7http://httpd.apache.org/
8http://www.howtoforge.com/benchmark-apache2-vs-lighttpd-images
9http://w3techs.com/technologies/overview/programming_language/all

http://openssl.org
http://lighttpd.net
http://php.net
http://mysql.com
http://www.kegel.com/c10k.html
http://httpd.apache.org/
http://www.howtoforge.com/benchmark-apache2-vs-lighttpd-images
http://w3techs.com/technologies/overview/programming_language/all

2. Background 12

2.4.6 JavaScript Object Notation

The JavaScript Object Notation provides a format to represent arbitrary data,
which remains readable for humans, despite its compactness. Furthermore a
JSON object is valid JavaScript, but is as such independent of any programming
language. Details of the JSON format are given in appendix C, [6], as well as on
http://json.org.

2.5 Security Considerations

Whenever deploying a publicly accessible service on the internet, one has to
consider various threats. Below we give an overview of the most common attack
vectors against web services. Further information, including various examples,
as well as testing guidelines, can be found under http://owasp.org. A general
paradigm, bringing everything to a point, can be stated as follows:

Never - under any circumstances - trust data from the browser.10

This emphasizes the importance of sanitizing every single input provided by a
legitimate or unlawful user.

2.5.1 Common Attack Vectors

2.5.1.1 Cross-Site Scripting

Attack
Cross-site Scripting (abbr. XSS) attacks enable the attacker to inject an arbi-
trary client-side script into trusted web sites, which are then viewed by other
users. Unfortunately this type of vulnerability is often not payed enough atten-
tion, since it affects the users of a website, i.e., the clients and not the server
itself. However, as the next paragraph shows, the consequences of XSS can be
serious.

Consequences
Defacement of websites, data leakage (most notably the session identifier), drive-
by download provisioning.

Countermeasures
XSS attacks can usually be mitigated by escaping every input that is supplied
by the user, and also by encoding every output that is sent back to the user.

2.5.1.2 Cross-Site Request Forgery

Attack
A cross-site request forgery (abbr. CSRF, XSRF) is referred to, when a malicious

10Excerpt from http://djangobook.com/en/2.0/chapter20/

http://json.org
http://owasp.org
http://djangobook.com/en/2.0/chapter20/

2. Background 13

website can forge requests to a honest website, by exploiting the trust established
between the user’s browser and the honest website.

Example
We assume a user is logged in on https://twitter.com, and, hence, a ses-
sion has been established between client and server. The user now surfs to an-
other, seemingly legitimate site. However, this site contains the following piece
of HTML code:

After the server downloaded the site, it tries to download the above image, using
the URL provided in src. Since the user has previously logged in to Twitter,
the request for this “image” is sent in the context of the established session with
Twitter, which causes the request to be executed with the privileges of the legit-
imate user. In this example, the malicious img-tag results in the user tweeting
“foo”.

Countermeasures
CSRF attacks vectors can be eliminated by including a hidden token in the
request. This token is generated, when the server delivers the content of the
page Another way is to use CAPTCHAs11.

2.5.1.3 SQL Injection

Attack
When serving dynamic content, URLs often include parameters. If those param-
eters are not properly escaped and directly used to query the database, the web
application is vulnerable to SQL injection (abbr. SQLi).

Example
A request to the URL http://www.example.com/products.php?id=5 causes
the following query to the SQL database to be executed on the server:

SELECT * FROM products WHERE product_id=5

where the parameter 5 was copied directly from the URL to the query. A mali-
cous user can now alter the URL to, for example, DROP the entire table:

http://www.example.com/products.php?id=1; DROP TABLE products

SELECT * FROM products WHERE product_id=1; DROP TABLE products

Consequences
The attacker gains control over the database and can execute arbitrary SQL
queries with the privileges of the user the web application connects to the SQL

11http://www.captcha.net

https://twitter.com
http://www.captcha.net

2. Background 14

server with.

Countermeasures
Obviously, the main countermeasure agains SQLi is proper escaping of the user
supplied input. Oftentimes, but depending on the programming language, ready-
made escaping functions are available. PHP (cf. section 2.4.4) provides the
function mysql_real_escape_string12 to escape queries for MySQL databases
(cf. section 2.4.5). Furthermore the privileges of the user, the web application
connects to the SQL server with, can be restricted to the absolute minimum.

2.5.1.4 Directory Traversal and Forceful Browsing

Attack
The goal of directory traversal and forceful browsing is to get access to resources,
which are not linked on a website, but are nevertheless accessible. This is usually
achieved by manipulation of the URL.

Countermeasures
A very restrictive way of eliminating this threat is to whitelist every single URL,
using URL rewriting.

12http://www.php.net/manual/en/function.mysql-real-escape-string.php

http://www.php.net/manual/en/function.mysql-real-escape-string.php

Bad programmers worry about the code.
Good programmers worry about data struc-
tures and their relationships.

Linus Torvalds

Chapter 3

Twimight Server Specification

To specify the Twimight Server, we first look in section 3.1 at the very funda-
mental building blocks, which we decided to use. In section 3.2 we illustrate
the two interfaces we decided to build and then describe each in section 3.3 and
section 3.4, respectively.

3.1 Basic Building Blocks the Twimight Server

Naturally, we rely on a Linux distribution as underlying operating system to
provide the most basic functionalities. In particular, Ubuntu 11.10 Server has
been chosen. We primarily decided to build the Twimight Server using PHP,
because we could rely on a certain amount of experience that we had already
gathered. The same is true for MySQL. This decision was backed by the popu-
larity of PHP and MySQL being used to provide web services. A rather unusual
decision was to use Lighttpd as web server, but, since Lighttpd scales better for
many requests, it seemed to be reasonable. Furthermore we chose OpenSSL to
provide the cryptographic functionality we required.

3.2 A Two Interface Approach

From the sketch of the Twimight Server shown in fig. 2.4, we identify the two
interfaces the server offers: On the one hand we have the API, and on the other
hand the web interface. The requirements for the two interfaces are fundamen-
tally different. While the web interface has to guarantee a smooth experience for
the user, the API has to be optimized for high throughput and efficiency, since
it is accessed rather frequently and in an automated manner by the Twimight
clients.

15

3. Twimight Server Specification 16

3.3 API Interface Specification

In order to enable a Twimight client to communicate with the Twimight Server,
we make use of the Hypertext Transfer Protocol over SSL/TLS (cf. section 2.4.1)
and of the JavaScript Object Notation (JSON) data exchange format (cf. sec-
tion 2.4.6). We chose JSON as the notation to represent messages, because it
has, compared to e.g. XML, the key advantage of remaining human-readable
while offering a very succinct representation of data.

Further the API is designed such that all operations it provides can be invoked
from one single message. The response then follows in one single message as well.
To our opinion this ensures simplicity and efficiency of the API.

Notation 3.1 (Parameter) We specify a parameter, that has to be supplied,
using angle brackets, i.e. in the form <parameter>.

Notation 3.2 (Optional Statements) If some statement, e.g. a parameter,
is optional, it is enclosed in square brackets.
Example: A single, optional parameter is represented in the form [<parameter>],
some arbitrary statement in the form [statement].

Note Do not mistake optional statements as given in Notation 3.2 for JSON
Arrays (cf. fig. C.2). It should be clear from the context to which one of those
two we are referring to.

3.3.1 Request Format

Definition 3.3 (Generic Request Format) We define the format of a generic
request by a Twimight client as follows, using the HTTP:

POST <identifier> HTTP/1.1

Host: <host>

Content-Type: application/x-www-form-urlencoded

Content-Length: <content_length>

message={"authentication":<auth_request_object> \

[,"location":<location_request_object>] \

[,"neighbor":<neighbor_request_object>] \

[,"ff_certificates":<ff_certificates_request_object>] \

[,"revocation_list":<revocation_list_request_object>] \

[,"certificate":<certificate_request_object>]}

The following parameters have to be provided, in order for the request to be valid
syntactically:

• <identifier> is the path to the root folder of the Twimight Server API,
possibly /api, or simply /;

3. Twimight Server Specification 17

• <host> is the hostname under which the Twimight Server is accessible;

• <content_length>, which is the length of the content of the request, as
defined in [8];

• <auth_request_object>, structure cf. section 3.3.1.1.

The parameters

• <location_request_object>, structure cf. section 3.3.1.2;

• <neighbor_request_object>, structure cf. section 3.3.1.4;

• <ff_certificates_request_object>, structure cf. section 3.3.1.5;

• <revocation_list_request_object>, structure cf. section 3.3.1.6;

• <certificate_request_object>, structure cf. section 3.3.1.7.

are optional. 3

Note We refer to each part of the above message as a message element. For
example, "authentication":<auth_request_object> is a message element.

A very important property of the definition of the request is, that the API
remains extendable. If a new functionality has to be provided through the API,
the request can simply be added another message element.

3.3.1.1 Structure of auth request object

{"access_token":<access_token>, \

"access_token_secret":<access_token_secret>, \

"version":<version>}

where <access_token> and <access_token_secret> are the credentials ob-
tained by the Twimight client application during the OAuth authentication
process with the Twitter API; and <version> is a key to the version of the
Twimight credentials used in Twitter API communication, i.e. to the OAuth
consumer key.

3.3.1.2 Structure of location request object

[location_report_1, location_report_2, ...]

The location_request_object is a JSON array of location_reports (cf. sec-
tion 3.3.1.3).

Note The array may be empty, if the client has no location_reports that need
to be pushed to the server. It is however recommended to not provide the entire
location_request_object in that case, since the location_request_object

as such is optional (cf. definition 3.3).

3. Twimight Server Specification 18

3.3.1.3 location report

A location_report basically holds information for one location, recorded at a
given time, by a specific sensor with a certain accuracy. It has the following
structure:

{"latitude":<latitude>,"longitude":<longitude>, \

"accuracy":<accurracy>,"timestamp":<timestamp>, \

"provider":<provider>}

where

• <latitude> and <longitude> are the coordinates of the location given in
degrees, i.e. in the form 47.379022, 8.541001, with

<latitude> ∈ [−90, 90] and <longitude> ∈ [−180, 180]

• <accuracy> is the accuracy of the location in meters and rounded to one
meter as provided by most sensors;

• <timestamp> represents the time when the location was recorded. This
timestamp has to be provided in Unix time1;

• <provider> either equals "gps" or "network", depending on the sensors
that were used to obtain that specific location.

3.3.1.4 Structure of neighbor request object

{["bluetooth":{["mac":<mac_address>]}] \

["wifi":{["mac":<mac_address>]}]}

where <mac_address> corresponds to the (wifi or bluetooth) MAC address of the
Twimight client that issues the request, formatted as a string, colon-separated,
i.e. in the form "01:23:45:67:89:AB".

Note Even though both the "bluetooth" as well as the "wifi" part in the
above neighbor_request_object are marked optional, at least one of them has
to be provided in a legitimate request. If neither will be provided, the entire state-
ment "neighbor":<neighbor_request_object>], as defined in definition 3.3,
has to be omitted.

Note The MAC address need not be provided in every single request, as it is
stored on the Twimight Server. When not provided, the Twimight Server uses
the last MAC address that has been provided for the specific technology (i.e.,
for bluetooth or wifi).

1http://en.wikipedia.org/wiki/Unix_time

http://en.wikipedia.org/wiki/Unix_time

3. Twimight Server Specification 19

3.3.1.5 Structure of ff certificates request object

{["last_update":<timestamp>]}

where <timestamp> represents the time when the follower-and-friends certificates
were last updated. This timestamp has to be provided in Unix time1.

Note If the follower-and-friends certificates have never been updated yet, the
last_update parameter has to be omitted.

3.3.1.6 Structure of revocation list request object

{["last_update":<timestamp>]}

where <timestamp> represents the time when the revocation list was last up-
dated. This timestamp has to be provided in Unix time1.

Note If the revocation list has never been received yet, the last_update pa-
rameter has to be omitted.

3.3.1.7 Structure of certificate request object

{"certificate_signing_request":<certificate_signing_request>}

where the parameter <certificate_signing_request> is a Base64 encoded
PKCS#10 (cf. [21]) certificate signing request.

3.3.2 Response Format

Definition 3.4 (Generic Response Format) Upon a request by a Twimight
client, the Twimight Sever replies using the following format, provided that the
request matched the generic request format shown above:

HTTP/1.1 200 OK

Content-Type: application/json

{"authentication":<auth_response_object> \

[,"location":<location_response_object>] \

[,"neighbor":<neighbor_response_object>] \

[,"ff_certificates":<ff_certificates_response_object>] \

[,"revocation_list":<revocation_list_response_object>] \

[,"certificate":<cert_response_object>]}

The above parameters are present in an arbitrary response, if the associated
request has also contained these parameters. 3

Note Depending on the system environment of the Twimight Server, the HTTP
header part might contain more parameters compared to those given in the
response above.

3. Twimight Server Specification 20

3.3.2.1 Structure of auth response object

Regarding the returned <auth_response_object> we have to distinguish three
distinct cases:

• If the authentication process with the Twitter API is successful, then

<auth_response_object> = {"status":"ok"}

• If the authentication process with the Twitter API fails, then

<auth_response_object> =
{"status":"error","msg":"Authentication failed."}

• When, according to section 3.3.1.1, not all parameters are provided, then

<auth_response_object> = error_missing_parameters

where the error_missing_parameters object is defined in section 3.3.2.7.

3.3.2.2 Structure of location response object

For the location_response_object we have to consider three different cases:

• If all location reports have successfully been parsed and stored, the server
replies with

location_response_object = {"status":"ok"}

• If some, but not all location reports have been parsed, the server replies
with a warning

location_response_object = {"status":"warning", \

"msg":"Only <lr_successful> out of <lr_total> \

location reports could be parsed."}

where <lr_successful> is the amount of sucessfully parsed location re-
ports and <lr_total> is the total amount of location reports provided in
the request.

• If no location report has been parsed successfully, the server replies with
an error

location_response_object = {"status":"error", \

"msg":"No location reports could be parsed."}

3. Twimight Server Specification 21

3.3.2.3 Structure of neighbor response object

The neighbor_response_object generally has the following structure

{"bluetooth":<neighbors>,"wifi":<neighbors>}

where the "wifi" and the "bluetooth" part are provided if they are present in
the associated request.

The parameter <neighbors>, provided for each technology seperately, is of
the following form:

• {"status":"ok","mac":<mac_array>}

where the parameter <mac_array> is a JSON Array of MAC addresses,
which are formatted as specified in section 3.3.1.4.

• If no neighbors have been found, then

{"status":"error","msg":"No neighbors found."}

3.3.2.4 Structure of ff certificates response object

The ff_certificates_response_object is of the following form:

{"status":"ok","certificates":<ff_certificates>}

The parameter <ff_certificates> is a JSON object of the form specified below:

{<ff_1_id>:<ff_1_certificate>,[<ff_2_id>:<ff_2_certificate>,...]}

where ff_i_id is the Twitter User Id of the ith follower-and-friend and the pa-
rameter ff_i_certificate contains his current X509 certificate. If no follower-
and-friends certificates are stored on the server, we have

<ff_certificates> = {}

3.3.2.5 Structure of revocation list response object

The revocation_list_response_object that is returned by the server is of the
following form:

{"status":"ok","crl":<crl_array>}

where crl_array is a JSON array consisting of the following entries, each of
them representing one revoked certificate:

{"expiry":<certificate_expiration_timestamp>, \

"revocation_time":<revocation_time_timestamp>, \

"serial_number":<certificate_serial_number>}

3. Twimight Server Specification 22

3.3.2.6 Structure of cert response object

If the certificate signing request provided in the associated request was valid, and
no errors occurred in the singing process, the following cert_response_object

is returned:

{"status":"ok", \

"signed_certificate":<signed_certificate>}

where <signed_certificate> is the signed X509 certificate.

If, however, errors occur, the returned cert_response_object has the fol-
lowing form:

{"status":"error","msg":<message>}

where the parameter <message> is one of the following, depending on the error
that occurred:

• "Certificate signing rate limited: max 1 \

certificate signings per user per day!"

• "CSR has already been signed."

3.3.2.7 error missing parameters

If the list of parameters provided for some request object is incomplete, i.e. if
it does not match the specification in section 3.3.1, the Twimight Server re-
turns the error_missing_parameter object instead of the response object that
corresponds to the request:

error_missing_parameter = {"status":"error", \

"msg":"Not all mandatory parameters have been provided.", \

"missing_parameters":<missing_parameters_array>}

where <missing_parameters_array> is a JSON array containing all parameters
that have not been provided.

3. Twimight Server Specification 23

3.4 Web Interface Specification

While the API provides automated access for Twimight clients and, in principle,
remains hidden from the user, the web interface is directly accessed by the user
and enables him to do the following: Most important, the user can revoke the
certificate that has been generated and uploaded by the Twimight client on
his Android smartphone. This feature is useful, when for example the user’s
smartphone was stolen. Furthermore the user can access and assess every piece
of data that has been stored on the server and, hence, has full control over his
data. Finally the user can delete all his data that is stored on the Twimight
Server.

For the authentication process we use OAuth in conjunction with the Twitter
API2. Thus there is no need to implement a specific login and register feature,
and the client never shares his Twitter password with us. Additionally the web
interface has to provide basic usability, a minmal design and advanced features.

The result of the web interface implementation is shown in fig. 3.1.

2cf. https://dev.twitter.com/docs/auth/sign-twitter

https://dev.twitter.com/docs/auth/sign-twitter

3. Twimight Server Specification 24

Figure 3.1: The Twimight Server Web Interface

If you’ve chosen the right data structures
and organized things well, the algorithms
will almost always be self-evident.

Rob Pike

Chapter 4

Twimight Server
Implementation

This chapter gives insights into the implementation of the Twimight Server. In
section 4.1 we introduce the model-view-controller pattern and then present how
we implemented a framework for the Twimight Server based on that pattern in
section 4.2. We then show in section 4.3, how we extended that framework to
provide the API. Furthermore we present the implementation of the web interface
in section 4.4.

We deliberately did not include any source code in this chapter, but point
the reader to the Subversion repository1 to check out the source code for fur-
ther examination. For information regarding practical development we refer the
reader to appendix B.

4.1 The MVC Pattern

Model-view-controller (abbr. MVC) is an architectural pattern for structuring
software development. It was first described in 1979 by Trygve Reenskaug2, while
working on Smalltalk.

The MVC pattern divides an application into three parts, the model, the view
and the controller, each of which has its specific role: The model is responsible for
the actual data, and further provides operations that can be applied on that data.
The view’s responsibility is to render data into a presentable form. This depends
on the user interface, which may be a website in a browser, or a commandline
interface. The controller implements the actual logic of the application. It
therefore processes a request, collects data from models and renderes this data

1svn checkout http://twimight-disaster-server.googlecode.com/svn/trunk/

twimight-server-read-only
2cf. [23]

25

4. Twimight Server Implementation 26

Web Application

user
Controller

Model

View

Figure 4.1: The model-view-controller pattern.

using views before responding back to the user. The relation between model,
view and controller is shown in fig. 4.1. The benefit from using the MVC pattern
is quite obvious: Since the application has to be separated into parts that are
orthogonal to each other, unnecessary coupling is removed. This in turn permits
independent development, testing and maintenance of each, which we consider
especially advantageous. The downside of this approach is certainly to have
to invest a considerable amount of time in proper modeling of the application.
However, this downside is considered negligible compared to the benefits a MVC
approach provides.

Note that there exist many different interpretations of the MVC pattern, in
particular regarding the responsibilities of model, view and controller.

4.2 Building the Framework

For scalability and efficiency reasons, and to keep the code as simple as possible,
we decided not to rely on a prefabricated framework. Instead, we developed
our own lightweight framework completely from scratch. Thereby we followed
the MVC pattern, as described in section 4.1, but also provided the necessary
surroundings.

4.2.1 Folder Structure

One of the most basic things for the framework was deciding on its folder struc-
ture. The structure proposed in [9] served as an inspiration. After slight modifi-
cations, we decided on the folder structure depicted in fig. 4.2. Below, we specify
what content is stored in which folder, to get an insight at how the application
works:

• application/ contains the actual business logic, hence, the models, the
views and the controllers.

• config/ holds all configuration files, i.e., the web server configuration, the
application specific configuration and the OpenSSL configuration files.

4. Twimight Server Implementation 27

application/

controllers/

message_elements/

models/

views/

config/

data/

certificate_authority/

certificates/

logs/

sessions/

library/

public/

fonts/

images/

javascript/

stylesheets/

scripts/

background/

certificate_authority/

install/

templates/

tests/

request_response_tests/

tmp/

Figure 4.2: The folder structure of the Twimight Server.

4. Twimight Server Implementation 28

• data/ stores all application related data. This includes session information,
the certificate database, as well as log files.

• library/ holds libraries from external sources. In particular, the OAuth

and the TwitterOAuth classes are stored here (cf. [27]).

• public/ is the document root folder as seen from the web server. Conse-
quently all data that is publicly available is stored in this folder. Further
the application is invoked by the index.php located here.

• scripts/ contains scripts that are used for either setting up the appli-
cation, or scripts that are invoked by the application when processing a
request, or for cron job scripts.

• templates/ holds all templates used for serving content, most importantly
for the website.

• tests/ provides a place for test scripts.

• tmp/ contains temporary data. Its contents may be deleted at any time
without having effects on the application itself.

4.2.2 Configuration Files

The next step in building the framework was to write custom configuration files
for the web server, i.e., Lighttpd (cf. [3, 17]), for OpenSSL (cf. [22]) and for the
application in general. The content of these files can be viewed in the config/

folder.
Most important to note is the rewrite rule in the lighttpd.conf file:

url.rewrite-if-not-file = (

"^/([^.?]*)\?(.*)$" => "/index.php?request=$1&$2",

"^/([^.?]*)$" => "/index.php?request=$1",

)

This regular expressions ensures, that the whole request URL is rewritten to the
index.php file, which resides in the public/ folder, with the requested URL
provided in the GET parameter named request.

4.2.3 MVC Framework

Finally a basic MVC framework had to be implemented. Below we provide a list
of all basic models, views and controllers we built, including a small description
of their functionalities and tasks. For more detailed information, please refer to
the source code itself.

4. Twimight Server Implementation 29

4.2.3.1 Models

• abstract class model is the abstract parent class to all models.

• abstract class db_model is the abstract parent class to all models, that
require a connection to the database. It hence provides common database-
related functions.

• class request extends model models and abstracts a request as sent,
e.g., by a clients browser.

• class session extends model models the PHP $_SESSION variable.

• abstract class log extends model provides an abstract class for all
log, independent of how they are saved.

• class log_text extends log represents a log saved in a text file.

Exceptions

A special case are the exceptions, which are used to signal failures during exe-
cution. Generically we added the following exception classes:

• class tds_exception extends Exception is the general exception class
thrown within the application, when an error occurs.

• class model_exception extends tds_exception is used to signal errors
when operating with a model class.

4.2.3.2 Views

• abstract class view is the parent class for all views to be implemented
in section 4.3 and section 4.4.

4.2.3.3 Controllers

• abstract class controller is the abstract parent class to all controllers.

• class db_controller extends controller is a controller that reads the
configuration file and provides a connection to the database for querying.
Implemented using a Singleton design pattern3.

• abstract class front_controller extends controller is the first con-
troller to be invoked. Since it is abstract and cannot be instantiated, it
provides a static function that generates and returns a subclass of it, de-
pending on the request, i.e. on the request GET parameter. Its subclasses
are

3cf. [10, p. 127ff]

4. Twimight Server Implementation 30

– the api_controller (cf. section 4.3),

– the web_controller (cf. section 4.4),

– and the ajax_controller (cf. section 4.4).

• class log_controller extends controller is a very simple controller
to create a log file, that can be used for special logging as well as for
debugging.

• class config extends controller provides access to the application
configuration file.

• final class autoload is a very special case. Since all classes are related
to each other, stored in various files and invoked dynamically during ex-
ecution, the location of the files, where a given class is stored has to be
known. The autoload class utilizes a PHP mechanism4 to load classes
automatically.

4.2.4 Design of the Relational Database

The actual design of the tables of the relational MySQL database was straight
forward from the db_models implemented in section 4.3. Thereby data for each
db_model is represented in the database by one table. The final structure of the
database is provided in appendix D.

From a technological point of view, we choose InnoDB as storage engine for
all tables. Reasons for choosing InnoDB over MyISAM are its support for foreign
key constraints in particular and its reliability in general5. Furthermore InnoDB
supports row-level locking, whereas MyISAM only supports table-level locking.

4.3 API Implementation

We first show what we generally added to the model-view-controller framework
to provide the API, and then incrementally show the specific additions for each
message element.

4.3.1 General Additions to the MVC Framework

4.3.1.1 Views

• class json_view extends view provides a view to render data into a
JSON object, as needed for the response (cf. section 3.3.2).

• class error_view extends view is a view to return errors to the client.
This essentially is an abstraction of HTTP status codes.

4cf. http://www.php.net/manual/de/function.spl-autoload-register.php
5http://tag1consulting.com/MySQL_Engines_MyISAM_vs_InnoDB

http://www.php.net/manual/de/function.spl-autoload-register.php
http://tag1consulting.com/MySQL_Engines_MyISAM_vs_InnoDB

4. Twimight Server Implementation 31

4.3.1.2 Controllers

• class api_controller extends front_controller is an implementa-
tion of the front_controller to process requests directed to the API.
It uses the request model to get the message and then invokes the corre-
sponding message_element_controller for processing each message ele-
ment seperately. Thus, the message is split into its parts, i.e., its message
elements and processed by their controller, which is essentially a divide and
conquer approach.

• abstract class message_element_controller extends controller is
an abstract class, a prototype for concrete implementations of message el-
ement controllers. An implementation of this controller is responsible for
processing the information contained in one single message element.

Note Adding a new message element essentially is writing an implementation
of the abstract message_element_controller class, which is conceptually very
straight forward and thereby guaranteeing API extendability.

We furthermore added the following exceptions, in order to signal specific errors
that occur while processing a request:

• class no_element_exception extends tds_exception is thrown, if a
message element is configured as required (cf. config/config.ini), but
not given in the request.

• class no_message_exception extends tds_exception is thrown, if a
request to the API does not contain a message, or cannot be decoded.

• class warning extends tds_exception is thrown by message element
controllers in order to signalize, that the message element could not be
fully processed. It contains a human readable string that describes the
warning.

• class error extends tds_exception is thrown by message element con-
trollers, if a message element could not be processed at all. It contains a
human readable string to further describe the error that occurred.

• class missing_parameters extends error is thrown, if a message ele-
ment does not contain all parameters it requires for being processes. It
also contains a list of the parameters that are missing.

4.3.2 The authentication message element

To be able to authenticate the user, we needed a connection to the Twitter API.
We therefore implemented the following two models:

4. Twimight Server Implementation 32

• abstract class api_connection extends model provides an abstract
parent class for all potential implementations of api connections, even if
there is currently only the one to the Twitter API.

• final class twitter_api_connection extends api_connection offers
specialized functions to connect to the Twitter API. It makes use of the
TwitterOAuth class, as implemented in [27].

To hold the data we needed, we implemented the models below:

• class server_credentials extends db_model basically hold the pair of
consumer_key and consumer_secret, to enable connection to the Twitter
API.

• class user_credentials extends db_model represents valid credentials
of a user, that were obtained from the Twitter API.

• class user extends db_model represents a user and functions to get
related objects, such as, e.g. his credentials, i.e. an instance of the
user_credentials class.

We finally added the following two controllers to actually process the message
element:

• final class authentication extends message_element_controller is
very simple: it basically dissects the message element, creates an instance
of the user_credentials model with the provided credentials and invokes
the user_controller for authentication.

• class user_controller extends controller encapsulates the function-
ality to authenticate a user, the state, i.e. if the authentication was suc-
cessful or not.

Since the Twitter API is quite slow, the following procedure is applied
when a user sends a request:

1. Check if the user_credentials provided already exist in the database,
if true, then set the corresponding user as authenticated and return.

2. Check the validity of the supplied credentials using the Twitter API.
If successful, then create and save a new user, save the supplied cre-
dentials for the newly generated user, set him as authenticated and
return.

3. Return an authentication error.

This local caching resulted in a drastical increase of performance.

4. Twimight Server Implementation 33

4.3.2.1 Follower-and-Friend Update Script

Since the followers and friends (i.e. the users that are following him) of a users
vary over time the Twimight Server needs to keep track of these relations. To do
so, we implemented a script that connects to the Twitter API and updates all
these relations daily, using a cron job. If, however, a new user joins, the script
is invoked directly from the web application and the relations are updated just
for the new user. This speeds up the certificate distribution process for the new
user, as the new user does not have to wait half a day on average.

For scalability reasons, we decided to only store a relation, when the users
mutually follow each other and, hence, its name follower-and-friend.

4.3.3 The certificate message element

To provide the most central part of the API - the signing of certificate signing
requests - we added the following controller to our framework:

final class certificate extends message_element_controller

Furthermore, we implemented two models, as described below:

• class certificate_signing_request extends model contains the cer-
tificate signing request as sent by the client and provides functionality to
sign the request, which results in a valid, signed certificate.

• class user_certificate extends db_model is an abstraction of a X509
certificate and provides functions to, e.g., get its properties, or revoke it.

The functionality of the certificate message element controller is fairly simple:
He first checks, whether the user still has a valid certificate and revokes that
certificate. Then he instantiates a certificate_signing_request model and
invokes its signing function. Upon success, he retrieves the signed certificate
and stores it in the database. He finally returns the signed certificate to the
user. To keep the server load limited, we further added a certificate signing rate
limitation per user. That is, a user can, e.g., only get one certificate signed per
day. However, this limitation does not apply for manually revoked certificates!

The challenge with implementing the certificate authority was coping with
PHP’s limited customizability of OpenSSL. We therefore decided to use the
OpenSSL commandline tool for signing requests and for revoking certificates.
However, this forced us to use the OpenSSL certificate authority implementation,
which relies on files. Therefore, we had to extend the above models to synchronize
the file database of OpenSSL with our MySQL database.

4.3.4 The revocation list message element

The implementation of the certificate revocation list message element was straight-
forward. Only the controller below had to be implemented.

4. Twimight Server Implementation 34

final class revocation_list extends message_element_controller

The controller asks the user_certificate model to give him the certificate
revocation list. The user_certificate model then provides information of cer-
tificates that have been revoked but are not yet expired.

4.3.5 The ff certificate message element

The implementation of the ff_certificate message element, which returns the
certificates of the authenticated user’s follower-and-friends, was simple and did
not require much logic. The controller

final class ff_certificates extends message_element_controller

asks the user_controller for the user model instance of the authenticated user
and gets an array containing his followers-and-friends. The certificate of each is
then collected and returned.

4.3.6 The location message element

To enable the Twimight Server to store location reports provided by a client,
we added the class location_report extends db_model model to our frame-
work. To process the actual message element, the

final class location extends message_element_controller

message controller was added furthermore. The location message controller
iterates over all location reports provided in the request, and stores those that
contain all necessary data in the database, using the location_report model.

4.3.7 The neighbor message element

For processing the neighbor message element, we needed another model, in order
to basically store the MAC addresses of the interfaces of the clients smartphone.
We therefore implemented the following model:

class user_connection extends db_model

To process the message element itself, we implemented the

final class neighbor extends message_element_controller

controller. The processing of the message element is done in two parts: Foreach
of the two available types (wifi and bluetooth), the following is done if they
are given in the request:

1. Update the MAC address of the client in the database, if it is given in the
request,

4. Twimight Server Implementation 35

2. Retrieve all neighbors, put their MAC addresses into an array and return
that array.

To determine a user’s neighbors, we use the most recent location report of that
user and the most recent location reports of all other users and then select those
users with a location report within a specified distance, using the Haversine
formula.

4.4 Web Interface Implementation

4.4.1 Server-side Implementation

To provide the web interface, we extended our MVC framework with two con-
trollers. The web_controller serves the whole website synchronously, whereas
the ajax_controller is responsible for processing asynchronous AJAX requests.

• class web_controller extends front_controller basically checks the
supplied URL, i.e., the request GET parameter, processes the request,
instantiates the corresponding view and responds. In special cases, such as
the login redirection to Twitter, no view is generated, but rather a HTTP
Redirection header is sent back to the client.

• class ajax_controller extends front_controller analogously to the
web_controller it processes requests and returns a JSON object, which
is then further parsed in the browser of the client.

Compared to the API, as described above, the views for the web interface
are much more important, since the response is not just a JSON object, but
rather a full-scale HTML page, with cascading stylesheets (CSS) and JavaScript.
We therefore first built the abstract class web_view extends view, which
provides a very basic form of a page, including a small templating engine. It yet
is abstract, because to actually make up a page content and a further HTML
template is needed. Subclasses of the web_view class, i.e.,

• class home_view extends web_view,

• class dashboard_view extends web_view,

• class install_twimight_view extends web_view, and

• class delete_view extends web_view

each extend the web_view class in that they provide a HTML template of the
actual page, as well as a list of stylesheet and JavaScript files that have to be
included.

Whenever a request cannot be processed at all, or if an error occurs while pro-
cessing a request, e.g. if a wrong URL was provided, then the web_controller

instantiates the class error_web_view extends error_view class, which shows
an error message to the user. A sample error message is shown in fig. 4.3.

4. Twimight Server Implementation 36

4.4.2 Client-side Implementation

With the server-side implementation provided, as just described, the web inter-
face generally works. However, a web interface today are usually very rich in
functionalities. We therefore used various third-party implementations, namely
the Google Maps API, jQuery, and various other plugins. We put all these
plugins together by writing simple JavaScript code, which can be found in the
public/javascript/ folder.

The most important part of the web interface is the dashboard, which relies
on JavaScript to a great extent. The dashboard is the place, where the user
can assess all his data on the Twimight Server and take actions, e.g., to revoke
the certificate or to delete all his data. The dashboard page as provided by
the Twimight Server does not yet contain any content, but rather a JavaScript
file in its header (i.e. public/javascript/dashboard.js). This script then
asynchronously fetches all data from the server, and puts it onto the dashboard
page. This greatly simplified and modularized the server-side implementation
for providing the content, since everything could be done seperately, using the
ajax_controller. Furthermore the dashboard.js script generates buttons to
update the data currently displayed, which essentially is just another ajax request
to the Twimight Server.

A considerable amount of time has been invested in design of the web inter-
face. Since the web interface is accessed by users and not by machines, as it is
the case for the API, graphical design becomes important. We basically relied on
cascading stylesheets for the whole design of the different elements of the page.
A noteworthy point is the inclusion of custom fonts, which are also provided
by the Twimight Server. This greatly benefits the uniqueness of the website.
Another feature, worth noting, is the clustering within the Google Map. Since a
Twimight client can store many location reports on the server, the map would
generally be overcrowded and therefore the clustering was added to improve the
map. As previously mentioned, the resulting web interface is shown in fig. 3.1.

4. Twimight Server Implementation 37

Figure 4.3: Error message on the web interface after an invalid request.

Programmer - an organism that turns coffee
into software.

Unknown

Chapter 5

Conclusion

In this final chapter we conclude this thesis by first sharing some thoughts on
the thesis, including personal thoughts on what has been learned, and second by
looking at possible future work that is closely related to the Twimight Server in
section 5.1.

Looking back at the thesis as such, we notice the many things that have
been learned. The scope of technologies, standards and environments that were
involved was particularly broad and even if the task sounded simple at first, it
yet provided many challenges, which had to be solved.

We had to evaluate how to deal with all the technologies, software, envi-
ronments and standards involved and how to acquire the relevant knowledge.
Therefore we decided that it is to be preferred to rather read a book on a spe-
cific topic, than to just google for the answer. This definitely makes knowledge
on this topic much more persistent, and certainly results in a much better overall
solution to a given problem.

After making this decision, we acquired knowledge on various topics, as for
example OpenSSL, certificates and the processes a certificate authority has to
deal with; further we greatly deepened our abilities in modeling a problem and
the use of design patterns; and most notably we were able to improve our pro-
gramming skills in PHP and MySQL.

While developing not only technical problems arose, but also aesthetical and
design specific questions had to be tackled. We had to decide on how to model
the problem, i.e., to which level of granularity we separate the data structures,
and when to stop separating. The result of this modeling process can be analyzed
in chapter 4.

38

5. Conclusion 39

5.1 Future Work

Despite the fact that the current implementation of the Twimight Server is work-
ing pretty much flawlessly, there are several open issues and numerous ideas,
which might be approached in the future. Below a list is provided, in order to
sketch the work for the future.

Integrate the Twimight Client Application

The first and most important future task is to implement connection to the
Twimight Server API in the Twimight client application, since without that, the
Twimight Server does not make any sense.

Scalability Considerations

Having the ever-growing Twitter user community in mind, the question of scala-
bility with respect to the Twimight Server is quite a legitimate one. The current
implementation most certainly is not perfectly efficient and, hence, needs to be
reviewed and improved accordingly.

Advanced Neighbor Finding

Currently, as emerged from chapter 4 above, neighbor finding is done by consid-
ering the most recent location reports of other users and the requesting user’s
current location report. This basic functionality might in the future be extended
as to provide heuristics for neighbor finding. As an example one might think of
selecting neighbors based on locations visited frequently, on location followers
and not only on the current location of the requesting user.

MySQL-CA only

As already stated above, OpenSSL’s certificate authority functionality is based
on files and folders, whereas we wanted to base the Twimight Server’s CA func-
tionality in a MySQL database. Consequently, many things are done twice,
which clearly is an overhead. To further increase the performance of the Twi-
might Server the implementation of a MySQL only CA is desirable. This can
be done by still using OpenSSL, but rather than its commandline interface, we
could make use of the library OpenSSL provides, to write small C programs.

Bullet-proof the Server

Although we considered attack vectors like cross-site scripting (XSS), cross-site
request forgery (XSRF or CSRF) and SQL injection (SQLi), the risk of vulner-
abilities remains. Therefore it is reasonable to perform detailed security audits
to possibly find and then remove vulnerabilites.

5. Conclusion 40

Publish Tweets

A very useful, and quite easy implementable feature would be to enable the
Twimight Server to push tweets to Twitter, hence, acting as a relay. Imagine
the following case during a disaster:

Client A, B and C can communicate using Twimight and its delay tolerant
Bluetooth network. While tweets are being sent by A, B and C, client C is all
of a sudden able to connect to the fixed-infrastructure network.

The Publish Tweets feature would now enable client C to push all signed
tweets, including those by A and B, to the Twimight Server, who in eturn pushes
these tweets to Twitter. Having this feature implemented is definitely of great
use and may, given the above circumstances in a disaster case, contribute to
disaster awareness.

Disaster Awareness and Sensor Data

To further contribute to disaster awareness, the Twimight Server could also
process sensor data tweets, which were sent by Twimight clients, and produce a
mapping of the disaster in spatial, as well as temporal manner.

Arbitrary Social Network Integration

Twimight, obviously, provides means of tweeting during disasters. However,
communication during disasters should not require an affected person to use
Twitter, but rather allow for arbitrary social networks to work in conjunction
with Twimight. The Twimight Server would be the entity that is able to connect
to all these social networks and provide its API to clients to take full advantage
of it for disaster relief. Social network APIs should only be required to sup-
port OAuth, which many in fact do. Despite this usefulness, implementing this
functionality requires many changes in the current implementation and is a very
demanding task.

Make the Twimight Server API Public

In disasters, ideally, arbitrary clients can exchange messages, provided they have
some kind of communication interface. Even though Twimight and its server
provide means of communication for disaster events, they have to provide further
services. In order to fully use the Twimight Servers capabilities, the server needs
to provide an application programming interface (API), similiar to the Twitter
API, where one can register applications to exchange data with the Twimight
Server.

Teaching Twimight Server Privacy

Up to this point, all data, which is sent to the Twimight Server by clients, is
stored on the server and might potentially be used for answering requests by

5. Conclusion 41

an arbitrary other client. As an example one might consider, that client A has
stored his MAC address, as well as some location reports on the server. Under
appropriate conditions the MAC address of client A will be sent to client B, upon
a request for neighboring users by client B. In this process client A has only very
binary control over his data: He can either enable or disable Twimight Server
communication.

A potential future task may, hence, be the implementation of different levels
of privacy. The respective level may, for example, be changed using the web
interface. A user might then adjust this privacy level at will. Nevertheless,
enabling this privacy options might result in serious problems regarding oppor-
tunistic communication. As an example one might imagine a disaster case with
a set of users close to each other, but each with an elevated privacy level. This
could potentially result in disabling communication even though very well pos-
sible and probably needed as well. Consequently, the potential drawbacks have
to be evaluated and analyzed, in order to best enable the user to protect his
privacy, while still maintaining and guaranteeing Twimight core functionality.

Improve the Web Interface

• i18n
The web interface is currently only available in english. However it would
be much more convenient to have the possibility of serving the web interface
in arbitrary languages. This process is known as internationalization or,
for short, i18n. Providing i18n is closely related, or, more precisely, can be
achieved easily by extending the web interface by a templating engine, as
described just below.

• Template Engine
Using a template engine, such as for example Smarty1 can be of great use
for a web interface. Deploying a template engine enables the developer
to focus on the implementation of the actual “high-level” business logic,
rather than having to focus on low-level problems. At the moment, the
Twimight Server implementation does not use a template engine, since
the amount of template files is not too large yet, or, in other words, the
template files are still manageable. However with increasing complexity of
the tool, it definitely makes sense to deploy a template engine.

• Session Management
PHP offers many ways of handling sessions. In the current implementation
of the Twimight Server, all session related information is stored in files
in the directory data/sessions/, relative to the Twimight Server root
directory. A future implementation of the server could move all session
related information, i.e., the session identifier and session variables, to

1http://www.smarty.net

http://www.smarty.net

5. Conclusion 42

the MySQL database, where rows might even be linked to the user table,
thereby offering new analysis and log possibilites.

Resolve Known Bugs

Upon reviewing the code, and thanks to the Network Security lecture, the fol-
lowing bugs, or more accurately, set of bugs, have been disclosed:

• Cross-site Request Forgery
Currently, there is a CSRF issue for users logged in to the web interface.
If malicious websites issue a request directly to either

[twimight-domain]/ajax/certificate/revoke

or to

[twimight-domain]/dashboard/user/delete

those actions are executed without further human interaction, with the
obvious consequences for the user currently logged in. A possible solution
to prevent this attack, is to add for example Google reCAPTCHA. Since
the two actions prone to the attack are not executed on a daily basis, the
overhead for the user remains acceptable.

• Cross-browser Compatibility
Despite the beauty of the web interface in modern browsers, there are most
likely quite numerous design issues in older browsers and, needless to say,
in Internet Explorer. Those issues need to be approached and solved.

In conclusion we notice that the foundation of the Twimight Server has been
laid and various tasks for future work exist.

Appendix A

Twimight Server Setup

1. Make sure that you have Ubuntu 11.10, as well as the following packages
installed on your system:

• lighttpd

• openssl

• mysql-server, mysql-client, mysql-common

• php5, php5-curl, php5-mysql, php5-cgi, php5-cli

2. Checkout a copy of the source code from the Google code repository to a
temporary folder, say /tmp/twimight_server.

svn checkout \

http://twimight-disaster-server.googlecode.com/svn/trunk/ \

/tmp/twimight_server

3. Export your working copy to the destination folder, where you want the
Twimight Server to reside, e.g. /srv/twimight_server.

svn export /tmp/twimight_server /srv/twimight_server

4. Change to the script/install folder, execute the install script and pro-
vide the necessary information:

cd /srv/twimight_server/script/install

./install.sh

A-1

Appendix B

Twimight Server Development

In this appendix, we provide some hints and explanations that might be useful
when continiuing Twimight Server development.

Code Repository

For version control purposes we created a Google code repository, to be found
under http://code.google.com/p/twimight-disaster-server. We used a
Subversion repository. Information on Subversion can be found for example in
the following book: http://svnbook.red-bean.com.

Editor

To edit the code we relies on the powerful Emacs editor, with the PHP mode,
which is available under http://php-mode.sourceforge.net. The PHP mode
was used for automated intendation and code highlighting.

Clean Code

Whether to include comments in the code or not is an ongoing and highly contro-
versial discussion. For this project we decided to not comment any source code,
but rather to give variables and functions a very meaningful, self-explanatory
name. From our point of view, this approach is as good as comments.

B-1

http://code.google.com/p/twimight-disaster-server
http://svnbook.red-bean.com
http://php-mode.sourceforge.net

Appendix C

JavaScript Object Notation

Below we specify the JavaScript Object Notation using the diagrams provided
at http://json.org. These diagrams completely specify JSON, except minor
encoding details. For the MIME type application/json please refer to [6].

{ string : value }

,

Figure C.1: JSON object

[value]

,

Figure C.2: JSON array

string

number

object

array

true

false

null

Figure C.3: JSON value

C-1

http://json.org

JavaScript Object Notation C-2

"
any UNICODE character

except " or \
or control character

"

\ "

\

/

b

f

n

r

t

u 4 hex digits

Figure C.4: JSON string

JavaScript Object Notation C-3

0
.

d
i
g
i
t

-
d
i
g
i
t
1
-
9

d
i
g
i
t

e
+

d
i
g
i
t

E
-

Figure C.5: JSON number

Appendix D

Database Structure

Table D.1: Structure of table server credentials

Column Type Null Default

id int(10) No

consumer key char(22) No

consumer secret char(43) No

Table D.2: Structure of table user

Column Type Null Default

id int(10) No

first time seen timestamp No CURRENT TIMESTAMP

Table D.3: Structure of table user certificate

Column Type Null Default Links to

id int(10) No

user id int(10) No user (id)

serial number int(10) No

issued timestamp No CURRENT TIMESTAMP

valid from timestamp No 0000-00-00 00:00:00

valid to timestamp No 0000-00-00 00:00:00

revoked timestamp Yes NULL

certificate text No

D-1

Database Structure D-2

Table D.4: Structure of table user connection

Column Type Null Default Links to

user id int(10) No user (id)

type enum(’bluetooth’, ’wifi’) No

mac varchar(17) No

lts timestamp No CURRENT TIMESTAMP

Table D.5: Structure of table user credentials

Column Type Null Default Links to

id int(10) No

user id int(10) No user (id)

server credentials id int(10) No server credentials (id)

access token varchar(100) No

access token secret varchar(100) No

revoked datetime Yes NULL

expiry datetime Yes NULL

Table D.6: Structure of table user follower

Column Type Null Default Links to

user id int(10) No user (id)

follower id int(10) No user (id)

Table D.7: Structure of table user location report

Column Type Null Default Links to

user id int(10) No user (id)

latitude double No

longitude double No

accurracy int(10) No

timestamp datetime No

provider enum(’gps’, ’network’) No

Appendix E

References

[1] Aljohani, Naif; Alahmari, Saad and Aseere, Ali. An organized collaborative
work using twitter in flood disaster. In ACM Web Science 2011. March 2011.

[2] Beaulieu, Alan. Einführung in SQL. O’Reilly, 2nd edition, August 2009.
ISBN 978-3-89721-937-3.

[3] Bogus, Andre. Lighttpd. Packt Publishing, October 2008. ISBN 978-1-
84719-210-3.

[4] Carta, Paolo. Implementation of a disaster mode to maintain twitter com-
munications in times of network outages, August 2011.

[5] Chowdhury, Abdur. Global pulse, 2011. URL http://blog.twitter.com/

2011/06/global-pulse.html.

[6] Crockford, D. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627 (Informational), July 2006. URL http:

//www.ietf.org/rfc/rfc4627.txt.

[7] Dynes, Russell Rowe. Organized behavior in disaster. Disaster Research
Center, University of Delaware, 1985.

[8] Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.
and Berners-Lee, T. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999. URL http://www.ietf.org/rfc/rfc2616.

txt. Updated by RFCs 2817, 5785, 6266.

[9] Framework, Zend. Recommended project directory structure. URL http:

//framework.zend.com/manual/en/project-structure.project.html.

[10] Gamma, Erich; Helm, Richard; Johnson, Ralph and Vlissides, John. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1 edition, November 1994. ISBN 978-0-201-63361-0.

[11] Hammer-Lahav, E. The OAuth 1.0 Protocol. RFC 5849 (Informational),
April 2010. URL http://www.ietf.org/rfc/rfc5849.txt.

E-1

http://blog.twitter.com/2011/06/global-pulse.html
http://blog.twitter.com/2011/06/global-pulse.html
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://framework.zend.com/manual/en/project-structure.project.html
http://framework.zend.com/manual/en/project-structure.project.html
http://www.ietf.org/rfc/rfc5849.txt

References E-2

[12] Hossmann, Theus; Carta, Paolo; Schatzmann, Dominik; Legendre, Franck;
Gunningberg, Per and Rohner, Christian. Twitter in disaster mode: Secu-
rity architecture. In CoNext Special Workshop on the Internet and Disasters.
ACM, December 2011.

[13] Hossmann, Theus; Legendre, Franck; Carta, Paolo; Gunningberg, Per and
Rohner, Christian. Twitter in disaster mode: Opportunistic communication
and distribution of sensor data in emergencies. In ExtremeCom 2011 - The
Amazon Expedition. 2011.

[14] Hughes, Amanda Lee and Palen, Leysia. Twitter adoption and use in mass
convergence and emergency events. In Proceedings of the 2009 ISCRAM
Conference. 2009.

[15] Jain, Sushant; Fall, Kevin and Patra, Rabin. Routing in a delay tolerant
network. In Proceedings of the 2004 conference on Applications, technologies,
architectures, and protocols for computer communications, SIGCOMM ’04,
pages 145–158. ACM, 2004. ISBN 1-58113-862-8.

[16] JESS3. The geosocial universe 2.0. URL http://jess3.com/

geosocial-universe-2/.

[17] Krieg, Michael. Lighttpd - kurz & gut. O’Reilly, 1st edition, April 2009.
ISBN 978-3-89721-549-8.

[18] Mednieks, Zigurd; Dornin, Laird; Meike, G. Blake and Nakamura, Masumi.
Programming Android. O’Reilly Media, 1st edition, August 2011. ISBN
978-1-4493-8969-7.

[19] Mendoza, Marcelo; Poblete, Barbara and Castillo, Carlos. Twitter under
crisis: can we trust what we rt? In Proceedings of the First Workshop
on Social Media Analytics, SOMA ’10, pages 71–79. ACM, 2010. ISBN
978-1-4503-0217-3.

[20] Mills, Alexander; Chen, Rui; Lee, JinKyu and Rao, H. Raghav. Web 2.0
emergency applications: How useful can twitter be for emergency response?
Journal of Information Privacy & Security, volume 5(3), 2009.

[21] Nystrom, M. and Kaliski, B. PKCS #10: Certification Request Syntax
Specification Version 1.7. RFC 2986 (Informational), November 2000. URL
http://www.ietf.org/rfc/rfc2986.txt. Updated by RFC 5967.

[22] OpenSSL. Openssl project documents. URL http://openssl.org/docs.

[23] Reenskaug, Trygve. Mvc. URL http://heim.ifi.uio.no/~trygver/

themes/mvc/mvc-index.html.

[24] Rescorla, E. HTTP Over TLS. RFC 2818 (Informational), May 2000. URL
http://www.ietf.org/rfc/rfc2818.txt. Updated by RFC 5785.

http://jess3.com/geosocial-universe-2/
http://jess3.com/geosocial-universe-2/
http://www.ietf.org/rfc/rfc2986.txt
http://openssl.org/docs
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://www.ietf.org/rfc/rfc2818.txt

References E-3

[25] Shklovski, Irina; Palen, Leysia and Sutton, Jeannette. Finding community
through information and communication technology in disaster response. In
Proceedings of the 2008 ACM conference on Computer supported cooperative
work, CSCW ’08, pages 127–136. ACM, 2008. ISBN 978-1-60558-007-4.

[26] Viega, John; Messier, Matt and Chandra, Pravir. Network Security with
OpenSSL. O’Reilly Media, 1st edition, June 2002. ISBN 978-0-596-00270-1.

[27] Williams, Abraham. Twitteroauth php library. URL https://github.com/

abraham/twitteroauth.

https://github.com/abraham/twitteroauth
https://github.com/abraham/twitteroauth

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Outline of the Thesis
	1.2 Motivation
	1.3 Acknowledgements

	2 Background
	2.1 Twitter
	2.1.1 The Usage of Twitter during Disasters

	2.2 Twimight
	2.2.1 Delay Tolerant Networks

	2.3 Twimight Server
	2.3.1 Further Twimight Server Services

	2.4 Web Technologies
	2.4.1 Hypertext Transfer Protocol and HTTP over SSL/TLS
	2.4.2 OpenSSL
	2.4.3 Lighttpd
	2.4.4 PHP
	2.4.5 MySQL
	2.4.6 JavaScript Object Notation

	2.5 Security Considerations
	2.5.1 Common Attack Vectors
	2.5.1.1 Cross-Site Scripting
	2.5.1.2 Cross-Site Request Forgery
	2.5.1.3 SQL Injection
	2.5.1.4 Directory Traversal and Forceful Browsing

	3 Twimight Server Specification
	3.1 Basic Building Blocks the Twimight Server
	3.2 A Two Interface Approach
	3.3 API Interface Specification
	3.3.1 Request Format
	3.3.1.1 Structure of auth_request_object
	3.3.1.2 Structure of location_request_object
	3.3.1.3 location_report
	3.3.1.4 Structure of neighbor_request_object
	3.3.1.5 Structure of ff_certificates_request_object
	3.3.1.6 Structure of revocation_list_request_object
	3.3.1.7 Structure of certificate_request_object

	3.3.2 Response Format
	3.3.2.1 Structure of auth_response_object
	3.3.2.2 Structure of location_response_object
	3.3.2.3 Structure of neighbor_response_object
	3.3.2.4 Structure of ff_certificates_response_object
	3.3.2.5 Structure of revocation_list_response_object
	3.3.2.6 Structure of cert_response_object
	3.3.2.7 error_missing_parameters

	3.4 Web Interface Specification

	4 Twimight Server Implementation
	4.1 The MVC Pattern
	4.2 Building the Framework
	4.2.1 Folder Structure
	4.2.2 Configuration Files
	4.2.3 MVC Framework
	4.2.3.1 Models
	4.2.3.2 Views
	4.2.3.3 Controllers

	4.2.4 Design of the Relational Database

	4.3 API Implementation
	4.3.1 General Additions to the MVC Framework
	4.3.1.1 Views
	4.3.1.2 Controllers

	4.3.2 The authentication message element
	4.3.2.1 Follower-and-Friend Update Script

	4.3.3 The certificate message element
	4.3.4 The revocation_list message element
	4.3.5 The ff_certificate message element
	4.3.6 The location message element
	4.3.7 The neighbor message element

	4.4 Web Interface Implementation
	4.4.1 Server-side Implementation
	4.4.2 Client-side Implementation

	5 Conclusion
	5.1 Future Work

	A Twimight Server Setup
	B Twimight Server Development
	C JavaScript Object Notation
	D Database Structure
	E References

