
WLAN-OPP: WLAN-based
Opportunistic Networking
Implementation on Android

Semester Thesis

Dimitrios Gkounis

April, 2012

Advisors: Bernhard Distl
Supervisor: Prof. Dr. Bernhard Plattner

Computer Engineering and Networks Laboratory, ETH Zurich

Abstract

The goal of this semester project was to develop an Android-based application
that enables opportunistic communication for WiFi-capable smartphones that
are at the same location. To do this, the WiFi AP functionality is used to inter-
connect multiple devices. To implement different connectivity scenarios among
the mobile devices within the WLAN range, two Android-based applications,
instead of one, were developed. Finally, it was important for us to profile the
performance of such applications by measuring the execution time of different
actions that use WLAN. Thus, measurements on Google Nexus One mobile
phones were conducted.

Acknowledgments

I would like to thank Professor Bernhard Plattner who gave me the opportunity
to conduct a semester thesis at the Communications Systems Group of the ETH
Zurich. I would also like to thank Bernhard Distl for his valuable help and for
the fruitful discussions we had throughout this thesis. Many thanks to all my
friends who support me all these years. Last, but not least, special thanks to
my family which supports me mentally and financially, gives me courage and
helps me make my dreams come true.

Contents

1 Introduction 4

2 Applications 5
2.1 WLAN-Opp First Try . 5
2.2 WLAN-Opp FlexibleSTA . 8

3 Measurements 10
3.1 MeasureTethering . 10

3.1.1 Tethering Activation Time 10
3.1.2 Tethering Deactivation Time 11

3.2 MeasureWiFi . 12
3.2.1 WiFi Activation Time . 13
3.2.2 WiFi Deactivation Time 13

3.3 MeasureScanning . 14
3.4 MeasureRescanning . 15
3.5 MeasureAutoConnection . 17

3.5.1 Connection and Disconnection Time 17
3.6 MeasureConnectionLoss . 19
3.7 Discussion . 20

4 Conclusion 22

A Developer How-To 23
A.1 Installation procedure of development software 23
A.2 Rooting Google Nexus One phones 23

Bibliography 24

1

List of Figures

2.1 Menu of the application . 5
2.2 Tethering is enabled . 5
2.3 Tethering is disabled . 5
2.4 Starting AP scan mode . 6
2.5 Receiving AP scan results . 6
2.6 AP scanning stopped . 6
2.7 List item pressed – no connection 7
2.8 Connection established . 7
2.9 List item pressed – connected . 7
2.10 Connection loss . 7
2.11 Automatic connection . 8
2.12 Automatic disconnection . 8
2.13 Fast reconnection after an automatic disconnection 9
2.14 Automatic disconnection from another PodNetAP 9
2.15 Connection loss . 9
2.16 Fast reconnection after a connection loss 9

3.1 Tethering activation time . 11
3.2 Tethering deactivation time . 12
3.3 WiFi activation time . 13
3.4 WiFi deactivation time . 14
3.5 AP scan time . 15
3.6 AP rescan time . 16
3.7 Connection time . 18
3.8 Disconnection time . 18
3.9 Connection loss time . 20
3.10 Measurements . 21

2

List of Tables

3.1 Tethering activation time . 11
3.2 Tethering deactivation time . 12
3.3 WiFi activation time . 13
3.4 WiFi deactivation time . 14
3.5 AP scan time . 15
3.6 AP rescan time . 16
3.7 Connection time . 17
3.8 Disconnection time . 18
3.9 Connection loss time . 20
3.10 Measurements . 21

3

Chapter 1

Introduction

The use of smartphones has been increased the past years. People more and
more use their smartphones in all aspects of their daily life. In addition to using
them to access to the internet, read emails, connect to calendar etc., people
use smartphones to exchange pictures, music, contacts, files and data of some
common applications among their peers. Thus, the interest in opportunistic
communication is ever increasing.

Connectivity among smartphones is possible through Bluetooth. But this
protocol doesn’t enable opportunistic networking due to its short range, limited
bandwidth and pairing difficulties.

Furthermore, some standards have been adopted that enable WiFi connec-
tivity among mobile phones. These are the WiFi Ad-Hoc and WiFi Direct
[1]. But, the most popular smartphone platforms don’t support WiFi Ad-Hoc
in stock phones up to now [2]. Besides that, this standard spends a lot of
the mobile device battery energy when it is used. As for WiFi Direct, it was
just designed for enabling smartphone communication over WiFi. Due to its
complex pairing procedure, this standard cannot effectively enable opportunis-
tic communication, which happens in very dynamic environments. So, a new
architecture has been proposed for this purpose. WiFi-Opp is a WiFi-based
opportunistic networking architecture for smartphones [3]. WiFi-Opp uses the
WiFi Access Point (AP) feature (Tethering, Personal Hotspot) of smartphones,
which was originally designed to allow devices to share Internet access, to enable
connectivity among devices that are at the same place, i.e. in range of WiFi.

This thesis is a part of the WiFi-Opp project (also called WLAN-Opp) of the
Communications Systems Group (CSG) at ETH Zurich. This thesis takes the
existing proof of concept code and develops different Android-based applications
corresponding to different opportunistic networking scenarios [3].

This thesis is organized as follows: In Chapter 2, the applications developed
for implementing multiple connectivity scenarios in opportunistic networking are
described. In Chapter 3, the performance of some of the application components
in terms of time to be executed is measured. The objects measured, the methods
used for and the results of the measurements are presented. Finally, in chapter
4, a conclusion of this thesis is written.

4

Chapter 2

Applications

In this part of the thesis, the applications developed to enable opportunistic net-
working on Android will be explained in detail. The first application, WLAN-
Opp First Try, was developed just for integrating all the modules necessary for
enabling opportunistic networking on Android-based smartphones. This appli-
cation is also an implementation of a simple connectivity case in opportunistic
networks. The second one, WLAN-Opp FlexibleSTA, implements a particular
connectivity scenario regarding opportunistic communication.

2.1 WLAN-Opp First Try

This application was developed as an attempt to use all the features needed
for enabling opportunistic networking on Android-based mobile devices. The
design of the application is similar as the WiFi-Opp Manual scenario on [3].

Figure 2.1: Menu of the
application

Figure 2.2: Tethering is
enabled

Figure 2.3: Tethering is
disabled

When this application starts running, a screen appears so the user can choose
between using the Tethering mode and using the WiFi mode (Fig. 2.1). If the
user chooses to use the Tethering mode, i.e. to become a mobile Access Point

5

(AP) using WiFi, then he can enable it by using the appropriate radio button
(enabling one, disables the other) (Fig. 2.2). When Tethering is enabled, an AP
with PodNetAP as its SSID is created. The user can also disable this mode by
the use of the same radio button (Fig. 2.3). If the user wants to use the WiFi
mode, i.e. to scan for the available APs in range, then he has to press the Scan
button.

If the user chooses to scan for APs, then a new screen appears. The WiFi gets
enabled (Fig. 2.4), if it is not, and the screen fills up with a list of all available
APs in range (Fig. 2.5). This list is scrollable, so the user can be provided with
the information of all possible APs around. Each entry in the list is comprised
by three features. At the top in each entry, the SSID of AP is displayed. Below
that, the authentication, key management and encryption schemes supported
by this AP appear. In the last line of each list item, a number that corresponds
to the signal level in dBm of the AP is shown. All the APs in list are sorted
based on the strongest signal level, i.e. APs with higher signal level are placed
higher in the list than others. It has to be noticed that only the AP with the
strongest signal level among multiple APs with the same SSID is displayed in
the list.

Figure 2.4: Starting AP
scan mode

Figure 2.5: Receiving
AP scan results

Figure 2.6: AP scan-
ning stopped

As it can be understood by using the application, the mobile device receives
results about the APs in range really fast, approximately two times per second.
The user is given the possibility to stop receiving AP scan results by pressing
the STOP button (Fig. 2.6). The list stops getting updated and thus the user
can choose to connect to the AP he wants. It has to be mentioned that this
button is a toggle button, so after it has been pressed, the button gets to the
state START. If the user presses it again, the AP scanning starts again.

In order to connect to an AP, an item of the AP list has to be pushed on
screen. When that happens, a dialog box appears on screen to ask the user if
he wants to connect to this AP (Fig. 2.7). If the user chooses Yes, a connection
attempt is made. If he chooses No, the application returns to its previous state.
It has to be mentioned that the device, when using this application, can only
connect to an open AP. By default, there is a display on screen (No Connection)

6

that states that the device is not connected to an AP. It is assumed that no
preconfigured network exists on the device. When a connection to an AP has
been established, this display changes showing the SSID of the AP to which the
device is connected (e.g. Connected to PodNetAP) (Fig. 2.8). Then, if a list
item is pushed, a different dialog box appears to state that the device is already
connected to a specific AP (Fig. 2.9). This means that the application doesn’t
allow the user to connect to another AP while connected. If he wants to connect
to a different AP, he has to be disconnected from the other one first.

Figure 2.7: List item pressed – no con-
nection

Figure 2.8: Connection established

When a connection to an AP has been established, a Disc button, i.e. for
disconnecting from the AP, is also enabled next to the display regarding the
connected AP. If a disconnection happens, this button becomes disabled and
the display next to it turns to its default state. In case the device or the AP to
which is connected gets out of each other’s range or the AP gets disabled due
to a failure, a small message appears on screen stating that the connection has
been lost (Fig. 2.10).

Figure 2.9: List item pressed – con-
nected

Figure 2.10: Connection loss

The user has also the choice to abort the WiFi mode and to switch to the

7

first screen where as explained he can choose between the WiFi mode and the
Tethering mode for his device. This is done by just pressing the Disable button
whenever the user wants to, even if his device is already connected to an AP.
It is considered in this implementation that the user will first disable the WiFi
before trying to use Tethering. He could just press the Back button, resulting
in returning in the first screen of the application, but he wouldn’t be able to
access to the Tethering mode as the WiFi would still be enabled.

It is also considered that when the device is in the Tethering mode, the user
doesn’t try to enter to the WiFi mode. So, it is assumed that the user disables
the Tethering mode before trying to access to the WiFi mode.

2.2 WLAN-Opp FlexibleSTA

The implementation scenario was based on WiFi-Opp Flexible STA scenario
that was presented on [3]. This application is similar to the WLAN-Opp First
Try application but it has been developed taking only into account the WiFi
mode of the previous application, i.e. the Tethering mode has not been inte-
grated into this application.

In this application, the device that is connected to an AP (such device is
called STA) is automatically disconnected from this AP after some time has
passed. The time that the STA stays connected to an AP is defined as t con ∼
U [t conmin, t conmax]. A STA that stays connected to an AP for a long time is
not able to connect to other APs available in range. So, this scenario is defined
in order not to have ”multiple independent clusters that cannot communicate
although they are physically collocated” [3].

Figure 2.11: Automatic connection Figure 2.12: Automatic disconnection

When this application starts running, it automatically tries to connect to
PodNetAP (the SSID used by the Tethering mode of the previous application)
(Fig. 2.11). If such an open network doesn’t exist in range, the user can also
choose to connect to any other open network he likes by just pressing the corre-
sponding item of the AP list displayed on screen, like in the previous application.
In all cases, i.e. to whichever AP the STA is connected, the STA stays connected
to this AP for just t con (Fig. 2.12, 2.14). After this time has elapsed, if the

8

STA is connected to a PodNetAP, the STA gets disconnected from this Pod-
NetAP and immediately tries to find another PodNetAP (same SSID, different
BSSID) to connect to. If it finds one, a fast reconnection happens (Fig. 2.13). If
it doesn’t, the device just keeps scanning for the available APs in range. In case
a connection loss is detected due to an AP (PodNetAP) failure or out of range
communication, a fast reconnection to another PodNetAP is also attempted
(Fig. 2.15, 2.16). Thus, the fast reconnection feature works only if the STA is
previously connected to a PodNetAP. This feature is used to help the device
quickly adjust to topological changes due to mobility [3].

Figure 2.13: Fast reconnection after an
automatic disconnection

Figure 2.14: Automatic disconnection
from another PodNetAP

For all the functionalities described above, small messages appear on screen
as in the other application. Besides some additional functionalities that were
described in this section, the application works and appears in the same way as
the previous one.

Figure 2.15: Connection loss Figure 2.16: Fast reconnection after a
connection loss

9

Chapter 3

Measurements

In this part of the thesis, the time it takes a defined set of WiFi-related actions
of the aforementioned applications to be executed is measured. For each mea-
surement, a small Android application was developed. All the measurements,
except the last one, were made on four stock (unrooted) Google Nexus One
phones running Android 2.3.6. In the following sections, a description of the
applications developed and of the methods used for the measurements will be
given.

3.1 MeasureTethering

This application was developed in order to measure the time it takes tether-
ing to be enabled and disabled. For enabling, disabling and checking whether
tethering is enabled or not, some custom made methods were used, enableTeth-
ering(), disableTethering() and tetheringIsEnabled() respectively, as there are
no Android APIs for these purposes.

3.1.1 Tethering Activation Time

To measure tethering activation time, tethering is first enabled by executing
enableTethering() and this current time is stored. To find out when tether-
ing is really enabled, tetheringIsEnabled() is executed every 10 milliseconds.
When tethering gets enabled, the time difference between the current time and
the time previously stored produces the tethering activation time. This value is
then stored on a particular file (TetheringON.txt) inside a specific folder (/mea-
surements) hosted at the SD card of the mobile device. After this measurement
has been made, tethering gets disabled by executing disableTethering(). After
a short period of time (15 seconds), tethering is enabled again and so on and
so forth. This situation happens many times iteratively so as many samples to
be collected for determining the tethering activation time of Google Nexus One
phones.

The time interval (15 seconds) for re-enabling tethering was determined by
some measurements made to choose the right time interval. If a shorter time
interval is used, e.g. 5 or 10 seconds, tethering doesn’t work properly and takes

10

it much more time to be enabled than in the case of using 15 seconds or more
for the reactivation time interval.

Figure 3.1: Tethering activation time

Figure 3.1 shows the tethering activation time of the collected samples. On
the horizontal axis, we have the samples and on the vertical axis the tethering
activation time, measured in milliseconds, that corresponds to each sample. The
red line corresponds to the mean value of the tethering activation time, based
on all collected samples.

Tethering Activation Time (milliseconds)
Mean Value 4442.6

Standard Deviation 97.5316

Table 3.1: Tethering activation time

Based on Table 3.1, we can say that the tethering activation time is approx-
imately 4.44 seconds.

3.1.2 Tethering Deactivation Time

To measure tethering deactivation time, a similar technique as when measur-
ing tethering activation time is used. Tethering is first enabled by executing
enableTethering(). After a short period of time while tethering has been en-
abled, tethering gets disabled by executing disableTethering() and the current
time is stored. To measure when tethering is really disabled, tetheringIsEn-
abled() is executed every 1 millisecond. When tethering is disabled, the time
difference between the current time and the time previously stored produces the
tethering deactivation time. This value is then stored on a particular file (Teth-
eringOFF.txt) in the measurements folder (/measurements) hosted at the SD
card of the mobile device. After some time has passed, tethering gets enabled
again and so on and so forth. This situation happens many times iteratively so
as many samples to be collected for determining the tethering deactivation time
of Google Nexus One phones.

Figure 3.2 shows the tethering deactivation time of the collected samples.
On the horizontal axis, we have the number of the samples and on the vertical

11

Figure 3.2: Tethering deactivation time

axis the tethering deactivation time, measured in milliseconds, that corresponds
to each sample. The red line corresponds to the mean value of the tethering
deactivation time, based on all collected samples.

Tethering Deactivation Time (milliseconds)
Mean Value 4.4590

Standard Deviation 3.3814

Table 3.2: Tethering deactivation time

Based on Table 3.2 , we can conclude that the tethering deactivation time
is approximately 4.46 milliseconds. It has to be noticed, based on Figure 3.2
, that some samples have unexpectedly high values. This is maybe because
the Android OS executes sometimes multiple processes in parallel with Tether-
ing. Thus, the mean value should be a little bit lower than this at Table 3.2.
This is also why the standard deviation seen at Table 3.2 has so high value in
comparison with the mean value.

In order to measure the tethering activation and deactivation time, two
parts of code were used in this application. In other words, these measurements
were made independently. At first, tethering activation time was measured
and after this had finished, tethering deactivation time was. It was feasible to
make these two kinds of measurements simultaneously but unexpected results
received. This happened maybe because of the same reason explained before
regarding the values on Table 3.2.

3.2 MeasureWiFi

This application was developed in order to measure the time it takes WiFi to
be enabled and disabled. For enabling, disabling and checking whether WiFi is
enabled or not, the public methods setWifiEnabled(true), setWifiEnabled(false)
and isWifiEnabled() of the WifiManager class of Android APIs were used re-
spectively [4]. The techniques used for these measurements are pretty much the
same as in the tethering case.

12

3.2.1 WiFi Activation Time

To measure WiFi activation time, WiFi is enabled by using setWifiEnabled(true)
and this current time is stored. To find out when WiFi is really enabled,
isWifiEnabled() is executed every 10 milliseconds. When WiFi gets enabled,
the time difference between the current time and the time previously stored
produces the WiFi activation time. This value is then stored on a particular file
(WiFiON.txt) in the same folder as when using tethering. After this measure-
ment has been made, WiFi gets disabled by using setWifiEnabled(false). After
a short period of time (15 seconds for the same reason as in tethering activation
time case), WiFi is enabled again and so on and so forth. This situation hap-
pens many times iteratively so as many samples to be collected for determining
the WiFi activation time of Google Nexus One phones.

Figure 3.3: WiFi activation time

Figure 3.3 shows the WiFi activation time of the collected samples. On the
horizontal axis, we have the number of the samples and on the vertical axis
the WiFi activation time, measured in milliseconds, that corresponds to each
sample. The red line corresponds to the mean value of the WiFi activation time,
based on all collected samples.

WiFi Activation Time (milliseconds)
Mean Value 1887.3

Standard Deviation 50.8064

Table 3.3: WiFi activation time

Based on Table 3.3, the WiFi activation time is approximately 1.89 seconds.

3.2.2 WiFi Deactivation Time

To measure WiFi deactivation time, a similar technique as when measuring WiFi
activation time is used. WiFi is first enabled by using setWifiEnabled(true).
After a short period of time while WiFi has been enabled, WiFi gets disabled
by using setWifiEnabled(false) and the current time is stored. To measure when
WiFi is really disabled, IsWifiEnabled() is used every 1 millisecond. When WiFi
is disabled, the time difference between the current time and the time previously

13

stored produces the WiFi deactivation time. This value is then stored on a
particular file (WiFiOFF.txt) in a specific folder (/measurements) hosted at the
SD card of the mobile device. After some time has passed, WiFi gets enabled
again and so on and so forth. This situation happens many times iteratively so
as many samples to be collected for determining the WiFi deactivation time of
Google Nexus One phones.

Figure 3.4: WiFi deactivation time

Figure 3.4 shows the WiFi deactivation time of the collected samples. On
the horizontal axis, we have the number of the samples and on the vertical axis
the WiFi deactivation time, measured in milliseconds, that corresponds to each
sample. The red line corresponds to the mean value of the WiFi deactivation
time, based on all collected samples.

WiFi Deactivation Time (milliseconds)
Mean Value 6.2234

Standard Deviation 5.0382

Table 3.4: WiFi deactivation time

Based on Table 3.4, the WiFi deactivation time is approximately 6.2 mil-
liseconds. The same conclusions drawn when measuring tethering deactivation
time are also valid here for the very same reason.

This application was also consisted of two parts, like when measuring teth-
ering activation and deactivation time. This also happened for the same reason
as in that case.

3.3 MeasureScanning

This application was developed in order to measure the time it takes the device
to receive results about the available Access Points (APs) in range. For this
measurement, there should be no preconfigured networks in range so as no
interruption in scanning APs happens.

The WiFi gets enabled and then a receiver (Broadcaster Receiver) is reg-
istered for getting the scan results when these are ready. When the receiver

14

is enabled, i.e. when the AP results are received, this current time is stored.
When the receiver is enabled again, the time difference between this time and
the time previously stored produces the scan time. This value is then stored
on a particular file (Scanning.txt) in the common folder created for all types
of measurements, which is hosted at the SD card of the mobile device. Also,
the time that the scan results were received for second time is also recorded to
be used for comparison with the time the receiver gets enabled another time.
This happens many times and thus many samples are collected to be used for
calculating the scan time of Google Nexus One phones.

Figure 3.5: AP scan time

Figure 3.5 shows the scan time of the collected samples. On the horizontal
axis, we have the number of the samples and on the vertical axis the scan
time, measured in milliseconds, that corresponds to each sample. The red line
corresponds to the mean value of the scan time, based on all collected samples.

Scan Time (milliseconds)
Mean Value 503.1667

Standard Deviation 9.7853

Table 3.5: AP scan time

Based on Table 3.5, the AP scan time is approximately 503.2 milliseconds.
By observing Figure 3.5, it is clear that the first and the last 400 samples
collected have lower scan time than that of the 800 samples collected in between.
A different Google Nexus One phone was used for this measurement for each
400 samples seen on Figure 3.5. Thus, this might be due to the fact that there
are Nexus One phones with different WLAN chipsets around, but we cannot
reliably identify them.

3.4 MeasureRescanning

As it was presented in previous chapter, there was a toggle button in those
applications for starting and stopping the AP scan. This one application was
created to measure the time for getting AP scan results for first time by the

15

device after the START AP scan button has just been pressed. This assumes
that the button was previously in the state STOP AP scan. Like in the previous
measurement, there should be no preconfigured networks in range so as no
interruption in scanning APs happens.

The WiFi gets enabled. Then, a receiver (Broadcaster Receiver) is registered
for getting the scan results when these are ready. This is the same as pressing
the START AP scan button. The time that the receiver is registered (button is
pressed) is logged. When the receiver is enabled, i.e. when the AP results are
ready, this current time is compared with the previous logged time and their
time difference is the rescan time. This value is then stored on a particular
file (Rescanning.txt) in the same folder on the mobile device as in the previous
measurements. The receiver then gets unregistered, which means that no other
AP scan results will be received. After a small amount of time has elapsed, the
receiver is registered again and so on and so forth. This happens many times
iteratively and thus many samples are collected to be used for calculating the
rescan time of Google Nexus One phones.

Figure 3.6: AP rescan time

Figure 3.6 shows the rescan time of the collected samples. On the horizontal
axis, we have the number of the samples and on the vertical axis the rescan
time, measured in milliseconds, that corresponds to each sample. The red line
corresponds to the mean value of the rescan time, based on all collected samples.

Rescan Time (milliseconds)
Mean Value 5749.9

Standard Deviation 200.4969

Table 3.6: AP rescan time

Based on Table 3.6, the AP rescan time is approximately 5.75 seconds.
By observing Figure 3.6, it is clear that the first and the last 200 samples
collected have the same pattern in comparison with the 400 samples in the
middle. Thus, the same conclusion can be drawn like in the previous application.
The rescan time either seems to start slow and speed up or to start fast and
slow down in regular intervals.

16

3.5 MeasureAutoConnection

This application was developed for determining the time it takes the device to
connect to an AP, after the AP scan results have been received. This application
also measures the time it takes the device to detect a disconnection. This
assumes that a disconnection from an AP happens on the device by users choice
(by pressing the Disc button on the applications presented in previous chapter).
Like in previous measurements, there should be no preconfigured networks in
range because a particular AP will only be used for the measurements.

3.5.1 Connection and Disconnection Time

The WiFi is enabled and both a receiver for getting AP scan results and a re-
ceiver that detects changes in the connection state of the device are registered.
When the AP scan receiver is enabled, i.e. when the results of the available
APs in range have been received, the current time is logged and the device
is forced to connect to a particular AP. To be specific, it connects to PodNe-
tAP which is created by using the tethering mode on another mobile device.
When the appropriate receiver detects that a connection has been established,
the current time is logged and the time difference of this and the previously
logged time is the connection time. This value is then stored on a particular
file (AutoConnection.txt) in the measurements folder (/measurements) hosted
at the SD card of the mobile device. The device stays connected for a short
period of time to this AP and then gets automatically disconnected by the use
of a particular method of the WifiManager class of Android (it is the same as
pressing a Disc button) [4]. The time when this method is executed is recorded.
After that, the receiver that detects connection state changes is enabled and a
disconnection is detected. By comparing this time and the previously recorded
time, the disconnection time is created. This value is then stored on a particu-
lar file (AutoDisconnection.txt) in the same folder as before. After some time
has passed, the AP scan receiver gets enabled and the device is forced again
to connect to PodNetAP and so on and so forth. It has to be noticed that
the device is not allowed to connect to PodNetAP just after the disconnection
happened, although it is allowed to in general. This is because the AP is not im-
mediately removed from the list with the preconfigured networks on the device
and thus a quick reconnection complicates the whole scenario and unexpected
results are received. This scenario is repeated many times so as many samples
are collected to be used for calculating the connection and disconnection time
of Google Nexus One phones.

Figure 3.7 shows the connection time of the collected samples. On the hor-
izontal axis, we have the number of the samples and on the vertical axis the
connection time, measured in milliseconds, that corresponds to each sample.
The red line corresponds to the mean value of the connection time, based on all
collected samples.

Connection Time (milliseconds)
Mean Value 573.304

Standard Deviation 24.2161

Table 3.7: Connection time

17

Figure 3.7: Connection time

Based on Table 3.7, the connection time is approximately 573 milliseconds.

Figure 3.8: Disconnection time

Figure 3.8 shows the disconnection time of the collected samples. On the
horizontal axis, we have the number of the samples and on the vertical axis the
disconnection time, measured in milliseconds, that corresponds to each sample.
The red line corresponds to the mean value of the disconnection time, based on
all collected samples.

Disconnection Time (milliseconds)
Mean Value 1050.8

Standard Deviation 12.1360

Table 3.8: Disconnection time

Based on Table 3.8, the disconnection time is approximately 1.05 seconds.

18

3.6 MeasureConnectionLoss

This measurement was the last one that was made. The purpose of this was
to measure how much time it takes one device that is connected to an AP to
detect that the connection is lost due to AP failure or because of the one of
these two communicating parties went out of range. In this measurement, there
werent used stock (unrooted) Google Nexus One phones. Furthermore, there
were just used two out of the four phones used in all previous measurements.
The reason why this happened is because in general smartphones don’t have the
same system time, i.e. smartphones are not time synchronized to each other.
To enable time synchronization among smartphones, a Network Time Protocol
(NTP) client should be installed to them. By searching on Android Market, a
particular application was found for this purpose. ClockSync can synchronize
the system time of an Android-based phone with atomic time using NTP over
3G or WiFi connection. The problem about using this application was that the
devices must be rooted for automatic synchronization. So, phones were rooted
and CyanogenMod 7 (7.1.0-N1) was installed on them. Two devices were only
used because there were only two SIM cards with 3G connection available. A
3G instead of a WiFi connection was used by each device for the synchroniza-
tion. This happened due to the scenario of the application developed for the
measurement. As in previous measurements, there should be no preconfigured
networks in range because a particular AP (e.g. PodNetAP) will be used for
the measurements. Thus, a 3G connection was used. In case a WiFi connection
was used, then this measurement couldn’t have happened due to the nature of
the scenario.

To measure the time for the connection loss detection, tethering is enabled
on the one phone and WiFi is enabled on the other. Also, a receiver which
listens for connection state changes is registered on the second device. The
WiFi enabled device (called STA from now on) is forced to connect to the AP
(e.g. PodNetAP) provided by the tethering enabled device (called AP from
now on). After the connection has been established and some time has passed,
the tethering on the AP device is disabled. The time that the tethering is
deactivated is logged and stored on a particular file (ConnectionLossAP.txt) in
the measurements folder at the root of the SD card of the AP device. When
the connection loss is detected by the receiver that detects connection changes
on the STA device, this current time is also logged and stored on a particular
file (ConnectionLossSTA.txt) in the measurements folder hosted at the SD card
of the STA device. After a short period of time, tethering is enabled again and
the whole scenario starts from the beginning. This scenario runs many times
iteratively and many samples are collected. By further processing of the samples
after the measurement has finished, i.e. by subtracting the corresponding logs
on the two files, the connection loss time of Google Nexus One phones is found.

Figure 3.9 shows the connection loss time of the collected samples. On the
horizontal axis, we have the number of the samples and on the vertical axis
the connection loss time, measured in milliseconds, that corresponds to each
sample. The red line corresponds to the mean value of the connection loss time,
based on all collected samples.

Based on Table 3.9, the connection loss time is approximately 61 millisec-
onds.

By observing Figure 3.9, it is clear that many samples have negative values

19

Figure 3.9: Connection loss time

Connection Loss Time (milliseconds)
Mean Value 60.9791

Standard Deviation 174.0652

Table 3.9: Connection loss time

and some others have high values. This happens due to time synchronization
loss between the two mobile devices that were used. Clock Sync application
is able to automatically synchronize the devices with an NTP server every 30
seconds. This time interval is adequate to produce an average offset of +/- 200
milliseconds on every device. That is why this measurement is not that accurate.
To have as more realistic results as it could be, some measurements that had high
values (positive or negative) were not taken into account. However, the standard
deviation at Table 3.9 has still a large value in comparison with the mean value.
Nevertheless, it is true that the connection loss time is too short as it can
be observed during making this measurement by taking samples. Thus, these
results can be considered as good qualitative results regarding the connection
loss time on Google Nexus One phones.

3.7 Discussion

Based on the measurements which were described in the previous sections, a
table (Table 3.10) which contains the mean values of the measurements and a
bar chart (Fig. 3.10) which contains the mean values and error bars based on
the standard deviation of the corresponding measurements are shown below.
The error bars were added on the bar chart to indicate how reliable the mean
values of the measurements are.

By the use of the bar chart (Fig. 3.10), some interesting conclusions can be
derived. For example, the rescan time has very high value in comparison with
the other WLAN-related actions which were measured. Also, the deactivation
time of WiFi and Tethering is too short in comparison with the values of the
other measurements. Furthermore, the value of Tethering activation time is
more than twice as long as that of the WiFi activation time. In addition, the
time it takes the device to detect a disconnection from a network (Disconnection

20

Measurement Mean Value (milliseconds)
Tethering Activation Time 4442.6

Tethering Deactivation Time 4.4590
WiFi Activation Time 1887.3

WiFi Deactivation Time 6.2234
Scan Time 503.1667

Rescan Time 5749.9
Connection Time 573.304

Disconnection Time 1050.8
Connection Loss Time 60.9791

Table 3.10: Measurements

time) is higher than the time it takes a device to detect a connection to a network
(Connection time).

Figure 3.10: Measurements

In an opportunistic networking environment as in [3], many devices switch
their WiFi state from WiFi mode to Tethering (AP) mode and the other way
around and they connect and disconnect to multiple devices all the time. Ob-
serving Figure 3.10 and Table 3.10, it can be understood that the high values
(comparing to the values of the other WiFi-related actions) of both the WiFi
and Tethering activation time can consist a limitation in networking in a highly
dynamic environment, in which devices change their location fast.

21

Chapter 4

Conclusion

In this thesis, applications which enable opportunistic networking on Android-
based smartphones were developed. To make this possible, the mobile AP mode
of smartphones was used. The design of the applications was based on a WiFi-
based opportunistic networking architecture for smartphones which was pro-
posed on [3]. Measurements on some WiFi-based functions of the applications
were then conducted. It was important to measure the performance of these
WiFi-related modules of the applications. For the measurements, Google Nexus
One mobile devices were used. Based on the measurements, appropriate conclu-
sions were derived. The factors which impact the application performance were
identified. Also, while making measurements, it was noticed that Android-based
smartphones are not time synchronized. There was a difficulty to synchronize
them while making a particular measurement. This fact affected the results of
the corresponding measurement.

22

Appendix A

Developer How-To

A.1 Installation procedure of development soft-
ware

• Download and install the Eclipse Classic development environment, Eclipse
3.6.2 (Helios) or greater, from: http://www.eclipse.org/downloads/

• Download and install the Java JDK 6, if your system doesn’t have it al-
ready, from: http://www.oracle.com/technetwork/java/javase/downloads/index.html

• Download and install the Android SDK from: http://developer.android.com/sdk/index.html

• Download, install and configure the ADT plugin for Eclipse from:
http://developer.android.com/sdk/eclipse-adt.html#installing

• Add platforms and SDK components from:
http://developer.android.com/sdk/adding-components.html

A.2 Rooting Google Nexus One phones

In order to root Google Nexus One phones and install CyanogenMod, we follow
the steps explained on: http://wiki.cyanogenmod.com/wiki/Nexus One: Full Update Guide

23

Bibliography

[1] WiFi Alliance. Wi-fi direct. http://www.wi-fi.org/discover-and-learn/wi-fi-
direct.

[2] Android issue 82: wifi - support ad hoc networking.
http://code.google.com/p/android/issues/detail?id=82.

[3] D. Schatzmann S. Trifunovic, B. Distl and F. Legendre. Wifi-opp: Ad-hoc-
less opportunistic networking. ACM Chants, 2011.

[4] Wifimanager. http://developer.android.com/reference/android/net/wifi/WifiManager.html.

24

