
Distributed
 Computing

Collusion in Online Poker Pays Off
Bachelor’s Thesis

Benjamin Zehnder

bezehnd@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Tobias Langner, Dr. Thomas Locher

Prof. Dr. Roger Wattenhofer

June 17, 2012

Abstract

In this thesis we describe the implementation of a colluding poker robot which
plays online against human players. Our robot uses the graphical user interface
of the poker platform to get the information and to interact with the poker
platform. We tried to get an advantage through collusion without relying on
complicated opponent simulations or a lot of domain knowledge. We let play up
to four robots together against human opponents at tables of six players with
play and real money.

Our results indicate that our robots are playing comparatively at play money
tables but bad at real money tables. Our results further indicate that collusion
provides a relevant advantage at play and real money tables, which increases
with every additional colluding player. In order to win at real money tables, col-
luding robots need a more complicated decision making process or more domain
knowledge than ours had. Another result shows that human players play more
carefully with real money compared to play money.

i

Contents

Abstract i

1 Introduction 1

2 Related research 3

3 Materials and methods 5

3.1 No limit Texas Hold’em . 5

3.2 Robot design . 6

3.3 Interface reading and interaction 7

3.4 Odds calculation . 9

3.5 Collusion . 10

3.6 Strategies . 11

3.6.1 Big stack strategy . 13

3.6.2 Hutchison strategy . 13

3.6.3 Minimum probability based strategy 13

3.6.4 Profiling and probability based strategy 14

3.6.5 Minimum probability and bluffing strategy 15

3.6.6 Passive collusion . 15

3.6.7 Active collusion . 15

4 Testing 17

4.1 Play money . 17

4.2 Real money . 17

4.3 Collusion countermeasures by poker platforms 18

4.3.1 Technical measures . 18

4.3.2 Financial measures . 19

4.4 Ethical considerations . 20

ii

Contents iii

4.4.1 Play money . 20

4.4.2 Real money . 20

5 Results 22

5.1 Play money . 22

5.2 Real money . 22

5.3 Play money compared to real money 25

6 Discussion 27

6.1 Robot performance . 27

6.1.1 Play money . 27

6.1.2 Real money . 27

6.2 Collusion advantage . 27

6.3 The difference in human behavior between play money and real
money . 28

6.4 Collusion and robot detection . 28

6.5 Conclusion . 28

Bibliography 30

Chapter 1

Introduction

In the past decade poker became very popular and a favorite pastime for many
people. The two main reasons might be on the one hand the poker tournament
broadcasts on TV, which began to show the cards of all players to the audience
and on the other hand the possibility to play poker over the Internet in the
comfort of your chair at home. Online poker platforms do not only allow you
to play poker at home but also with much less money compared to casinos.
In casinos the minimum forced bets, the so called blinds, typically start at $1
whereas at online poker platforms the blinds typically start at $0.01. This is the
reason why a lot more people started to play online poker on a regular basis,
which led to an immense growth in the online poker business over the past few
years. In the year 2010 there were over 6 millions active online poker players
worldwide and online poker platforms earned rake revenue of over US$3.6 billions
[1].

The huge amount of money that can be earned in the online poker business
led to a lot of different online poker platforms. They are very different in terms
of their player base size but all of them claim to have robot detection and to
be secure. Robots are computer programs which pretend to be humans and try
to be better in poker than the average human. The security of an online poker
platform is very important because the players have to trust the poker platform
enough to transfer their money to the poker platform. Without a money transfer,
the players are not able to play for money on the poker platform and the poker
platforms can not make a profit except for advertisements.

On the other side there are several articles about robots on those poker
platforms. The advantage of robots is their huge computing power which can be
used to play stochastically optimal and their capability to remember histories
perfectly. One player can have many robots playing at the same time without
any player interaction. This possibility allows the player to make a lot of money
with robots where each robot makes a little money. Many poker players do not
like to play against robots because they fear to lose money against them so they
prefer to play on poker platforms without robots. That is the reason why most
poker platforms forbid robots.

1

1. Introduction 2

Another problem of online poker are players which work together by exchang-
ing information at the same poker table. This is called collusion. Since poker is
a single player game collusion is considered cheating.1 Colluding players try to
cheat on fair players to get their money. Collusion is hard to detect on online
poker platforms because the players can use other channels to communicate like
telephones or Internet chat rooms. But for human players it may be hard be-
cause of bad communication and bad scaling in the number of players because
the communication gets more complicated if there are more players.2

The biggest problem for poker platforms may be the combination of the two.
Colluding robots that cheat on fair playing humans. The bad communication
problem and the scaling problem of colluding human players do not exist if robots
are used. We want to check in this bachelor thesis if the claims from the poker
platforms, to detect robots and to be secure, are trustworthy. We want to do this
by first building a colluding robot and then let several colluding robots play at
the same time. The colluding robots will first play at play money tables and then
at real money tables. This will allow us to compare human behavior between
play and real money. Our goal is to show that our robot has an advantage
through collusion without relying on complicated calculations and simulations
or a lot of domain knowledge.

So our three main questions are: Can robots win real money on online poker
platforms? Does collusion provide a relevant advantage? Do human players play
differently with play money compared to real money?

1http://en.wikipedia.org/wiki/Cheating in poker
2http://www.pokercheatingsystem.com/articles/Article-Online-Poker-Cheating-Why-

Collusion-Doesnt-Work.htm

Chapter 2

Related research

A lot of research on poker has been done in the past. Most of it focused on the
two player version, the so called heads-up [2, 3]. Because our goal is to build a
colluding robot we obviously cannot use the two player version. As we expect
that the computational effort increases with the number of opponents at the
table we decided to use the six player version and not the eight to ten player
versions. Most prior research used the limited betting version of poker as this
limits the number of possible actions that a player can take [2, 4, 3, 5, 6, 7].
As no limit Texas Hold’em is currently very popular we decided on that poker
version.

Gilpin and Sandholm introduced a new way to compute an abstraction of
the whole game tree. They showed that their approach was at least as strong as
the best robot in heads-up limit Texas Hold’em at that time [2]. We cannot use
this approach because the size of the game tree would be much bigger with six
players and the no limit version of Texas Hold’em. So the computation would
take to long to respond in the time given by the poker platform.

Billings et al. built poker robots based on opponent modeling for limit Texas
Hold’em with eight to ten players. They tested their robots online against human
opponents at play money tables. Their results showed that their robot played
”reasonably strong” [4, 7]. We do not build a robot that does as much opponent
modeling or game tree simulation but we focus on collusion and the advantage
of it.

Simm built a colluding poker robot for no limit Texas Hold’em with any
number of opponents. He tested his robots offline against other robots with and
without collusion. The results indicated that his robots performed badly but
that collusion did provide an advantage [8]. In contrast we test our robots on an
online poker platform against human opponents to see how our robots perform
and if collusion provides an advantage on online poker platforms.

Watson and Rubin built a poker robot for limit Texas Hold’em with up to
eight opponents. Their robot was based on case-based reasoning methodology
which searches for similar cases to make a decision. They tested their robot

3

2. Related research 4

against other robots and on online poker platforms against human opponents at
both play and real money tables. The results showed that their robot performed
well at play money tables and bad at real money tables [5]. We use a different
approach for decision making of our robot and focus on collusion.

Risk and Szafron built poker robots for limit Texas Hold’em with two op-
ponents. They used algorithms to find strategies which converge to an ε-Nash
equilibrium. Their results showed that their robots were the best in limit Texas
Hold’em with two opponents at that time [6]. We again cannot use this ap-
proach because the computation would take to long to respond in the time given
by the poker platform because the game state is much bigger with no limit Texas
Hold’em and five opponents.

Smed et al. showed that it is possible to detect collusion in most situations
by analyzing the game data and modeling player behavior [9]. As we do not
want that our robots are detected we do not use active collusion, which means
an aggressive playing attitude, because the change in playing behavior would be
much more detectable than if we only use passive collusion.

To the best of our knowledge there does not exist any work on collusion on
online poker platforms. Also there is almost no work on the difference in playing
behavior of human players between play money and real money on online poker
platforms. These are the two topics we focus on.

Chapter 3

Materials and methods

There exist many different online poker platforms where you can play for real
money. As far as we know they all do not provide an API because they do not
want poker robots to play on their platforms. This is a problem we had to solve
because our robot has to interact with such a poker platform else the robot will
not be able to play poker on the platform. The problem of interacting consist of
two subproblems.

The first subproblem is to get the information out of the poker platform. Most
poker platforms provide a client which you have to install on your computer in
order to play on their platform. A few also provide a flash version to play without
installing any additional software. We have chosen one of the poker platforms
that also provide a flash version because if you install one of their clients, then
they can scan the hard drive and check for other running programs to detect a
robot. They cannot do that with flash. So we have a graphical user interface
from the flash version which is intended to be read by human players. In order
to get the information the robot has to analyze the graphical user interface.

The second subproblem is to act on the poker platform. In order to solve
this subproblem the robot has to process information about the graphical user
interface, other colluding robots and the opponents and has to make a decision.
Then the robot has to press the buttons and write text in the graphical user
interface accordingly. In order to collude the robot also has to communicate
with other robots because collusion is not possible without communication. So
the robots need a way to communicate.

3.1 No limit Texas Hold’em

In this section we give a short description of our chosen poker variation no limit
Texas Hold’em.

In no limit Texas Hold’em every player gets two hand cards at the start. The
two players after the dealer have to make forced bets, the so called blinds. The

5

3. Materials and methods 6

first has to make the small blind and the second the big blind, which is in most
cases two times the small blind. There are four betting phases. In every betting
phase the players can fold, check, call, bet any amount, raise any amount or
go all in. The betting phase ends if there is only one player remaining or if all
remaining players put the same amount of money into the pot.

After the first betting phase, the so called preflop phase, three community
cards are dealt, the so called flop. The other three betting phases together are
called postflop phase. After the second and the third betting phase another
community card is dealt to a total of five community cards. After the fourth
betting phase the winner of the poker round is determined who then gets all the
money in the pot. The winner is the player with the best five-card hand from
his two hand cards and the five community cards.

3.2 Robot design

Our robot uses the following three natural phases: logging into the poker plat-
form, choosing a table and playing at the table. Logging into the poker platform
is done by first opening the web page with the flash version of the platform.
Then the robot detects the position of the log in window, this is done similar
to button detection which is described in section 3.3, and writes the name and
the password into the appropriate fields and presses on the log in button. To
end this phase the robot also chooses the correct table list, real money or play
money, and sets the filters for the table list. The filters are a menu provided by
the platform to find a table fitting your preferences faster. We use it to only
display tables with six player seats.

The robot chooses a table by first detecting the position of the list, then
reading it and scrolling through it. The robot reads with a method called op-
tical character recognition which is described in section 3.3. Optical character
recognition is needed because there is no API for the poker platform and we
need a way to get the information from the poker platforms interface. The text
for each table is analyzed and the first table that meets our selection criteria is
chosen. Our selection criteria are the following. The number of players at the
table has to be at least two and the big blind at the real money tables has to
be 0.02 in any of the available currencies. Then the robot checks at the table if
there is really a free seat because the table lists are sometimes out of date. If
there is a free seat the robot takes it else it leaves the table searches for the next
table.

Now the robot is at the chosen poker table and plays. In order to play the
robot has to read the table and to detect the buttons. The appearance of one of
the play buttons indicates that it is our turn to play. The current strategy then
decides on the action to take by considering the available table information, ex-

3. Materials and methods 7

changing information with the collusion server, which is described in section 3.5,
and calculating the probability to win. We have designed several strategies which
are described in section 3.6. The action decision from the strategy is then pre-
formed by clicking on the respective button.

3.3 Interface reading and interaction

In order to get the information from the graphical user interface of the poker
platform we do optical character recognition and button detection. As we want
to do this by comparing the current screen shot to images of the characters of the
graphical user interface, we need sample images of all the characters. We took
all those sample images and saved them in a folder along with a description file
which has a list of all the characters that are in the folder. The description file
also indicates which algorithm should be used for the character set in the folder.
We do this because depending on the operating system or the poker platform you
may want to change the algorithm accordingly to the problem without changing
the source code.

The algorithms to get the information out of the graphical user interface
first take a screen shot1 and analyze it. We use different algorithms for differ-
ent optical character recognition problems depending on how the characters are
graphical displayed.

On the poker platform we used to do the testing the buttons looked always
absolute identical. So the first algorithm, algorithm 1, checks for a perfect match-
ing. The algorithm does this by checking if the screen shot has a rectangle of
the size of the button in which every single pixel has exactly the same color as
the corresponding pixel in the sample image of the button.

If the poker platform and the operating system use anti aliasing and different
displaying modes, including shadows, transparency and different backgrounds,
you cannot just check for a perfect matching of the characters. Our solution to
this problem is that we allow a certain difference per pixel. This difference can
be indicated in the description file. The only change to algorithm 1 is on lines 8
to 10 which we replace with

if pixelDifference(screen.getRGB(x+i, y+j), button.getRGB(i, j)) > maxDiff
then

isCorrect ← false
end if

where pixelDifference is shown in algorithm 2 and maxDiff is the difference
indicated in the description file.

If only the background is different then all character pixels have the same
color f . The idea is to make all the images black and white, where all pixels

3. Materials and methods 8

Algorithm 1 Check for a perfect matching of button in screen

1: for x = 0 to screen.width − button.width do
2: for y = 0 to screen.height − button.height do
3:

4: isCorrect ← true
5: for i = 0 to button.width do
6: for j = 0 to button.height do
7:

8: if screen.getRGB(x+ i, y + j) 6= button.getRGB(i, j) then
9: isCorrect ← false

10: end if
11:

12: end for
13: end for
14:

15: if isCorrect then
16: return true
17: end if
18:

19: end for
20: end for
21:

22: return false

3. Materials and methods 9

Algorithm 2 Calculating the pixel difference of pixel a and b

1: sum ← |a.getR − b.getR|
2: sum ← sum + |a.getG − b.getG |
3: sum ← sum + |a.getB − b.getB |
4: return sum

with the color f are white and all others are black, and then compare them. In
this case we use a third algorithm where the only change to algorithm 1 is again
on lines 8 to 10 which we replace with

if not (screen.getRGB(x+ i, y + j) = f) = (button.getRGB(i, j) = f) then
isCorrect ← false

end if

where f is the color of the characters.

For input we generate native system input events.1 With the algorithms
described above we can get the position by returning x and y instead of true.
With the information of the position we can generate a mouse move event to that
position and then a mouse click event to press the button or select a field at that
position. To write into a field we again generate input events. This allows us to
generate all input events a human user could generate as well. As an anti robot
detection measurement we added random time delays before all input events to
let the robot look more like a human.

3.4 Odds calculation

The odds calculation is a very important component. We implemented two
different approaches. The first one calculates the exact odds to win against one
opponent with random hand cards. This is done by counting all wins and losses
over all possible combinations and then dividing wins by total count to get the
probability to win. As this computation takes a lot of time for more than one
opponent, we need another approach for more than one opponent. Also it takes
too long in the preflop phase because the additional combinations with the three
flop cards add to much complexity. As there are only 169 strategically different
situations in preflop due to the indifference of the colors of the two cards we
precalculated those and saved the results. With multiple opponents this is not
possible, as there would be too much data to save.

We implemented the second approach to calculate the odds against multiple
opponents. This is done similarly to the first approach but taking a random
subset of all possibilities to be within the time limit. By the law of the large
numbers this should give us an approximated value close to the exact one.

1In Java this can be done easy by using the java.awt.Robot class.

3. Materials and methods 10

Both approaches need some way of determining if our or the opponents cards
are better. We implemented a function that translates a set of cards to a value,
which indicates how strong the cards are. These values are directly comparable.
In both approaches it is also possible to exclude some cards from the calculation.
This is used to adjust the odds calculation when the robots are colluding and
know that the other robots hold certain cards.

As most opponents do not play with all hand cards and both odds calculation
approaches assume random hand cards we also included two additional hand card
condition profiles. The first profile takes only card combinations into account
where at least one opponent has hand cards with at least one of the following
properties: same color, connected, pair or one card above or equal to ten. The
second profile takes only card combinations into account where at least one
opponent has hand cards which are played in preflop in any situation by the big
stack strategy described in section 3.6.1.

These profiles account for the fact that opponents will not call in preflop with
bad hand cards. As each profile gives a probability including the random one
the robot has three different odds in total. How these are used depends on the
strategy. In general we used the minimum of these three odds.

3.5 Collusion

In order to collude the robots need some way of communicating with each other as
you cannot collude without information exchange. We decided on a client/server
design because of the simplicity. We also decided that the server will not decide
on the actions the robots will take because this would use a lot of computational
resources and if there are many robots running at different poker tables then this
could lead to a too slow response of the robots. For simplicity we decided that
the server does not ask the robots for information but instead the robots inform
the server about updates of their state. This way the server can answer requests
faster because the server has all current information of the robots available.

To select a poker table the server keeps a list of all robot names and corre-
sponding table names. If a robot wants to select a table it first searches for one
that meets its criteria and then proposes the table name to the server. As the
server cannot interact with the poker platform, the server needs the table names
from the robots. The server then checks the list in order to place multiple robots
at the same table and responds with the table name the robot should select. The
robot will then search for this table and join it.

To collude while playing, the robots update their hand cards on the server
as soon as they know them. In order to be synchronized the robots also send
the actual dealer position. They then request all hand cards of the other robots
at the same table from the server and with that information they calculate their

3. Materials and methods 11

odds. After the calculation they send their odds with dealer position to the
server. The robots then request the odds of the other robots at the same table
to have them available for the strategies.

3.6 Strategies

The strategy is the deciding component of the robot as it decides on the actions
the robot makes while playing poker. A selection of the following actions from
poker is available in each decision the robots strategy has to make: fold, check,
call, bet, raise and all in. For the decision making the robots strategy has
all possible information of the table, the odds and the collusion available. We
designed several strategies to find out what works best. All of them use the
collusion information to calculate the odds. All of our strategies are described
in this section.

The robots choose the strategy to play randomly at the start and rechoose the
strategy randomly every 30 minutes to one hour. We do this because opponents
should not be able to predict the robots strategy after 50 to 100 hands played. As
an anti-robot/anti-collusion detection measurement the robots do not choose the
strategies uniformly at random but with a certain profile of probabilities which
is deterministically calculated from the login name of the robot. So every robot
has a different profile. We do this because the robots should look differently in
the overall statistic else the poker platform employees can easily conclude that
all of those players with roughly the same statistics have to be the same robot.

We divided the strategies into two parts. One that makes the preflop decisions
and one that makes the postflop decisions. We did this because the situation
with and without table cards is really different but the situation with three,
four or five table cards is similar, especially in our calculations for the decision
making.

In all of our strategies we used the idea of calculating the ratio ρ of the
expected win amount to the expected loss amount. The idea is that if we always
have a ratio greater than 1, in the cases where we do not fold, then we will win
on average.

ρ =
winAmount ∗ odds

callAmount ∗ (1− odds)
(3.1)

where winAmount is the amount the robot can win if it calls. callAmount is
the amount the robot has to pay if it calls. odds is the minimum of the three
calculated winning probabilities described in section 3.4 because we assume the
worst case.

The robot now uses ρ > min to decide, if it should call, where min is a

3. Materials and methods 12

predefined value. If min > 1 then we expect to win overall but only under
the assumptions that all opponents play with one of the three predefined hand
card condition profiles described in section 3.4. Also if they have hand cards
accordingly to their profile they must not fold. So in general the assumptions
are not correct. Our empirical values for min are listed in table 3.1. We tried
several values and those in the table worked best at the play money tables.

We completed the decision making equation with a linear function

risk(callAmount) =
callAmount

bigBlind
∗ highRiskFactor − 1

100
+ 1 (3.2)

where bigBlind is the big blind of the current poker table and highRiskFactor
is a constant greater than 1. We added the risk function because ρ would not
change if all values on the table would be multiplied with a constant factor a.
This can be seen in formula 3.1 where both amounts would be multiplied with
the factor a. So ρ does not include information about the relative amount to the
big blind the opponent players bet. But human players tend to bet/raise more
if they have better cards. The idea therefore is that the higher the opponents
bet, the higher the risk that they have good cards.

Our final decision making equation is therefore

ρ > risk(callAmount) ∗min. (3.3)

For betting/raising we have to adjust the formula 3.1 to include the additional
amount the other players have to pay in the winAmount . For this we always
assume that all others will call after our betting/raising. Of course we also have
to increase the callAmount with the amount we bet/raise in the formula 3.1 and
in the decision making equation.

In preflop we generally raise two or four times the big blind. In postflop we
generally raise half the amount of the old pot or the amount of the old pot where
the old pot is all the money on the table from the last betting round. This is
shown in algorithm 3 for preflop and in algorithm 4 for postflop. Our empirical
values for min and highRiskFactor are listed in table 3.1. We tried several values
out and those in the table worked best at the play money tables.

Preflop Postflop

minCall 1.2 1.5

minHalfRaise 1.8 2

minRaise 2.4 2.5

highRiskFactor 2 4

Table 3.1: The empirical values which we used as constants after trying several
values out at play money tables.

3. Materials and methods 13

Algorithm 3 Preflop decision making

1: raiseAmount ← amount we have to pay to raise four times the big blind
2: raiseHalfAmount ← amount we have to pay to raise two times the big blind

3: callAmount ← amount we have to pay to call
4: if ρ > risk(raiseAmount) ∗minRaise then
5: return bet/raise the amount of the old pot
6: end if
7: if ρ > risk(raiseHalfAmount) ∗minHalfRaise then
8: return bet/raise the amount of half the old pot
9: end if

10: if ρ > risk(callAmount) ∗minCall then
11: return call
12: end if
13: return check/fold

3.6.1 Big stack strategy

This strategy works accordingly to Pokerstrategy.com1 in the preflop phase of
the game. It is basically a table where is listed what you should do with cer-
tain hand cards and in a certain positions depending on what the other players
did. We did a few adjustments as the actions were weird in some situations.
Pokerstrategy.com does not describe very well what should be done in certain
situations after the flop. So we used our algorithm 4 for postflop decision making.

3.6.2 Hutchison strategy

This strategy works accordingly to the Hutchison system2 in the preflop phase
of the game. The system works by building a sum representing the strength of
the hand cards. The decision making is then based on this sum. For postflop
decision making we again used our algorithm 4.

3.6.3 Minimum probability based strategy

For this strategy we used algorithm 3 for preflop and algorithm 4 for postflop
decision making.

1http://www.pokerstrategy.com/home/
2http://www.poker-institut.org/strategien/hutchison-punkte-system-holdem/

or http://www.pokerstrategy.org.uk/articles/preflop-hand-selection-the-hutchison-system

3. Materials and methods 14

Algorithm 4 Postflop decision making

1: raiseAmount ← amount we have to pay to raise the amount of the old pot
2: raiseHalfAmount ← amount we have to pay to raise the amount of half the

old pot
3: callAmount ← amount we have to pay to call
4: if ρ > risk(raiseAmount) ∗minRaise then
5: return bet/raise the amount of the old pot
6: end if
7: if ρ > risk(raiseHalfAmount) ∗minHalfRaise then
8: return bet/raise the amount of half the old pot
9: end if

10: if ρ > risk(callAmount) ∗minCall then
11: return call
12: end if
13: return check/fold

3.6.4 Profiling and probability based strategy

For this strategy we implemented a database for opponent players. This database
saves the ratio of starting hands a specific opponent plays and how much he bets.
It is hard to put these two values into one, as an opponent that plays rarely but
bets a lot and an opponent that plays often but bets not that much will look kind
of similar, even though they play totally differently. So we used two values to
represent a player. To take strategy changes into account, we also make a short
history which is just the recent part of the long history of a certain opponent.
We compare these two histories about every 30 poker rounds and if they are not
approximately the same then we delete the old part of the long history of this
opponent. We do this because we do not want to have an average of several
strategies when we aggregate the history and use it for decision making.

This strategy is based on the algorithm 3 and 4. Both algorithms are adjusted
to this strategy by multiplying the right side of every if condition with the return
value from algorithm 5. If there are several opponents then the maximum of the
return values from algorithm 5 is taken.

The problem with the profiling is that it is hard to find a way to put it into
the strategy and not to make it perform worse. Another problem is that you do
not have the information at the beginning and you have to play a lot against the
same opponent to get a large enough data set which is representing the player
correctly.

3. Materials and methods 15

Algorithm 5 Calculating the risk of the opponent

1: opponentRisk ← ratio of played hands in preflop by opponent
2: opponentRisk ← max(0.5, (1− opponentRisk) ∗ 2)
3: if preflop phase then
4: average ← average bet in preflop by opponent
5: bet ← bet the opponent made this poker round
6: bigBlind ← big blind of this poker table
7: relativeBet ← max(1, bet/bigBlind)/average
8: relativeBet ← max(0.5,min(2, relativeBet))
9: opponentRisk ← opponentRisk ∗ relativeBet

10: end if
11: return opponentRisk

3.6.5 Minimum probability and bluffing strategy

For this strategy we used algorithm 3 and 4 as a basis and added semi bluffing
to it. Semi bluffing means for us that we only bluff if the condition odds ∗
numberOfPlayers > 1 holds where odds is our winning probability described in
section 3.4 and numberOfPlayers is the number of poker players at the table
that still hold their hand cards including ourselves. In preflop we semi bluff with
a probability of 20% by reraising but only if an opponent raised. In postflop
we semi bluff with a probability of 15% by betting the amount of the old pot
independent of what the opponent did.

3.6.6 Passive collusion

The idea for this strategy is to use one of the other strategies but preventing
two robots from betting or calling in the same round in any postflop phase. For
this the robot with the highest odds that comes first sets a flag on the collusion
server to be sure that another robot with the same odds will not bet or call as
well. The robot only sets the flag if he does bet, raise or call. All other robots
will just check or fold. The collusion information is already used by the other
strategies if collusion mode is enabled. So this strategy does not have to change
odds calculation of the other strategies.

3.6.7 Active collusion

The idea for this strategy is to actively use the fact that multiple robots are at
the same table. One example for this would be two robots that always reraise
each other in small steps if one of them is almost sure to win. This way the
opponents have to decide in every step if they want to call the small amount
to stay in the game or fold. If the opponents call they probably will call all

3. Materials and methods 16

future raises as the pot was increased and the amount to call remains the same.
The problem is that it is quite obvious that the robots are colluding and the
opponents will report the collusion of the robots quite fast to the support of the
poker platform. The support would then see the obvious collusion behavior and
close our accounts. That is why we did not implement it.

In general we think it is very hard to make any active collusion strategy which
is not easy detectable in the long term.

Chapter 4

Testing

In order to test our robots we let them run on Poker770.1 We always used
tables with six players and the game mode was no limit Texas Hold’em. We let
them run alone and in collusion mode where up to four players played together.
Overall we let the robots play a few ten thousand rounds of poker.

Every robot runs in its own virtual machine and uses a virtual private network
connection to the servers of our university to have its own unique IP address.
The robots need an own IP address because the poker platform prevents players
with the same IP address from sitting at the same table.

4.1 Play money

We let the robots play at the play money tables with a big blind of 10 and a
buy in of 1000. You always can reset your play money to 1000. This obviously
leads to careless play of some opponent players even though it is not as bad as
you might think.

4.2 Real money

We decided to play at the real money tables because of the careless play of some
opponent players at the play money tables. Because of ethical considerations we
played only at tables with a big blind of 0.02 and a buy in of 1.00 of any of the
available currencies which were United States Dollar, British Pound and Euro.

The real money to play with we got from the poker platform itself by creating
22 faked accounts and claiming the welcome bonus of $7.70. We created the
faked accounts by faking names and birth dates and taking any real addresses
from Google Maps2 in Switzerland and for the phone numbers we faked mobile

1http://www.poker770.com
2http://maps.google.com/maps

17

4. Testing 18

numbers, as these are not in a phone book normally. We then created a Yahoo3

mail account for every single faked account and then registered the account at
Poker7701 with that e-mail address. When you register an account normally a
customer support chat window pops up, where they want to convince you to pay
in some money. If we chatted with them or at least said ”no thanks” they did
not make a real ID check for the welcome bonus in most cases. If they did a real
ID check on an account we did not use the account anymore.

The problem with paying in some money is that the money has to come from
a bank account. If you now want to collude, it probably is not advisable to pay
in the money from the same bank account for the colluding robots. But there is
also another problem. Every normal bank account has some owner information
available, so you cannot use it for a faked poker platform account but then
you need several poker platform accounts from real persons to do collusion. The
question remains if the poker platform providers check if the bank account owner
information corresponds to the poker platform account or not but we think they
do.

We tried to use credit cards to transfer real money to the accounts but the
countermeasures from the poker platform prevented us from doing so. This is
described in subsection 4.3.2.

4.3 Collusion countermeasures by poker platforms

Here we present the collusion countermeasures done by the online poker platform
Poker7701 and probably the whole iPoker network4 which we encountered during
our testing. The poker platform did not detect any of our robots during the whole
testing. Neither did they detect the collusion between the robots to the best of
our knowledge.

4.3.1 Technical measures

The poker platform does not allow more than one player with the same IP
address per poker table. This measure prevents members of the same household
to play at the same table if they share an IP address. This is possible because
of the current IP infrastructure of most households as they share one IP address
within the local area network. With the change from IPv4 to IPv6 this measure
may become useless as there is no need to share an IP address anymore. We
worked around this measure by connecting to the virtual private network of our
university which provided us with an unique IP address for every robot. We
argue that this measure does not prevent collusion because the people that can

3http://www.yahoo.com/
4http://www.ipoker.com/html/

4. Testing 19

program a poker robot probably know how to get multiple IP addresses. But it is
not easy to circumvent the IP address measure which prevents typical members
of the same household from colluding with each other.

The flash version of the poker platform saves all the players that log in in
the browser cache. The poker platform then uses the browser cache to prevent
players that are in the same browser cache to sit at the same poker table. After
we deleted the browser cache with two robots in it these two robots could play
again together at the same table. This shows that the poker platform does
not save that information on its servers. We think that they should save the
information of the two players, that played at the same computer, server side,
as soon as they detect two players in the same browser cache. This measure
does not prevent collusion if the colluding players pay attention where they log
in. We argue that this measure is not very useful because you can delete the
browser cache and then collude. But if the information would be saved on the
server then this measure would be at least a little bit better because the two
players can never again play together. We have no clue why the information is
not saved on the server as it could be very easily done.

4.3.2 Financial measures

The poker platform prevents the use of the same credit card for two different
accounts. But it does not prevent the use of multiple credit cards from the same
person for different accounts. Also there are other payment methods for example
WebMoney5 which is an anonymous payment system. We argue that this limi-
tation of the system is not only useless but also inconvenient for households with
only one credit card but multiple online poker players. It is useless because the
poker platform provides itself a way around the limitation with the possibility
to pay with WebMoney.5

The poker platform providers check if the players have registered with their
real names and addresses but not at the time of the registration. We have
registered 22 fake accounts at Poker7701 and claimed the welcome bonus of $7.70.
They asked 8 of the accounts for official documents of their identity before they
would have provided the bonus, since we obviously could not come up with such
documents, we abandoned these 8 accounts. So we had 14 accounts with $7.70
to test. We transferred money with two credit cards to two of those 14 accounts.
As the names of the credit card owner and the poker account owner were not the
same, the support wanted an explanation. We told them that we do not have a
credit card and that this credit card belongs to a friend. After providing our fake
data again we could transfer the money to the poker accounts. The day after
they temporarily closed our two fake accounts until we would provide official
documents of our identity. We obviously could not do that because the accounts

5http://en.wikipedia.org/wiki/WebMoney

4. Testing 20

were created with faked data. This indicates that the poker platform providers
of Poker7701 do always check for the real identity of their poker players if the
players want to pay money in or out. We argue that this measure does work
quite well but there is a way around it. You could ask some people to provide
you with all the information and documents you need and then there should be
no problem to do it. The problem with this approach is that you involve other
people into the cheating. We did not want to involve other people so we did not
do it. The question remains why the poker platform providers do not check the
identity of all players who claim the welcome bonus.

4.4 Ethical considerations

We want to test our robot on a real poker platform against opponents which are
normally playing there. The effort to ask them all if they want to participate
in the testing of our robot would be too big. If they turned the chat off then
we would have no way of contacting them because they are playing under a
pseudonym. Also they might change their strategy because they know that they
are playing against robots what would influence our results. Because we are doing
an experiment with humans involved we have to make ethical considerations
especially as they do not know that they are involved in an experiment. One
might think that there is no problem because it is just a game and we only made
a robot that plays instead of us but we think that it matters. We distinguish
between play money and real money because we think that the situation is not
really comparable.

4.4.1 Play money

The play money games should be no problem as there is nothing real to lose or
win. Also a perfect robot will lose from time to time due to the chance component
of poker and our robot is not perfect.

4.4.2 Real money

For real money games the situation is totally different compared to the play
money games. It would be not that bad if we only used one robot per table
and would not collude. Because then the robot has the same possibilities as
a human player. But we try to win with cheating against human players who
know nothing about our experiment. That is why we decided to play only at the
lowest available big blind level which is 0.02 of any of the available currencies
which are United States Dollar, British Pound and Euro. Also we decided to
stop the testing in case we would win a significant amount of money. We can
not give the money back to the opponent players because they are playing under

4. Testing 21

a pseudonym. So the worst that could happen would be that some players lose
a few dollars, pounds or euros. As the game is chance based and some players
lose a few dollars, pounds or euros against other players anyway we think this is
justifiable.

The poker platform itself may lose a few hundred dollars in case the robots
lose because it is their money we are playing with and if we lose it to other players
they can withdraw it. We do not think that has a great impact on the company
as they have a lot of players and earn a lot of rake from the players. While the
robots play the company earns some of the money back as they earn the rake
independent of who the winner is. In case that the robots win the company
will make money as we do not intend to withdraw the money from the poker
accounts. So this experiment will have a justifiable impact on the company.

Chapter 5

Results

In this chapter we present the results we obtained from the testing.

5.1 Play money

In figure 5.1 are the results of our robots at play money tables. The graph shows
win − loss in play money over the poker rounds. The robots played with a buy
in of 1000 and a big blind of 10. One poker round equals one robot playing in
one poker round. This means that if x robots played at the same table for one
round then the graph shows x rounds, one for every robot. The robots played
with and without collusion with up to three other robots per table. The graph
shows an increase in play money of about 80′000 in about 6′000 rounds. This is
an increase of about 13 in play money per round per robot what is more than
one big blind per round per robot.

Table 5.1 shows the results per strategy of the graph in figure 5.1. All strate-
gies are winning at play money tables. The best of our strategies is the collusion
minimum probability strategy with an average of about 25 in play money per
round per robot what is about two and half times the big blind per round per
robot.

In table 5.2 is a comparison between the different numbers of colluding robots
at one table. The data is the same as in figure 5.1. The results show an increase
on average per robot if more robots play at one table.

5.2 Real money

In figure 5.2 are the results of our robots at real money tables. The graph shows
win − loss in real money over the poker rounds. The robots played with a buy
in of 1.00 and a big blind of 0.02 in any of the available currencies which are
United States Dollar, British Pound and Euro. One poker round equals one

22

5. Results 23

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 2500 5000

P
la

y
m

o
n

e
y

w
in

-l
o

ss

Poker rounds

Figure 5.1: Play money win − loss, big blind = 10, buy in = 1000, 6 players per
table, with and without collusion with up to four robots per table

Strategy Average win − loss Count Total

Big stack 13.52 983 13294

Hutchison 5.51 308 1698

Minimum probability 18.70 717 13407

Profiling and probability 5.12 127 650

Collusion big stack 3.51 1419 4975

Collusion Hutchison 15.90 191 3038

Collusion minimum probability 25.04 1345 33684

Collusion profiling and probability 13.08 700 9155

Table 5.1: Play money win − loss per strategy, big blind = 10, buy in = 1000, 6
players per table, with and without collusion with up to four robots per table

Number of robots Average win − loss Count Total

1 9.66 4178 40377

2 19.35 1201 23240

3 24.18 690 16687

Table 5.2: Play money decision making compared between the number of col-
luding robots at one table, big blind = 10, buy in = 1000, 6 players per table

5. Results 24

-120

-100

-80

-60

-40

-20

0

20

0 2500 5000 7500 10000 12500 15000

R
e

al
 m

o
n

e
y

w
in

-l
o

ss

Poker rounds

Figure 5.2: Real money win − loss, big blind = 0.02, buy in = 1.00, 6 players
per table, with and without collusion with up to four robots per table

robot playing in one poker round. This means that if x robots played at the
same table for one round then the graph shows x rounds, one for every robot.
The graph shows a loss of about 100 in about 17′000 rounds. This is a loss of
about 0.006 per round per robot what is about a quarter of a big blind per round
per robot.

Table 5.3 shows the results per strategy of the graph in figure 5.2. All strate-
gies are losing at real money tables. The best of our strategies is the collusion
minimum probability strategy with an average of about −0.005 per round per
robot.

In table 5.4 is a comparison between the different number of robots at one

Strategy Average win − loss Count Total

Collusion big stack −0.00523 4604 −24.08

Collusion Hutchison −0.00648 1376 −8.92

Collusion minimum probability −0.00465 2244 −10.44

Collusion profiling and probability −0.01310 145 −1.90

Collusion min. prob. and bluffing −0.00545 8468 −46.19

Table 5.3: Real money win − loss per strategy, big blind = 0.02, buy in = 1.00,
6 players per table, with and without collusion with up to four robots per table

5. Results 25

Number of robots Average win − loss Count Total

1 −0.0069 2788 −19.15

2 −0.0092 6124 −56.38

3 −0.0043 5172 −22.03

4 −0.0010 2950 −3.08

Table 5.4: Real money decision making compared between the number of col-
luding robots at one table, big blind = 0.02, buy in = 1.00, 6 players per table

Take only results into account with
an absolute value change greater... Play money Real money

10 times the big blind 0.0887 0.0485

20 times the big blind 0.0693 0.0354

30 times the big blind 0.0588 0.0296

40 times the big blind 0.0523 0.0269

50 times the big blind 0.0461 0.0214

Total rounds 6102 17069

Table 5.5: Number of decisions with an absolute value change of money greater
than 10 to 50 times the big blind

table. The results show an decrease on average from 1 to 2 robots but an increase
on average from 1 to 3 and 3 to 4 robots. The decrease from 1 to 2 robots is a
result of the parameter tuning for real money tables which we did while 2 robots
were playing.

5.3 Play money compared to real money

Table 5.5 compares the ratio of big decisions to all decisions made by the robots
between play money and real money. Big decisions change the robots amount
of money by an absolute value greater than 10 to 50 times the big blind. The
results are relevant because the opponent players had to call the bets of our
robots or our robots had to call the bets of the opponent players to count since
the robots lost or won at least 10 to 50 times the big blind. The results show
that big decisions appear almost twice as much in play money games compared
to real money games.

Table 5.6 compares play money and real money in respect to the reached
betting phase. The results show that the last betting round is reached almost in
three out of four games at play money tables while at real money tables the last
betting round is reached in only about one out of five games.

5. Results 26

Play money Real money

Total rounds 6102 17069

Ratio of rounds with 0 table cards 0.076 0.473

Ratio of rounds with 3 table cards 0.110 0.237

Ratio of rounds with 4 table cards 0.091 0.086

Ratio of rounds with 5 table cards 0.723 0.204

Table 5.6: This table compares play money and real money in respect to the
reached betting phase.

Chapter 6

Discussion

In this chapter we discuss our results and make a conclusion.

6.1 Robot performance

6.1.1 Play money

As figure 5.1 shows our robot performs very well at play money tables. The
tables 5.1 and 5.2 show that the robot performs also very well without collusion
as the robot does not collude if he is not using any of the collusion strategies.
This indicates that our robot is comparative at the play money level.

6.1.2 Real money

Figure 5.2 shows that our robot performs badly at real money tables. We tried to
adjust the parameters to the real money tables but no parameter configuration
we tried worked. We think that the difference to play money tables comes from
the difference in the playing behavior by the human players. The simple approach
to calculate the ratio ρ of the expected win amount to the expected loss amount
that is described in section 3.6 does not seem to be enough to win at the lowest
level of real money tables.

6.2 Collusion advantage

Tables 5.2 and 5.4 indicate that collusion provides a big advantage. Even though
we only used passive collusion the results with play money show a huge increase
in average win. At real money tables our robots also profit from collusion,
except with two robots, even though they are still losing. The result of 2 robots
is worse than the result of 1 robot because we tried to tune the parameters for
the real money tables while 2 robots were playing. The result where 4 robots

27

6. Discussion 28

are colluding at real money tables with an average of −0.001 is five times better
than an always fold robot would be since the always fold robot would pay one
big blind and one small blind per six rounds what equals −0.03/6 = −0.005.

We asked ourselves at the beginning if collusion provides a relevant advantage.
We argue that the results indicate that the answer is yes as the tables 5.2 and
5.4 show a better decision making with the additional knowledge from collusion.

6.3 The difference in human behavior between play
money and real money

Table 5.5 indicates that human players are much more careful when playing at
real money tables because they can lose real money. The table shows that human
players are much less willing to risk 10 to 50 times the big blind when playing at
real money tables compared to play money tables. We think that the reduction
to almost half as much played big decisions shifts the winning from the robots
to the human players.

Table 5.6 shows that human players play much less hands while playing for
real money even though we played at the lowest level. Almost half of the poker
rounds at real money tables already end in the preflop phase while at play money
tables only 7.6% end in the preflop phase. This is also due to the more careful
play by the human players.

6.4 Collusion and robot detection

The poker platform did not detect any colluding robot or the collusion. We do
not know if they check at all or only real money tables. Perhaps they only check
if a player wants to withdraw money. As our robots lost real money we cannot
say much about the detection because if someone loses while cheating it does not
really matter in our opinion and play money does not really matter as well.

6.5 Conclusion

We built a colluding poker robot for no limit Texas Hold’em with six players. We
used several different approaches to read out the interface and we designed a few
strategies which use an equation with the ratio of the expected win amount to
the expected loss amount for the decision making. This approach uses very little
domain knowledge and is very fast except for the odds calculation. Our goal was
to get an advantage through collusion and not a complicated decision making

6. Discussion 29

process. In order to test our robot we let it run on the poker platform Poker7701

at both play money and real money tables. The poker platform providers did
not detect any of the colluding robots or the collusion even though they claim
to detect both.

Our results indicate that our robot is competitive at play money tables but
not at real money tables. This shows that collusion alone is not enough to win
at real money tables. We think that with more complicated calculations or a
lot of domain knowledge it should be possible to build a winning robot for real
money tables. Our results also indicate that collusion gives a relevant advantage
in decision making, which increases with every additional robot. Another result
of our research is that human players play very differently if they play with real
money compared to play money. The huge difference in playing behavior shows
that it is not sufficient to test robots against human opponents at play money
tables.

Future research has to be done on the psychological difference for humans to
play with real money compared to play money and on the question if robots can
earn money at online platforms and if so if they are detected.

1http://www.poker770.com

Bibliography

[1] Fiedler, I., Wilcke, A.C.: Online Poker in the European Union. In: Gaming
Law Review and Economics. (January/February 2012)

[2] Gilpin, A., Sandholm, T.: Better automated abstraction techniques for im-
perfect information games, with application to Texas Hold’em poker. In: In
International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS). (2007)

[3] Gilpin, A., Sandholm, T.: A competitive Texas Hold’em poker player via au-
tomated abstraction and real-time equilibrium computation. In: proceedings
of the 21st national conference on Artificial intelligence - Volume 2. AAAI’06,
AAAI Press (2006) 1007–1013

[4] Billings, D., Davidson, A., Schaeffer, J., Szafron, D.: The challenge of poker.
Artificial Intelligence 134 (2001) 2002

[5] Watson, I., Rubin, J.: CASPER: A Case-Based Poker-Bot. In: Proceedings
of the 21st Australasian Joint Conference on Artificial Intelligence: Advances
in Artificial Intelligence. AI ’08, Berlin, Heidelberg, Springer-Verlag (2008)
594–600

[6] Risk, N.A., Szafron, D.: Using counterfactual regret minimization to create
competitive multiplayer poker agents. In: Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems: volume
1 - Volume 1. AAMAS ’10, Richland, SC, International Foundation for Au-
tonomous Agents and Multiagent Systems (2010) 159–166

[7] Billings, D., Peña, L., Schaeffer, J., Szafron, D.: Using probabilistic knowl-
edge and simulation to play poker. In: Proceedings of the sixteenth national
conference on Artificial intelligence and the eleventh Innovative applications
of artificial intelligence conference innovative applications of artificial intelli-
gence. AAAI ’99/IAAI ’99, Menlo Park, CA, USA, American Association for
Artificial Intelligence (1999) 697–703

[8] Simm, J.: AI System for Online Poker. (2007)

[9] Smed, J., Knuutila, T., Hakonen, H.: Can we prevent collusion in multiplayer
online games? In: Proceedings of the Ninth Scandinavian Conference on
Artificial Intelligence. SCAI 2006 (Oct 2006) 168–175

30

	Abstract
	1 Introduction
	2 Related research
	3 Materials and methods
	3.1 No limit Texas Hold'em
	3.2 Robot design
	3.3 Interface reading and interaction
	3.4 Odds calculation
	3.5 Collusion
	3.6 Strategies
	3.6.1 Big stack strategy
	3.6.2 Hutchison strategy
	3.6.3 Minimum probability based strategy
	3.6.4 Profiling and probability based strategy
	3.6.5 Minimum probability and bluffing strategy
	3.6.6 Passive collusion
	3.6.7 Active collusion

	4 Testing
	4.1 Play money
	4.2 Real money
	4.3 Collusion countermeasures by poker platforms
	4.3.1 Technical measures
	4.3.2 Financial measures

	4.4 Ethical considerations
	4.4.1 Play money
	4.4.2 Real money

	5 Results
	5.1 Play money
	5.2 Real money
	5.3 Play money compared to real money

	6 Discussion
	6.1 Robot performance
	6.1.1 Play money
	6.1.2 Real money

	6.2 Collusion advantage
	6.3 The difference in human behavior between play money and real money
	6.4 Collusion and robot detection
	6.5 Conclusion

	Bibliography

