
Distributed
 Computing

My Music Statistics
Bachelor’s Thesis

Sämy Zehnder

zehnders@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Samuel Welten

Prof. Dr. Roger Wattenhofer

Acknowledgements

While accomplishing this bachelor’s thesis I got supported by many people which
I would like to thank:

Samuel Welten for his great assistance and the many vivid discussions during
this semester. Prof. Dr. Roger Wattenhofer for giving me the opportunity to
work on this project. Sabine and my Dad for cross-reading and correcting this
document. My family and friends for listening patiently to my stories about
“Smart-Shuffle” and providing me with interesting inputs helping me finish this
work. Luc, Sabine and Tobi to provide me with their music collection.

i

Abstract

Jukefox is a music player for Android. It provides the user with a Smart–Shuffle
play-mode which tries to select songs he could like at the moment.

This thesis discusses the results of providing the user with statistics about his
listening behaviour and gives some insights about common patterns appearing
in many music collections. Moreover, the attempt to replace the existing Smart-
Shuffle algorithm by one based on listening statistics of the user is documented.

Keywords: Jukefox, Statistics, Smart-Shuffle, Agent

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related work 2

3 Statistics 4

3.1 Distances between Songs . 4

3.1.1 Distance Range . 5

3.1.2 Distance Distribution . 5

3.2 Calculation of the Rating . 6

3.2.1 Percental Listening Rating 7

3.2.2 Neighbourhood Rating . 8

3.2.3 Listening Time Rating . 9

3.3 Stabilization of the Rating . 9

3.4 User Statistics . 10

3.4.1 Top-100 & Flop-100 . 10

3.4.2 Recently Imported . 11

3.4.3 Suggestions . 11

4 Smart-Shuffle v2.0 12

4.1 Concept . 12

4.1.1 Agents . 12

4.1.2 Votes . 13

4.1.3 Choosing the next Song 13

4.1.4 Agent Weights . 15

4.2 Agent Types . 17

iii

Contents iv

4.2.1 Favourite Agent . 17

4.2.2 Anti-Repetition Agent . 18

4.2.3 Suggestion Agent . 19

4.2.4 Random Agent . 21

4.3 Implementation . 21

4.3.1 Timing & Implementation Tricks 22

4.3.2 Backup . 24

4.4 Analysis . 24

4.4.1 Ratings . 24

4.4.2 Neighbourhood Size . 25

4.4.3 Agent Timing . 25

5 Transactions in SQLite 26

5.1 What is the Problem? . 26

5.2 Some Further Explanations . 26

5.3 The Solution . 28

5.4 Known Issues . 29

6 Limitations and Future Work 30

6.1 Limitations . 30

6.2 Future Work . 31

6.3 Conclusion . 31

A Neighbour Distance Distribution in Different Music Collections A-1

Chapter 1

Introduction

Storing music on the computer and mobile devices got very popular in the last
years. Since storage media got cheaper while the capacity increased more and
more, the music collections became huge. Deleting out of favour music is not
necessary any more. The result is that many people are overstrained with the
decision what to listen to. Choosing random songs became popular.

Jukefox is a music player that addresses large music collections. One way the
user can listen to music in Jukefox is by using Smart-Shuffle. This play-mode
tries to support the user by detecting what songs he currently likes and which
not. The next song to be played is then chosen at random from a reduced set
of songs which is assumed to be liked by the user. A decrease of song skips is
expected to result.

A key concept in Jukefox is that it is defined how close the various songs
are to each other. All the music is placed in space – the world of music. Songs
which are similar are assigned with coordinates that are nearby in that space.
This allows to rub off knowledge of how much one likes a song to its neighbours
which are likely to share the same popularity.

This thesis is about bringing statistics of the listening behaviour of the user
to Jukefox. They are used to understand the user even more. In Chapter 3
some general properties of the world of music are explained before the concept
of ratings is introduced. Chapter 4 describes a new Smart-Shuffle algorithm that
is based on statistics.

While working on this thesis, some limitations of the transaction management
of SQLite were detected. Chapter 5 talks about these problems and the way they
were solved.

1

Chapter 2

Related work

It has always been a goal of computer science to simulate human behaviour and
support users by providing software that ‘thinks’ like them. But understanding
how humans act or defining their taste is very complicated. That is why many
different music players which try to improve the users listening experience exist.
Most of the available music players can be categorized into one of three different
types.

Community-based systems try to provide users with good content created by
others. In 8tracks1 users are able to upload and publish their playlists. The
quality of these lists is very high since they are actually created by humans.
However, big interaction of users that provide the content is needed.

Content-based systems try to fetch similarity information of a songs type.
They analyse the audio content of songs and search for similar songs in the
collection. In [2] it is described how such features can be extracted and similar-
ities are computed. Pandora2 is an online music platform which uses the music
genome project – a database about song descriptions that is created by experts
– to find good proposals for a users current mood. These lists are typically very
expensive to create at a high quality. Although the database that Pandora uses
is not publicly accessible, there are projects aiming at creating open versions.3

Meta-data based systems use information that does not directly represent
the acoustic contents of songs. Possible information can be the artist or genre
of a song. There are some more sophisticated attempts such as Genius4 that
makes use of collaborative filtering. This is comparing different users taste. If
two users agree about how much they like some songs, their opinion about songs
which were not played yet is probably alike as well. Moreover Genius computes
similarity info from purchases made in iTunes.5 If a user purchases song A and
B they are considered to be similar. Collaborative filtering systems are able to

1http://www.8tracks.com
2http://www.pandora.com
3See http://osmgp.pbworks.com
4http://www.apple.com/itunes/features/#genius
5http://www.apple.com/itunes/

2

http://www.8tracks.com
http://www.pandora.com
http://osmgp.pbworks.com
http://www.apple.com/itunes/features/#genius
http://www.apple.com/itunes/

2. Related work 3

return very high-quality results (See [1]). However, they need large data sets to
find users that have comparable listening behaviour data. Working with that
large datasets is not suitable for hardware constrained devices such as smart-
phones.
Jukefox also is a meta-data based system since it uses music similarity informa-
tion from Last.fm.6

A lot of research about how to create good playlists is done by big enter-
tainment companies without sharing their results. Moreover, most systems are
calculating whole playlists on their servers. An attempt to dynamically extend
playlists during listening to music is described in [6].

In [4, 5] it is explained how among others Reddit7 and StumbleUpon8 are
using sophisticated approaches to determine the popularity of content. We are
using a much easier rating function for songs to keep computational costs low.
Moreover, our implementation allows to use weights for votes.

6http://www.last.fm
7http://www.reddit.com
8http://www.stumbleupon.com

http://www.last.fm
http://www.reddit.com
http://www.stumbleupon.com

Chapter 3

Statistics

The first part of this thesis was to collect statistics about the users listening
behaviours. They will be used to implement a new Smart-Shuffle algorithm
(described in Chapter 4) as well as giving the user an impression about his
favourite music.

Ratings express how much a user likes a song. They are represented as
numbers. In Jukefox a rating of ‘−1’ describes a song1 that is not liked at
all while ‘1’ stands for beloved ones. There are two types of ratings: Explicit
ratings are directly assigned by the user. In many music players one is able to
award songs with stars or points. Jukefox does not have explicit ratings but uses
implicit ones. They are computed automatically. Whenever the user skips a
song its rating gets slightly decreased while listening a song to its end increases
it. Moreover, when changing the rating of a song, similar songs are rated as well.

This chapter describes how ratings are calculated in detail.

3.1 Distances between Songs

In Jukefox, every song is classified by a vector. This vector describes the songs
position in the world of music. One can calculate the euclidean distance between
the vectors of two songs to know how similar they are. Very similar songs with
only very short distances to a fixed song are said to lie in its neighbourhood. We
try to find the maximum distance that a neighbour is allowed to have to still
count as very similar. We defined that in average every song should have a fixed
number of similar songs (we chose 10). However, in different music collections the
radius that ensures this property varies. If a collection is very specific (e.g. songs
from one genre only) the radius is likely to be smaller than in a diversified one.
This comes from the fact, that in the specific collection more songs are positioned

1Although the concepts in this chapter are mostly explained for songs only, they apply for
songs, albums, artists or genres in the same way - just some grouping of data is done differently.
We omit to write all of them whenever possible to make this document more readable.

4

3. Statistics 5

in a given area in the space of music and therefore the average distance between
two songs is much smaller.

However, calculating the exact radius is not possible since its calculation
costs are polynomial in the number of songs and an in-time calculation is infea-
sible for a medium sized music collection. Finding an approximation requires
some analysis of the music space which is described below. How the radius gets
calculated is described in Section 3.2.2.

3.1.1 Distance Range

To get an impression of what is near and what is far in the space of music we
analysed the distances between songs. We see that they have to lie within the
range [0,

√
2]. The upper bound follows from the fact, that the euler distance is

defined as

distance(p1, p2) =

√√√√ d∑
i=1

(p1[i]− p2[i])2 (3.1)

where d = 32 is the number of dimensions of the space and the coordinates are
defined to sum up to 1 (Due to PLSA [3]. These values can vary in the future.):

1 =
d∑

i=1

p[i] (3.2)

We therefore get the maximum distance of two points when considering two unit
vectors ei, ej with (i 6= j) for which we get distance(ei, ej) =

√
2.

3.1.2 Distance Distribution

Figure 3.1: The distance distribution be-
tween songs of a collection is approxi-
mately normal.

If we examine how the distances between
songs are distributed in an average music
collection we get a rather astounding re-
sult: They are distributed normally. We
have used several real music collections
which all show approximately the same
curve.2

In Figure 3.1 the red line is the normal
distribution and the green one marks the
estimated maximal neighbourhood radius
for 10 songs. The outlier at distance 0 is
founded by songs which have artist coordinates only. The distance between them
is always 0.

2See Appendix A for the results.

3. Statistics 6

Problems with this Approach

Figure 3.2: If the songs group in two or
more different regions of the music space,
the distribution plot shows multiple hills.

If a music collection consists of two gen-
res which are rather different - say rock
and classical - then we do not get a nor-
mal distribution at all. While for each
song we have quite some songs from the
same genre in a near neighbourhood, we
also have many songs of the other genre
with a big distance. This leads to a dis-
tribution with two hills. Assuming a nor-
mal distribution can lead to an error in
the maximum neighbourhood radius esti-
mation. In Figure 3.2 we see, that a lot more songs lie within the estimated
neighbourhood than desired. The consequence of this error is that the number
of songs that a rating gets rubbed off to is large. In an extreme case the rating
of every song would be changed if one songs rating is adjusted.3

3.2 Calculation of the Rating

To calculate the implicit rating of a song, we compute several sub-ratings that
use different approaches to express the popularity of that song. Each of it returns
a value between ‘−1’ and ‘1’. There are two sub-ratings which currently are in
use: The percental listening rating which looks at the average skip position of
the song and the listening time rating which considers the overall listening time
for a song. Since we do not consider every sub-rating equally important we get
the final rating by computing the weighted average over all of them as follows

rating(song) =

∑
sr∈SR ratingsr(song) ∗ weightsr∑

sr∈SRweightsr
(3.3)

where ratingsr is the rating function of the sub-rating and weightsr defines its
assigned weight. We are using the heuristic weights 2

3 for the percental listening
rate and 1

3 for the listening time rating. This defines the percental listening
rating to be twice as important than the listening time rating. We end up with

rating(song) =
2

3
∗ ratingpercental(song)

+
1

3
∗ ratinglistening time(song)

(3.4)

3See Section 3.2.2 for more information.

3. Statistics 7

3.2.1 Percental Listening Rating

Figure 3.3: Rating by listening frac-
tion.

Whenever the user finishes listening to a
song – by listening it to the end or skip-
ping it – a rating is calculated. This is done
by using the fraction of how much of the
song was played. Figure 3.3 shows how the
rating is assigned to the fraction. A linear
distribution between a playback fraction of
25% and 75% is used. Outside of this range
a rating of ‘−1’, ‘1’ respectively, is taken.
We introduced this shift because skipping a
song after e.g. ten seconds still means, that we do not like this song at all. On
the other hand, skipping the song during the fade out does not mean, that one
does like the song less as if listened it to the end.

Every such rating entry also rubs off to the neighbours of the song. To get
the overall percental rating of a song, all its listening rating entries (LR) and
neighbourhood rating entries (NR) are considered.4 We want to weight neigh-
bourhood ratings a little less than listening rating entries since they are based
on assumptions. We have chosen to weight them 80%. Furthermore, old ratings
are weighted weaker than recent ones to be able to ‘forget’ old rating entries that
may not be valid any more. The result is the following rating function:

ratingpercental(song) =
1

weight sum

(∑
lr∈LR

r(lr)wage(lr)

+0.8
∑

nr∈NR
r(nr)w(nr)wage(nr)

) (3.5)

with

weight sum =
∑

lr∈LR
wage(lr) + 0.8

∑
nr∈NR

w(nr)wage(nr) (3.6)

r(x) returns the value of a rating entry and w(nr) its neighbourhood weight.
The ageing function wage(x) is defined as a linear function that is 1 for entries
not older than one month. Then the weight slowly reduces until it ends at 0.25
for entries with ages older than 200 days. Notice, that the older a rating entry
is, the less it contributes to the final rating. However, the rating is not reduced
for songs that have old rating entries assigned only.

4See Section 3.2.2 for more information about neighbourhood ratings.

3. Statistics 8

3.2.2 Neighbourhood Rating

If we like a song, the probability that we like the songs in its neighbourhood as
well is high. Therefore every percental listening rating assigned to a song rubs off
on the songs close to it in the music space. Since this rating entry should affect
nearby songs more than ones far away, we introduced the weight of a rating. The
weight has to lie between 0 and 1. The more the weight goes to 1 the more the
rating is considered as significant.

Radius of the Neighbourhood

Figure 3.4: Normal distributed song dis-
tances. The x-axis represents the distance
between two songs while the number of
song-pairs with this distance is shown on
the y-axis.

We want, that on average the neigh-
bourhood should contain a fixed num-
ber of songs (in our case 10). To en-
sure this we need to calculate an ap-
propriate radius for the neighbourhood
hypersphere for each music collection.
We find it using the assumption from
Section 3.1, that the distances between
two songs are distributed approximate-
ly normal within the collection. With
this we can calculate the proportion of
data which is expected to lie within z
standard deviations σ of the mean µ. We get the radius as r = µ− zσ.

F (µ+ zσ;µ, σ2) = [blue] = erf

(
z√
2

)
(3.7)

Where erf is the error function. And

[green] =
1

2
[green ∪ orange] =

1

2
(1− [blue])

=
1

2

(
1− erf

(
z√
2

))
(3.8)

Moreover we want the green portion to be the fraction of ten songs out of our
collection:

[green] =
10

collection size
(3.9)

We end up with

1− 2 ∗ 10

collection size
= erf

(
z√
2

)
(3.10)

3. Statistics 9

Moving things around, we get the final function for the radius:

z = erf−1
(

1− 2 ∗ 10

collection size

)√
2 (3.11)

r = µ− zσ (3.12)

Finding the Neighbours

To efficiently find the neighbours within a given radius around the played song
we are using a kd-tree over the song coordinates. If a song does not have valid
coordinates we do not search for neighbours at all. Doing so could falsify the
statistics since two songs without coordinates lie on the same point in space but
don’t necessarily need to be similar at all.

Calculating the Weight

We decided to distribute the weight linearly over the neighbourhood. Ratings of
songs with the same coordinates as the listened one get a weight of 1 while the
weight for ratings of songs whose distance equals the radius of the neighbourhood
sphere drops to 0.

3.2.3 Listening Time Rating

A second part of the final rating is the overall listening time of a song. We
consider songs with a high listening time as more important than those which
were played for only a short time. We use the rating 1 for the song with the
maximum playback duration and are linearly reducing the rating for songs with
less listening time. We get the rating function for the listening time as

ratinglistening time(song) =
lt(song)

argmaxs∈collectionlt(s)
(3.13)

where lt(song) returns the listening time for a song. Note that this rating only
returns positive values.

3.3 Stabilization of the Rating

It turns out, that the rating calculation of the previous section is good for col-
lections with already some listening statistics available. For collections, where
there are only very few rating entries for a song, the rating can change rapidly
with a new rating entry. As an example, a song gets skipped by the user, because
he is not in the mood for it right now. This song had only one good rating entry

3. Statistics 10

(a) Top albums (b) Song suggestions

Figure 3.5: Statistics that are presented to the user.

so far. Adding the new negative rating entry leads to a big drop of the overall
rating into negative and the song gets indicated as not liked at all. We do not
want such rapid changes of the rating. We therefore introduced an initial rating
with value ‘0’ and a weight of ‘2’ for every song which counts the same as if we
listened this song twice to the middle. With this we achieve that extreme ratings
settle only after some votes and the change of the overall rating is not that high
when adding only one new rating entry.

3.4 User Statistics

We also wanted to give the user access to the statistics that are made about his
listening behaviour. In the Android version of Jukefox one is able to get the
following lists. How the following statistics are presented to the user is shown in
Figure 3.5.

3.4.1 Top-100 & Flop-100

As the name suggests, the Top-100 list consists of the hundred top rated songs,
whereas the Flop-100 shows the songs with the hundred lowest rating values. The
ratings in these lists are calculated without making use of any neighbourhood

3. Statistics 11

rating entries, since the user is most likely just interested in songs he really
listened to.

3.4.2 Recently Imported

In this view the user gets presented with the songs which were imported in the
past two weeks.

3.4.3 Suggestions

This list shows songs, the user currently could like listen to. It’s a mix of top
songs by neighbourhood5, recently imported and long not listened songs. Songs
which were listened recently get filtered out of this list. See Section 4.2.3 for
further details, how song suggestions are made.

5Only neighbourhood rating data is used.

Chapter 4

Smart-Shuffle v2.0

The second main part of this work was to write a new Smart-Shuffle algorithm for
Jukefox based on statistics data. The Smart-Shuffle algorithm should produce
suggestions of what song should be played next. The goal is to suggest the
music the user currently likes in each round, ending up with long listening time
compared to the amount of skips. The key issue is that on the one hand we
want to explore new interesting songs to play. For these songs we do not have
any popularity data or it is very old. On the other hand we want to exploit
the knowledge about songs we believe the user could like. The Smart-Shuffle
algorithm needs to find a good balance between exploration that risks that the
user will skip the song since he does not like it and exploitation that needs the
interesting songs set to get bigger to not be forced to play songs multiple times.
Moreover, one weakness of the old Smart-Shuffle implementation was that it was
not able to ‘forget’ outdated information. Since the music taste of the user can
change over time, every song should eventually being played again despite its
popularity. Our reimplementation should overcome this problem.

In the first section the concept of the Smart-Shuffle algorithm is described.
Section 4.2 explains the different agent types. The last section of this chapter
describes the Smart-Shuffle algorithm in detail as well as some implementation
tricks and tweaks which are used to speed things up.

4.1 Concept

Before we describe the way the new Smart-Shuffle algorithm works, we introduce
the terms agent and vote.

4.1.1 Agents

An agent is an algorithm which proposes and votes for songs which should be
played next. Different agents look at the music collection from a different point
of view and decide upon their perception.

12

4. Smart-Shuffle v2.0 13

4.1.2 Votes

Figure 4.1: The user gets presented with
the most influential votes.

Votes represent the opinion of the agents
whether the user wants to listen to a song
or not. Please do not confuse votes with
ratings. Ratings are the result of listening
behaviour of the user while a vote can be
understood as the prediction of the rat-
ing of a song if it was played. Votes are
allowed to be in the range [−1, 1]. If an
agent totally disagrees that a song should
be played, it votes ‘−1’. On the other
hand a vote of ‘1’ means that the agent is
positive, that this song should be played
next. Figure 4.1 shows the way the user
gets presented with the most influencing votes that led to choosing that song.

4.1.3 Choosing the next Song

Figure 4.2: The different steps to get the
next song.

Calculating the next song is separated into
several steps. They are sketched in Fig-
ure 4.2. A central instance coordinates the
different steps that are needed to find the
song that should be played next. In a first
round all agents are asked to propose a
list of songs which should be considered
for playing next. The agents are allowed
to propose only a limited number of songs.
From these proposals only few are taken at
random. Then they are merged into one
proposal list and forwarded to all agents
which have to vote for all proposals. All
the agent votes are combined into an over-
all vote for every song proposal. The big-
ger such a vote turns out, the more prob-
able it is that this song gets played next.
Moreover, a long not rated song is added
to the list to ensure exploration. Now the
final proposal list gets ordered at random
with the probability that a song is inserted
next into the list as:

P [song gets chosen] =
adjustedV ote(song)

votesSum
(4.1)

4. Smart-Shuffle v2.0 14

with

adjustedV ote(song) = (vote(song) + 1)stretch factor (4.2)

votesSum =
∑

s∈not already enlisted proposals

adjustedV ote(s) (4.3)

We have chosen stretch factor = 4 heuristically. This ensures that songs with
a high vote appear much more likely at the top of the list than those with bad
votes.

The reason why we decided to use this random approach was that proposals
which have moderate votes are very unlikely to be played again using pure sorting
by vote. If we did not like a song that much once, it then wont ever be played
again since it is very unlikely that it reaches the top ranking ever again. With
the randomized approach, the probability of such songs being played is less than
high voted ones, but it is not impossible.

The first song appearing in the ordered list of proposals is then chosen to be
the next song. When the song is finished the agent weights get auto-adjusted
and a new calculation round can begin.

Random Proposal Selection Some agents work on a big data set of rating
entries and choose e.g. the top song out of it. A new rating entry that gets
added to that data pool does not contribute much to the overall decision, since
its weight is too weak. This results in very much alike proposals of these agents
for several rounds. If a song of those proposals gets played, it probably will be
proposed in the next round again (or a similar song of the same agent). We don’t
want this behaviour.
We therefore introduced random proposal selections. Agents are asked to propose
up to 30 songs from which only 7 songs per agent are taken at random. This
leads to less static proposal lists and a more balanced listening experience.

Long Not Rated Songs If the random agent is weighted very weak, the song
proposals tend to stay approximately the same over several rounds.1 Moreover
most agent implementations are based upon rating entries. To ensure playing
songs of the whole collection – even never played ones with no rating entries at
all – one song proposal is always chosen to be a song whose vote is forced to
be 0.2. That song is chosen u.a.r.2 from all the songs which were never rated
before or the last rating entry is dated at least 200 days back. The vote of 0.2
ensures a sufficient small probability that this random song is played next. This

1Since e.g. the overall top agent does not change its proposals very much over successive
rounds. This is because new rating entries do not carry that much weight in the large set of
rating entries this agent considers.

2Uniformly at random.

4. Smart-Shuffle v2.0 15

guarantees an increase of the amount of knowledge independent of the agent
weights.

4.1.4 Agent Weights

It has to be considered that not all agents are of the same importance for every
user. Some people may not care if two songs of the same artist are played in
a row, while others do. The importance of an agent that votes against artist
repetitions therefore has to be different for these two users. This is the reason
why we introduced the weight of an agent. The bigger the weight of an agent,
the more its vote is considered as important. We calculate the total vote for a
song as follows:

vote(song) =

∑
a∈agents votea(song) ∗ weight(a)∑

a∈agentsweight(a)
(4.4)

Automatic Weight Adjustment

Agent weights are tried to be calculated automatically by Jukefox. Whenever a
song change takes place, and we therefore know its rating, we look at the agent
votes for this song. Agents which voted right are rewarded by an increase of their
weight. The weight of those who voted wrong gets reduced. The new weight is
composed of a fraction of the old weight and one of an adjustment:

weightn+1(agent) = (1− f) ∗ weightn(agent)

+ f ∗ adjustment(agent, voteRating)
(4.5)

The adjustment is based upon the vote-rating product:

voteRating = voteagent(song) ∗ rating (4.6)

This results in big adjustments for extreme differences of the vote compared to
the rating and only small adjustments for moderate votes or ratings. This makes
sense, since a |vote| ≈ 1 means the agent was very certain about its prediction –
if the song then gets a very different rating, the expressiveness of this agent is in
question and its weight should be reduced.

To make sure, the rewards (reductions) get fulfilled, adjustment has to be
bigger (smaller) than the current agent weight if the vote-rating product is posi-
tive (negative).3 Moreover, the weight of agents which voted bad multiple times

3If we want to reward an agent:

weightn(agent) < weightn+1(agent)

⇒ weightn(agent) < (1− f) ∗ weightn(agent) + f ∗ adjustment

⇒ weightn(agent) < adjustment

4. Smart-Shuffle v2.0 16

in a row should be reduced more than others that voted wrong for just once.
This results in the following function:

adjustment(agent, voteRating) = weightn(agent)

+ boostn(agent) ∗ voteRating
(4.7)

and

boostn(agent) =

{
1 , if voteRating ≥ 0

boostn−1(agent) + |voteRating| , otherwise
(4.8)

We have chosen f = 10% in (4.5). This is a heuristic value which appears to be
a good mix of keeping weight changes smooth and changing the weight fast for
wrong classified agents.

Another attempt was choosing f bigger at the launch of Jukefox and reduce it
over time. This leads to faster adjustment of the agent weights at the start since
it is more likely one changed its listening behaviour since the last application
launch than during listening to music. Since the value of f has to be in balance
between not too big jumps and sufficient change of the agent weights if the
listening behaviour changes, we were left with only very little freedom for the
range of f . We therefore decided to not introduce another dynamic variable into
the new Smart-Shuffle algorithm.

A different approach we tried was to use an own f for each agent. It was
changed in respect of the sign of voteRating. The idea was to reduce fagent when
an agent repeatedly votes right and increase it if the votes are wrong all the time.
This would keep weights of always correct agents more stable by not reducing
their weight significantly when a vote is wrong for one time. But it resulted
in very unstable weights for weak agents: When fagent is big, the new weight
will mostly be adjusted to voteRating. However, that value can change much in
each round. The current approach is following the same idea by performing way
better.

Normalization of the Weights

As a convenience we decided that the weights of all agents have to sum up to 1.
Moreover weights are not allowed to be less than 0.01 to not completely lose an
agents vote.

4. Smart-Shuffle v2.0 17

Manual Adjustment of the Agent Weights

Figure 4.3: The agents-
weight adjustment menu.

The user can manually adjust the weight of the
agents via the GUI (See Figure 4.3). There are two
modes: The advanced view allows to change the
weight of each agent instance separately while the
simplified view allows to change the weights for the
agent types only. The new weight of an agent type
gets distributed to its agents by the ratio of the old
agent weights.

Since the weights are normalized to sum up to 1,
small weights are much more probable than weights
≈ 1. With linear progress bars, all the thumbs would lie on approximately the
same value on the left and no good weight adjustment could be made. Therefore
the progress bar positions are not linear but exponential:

pos(weight) =

(
weight−minWeight

1−minWeight

) 1
stretch factor

(4.9)

Where the expression in the brackets maps the weight from [minWeight, 1] to
[0, 1]. The stretch factor is 4 for the complex view and 3.3 for the simple view.
They differ, since bigger weights occur in the simple view, because they are
combined from multiple agents. We got these values by trying out what feels
right.

4.2 Agent Types

There are four agent types which differ greatly in the way they look at the music
collection.

4.2.1 Favourite Agent

This agent type votes for songs by the Top-n rating of their artist.4 It composes
the song proposals from the Top-7 artists list. The number of songs taken from
each artist is proportional to the artists rating:

numberOfSongs(artist) =
rating(artist) + 1∑

a∈top7Artists rating(a) + 1
∗maxSongCount

(4.10)
The +1 is used to shift the ratings from [−1, 1] to [0, 2] to have pure positive
values. maxSongCount is the number of songs the agent is allowed to propose.
The songs are then chosen u.a.r. from the respective artist.

4See Section 3.4.1.

4. Smart-Shuffle v2.0 18

In the voting round the agent just uses the rating of the songs artist as the
vote for it.

There are three instances of this agent running in Jukefox. One is considering
the Top-n of all the time while the second filters rating information by the current
hour of the day. The latter tries to propose songs which the user could like to
listen to in the current hour of the day and e.g. propose motivational music
during the gym-hour whereas proposing to listen to jazz while drinking a glass
of wine in the evening. However, this only works if the user has some listening
patterns allotted during the day.
The third instance type runs on recent data. It does not propose any songs but
only votes. This instance type is very useful to vote against artists which the
user does not like in the moment or boost these he likes currently very much.

There is also a fourth instance type implemented. It filters the Top-n list by
the day of the week. However, this instance is currently not used since its results
were not that significant while increasing the computational costs. Moreover the
implementation of an agent which voted for songs by their Top-n rating5 has
been dropped, since the song proposals were too much alike in every round.

4.2.2 Anti-Repetition Agent

There are two agents of this type. One agents is responsible to avoid repetitions
of the same song while the other avoids the playback of songs of the same artist.
Both agents are not proposing any songs. The vote for a song is calculated as
follows:

vote(song) = min

(
lastP layed(song)

minTimeForReplayAcceptable
− 1, 0

)
(4.11)

If the song (or a song of the same artist) just got played, the agents vote will
be ‘−1’. Both agents define a time stamp, from when on they consider the song
acceptable to be played again and vote ‘0’ thenceforth.

The agent which prevents song repetitions implements lastP layed(song) as
the time span that occurred since the last time the song got played. The constant
minTimeForReplayAcceptable is defined as 7 days.

For the anti artist repetition agent lastP layed(song) returns the time that
passed since the last time any song of the artist of song was played. minTime-
ForReplayAcceptable is defined as 20 minutes.

5Not the Top-n rating of their artists.

4. Smart-Shuffle v2.0 19

4.2.3 Suggestion Agent

This agent type tries to find out what kind of music the user could like. To
find accurate suggestions, this agent considers different, possible interesting song
groups:

Top-n by Neighbourhood It is searched for songs with the best rating by
only considering neighbourhood rating entries. With this, we get songs
which lie in the neighbourhood of liked songs and possibly were not played
yet.

Ancient Top-n The result of this filter is the Top-n songs of some time ago.
How much we look back at the charts is chosen at random in every round.
However, it has to date back to at least one month. All rating data between
then and now is omitted while calculating the charts, to get the view of
then. With this filter it is possible to propose songs which had a good
rating once, but were not played much recently.

Recently Imported This group contains all songs which were imported re-
cently. It covers the fact, that the user likely wants to listen to newly
imported music. The vote for such songs is calculated as

ratingimport(timeAgo) = max

(
1−

b timeAgo
bucketSizec

bmaxImportAge
bucketSize c

, 0

)
(4.12)

This is a linear function which gives a rating of 1 if the import just took
place (timeAgo = 0) and a rating of zero when the import dates back to
more than maxImportAge which is defined as 3 weeks. bucketSize is used
to threat songs which were imported around the same time as the same6

and is defined as one hour.

All the songs of the above groups are then merged together into one list,
while, when appearing twice, the song with the higher rating is taken. Moreover
all songs which were recently played too often are removed from this list. We
defined the listening time of suggested songs to be at most 30% of the average
song duration7 while recently is defined as the time range between the time stamp
for the ancient Top-n filter and now.

Normally such a filter would not be necessary, since the anti-repetition agents
are responsible to degrade songs with too much recent listening time. The fact
why we still added it, is that otherwise songs would not disappear from the list

6Otherwise in one library import call, songs which were imported first would get lower rating
than those which were imported last since it takes some time to import them.

7The average song duration is currently set as a constant of 4 min 13 s (This is the average
song length over all collections we had at hand). This value could also be calculated individually
for each music collection during the library import.

4. Smart-Shuffle v2.0 20

even if they get played. This becomes clear, when we look at what happens,
when a proposed song gets listened to. The Top-n by neighbourhood list only
changes, if significantly weighted neighbourhood ratings are added. But the
weights of neighbourhood ratings of only one rating entry are weak8 and only
slightly affect the overall ratings. The recently imported list changes only slowly
over time and is not affected by the playback of songs. The ancient Top-n list is
the only dynamic factor in the proposals, since its time stamp changes in each
round. The result of such a mostly static proposal list is that after songs of it
got played, the votes of the anti-repetition agents would take effect and would
make this agents proposals useless.

When this agent has to vote for songs it runs all the steps of the proposal
process by just regarding the desired songs. It takes the ratings of the songs as
the votes for them.

Note that this agent is the only one that is able to make this Smart-Shuffle
algorithm outstanding of other music players’. Its use of neighbourhood infor-
mation in the Top-n by neighbourhood and ancient Top-n song groups is one
thing ‘normal’ players are not able to do.

Instance Types

There are multiple instance types of this agent. Each of them adds another layer
of filters to the song proposals. The following instance types are available:

Current Mood When suggestions and votes are made for the current mood,
only rating data from the past hour is used. Suggestions are likely to be
very similar to the recently played songs. This instance does not consider
any ancient Top-n songs.

Hour of the Day Rating data gets filtered by the hour of the day it was writ-
ten. When a user has mood patterns along the day, this instance allows to
distinguish between them.

Day of the Week Rating data gets filtered by the day of the week when it was
recorded. When a user has mood patterns along the week, this instance
allows to distinguish between them. This instance type is currently not
used in Jukefox since its effect is relatively small compared to the increase
of computational costs.

All the Time This instance type does not add an additional filter and uses all
rating data available.

8There are a lot of other neighbourhood ratings for the same song.

4. Smart-Shuffle v2.0 21

4.2.4 Random Agent

This agent suggests songs u.a.r. from the collection. In the voting round it
assigns a vote of ‘1’ for all its proposed songs and ‘0’ for all others.

There were some other attempts with this agent, such as it votes at random
for a song. However, it turned out that this behaviour is undesired, since when
voting for around 30 songs there is a good chance that at least one song gets a
very high vote. This high vote is likely to overrule all votes of the other agents.
We assumed the user to be lazy and not skipping pure random songs regularly.9

The result is that the random agent got the highest weight and we ended up
with a mostly pure random play mode.

Another possibility could be to vote ‘−1’ for the not proposed songs. How-
ever, if that would improve the weight adjustment or result in more playbacks
of random songs is not tested.

4.3 Implementation

One of the critical questions was how and when to calculate the next song. Since
the calculation takes some time it cannot be done when the new song is required
but has to be carried out before. Otherwise the playback would stop until the
next song is calculated. Hence the determination of the next song is done while
the current one is being played.

However, with this asynchronous calculation a new problem arises: It is not
known whether the user likes or dislikes the current song. But this information
is crucial for some agent instances as the current mood suggestion agent since
its behaviour is very likely to change with every rating entry.10 To deal with
this problem, we actually run two calculations: One which assumes a negative
and one which assumes a positive rating-outcome for the current song. The trick
we used, is that a transaction is started on the database. Then a skip of the
current song is simulated. The positive assumption calculation uses a playback
fraction of 66% while the negative assumes 33%. This writes the rating entries
of the currently played song and its neighbourhood into the database. Then the
calculations are started. The agents are able to work as usual - they can not
differ between the fake and real data since they are not distinguishable in the
database. After the computations are finished the transaction gets rolled back.
This removes all the simulated rating entries from the database.
Once the next song is requested it only needs to be checked whether the actual
rating of the currently played song is positive or negative. The next song can
then be chosen to be the outcome of the corresponding calculation.

9After all its his music collection. He probably likes many songs in it.
10Since it only considers rating entries of the past hour, every entry is quite important.

4. Smart-Shuffle v2.0 22

These two calculations are run sequential. This is on the one hand because
SQLite only allows one transaction to be run at a time. On the other hand, at
the start of a song the outcome of the negative prediction calculation is probably
more urgent needed than the positive one.11

4.3.1 Timing & Implementation Tricks

The calculation of the next song takes time. It takes around 25 seconds per
calculation for a rating list with 34,000 rating entries whereof 31,000 are neigh-
bourhood rating entries. Some tricks and optimizations were necessary to get to
this time and some are needed to work with it.

Finish all next Song Calculations

In an early implementation of the next song calculation, at each start of a song
old calculations which were still running got aborted and new ones with regard to
the new rating information were started. We replaced this behaviour by letting
every calculation finish until a new one gets started. When the new one gets
started the decision is made if a negative or positive assumption calculation is
due. This is done by looking at the playback position of the currently played
song. If it is above 50% a positive attempt is made and a negative one otherwise.
This really helps not to waste calculation time. A side-effect of this decision is
that two calculations for the same song are done only if the negative calculation
for it is finished before the song is changed. If a user is not happy with the
current song-proposal he probably does an early skip. If the negative calculation
gets restarted after every skip, most likely it wont ever finish. However, letting
the negative calculation of the first skipped song finish, ends up with better song
proposals eventually.

Reuse of Calculations

If the calculation for the current song and prediction case is not yet at hand, we
simply use the most recent calculation. It is possible that a calculation is used
multiple times when a song gets skipped very fast. To make this possible, every
calculation stores not only the best song proposal but all of them. In each reuse-
round the next song on the proposal list is chosen. If the user does more than
three negative-skips12 for songs of the same computation, that computation is
considered as too bad and gets dropped. From then on random songs are played
until the next computation could finish.

11When the user does an early skip, the song gets a negative rating and the negative prediction
results are needed.

12A skip of a song at a playback fraction which results in a negative rating.

4. Smart-Shuffle v2.0 23

Moreover, songs of the same artist as the currently played one are jumped over
when a calculation is reused and the rating of the current song is negative.

Caching of Votes

Most of the agents have the votes for the songs they propose already in the
proposal stage at hand. They store these votes and reuse them in the voting
round.

Reduction of the Number of Ratings

An other way to reduce the calculation time is to reduce the amount of data it
has to process. This is done in two ways: As described in Section 3.2.2 a rating
entry rubs off to its neighbours. The radius of the neighbourhood is tried to be
chosen that in average ten songs lie within it. However, if there is a region in
the music collection where the similarity of songs is very high or the radius is
inaccurate13, we might end up with much more neighbours. For such cases we
decided to allow at most 30 neighbourhood ratings to be made for each rating
entry.
The second improvement is to remove too weak neighbourhood ratings. If the
weight of a neighbourhood rating drops below 0.01 it wont be stored since it is
very likely that it gets overruled by an other rating anyway.

Optimization of SQL Statements

Since SQL statements are in text form, they need to be interpreted. SQLite
allows the usage of parameters in query statements.14 This makes it possible
that statements look exactly the same while querying for data with different
constraints. This query then only needs to be interpreted once. Since some
queries we wrote are really long15, we excessively tried to make them as cacheable
as possible.
Furthermore we tried to surrender date functions whenever possible. Information
such as in which hour-of-the-day or day-of-the-week a rating entry has been made
is explicitly written into the database to avoid expensive calculation time at query
time.

13See Section 3.1.2.
14See http://www.sqlite.org/lang_expr.html#varparam.
15To get the top artists a statement of 2100 chars is required to be interpreted.

http://www.sqlite.org/lang_expr.html#varparam

4. Smart-Shuffle v2.0 24

Remove any Calculations from the GUI-thread

Whenever a calculation is done that accesses the database, we need to ensure it
is not running in the main thread. Since write accesses to the database can be
blocked for more than 20 seconds,16 the GUI could be inaccessible for a really
long time otherwise.

4.3.2 Backup

When doing a music import from scratch, the whole database gets dropped and
recreated. This also removes all rating and playback data. To avoid this, we
implemented a backup routine which stores that data to a save place before
doing the import and restores it at the end. Entries of songs which are no longer
in the collection are dropped.

4.4 Analysis

Let us analyse how good the new Smart-Shuffle implementation performs. The
statistical data is based on feedback which is received from users who have the
alpha version of Jukefox installed on their device. However, not all implemen-
tation tricks mentioned in this chapter made it in the market so far. Therefore
the results for the final implementation may vary.

4.4.1 Ratings

Figure 4.4: Ratings that have been given to song propos-
als grouped by their value.

Figure 4.4 shows what rat-
ings are given for song pro-
posals.17 We see that ex-
treme ratings are dominat-
ing. Only 5% are floating
point values while the rest
of the songs are either skip-
ped very early or listened
to their end. This enables
us to compare these values
to the old Smart-Shuffle im-
plementation where only bi-
nary ratings were known (skipped or not). Although the rejection rate of the

16The transaction we use in the next song calculation is blocking write accesses to the
database. See Chapter 5.

17The statistics are based on ∼ 50, 000 rating entries from 361 different users whereof 225 of
them sent over 10 rating entries.

4. Smart-Shuffle v2.0 25

proposals (52%) is still bigger than the acceptance rate (44%), the new imple-
mentation performs better than the old one with an acceptance rate of 35.25%.

4.4.2 Neighbourhood Size

Figure 4.5: How many neighbours lie in average
around a song.

Figure 4.5 shows how the neigh-
bourhood sizes of a song are dis-
tributed. We aimed at having ten
songs in the neighbourhood on av-
erage. However, we see that most
of the songs have one similar song
around them only. Around 70%
of the songs have less than 10 ad-
jacent songs. This might call for
some adjustments of the neigh-
bourhood radius estimation. Yet
we rather want to have few than
many close-by songs. If every rating entry would affect many other songs, the
similarity of them would decrease. This would reduce the gain of neighbourhood
ratings. So choosing a slightly bigger radius could result in bigger neighbour-
hoods in average but might also increase the number of songs that have oversized
neighbourhoods.

4.4.3 Agent Timing

We also included feedback about how much time each of the agents needs to
propose and vote for songs. Also the change of the agent weights is logged very
fine. However, such data is available from one user only so far. More data is
required to be able to make statements about how good they perform.

Chapter 5

Transactions in SQLite

SQLite is a very lightweight DBMS1 which is used by Jukefox in the Android and
CLI2 version. It is only few kilobytes in size but still able to provide most of the
functionality of a SQL database engine. But there is one drawback: Concurrent
writes are not allowed.

5.1 What is the Problem?

The calculation of the next proposed song of the new smart shuffle implementa-
tion needs to write temporary data into the database. This is done by starting a
transaction, inserting that data, working with it and then rolling back the trans-
action which restores the database state without the temporary data.3 This is
done in the background while a song is being played. However, since a transac-
tion is a write operation, and SQLite only allows one write operation at a time,
the whole SQLite database gets locked. In the meanwhile every read- and write-
access to the database from an other thread will be blocked. An unresponsive
UI is the result during calculating the song proposals.

Android implements a software-side locking mechanism, which results in the
waiting described above. The SQLite library used in the CLI version of Jukefox
does not provide such a mechanism. As soon as a concurrent access to the
database occurs it fails with an exception.

5.2 Some Further Explanations

To get a solution for this problem we had to write our own locking mechanism.
To achieve this, we had to take a look at the way how SQLite works. According
to [7] there are different states the database can be in:

1Database management system.
2Command line interface.
3See Section 4.3.

26

5. Transactions in SQLite 27

UNLOCKED The database has no locks assigned and connections can read or
write to it.

SHARED Connections are allowed to read from the database, but writing is
prohibited. Any number of simultaneous Shared-locks are allowed.

RESERVED With this lock a connection indicates that it will write to the
database eventually. Shared locks are allowed to be created while this
lock is held but no Reserved, Pending or Exclusive locks from other
connections are allowed.

PENDING A connection wants to acquire an Exclusive lock. All the running
Shared and Reserved locks are awaited to be released. No new locks
from other connections are allowed to be acquired.

EXCLUSIVE This lock is required to be allowed to write to the database. If
an Exclusive lock is held no other locks are allowed to coexist.

Moreover, there are three types of transactions that can be started:

DEFERRED No locks are acquired at the beginning of the transaction. They
get acquired when we read or write to the database during the lifetime of
the transaction.

IMMEDIATE A Reserved lock is acquired at the beginning of the transac-
tion. This lock is extended to a Pending and then an Exclusive lock as
soon as we try to write to the database.

EXCLUSIVE An Exclusive lock is acquired at the beginning of the transac-
tion and held until the transaction gets closed.

Using Deferred transactions can lead to deadlocks: E.g. thread A and B
both start a Deferred transaction and read from the database. They hold a
Shared lock now. Later A wants to write to the database and therefore acquires
a Pending lock. It gets blocked, since B holds a Shared lock. Now B wants
to write to the database as well and tries to acquire a Pending lock, too. Since
A already holds a Pending lock, B has to wait for A. Both threads are now
waiting on each other – a deadlock occurred.

Since Exclusive transactions lock the whole database from the start, even
if a write is possibly made only after some time and until then reads would be
allowed, we do not want this type either.4

Immediate transactions are the type to use. Though only one Immediate
transaction is allowed to exist at a time, other connections are allowed to read
from the database concurrently until data gets written to the database within

4This is the type whose behaviour is described in the introduction of this chapter.

5. Transactions in SQLite 28

the transaction. When all used transactions are of the type Immediate or Ex-
clusive, no deadlocks can occur, since a concurrent transaction is delayed from
the moment when it gets created.5

Below Android API 11 the provided locking mechanism only supports De-
ferred and Exclusive transactions. Since the minimum API version which is
supported by Jukefox is 3 we can not use Immediate transactions. Moreover,
the CLI version does not implement such a locking mechanism at all, so we had
to write it on our own anyway.

5.3 The Solution

To allow as much concurrency as possible, we want to use Immediate trans-
actions all over the application. To get the benefit that a thread waits instead
of throwing an exception if it can not acquire a lock immediately, we need a
software-side locking mechanism.

To get concurrent access to the database, multiple connections to it are
needed. We decided to have one connection open for transactions and one for
read and write accesses which are not in a transaction. If an Immediate trans-
action is running we can still read from the database on the other connection.

To know if a thread is allowed to access the database, the whole locking
states as described in the previous section are replicated in the software. The
lock manager is therefore always in the same locking state as the database and
can decide if the threads lock requirements are granted or if it gets delayed.
Even more convenience is provided by allowing nested transactions which is not
supported by SQLite. To get a transaction to commit, all inner transactions
need to commit as well. If one is rolled back, the main transaction gets rolled
back as well.

Some performance tuning is possible by not implementing the Pending lock
as it is described in the SQLite manual. If an Immediate transaction is running
and an other thread tries to write to the database, the manual says, that a
Pending lock should be acquired. But this leads to the inconvenience that once
the request for a Pending lock exists, no other thread is allowed to read from the
database. We therefore changed the locking mechanism to not be totally fair and
completely delay all write operations until the transaction finishes. Reads that
are started later than a write are preferred and executed before the writes. From
the moment the transaction finishes, the scheduler gets fair again and enqueues
the accesses to the database by their arrival time.

5No locks are then held by this connection, only lock requests exist.

5. Transactions in SQLite 29

5.4 Known Issues

In the current implementation two problems exist:

Multi-Application Access If more than one application accesses the data-
base they do not synchronize their locking states. Exceptions are possible to
occur by then. However the ACID-properties are still ensured by SQLite.6

In-Memory Cache Overflow All database changes in a transaction are writ-
ten into a memory cache. This allows other connections not to read the uncom-
mitted changes. If the cache gets full, the SQLite connection automatically ac-
quires an Exclusive lock to write the uncommitted changes into the database.
From then on no further accesses from other connections are allowed to be made
since they would read uncommitted writes.
If the Exclusive lock cannot be acquired an exception is thrown and the trans-
action gets aborted. If the lock can be acquired, our locking mechanism does
not know about that Exclusive lock and still allows Shared accesses to the
database to be made. These accesses will then fail on SQLite-level with an ex-
ception.
Therefore, if it is known that big changes are about to be made in the database
an Exclusive transaction should be used.

6See [8].

Chapter 6

Limitations and Future Work

6.1 Limitations

The time we had for writing the completely revised implementation of the Smart-
Shuffle algorithm and the user statistics was relatively short and based on a lot of
assumptions about user listening behaviour. Many testing and fine-tuning may
still be necessary.

Glut of Parameters One of the biggest problems in the new Smart-Shuffle
implementation is choosing the numerous parameters right. Most of them were
chosen on a heuristic basis and may not apply for all users. Some of them get
regulated dynamically over time. But often their adjustment strategy introduced
some new assumptions on e.g. how fast a value should be modified. To get all
these parameters right, one needs to do exhaustive testing with a lot of user
feedback. We implemented some logging mechanisms which also send reports to
the Jukefox server. However, by now only few such usage statistics were uploaded
and we were not able to do a meaningful analysis of them.

Silent Decrease of Agent Weights In Section 4.1.4 it is described how the
agents weight automatically is adjusted by the skipping feedback of the user.
One unsolved problem is, that some agents1 do not actively vote for songs but
prevent others from being played. They do this by voting negatively for songs
they consider as inappropriate and ‘0’ for all others. The result is, that mostly
songs with no negative vote of these agents get played. However, since the agents
voted zero for these songs, they get not rewarded with a weight-increase if the
user likes that song. They would only get such an increase if a song they voted
against gets played and skipped. The result is, that the agents weight gets
smaller and smaller compared to those who actively vote for some songs.
We currently do not have any solution how to solve this problem.

1Namely the anti-repetition agents.

30

6. Limitations and Future Work 31

6.2 Future Work

Deletion Proposals In the Flop-100 list, deletion proposals could be made
for the user to reduce the size of his music collection. As an example, smart
suggestions could remove most songs of an album which are not liked but keep
the one loved song in it.

Speed Improvements Some agents, such as the overall top agent, propose
roughly the same songs for some rounds. This is because the data on which
they make their decision does not change much over time.2 The proposals and
votes of these agents could be cached for some rounds which would result in less
computational power used.

It also could be checked if some rating data could redundantly be written
to the song or artist entries in the database. As an example, when writing the
overall rating of a song directly to the database, speed improvements could be
achieved for those queries. However, queries are very likely to change between
different Smart-Shuffle rounds but only static queries can be represented by a
field in the database.3

Make Usage of the Old Smart-Shuffle Implementation The old Smart-
Shuffle algorithm did not behave very bad but got stuck after a resulting in very
similar song proposals in each round. It would be conceivable to reintroduce this
algorithm as an agent into the new Smart-Shuffle implementation.

Improve Statistics The current implementation of user statistics are more
on a proof-of-concept level than complete, interactive and pleasing. The time
for this thesis was too short to provide graphically appealing, versatile statistics.
One could think of supplying the user with graphs showing his listening behaviour
over the time or highlights in the music maps4 where songs which the user likes
most are located.

6.3 Conclusion

While supplying the user with statistics about his listening behaviour is quite
easy, proposing him songs based upon that data is far more demanding. The
new Smart-Shuffle algorithm tackles that challenge using agents that divide the

2The overall top agent does not get affected very much by one new rating entry since generally
it already has quite some rating data around.

3As an example, many queries of the suggestion agents are based on ancient data. However,
which time range is used is determined at random in each round.

4As shown in [3].

6. Limitations and Future Work 32

big problems into smaller, solvable sub-problems. Ratings are used to express
the popularity of songs. Different rating entries for the same song are kept over
time. This enables to filter and group data in a broad way. First evaluations of
user feedbacks show that the acceptance rate is still below 50% but nevertheless
bigger than of the old implementation.5 This demonstrates the idea of building
a playback mode based on listening statistics is realistic and worth it to pursue.

5See Section 4.4.

Bibliography

[1] Luke Barrington, Reid Oda, and Gert R. G. Lanckriet. “Smarter than Ge-
nius? Human Evaluation of Music Recommender Systems”. In: ISMIR. Ed.
by Keiji Hirata, George Tzanetakis, and Kazuyoshi Yoshii. International
Society for Music Information Retrieval, 2009, pp. 357–362. isbn: 978-0-
9813537-0-8.

[2] Luke Barrington et al. Audio information retrieval using semantic similar-
ity. Tech. rep. In IEEE ICASSP, 2007.

[3] Michael Kuhn, Roger Wattenhofer, and Samuel Welten. “Social Audio Fea-
tures for Advanced Music Retrieval interfaces”. In: ACM Multimedia, Flo-
rence, Italy. Oct. 2010.

[4] linkibol.com. How to Build a Popularity Algorithm You can be Proud of.
url: http://blog.linkibol.com/2010/05/07/how-to-build-a-popula
rity-algorithm-you-can-be-proud-of/.

[5] Evan Miller. How Not To Sort By Average Rating. url: http://www.evan
miller.org/how-not-to-sort-by-average-rating.html.

[6] Elias Pampalk, Tim Pohle, and Gerhard Widmer. “Dynamic Playlist Gener-
ation Based on Skipping Behaviour”. In: Proc. of the 6th ISMIR Conference.
2005, pp. 634–637.

[7] SQLite-Consortium. File Locking And Concurrency In SQLite Version 3.
url: http://www.sqlite.org/lockingv3.html.

[8] SQLite-Consortium. SQLite is Transactional. url: http://www.sqlite.o
rg/transactional.html.

33

http://blog.linkibol.com/2010/05/07/how-to-build-a-popularity-algorithm-you-can-be-proud-of/
http://blog.linkibol.com/2010/05/07/how-to-build-a-popularity-algorithm-you-can-be-proud-of/
http://www.evanmiller.org/how-not-to-sort-by-average-rating.html
http://www.evanmiller.org/how-not-to-sort-by-average-rating.html
http://www.sqlite.org/lockingv3.html
http://www.sqlite.org/transactional.html
http://www.sqlite.org/transactional.html

Appendix A

Neighbour Distance
Distribution in Different Music

Collections

Below are the neighbour distance distributions of some music collections which
we have tested. We calculated the distances from every song to every other song.
The diagrams below show how many times a distance appeared.

(a) Sabine (µ = 0.50, σ = 0.18, z = 2.66) (b) Tobi (µ = 0.50, σ = 0.16, z = 2.55)

(c) Luc (µ = 0.50, σ = 0.19, z = 1.35) (d) Disco (µ = 0.59, σ = 0.17, z = 2.64)

Figure A.1: Distance distribution in usual song collections.

If a music collection has few items only or the songs are from totally different

A-1

Neighbour Distance Distribution in Different Music CollectionsA-2

genres, degenerated distance distributions can appear:

(a) Small (µ = 0.18, σ = 0.08, z =∞) (b) Two genres (µ = 0.49, σ = 0.19, z =
1.67)

Figure A.2: Distance distributions in small or abnormal collections.

	Acknowledgements
	Abstract
	1 Introduction
	2 Related work
	3 Statistics
	3.1 Distances between Songs
	3.1.1 Distance Range
	3.1.2 Distance Distribution

	3.2 Calculation of the Rating
	3.2.1 Percental Listening Rating
	3.2.2 Neighbourhood Rating
	3.2.3 Listening Time Rating

	3.3 Stabilization of the Rating
	3.4 User Statistics
	3.4.1 Top-100 & Flop-100
	3.4.2 Recently Imported
	3.4.3 Suggestions

	4 Smart-Shuffle v2.0
	4.1 Concept
	4.1.1 Agents
	4.1.2 Votes
	4.1.3 Choosing the next Song
	4.1.4 Agent Weights

	4.2 Agent Types
	4.2.1 Favourite Agent
	4.2.2 Anti-Repetition Agent
	4.2.3 Suggestion Agent
	4.2.4 Random Agent

	4.3 Implementation
	4.3.1 Timing & Implementation Tricks
	4.3.2 Backup

	4.4 Analysis
	4.4.1 Ratings
	4.4.2 Neighbourhood Size
	4.4.3 Agent Timing

	5 Transactions in SQLite
	5.1 What is the Problem?
	5.2 Some Further Explanations
	5.3 The Solution
	5.4 Known Issues

	6 Limitations and Future Work
	6.1 Limitations
	6.2 Future Work
	6.3 Conclusion

	A Neighbour Distance Distribution in Different Music Collections

