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Abstract

Downloading and storing a large amount of music has become easier due to faster
internet connections and cheaper storage. Finding desired music in a big music
collection still poses a challenge that intelligent music players try to solve: In-
stead of organizing music in a hierarchical folder structure music is presented in
a more intuitive way using similarity relations between artists and tracks. We
provide the foundation that intelligent music players can use to organize the
user’s music collection. We infer the similarity relations between artists using
collected data about users’ music taste. Our system unambiguously identifies
artists and transforms the collected music taste data into an intermediate rep-
resentation that we use to embed artists into an euclidean space where similar
artists are nearby. In an experimental study we evaluate our embedding by com-
paring it with the similarity notion of LastFM. We briefly show two possibilities
of visualizing artists on a map.
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Chapter 1

Introduction

1.1 Motivation

More and more people have big music collections since it has become easier to
download and store a large amount of music. Having a lot of music, people find it
more difficult to find the music they like the most. Intelligent music players help
them to find music they want to listen to by relying on the similarity relations
between artists and songs. They can create playlists with songs similar to one
selected song. They can display songs on a map where similar music is nearby.
They can analyze what kind of music the user does not want to listen to by
observing which music a user skips. They can guide the user through his music
collection by providing similar artist lists. All of these features are only possible
if one knows something about the similarities of artists or tracks.

1.2 Similarity

A good similarity measure is the foundation for music exploration applications
that help users to find music. There are different approaches to come up with a
similarity measure:

• One could analyze the sound of all songs. This is a relatively objective
approach but it’s not so clear how to incorporate many different aspects
of a song like rhythm, harmony and dynamic in a similarity measure that
feels reasonable to the user.

• A music expert could characterize each artist in a way that allows us to
compute a similarity measure. This works well but is very time consuming
if we have a huge amount of artists.

• One could compare the music taste of many different users to derive a
similarity measure of artists.

1



1. Introduction 2

We use the last approach to derive a similarity measure: We use collected data
about the music taste of users to build an euclidean similarity space.

1.3 Goal

We want to embed artists into an euclidean space so that two artists are nearby
if they are similar. Every artist is represented as a vector - we prefer a compact
vector so that we can use our embedding on mobile phones that do not have much
computing power. The similarity of two artists is high if the distance between the
corresponding two vectors is small. The embedding algorithm has to be scalable
and efficient so that the embedding can be automatically recomputed every day
(we want to provide up-to-date similarity information).



Chapter 2

Data

Over the last three years, we have gathered (in an anonymous way) data about
the music taste of Jukefox1 users, which tells us which user has which music.
The collected data was not in a representation we could use immediately to
infer similarity relations: We collected the artist and track name but did not
unambiguously identify the actual artist and track. Identifying the actual artist
and track might seem trivial at the first glance but more subtle after considering
the challenges that make the mapping from (noisy) names to identifiers hard.
We explain a matching system that tackles these challenges and transforms the
collected data to a useful intermediate representation (which we use in the next
chapter to embed artists into an euclidean space).

2.1 Collected data

We have collected more than 290 million request logs over the last three years
that contain information about the users’ music taste. We have one request log
for every track a user has. Every original request log contains the following:

• Artist name

• Track name

• Timestamp

• Hash (which is user-specific)

Using our matching system we changed this representation to the following
representation, which is more useful for computing an embedding:

• Artist id

1Jukefox is an Android music player that is based on similarity relations between artists and
tracks.

3



2. Data 4

• Track id

• Timestamp

• Listener id

Instead of storing the artist name and the track name, we only store the cor-
responding identifiers. Besides we only store a week number and a listener id.
The resulting request log is smaller and facilitates it to compute an embedding.

2.1.1 Analysis

We analyze the request log to get some insights: Most people have popular music.
Roughly 4% of all collected data (10 million request logs) are about the 10 most
popular artists (Table 2.1). Figure 2.1 shows that most of the request log only
contains information about popular artists. Over 80% of the request logs refer
to 1% of the most popular artists. In other words, over 80% of the music that
Jukefox users have refer to less than 7000 artists2. We do not have any request
log for the majority of artists: We only have data about 43% of artists that
we have in our database! These numbers are in line with research about selling
revenues3.

# Artist Requests

1 The Beatles 1.931.491
2 Eminem 1.245.051
3 Lil Wayne 1.021.618
4 Linkin Park 1.017.222
5 Pink Floyd 985.475
6 Metallica 976.737
7 Red Hot Chili Peppers 856.931
8 Queen 753.991
9 Michael Jackson 739.279
10 AC/DC 705.955

Table 2.1: TOP 10. This table shows the 10 most popular artists of the request
log.

Our collected data belongs to the category of implicit feedback data: We
implicitly assume that a user likes an artist if he has the artist. Implicit feedback
provides us only with positive feedback and not with negative feedback, i.e. we
only know that a user might like an artist but we don’t know whether he dislikes
an artist. Using implicit data our embedding cannot reach the quality that we
would get if we would have explicit data.

2Our database has over 680.000 artists.
3http://www.guardian.co.uk/music/2008/dec/23/music-sell-sales
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Figure 2.1: Request log distribution (Artists are ordered by popularity). This
figure shows how many request logs are due to the first 0.1%/1%/10%/43% of
the most popular artists. Over 80% of the request logs give information about
1% of the most popular artists.
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2.2 Identifying music

There are two different ways of identifying songs:

• A song can be identified using its sound: Assuming that we have a database
that contains the sounds of songs4, we can compare a given song with all
known songs to identify the song.

• One can use metadata (commonly stored in ID3 tags) about a song to
identify it.

We only use the last approach to identify songs, i.e. we use (noisy) metadata
containing the artist, album and track5 name to identify the song.

2.2.1 Challenges

It is far from trivial to match nosiy metadata belonging to a musical entity6 to
the correct identifier representing the intended entity. The following issues make
a correct matching of requests to musical entities hard:

• Ambiguity: Different artists may have the same name, e.g. “John Williams”
might refer to the popular soundtrack composer or to a classical guitar
player or to a acoustic blues guitarist or to a jazz saxophonist. More than
10 different musicians with the name “John Williams” are listed on the
MusicBrainz7 website8.

• Aliases: Some users use an alias to refer to an artist, e.g. people use the
alias “Fab Four” to refer to “The Beatles”.

• Noise: The users’ requests are very noisy, e.g. over 90 different names
in our original request log refer to “The Beatles”. People use unneces-
sary symbols like ”?,- .[0-9];” or extend the artist name with additional
information (like a particular year).

• Misspelling: Some users misspell the artist name, e.g. people use “The
Beetles” although they want to refer to “The Beatles”.

The ambiguity issue is not easy to solve: The famous music website Last.fm
doesn’t disambiguate different artists with the same name according to their

4In practice, one stores only fingerprints of the sounds of songs in the database.
5We use the term track to refer to a song of a particular album.
6We use the term musical entity to refer to an artist, album or track.
7MusicBrainz is an Open Music Encyclopedia.
8http://www.musicbrainz.org
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FAQs9. Contrary, they even maintain different profiles for the same artist. Ac-
cording to their blog they work on improving disambiguation10 (they cooperate
with MusicBrainz). We tackle these challenges as follows:

• We use the MusicBrainz database11 to disambiguate musical entities. Mu-
sicBrainz provides an “unambiguous form of music identification” (as stated
on the MusicBrainz website).

• We develop a system that allows us to match musical entities properly.

9http://www.last.fm/help/faq?category=97
10http://blog.last.fm/2011/11/24/the-brainz-are-back-in-town
11We denormalize the MusicBrainz database for simplicity and performance.
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2.3 Matching system

Our matching system converts the original request log to a more compact rep-
resentation (Figure 2.2): Every original request log (containing the artist and
track name) is transformed to a new representation of the request log (which
just contains ids and the week).

id artist name track name hash timestamp

1 The Beatles Héy- Jude (track-1) .? ... ...
2 Beatles Los Submarine Yellow ... ...
3 John Williams Selections From ”West Side Story” ... ...
4 John Williams Prelude to a Song ... ...	
id artist id album id recording id listener id week

1 303 996439 2803068 10 2104
2 303 953650 4260494 11 2104
3 94 1129941 13316089 12 2104
4 238569 1062097 12614706 13 2104

Figure 2.2: Matching from names to unique ids. We find the best possible match
of every music track using the MusicBrainz data. Our matching system ignores
some naming inconsistencies:

• Accents and special characters like ,- are ignored. Additional information
like (1960) is ignored in some cases. [id = 1]

• We ignore the order of the words if we cannot match the names directly.
[id = 2]

• Some artists have the same name: John Williams might refer to the fa-
mous music composer as well as to a guitar player. Our system is able to
disambiguate these two different artists. [id = 3,4]

While designing the matching system we focused on two aspects: Quality
and performance. The former helps us to compute a better embedding (a better
matching results in more accurate input data, which improves the quality of our
embedding). Using our matching system we were able to identify over 85% of
the music that Jukefox users have. The latter is important because the number
of requests that we get in one month increases (Figure 2.3). Nowadays we get
nearly 20 million requests in one month.

The performance of our matching system was crucial in order to match over
290 million accumulated original request logs to corresponding identifiers. Using
a Postgres12 database index as well as an Lucene13 index our matching system
was not able to match more than 100 tracks per second to corresponding artist

12Postgres is an object-relational database management system.
13Lucene is a text search engine library.
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Figure 2.3: Requests in million per month. This figure shows how the requests
per month, which the Jukefox server gets, increase over time. In 2010, we only
had a few million requests per month whereas nowadays we nearly have 20 million
requests per month.

and track ids. Therefore we would have needed more than one month to match
the whole original request log. We were able to boost the performance to 1000
tracks per second by developing a self-made index using the key-value store Redis.

2.3.1 Matching names to ids

We explain how we match a user input referring to an artist to an artist id by giv-
ing an example: We show how our system indexes the artist “Wolfgang Amadeus
Mozart” and how a user request for “Wolfgang Amadeus Mokart (composer)”
is matched to the intended artist (id). Before we explain indexing and searching
we explain the data structure that we use for the index and the tokenizer needed
for indexing and searching.

Data structure We use a (special) set to index musical entities that can be
retrieved by key in O(1) (via hashing) and is sorted by score (this data structure
is provided by the key value store Redis14). Each element in the set is associated
with a score. The element with the highest score is at the beginning whereas the
element with the smallest score is at the end.

14Redis is a fast in-memory key value data store.
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Tokenizer Our tokenizer turns a string input into a set of strings consisting
of:

• the exact input

• the normalized input

• the normalized input where we removed any information about word order

• the two longest normalized words sorted alphabetically

We refer with normalized input to the input where we removed characters that
are likely to be not important for matching names to ids (e.g. whitespace, un-
derscore, characters in parenthesis, ...).

Indexing We show how our system indexes the artist “Wolfgang Amadeus
Mozart”. We use the tokenizer to generate four keys:

1. Wolfgang Amadeus Mozart

2. wolfgangamadeusmozart

3. amadeusmozartwolfgang

4. wolfgangamadeus

We add the id of the artist “Wolfgang Amadeus Mozart” to each sorted set
that can be retrieved in O(1) via hashing with one of the above four keys.

Searching We show how our system handles the user query for “Wolfgang Amadeus-
Mokart,(composer) 1791”. We use the tokenizer to generate four keys:

1. Wolfgang Amadeus-Mokart,(composer) 1791

2. wolfgangamadeusmokart

3. amadeusmokartwolfgang

4. wolfgangamadeus

We take a (special) union of all sorted sets that can be retrieved with the above
four keys. The scores of artist ids that are in multiple sets are summed up.15 In
other words, we prefer the artist id that matches the user query best.

Because of a spelling error in the query “Wolfgang Amadeus Mokart (com-
poser)” the first three keys lead to three empty sorted sets. The last key leads
to a non-empty sorted set that contains an artist id for “Wolfgang Amadeus
Mozart”. Our matching algorithm returns the found artist id.

15Redis provides this (special) union with the command zunionstore.



2. Data 11

2.3.2 Remarks

Ambiguity Some artist names refer to multiple artists: “John Williams” can
refer to more than ten different musicians. We use additional information like
track title (if given by the user) or artist popularity to find the most probable
artist.

Aliases We use aliases so that every artist can not only be found by the proper
name but also by an alias: “Wolfgang Amadeus Mozart” can be found by its
proper name or by one of more than 30 aliases (e.g. W. A. Mozart, W.A. Mozart,
Volfgangs Amadejs Mocarts).

Matching tracks Tracks (as well as albums) can be matched in a similar
fashion. First, we search for all possible artist ids, then for all possible album
ids and finally for all possible track ids. We discard all ids that definitely are not
meaningful and return the most probable track id.



Chapter 3

Embedding

We describe different ways of embedding high dimensional data into a lower
dimensional space: We briefly present some popular approaches to reduce the
dimensionality of our collected data. We preprocess our collected data and use
the PCA to embed artists into an euclidean space. Finally, we show some pos-
sibilities to compute the similarity between two artists.

3.1 Survey of dimensionality reduction techniques

Obtaining a dimensionality reduction is actively researched. In recent years,
many different approaches were proposed that embed high dimensional data into
a lower dimensional space. In the following we describe the well-known PCA as
well as other more recent proposals.

PCA The Principal Component Analysis (PCA) reduces the dimensionality of
the high-dimensional input by projecting the data on the directions with most
variance. We assume that the directions with most variance contain the most
important information and that our input data lies on a linear manifold. We can
obtain the PCA by using the SVD (Singular Value Decomposition).

Weighted-ALS Hu et al. describe in [1] how one can use a weighted Alter-
nating Least Squares approach that is very similar to the above SVD approach
but uses the input data in a more efficient way by introducing the notion of
confidence, i.e. we use information about how confident we are that a user has
a specific artist instead of discarding the confidence like in our SVD approach
(which we will describe later).

LLE Locally Linear Embedding (LLE) is an “unsupervised learning algorithm
that computes low-dimensional, neighborhood-preserving embeddings of high-
dimensional inputs.” [2]. Every data point is reconstructed using k neighbors.

12



3. Embedding 13

LLE scales quadratically in the number of artists (which we want to embed) if
we use the common way of implementing this algorithm [3].

t-SNE t-SNE is an unsupervised dimensionality reduction techniques that is
suitable for reducing the dimensionality to only a few dimensions [4, 5]. Therefore
this technique is well suited to visualize artists on a map. Using t-sne we not
only put similar artists but also similar clusters next to each other.

Neural network A non-linear generalization of the PCA can be computed by
using a neural network [6] that can provide better results than the classical PCA
(which we will use).

3.2 Our embedding using SVD

Many different methods reduce the dimensionality of our high-dimensional input
data. We decided to use the SVD to obtain a PCA of our data because of the
following reasons:

• Having an embedding of artists we can easily reduce the dimensionality of
artists further by omitting dimensions of low variance. The client that uses
our embedding can decide how many dimensions he wants to use.

• We can use the two most important dimensions to obtain a visualization
of artists.

• We only have one parameter (the dimensionality d) that can be easily
determined. We don’t have to change parameters if we get more1 data.

• The Netflix Prize2 showed that matrix factorization models like the SVD
(as well as Restricted Boltzmann machines) provide good3 results in pre-
dicting ratings.

• The SVD is scalable and can be computed in a short amount of time.

We preprocess our collected data and embed artists into an euclidean space (so
that similar artists are nearby).

1Other (complicated) methods require that you change some parameters of the model if you
get more data.

2The Netflix Prize challenged the scientific community to find the best possible Collaborative
Filtering methods.

3The winning team of the Netflix challenge used matrix factorization techniques in their
final solution.
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3.2.1 Preprocessing

We process our matched request log to obtain a matrix C where Cij indicates how
many tracks of artist j a user i has. Research about implicit4 feedback data [1]
shows that one can improve the quality of the embedding by not directly applying
the SVD to C but to a sparse matrix X where Xij = 1 if user i has artist j. We
remove all columns corresponding to artists that are owned by less than 10 users
so that we only provide similarity information about artists if we have enough
data. Then, we normalize every column and obtain X̄. Without normalization
every popular artist would have a big distance in the final embedding to his
similar artists (which would not make sense).

3.2.2 Embedding

We embed the preprocessed data X̄ into an euclidean space. We apply5 the SVD
to the matrix X̄ so that we get the following matrix decomposition that gives us
a lower dimensional representation of artists:

X̄ = USV T

Artist j is described by the row Vj,: ∈ Rd (and user i is described by row
Ui,: ∈ Rd). We refer to Vj,: as the coordinates of artist j, which we use to
compute the similarity between artists. We will determine the optimal number
of latent factors d in the experimental study by using the singular values, which
are stored in the diagonal of the matrix S.

3.3 Computing similarity

Different measures allow us to compute the distance D or similarity S between
two artists j and k.

1. Euclidean distance: Djk =
√∑d

l=1(Vj,l − Vk,l)2

2. Manhattan distance: Djk =
∑d

l=1 |Vj,l − Vk,l|

3. Cosine similarity: Sjk =
Vj,:V

T
k,:

‖Vj,:‖‖Vk,:‖ ∈ [−1, 1]

4Our request logs are implicit data since we implicitly assume that a user likes an artist if
he has the artist.

5We used the svdlibc implementation written by Doug Rohde.
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Experimental study

We measure how much time we need to obtain our embedding, we show how we
choose the number of latent factors (of each artist), and we evaluate the quality
of our embedding.

4.1 Benchmark

We load over 250 million matched request logs from the database and preprocess
them to obtain the binary matrix X̄, which describes 100.000 artists character-
ized by the music taste of over 380.000 users. Finally, we compute the embedding.
The whole process takes less than half an hour (Table 4.1).

What Time in minutes

Loading from DB 11
Preprocessing 5
SVD 8
Total 24

Table 4.1: Overall time. This table shows the overall time we need to compute
the embedding.

15
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4.2 Model order selection

We determine the number of latent factors d of our embedding. The lower we
choose d the simpler and computationally more efficient our model. Since we
want to use artist coordinates on mobile phones, we prefer a small number of
latent factors even if the quality of our embedding degrees slightly.
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Figure 4.1: Magnitude of the singular values. Using 20 latent factors for each
artist we preserve a good amount of similarity information.

Figure 4.1 shows the plot of the magnitudes of the first 160 singular values.
Latent factors that correspond to singular values with a high magnitude usually
convey the most useful information to distinguish artists. d = 20 seems to
provide a compromise between space/time requirements and the quality of our
embedding.
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4.3 Evaluation

We give you some insight about the embedding and compare it with LastFM as
well as with a similarity measure that directly uses the high-dimensional input
data.

Insight We want to give you an opportunity to inspect the distances of some
selected artists. Table 4.2 shows the euclidean distances of the 5 most popular
artists followed by some selected artists that are similar in the embedding. High
distances indicate no similarity while low distances indicate similarity.
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The Beatles 0.42 0.37 0.36 0.15 0.19 0.2 0.2 0.21 0.21
Eminem 0.42 0.4 0.4 0.43 0.42 0.42 0.43 0.42 0.42

Lil Wayne 0.37 0.4 0.44 0.35 0.32 0.32 0.32 0.32 0.32
Linkin Park 0.36 0.4 0.44 0.36 0.3 0.31 0.3 0.3 0.29
Pink Floyd 0.15 0.43 0.35 0.36 0.17 0.17 0.17 0.18 0.18
Beethoven 0.19 0.42 0.32 0.3 0.17 0.02 0.02 0.03 0.02

Mozart 0.2 0.42 0.32 0.31 0.17 0.02 0.01 0.02 0.02
John Williams 0.2 0.43 0.32 0.3 0.17 0.02 0.01 0.02 0.02
Clint Mansell 0.21 0.42 0.32 0.3 0.18 0.03 0.02 0.02 0.03
Hans Zimmer 0.21 0.42 0.32 0.29 0.18 0.02 0.02 0.02 0.03

Table 4.2: Euclidean distances of TOP 5 artists followed by 5 other artists that
are similar to each other (d = 20). This table illustrates how one can compare
artists using the euclidean distance. Small distances, which are highlighted,
indicate similarity.
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4.3.1 Comparison with LastFM

We compare our latent factor model (SVD) with the similarity notion of LastFM.
We use the term “similar artist list of artist A” to refer to the list of the 100 most
similar artists of artist A. We select 50 famous artists arbitrarily1 and compare
for each of these artists the “similar artist list” of LastFM with the “similar
artist list” using our embedding: The Tables 4.3, 4.4 and 4.5 show for each artist
the agreement in % of the “similar artist list” of LastFM with the “similar artist
list” of our embedding depending on the number of latent factors d. We measure
the agreement with LastFM as follows:

agreement =
number of artists in both lists

100
∈ [0, 100%]

Observations The euclidean distance provides the highest agreement with
LastFM using the prior chosen parameter d = 20 . Therefore we recommend to
use the euclidean distance if one chooses to use 20 latent factors.

More common artists might be explainable with fewer dimensions than less
common artists: The “similar artist lists” of Bryan Adams as well as the Rolling
Stones already have a considerable agreement with LastFM using only one or
two dimensions, whereas the “similar artist lists” of Ludwig van Beethoven have
only a considerable agreement with much more dimensions.

Comparing the cosine similarity (Table 4.5) with the euclidean distance (Ta-
ble 4.3) we notice that if we use more latent factors (i.e. if we increase d) we
might benefit from using the cosine similarity instead of the euclidean distance.

Comparing the manhattan distance (Table 4.4) with the euclidean distance
(Table 4.3) we notice that the difference between these too measures is negligible
small.

4.3.2 Comparison using the jaccard similarity

We (also) compare our embedding with the jaccard similarity, which we can
compute by directly using the high-dimensional binary input matrix X (Xij = 1
if user i has artist j). The jaccard similarity coefficient allows us to measure
the similarity between artists j and k. Let uj/uk refer to the set of indices
corresponding to users that have artist j/k. Then the jaccard index can be
computed as follows:

Sjk =
uj ∩ uk
uj ∪ uk

∈ [0, 1]

1We did not choose to select random artists because typical users request popular artists
and not random artists.
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Observations Comparing the euclidean distance (Table 4.3) with the jaccard
index (table 4.6) we notice that our latent factor model with 20 factors only
provides a mean agreement of 24.76%, while the jaccard index provides a mean
agreement of 33.56%. This implicates that our embedding does not preserve the
high-dimensional input perfectly.

Figure 4.2 shows the mean agreement with LastFM depending on the dimen-
sionality d and the chosen similarity measure. Our embedding has a lower mean
agreement in comparison to the mean agreement we get by using the jaccard
index directly on the high-dimensional input X.
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d 1 2 5 10 20 30 40 80 120 160
Artist

Ludwig van Beethoven 0 0 3 5 15 19 20 28 35 42

Wolfgang Amadeus Mozart 1 2 5 9 21 23 25 30 38 42

Franz Schubert 0 0 13 24 29 32 34 37 48 51
John Williams 1 0 2 8 12 14 15 15 14 14

Clint Mansell 0 1 0 4 12 17 23 33 43 44

Hans Zimmer 2 0 3 7 13 13 17 15 16 20
Danny Elfman 0 1 0 6 14 15 18 17 21 27

Clueso 1 3 10 14 23 23 24 30 32 34
Yann Tiersen 2 0 1 5 13 14 14 12 10 9

Bon Jovi 13 24 25 34 40 47 52 42 10 11

Blues Brothers 1 1 1 2 3 5 4 5 5 5
Fats Domino 0 8 14 23 35 35 37 39 41 42

Bryan Adams 11 32 29 41 50 43 46 45 29 17

Mariah Carey 16 23 30 42 51 47 37 39 27 7
Billy Joel 6 19 29 46 56 55 50 47 46 39

Elton John 9 28 36 47 49 43 39 41 41 40

Atomic Kitten 4 1 5 6 15 26 32 37 37 37
John Denver 4 11 11 35 39 42 46 41 38 37

The Offspring 10 10 40 44 37 36 42 36 37 30

Jim Ladd 0 0 0 0 0 0 0 0 0 0
Wise Guys 1 0 3 9 9 12 17 18 16 15

Die Firma 1 1 3 9 11 13 18 25 24 28
Sportfreunde Stiller 1 6 15 24 26 27 29 33 36 37

Wir sind Helden 1 1 8 17 20 25 25 32 33 35

Christina Stürmer 2 0 17 32 42 35 33 36 42 34

Die Ärzte 1 2 12 14 17 20 27 28 38 40

Paul Kalkbrenner 0 0 1 1 3 4 6 14 14 14

Erste Allgemeine Verunsicherung 1 2 7 11 11 11 12 14 11 11
Curse 1 0 1 6 13 15 25 26 29 29

Massive Attack 1 4 8 18 26 32 33 38 41 41
Portishead 1 2 10 20 34 31 36 37 32 32

Ladytron 0 0 8 12 13 19 18 22 20 19

The Rolling Stones 16 33 42 52 58 54 54 28 24 18
Bob Dylan 4 14 26 41 41 42 41 39 31 34

ABBA 8 14 36 33 29 27 26 27 30 28

John Lennon 4 16 19 33 31 23 23 16 7 5
Little Richard 4 7 17 30 34 36 36 36 38 39

Jackie Wilson 3 7 12 20 37 44 44 41 44 44

Chuck Berry 3 12 15 25 35 30 30 29 29 24
Ray Charles 6 9 16 32 34 37 37 34 36 39

B.B. King 3 2 6 16 9 13 17 26 30 34
Claude Bolling 0 1 5 5 4 4 4 8 9 8

Emerson String Quartet 0 0 0 0 7 13 8 11 14 13

The Los Angeles Guitar Quartet 0 0 0 0 3 1 0 0 0 1
Tom Astor 1 1 11 20 22 21 22 32 31 32

Johnny Cash 5 13 14 27 30 35 32 34 38 39
Thelonious Monk 0 2 15 26 27 28 28 38 43 47
Django Reinhardt 0 0 13 20 26 26 25 35 36 35

The Dave Brubeck Quartet 0 2 7 20 28 33 32 39 47 49

Duke Ellington 1 5 20 25 31 33 32 33 36 38

Mean 3.0 6.4 12.48 20.0 24.76 25.86 26.9 28.36 28.54 28.2
Median 1.0 2.0 10.5 20.0 26.0 26.0 26.5 32.0 31.5 33.0

Max 16 33 42 52 58 55 54 47 48 51

Table 4.3: Agreement in % using the euclidean distance. Each entry in this
table indicates how many artists are both in our similar artist list as well as in
the LastFM similar artist list (given the artist and the number of latent factors
d).
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d 1 2 5 10 20 30 40 80 120 160
Artist

Ludwig van Beethoven 0 0 2 4 14 15 17 25 33 40

Wolfgang Amadeus Mozart 1 2 4 6 19 21 24 28 34 40

Franz Schubert 0 0 11 22 25 28 33 35 46 50
John Williams 1 0 2 10 12 12 12 11 14 14

Clint Mansell 0 1 1 5 13 15 27 33 41 42

Hans Zimmer 2 0 3 7 9 12 16 17 15 20
Danny Elfman 0 0 0 3 11 12 17 17 20 24

Clueso 1 3 10 15 22 23 24 32 35 38
Yann Tiersen 2 0 1 4 12 13 12 9 10 9

Bon Jovi 13 23 22 32 45 45 47 44 31 28

Blues Brothers 1 1 1 3 3 6 4 6 6 5
Fats Domino 0 9 12 22 34 36 35 41 44 43

Bryan Adams 11 30 29 34 53 43 47 43 24 17

Mariah Carey 16 17 27 44 52 47 38 36 33 21
Billy Joel 6 18 29 40 55 59 51 44 42 40

Elton John 9 25 32 48 51 45 37 39 45 45

Atomic Kitten 4 1 5 5 14 25 30 38 37 40
John Denver 4 11 12 25 29 44 44 42 37 34

The Offspring 10 9 40 47 45 36 40 36 36 36

Jim Ladd 0 0 0 0 0 0 0 0 0 0
Wise Guys 1 0 4 8 11 13 16 16 16 16

Die Firma 1 1 6 10 12 13 19 26 25 28
Sportfreunde Stiller 1 5 15 22 24 26 30 34 37 35

Wir sind Helden 1 1 8 14 20 25 27 32 33 36

Christina Stürmer 2 0 16 30 44 37 30 39 41 37

Die Ärzte 1 2 10 14 17 21 26 34 36 39

Paul Kalkbrenner 0 0 1 1 3 3 3 13 12 12

Erste Allgemeine Verunsicherung 1 2 7 11 11 11 12 14 11 10
Curse 1 0 2 6 14 16 24 26 29 29

Massive Attack 1 5 8 16 28 29 35 38 37 38
Portishead 1 1 9 19 31 31 34 35 31 31

Ladytron 0 0 8 11 15 17 17 20 19 19

The Rolling Stones 16 33 44 54 57 45 48 28 24 20
Bob Dylan 4 12 26 40 36 41 42 41 29 29

ABBA 8 13 35 31 30 32 30 31 30 29

John Lennon 4 14 19 33 30 16 18 12 8 4
Little Richard 4 5 16 27 34 36 36 36 36 37

Jackie Wilson 3 4 12 22 35 42 43 41 44 45

Chuck Berry 3 11 15 25 35 30 30 29 29 24
Ray Charles 6 9 16 33 36 37 37 40 37 37

B.B. King 3 1 4 15 9 13 17 25 27 33
Claude Bolling 0 1 5 5 5 3 3 9 9 9

Emerson String Quartet 0 0 0 0 5 12 8 12 14 14

The Los Angeles Guitar Quartet 0 0 0 0 2 1 1 0 0 1
Tom Astor 1 1 11 20 21 23 24 30 30 32

Johnny Cash 5 13 16 25 28 32 31 37 39 40
Thelonious Monk 0 2 9 17 24 28 27 33 44 45
Django Reinhardt 0 0 9 14 21 24 27 35 36 34

The Dave Brubeck Quartet 0 2 7 18 26 28 28 37 42 49

Duke Ellington 1 5 17 24 27 29 33 36 36 37

Mean 3.0 5.86 11.96 18.82 24.18 25.02 26.22 28.3 28.48 28.7
Median 1.0 2.0 9.0 16.5 23.0 25.0 27.0 32.5 32.0 32.5

Max 16 33 44 54 57 59 51 44 46 50

Table 4.4: Agreement in % using the manhattan distance. Each entry in this
table indicates how many artists are both in our similar artist list as well as in
the LastFM similar artist list (given the artist and the number of latent factors
d).
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d 1 2 5 10 20 30 40 80 120 160
Artist

Ludwig van Beethoven 0 0 0 0 3 8 13 28 37 45

Wolfgang Amadeus Mozart 0 0 0 0 4 8 12 26 35 41

Franz Schubert 0 0 0 0 5 10 14 29 43 51
John Williams 0 0 0 0 4 6 7 12 14 14

Clint Mansell 0 0 0 2 5 4 11 16 22 23

Hans Zimmer 0 0 0 0 4 7 11 13 14 17
Danny Elfman 0 0 0 0 3 3 5 13 15 21

Clueso 0 0 7 18 21 22 25 31 34 37
Yann Tiersen 1 3 2 4 6 9 11 19 19 15

Bon Jovi 11 21 22 31 38 43 53 44 23 21

Blues Brothers 1 3 3 4 6 7 9 9 9 8
Fats Domino 0 1 2 6 26 32 32 35 39 44

Bryan Adams 10 30 34 42 50 51 54 59 55 39

Mariah Carey 15 18 26 45 53 51 44 44 26 22
Billy Joel 3 17 23 37 43 46 45 49 50 49

Elton John 8 28 35 47 41 38 36 45 53 51

Atomic Kitten 0 1 6 12 17 23 25 36 41 44
John Denver 0 5 7 24 28 36 47 55 56 56

The Offspring 13 13 39 49 52 43 48 47 49 37

Jim Ladd 0 0 0 0 0 0 0 0 0 0
Wise Guys 0 0 10 23 26 25 26 31 32 32

Die Firma 0 1 2 7 8 9 13 18 20 24
Sportfreunde Stiller 0 0 9 21 24 22 24 33 35 35

Wir sind Helden 0 0 8 22 26 24 27 33 38 39

Christina Stürmer 0 0 9 25 34 26 25 35 36 36

Die Ärzte 0 0 4 12 18 18 24 29 36 35

Paul Kalkbrenner 0 0 0 3 3 3 3 8 9 13

Erste Allgemeine Verunsicherung 0 0 1 6 10 12 13 13 13 12
Curse 0 0 1 8 10 11 14 20 23 27

Massive Attack 2 5 6 20 29 36 39 44 49 48
Portishead 2 5 9 21 31 39 44 47 42 47

Ladytron 0 2 2 10 14 11 11 16 21 21

The Rolling Stones 13 32 40 55 59 55 59 52 42 32
Bob Dylan 7 18 21 37 40 43 45 48 45 44

ABBA 3 14 33 39 40 41 39 41 41 39

John Lennon 11 23 24 39 44 38 41 42 36 32
Little Richard 1 2 8 16 38 39 42 45 44 43

Jackie Wilson 0 0 5 7 37 42 41 40 40 44

Chuck Berry 5 15 19 29 46 42 38 39 42 39
Ray Charles 3 8 16 29 43 45 47 49 50 52

B.B. King 3 7 9 16 16 17 19 18 20 30
Claude Bolling 0 0 0 0 0 1 1 3 3 4

Emerson String Quartet 0 0 0 0 2 2 2 2 4 4

The Los Angeles Guitar Quartet 0 0 0 0 0 0 0 0 0 0
Tom Astor 0 0 0 9 20 30 37 48 55 55

Johnny Cash 3 13 13 24 26 30 31 40 41 48
Thelonious Monk 0 0 0 1 2 12 14 24 32 40
Django Reinhardt 0 0 0 3 7 15 17 24 31 37

The Dave Brubeck Quartet 0 0 0 1 1 7 9 23 28 39

Duke Ellington 0 0 0 2 4 10 19 25 28 39

Mean 2.3 5.7 9.1 16.12 21.34 23.04 25.32 30.0 31.4 32.5
Median 0.0 0.0 4.5 11.0 19.0 22.0 24.5 31.0 35.0 37.0

Max 15 32 40 55 59 55 59 59 56 56

Table 4.5: Agreement in % using the cosine similarity. Each entry in this
table indicates how many artists are both in our similar artist list as well as in
the LastFM similar artist list (given the artist and the number of latent factors
d).
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Artist Agreement

Ludwig van Beethoven 30

Wolfgang Amadeus Mozart 38
Franz Schubert 57

John Williams 12

Clint Mansell 35
Hans Zimmer 18

Danny Elfman 20

Clueso 33
Yann Tiersen 19

Bon Jovi 29
Blues Brothers 8

Fats Domino 40

Bryan Adams 45
Mariah Carey 35

Billy Joel 32

Elton John 39
Atomic Kitten 29

John Denver 40

The Offspring 38
Jim Ladd 0

Wise Guys 49

Die Firma 34
Sportfreunde Stiller 32

Wir sind Helden 39
Christina Stürmer 46

Die Ärzte 21

Paul Kalkbrenner 10
Erste Allgemeine Verunsicherung 17

Curse 47

Massive Attack 29
Portishead 40

Ladytron 31
The Rolling Stones 41

Bob Dylan 35

ABBA 32
John Lennon 35

Little Richard 45
Jackie Wilson 41
Chuck Berry 44

Ray Charles 39

B.B. King 23
Claude Bolling 16

Emerson String Quartet 19
The Los Angeles Guitar Quartet 9

Tom Astor 69
Johnny Cash 23

Thelonious Monk 56
Django Reinhardt 60

The Dave Brubeck Quartet 47
Duke Ellington 52

Mean 33.56

Median 35.0

Max 69

Table 4.6: Agreement in % using the jaccard index. Each entry in this table
indicates how many artists are both in our similar artist list as well as in the
LastFM similar artist list.
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Figure 4.2: Mean agreement in % with LastFM depending on the similarity
measure and the dimensionality d. Using our embedding with euclidean dis-
tance, manhattan distance or cosine similarity we get a lower mean agreement
in comparison to using the jaccard index directly on the high-dimensional input
data.



Chapter 5

Visualization

We visualize artists with two different approaches:

• We use the first two dimensions of our embedding directly.

• We reduce the dimensionality of the embedding to two dimensions using a
nonlinear dimensionality reduction technique (LLE).

We connect every artist with a dashed line to his most similar artist so that we
can visually assess the quality of the artist map.

5.1 PCA map

We plot the first two dimensions of our embedding that correspond to the di-
rections of most variance. We assume that these two dimensions are the most
informative dimensions of our embedding. Figure 5.1 shows the PCA map for
the 30 most popular artists which gives us a global perspective of these artists.
Most of the dashed lines are relatively large so that exploring the neighborhood
of an artist might not be sensible.

5.2 LLE map

We use Locally Linear Embedding (LLE) to reduce the dimensionality of our
embedding from 20 to 2 (described in Section 3.1). Figure 5.2 and 5.3 show us a
visualization for the 30 most popular artists using 3 and 6 neighbors. Regarding
the neighborhood of a chosen artist, these two maps look more reasonable than
the PCA map: The dashed lines indicating the most similar artist are relatively
short.
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Chapter 6

Future Work

Improve the matching algorithm We match every user’s track request to
the corresponding artist, album and track. In order to be able to match even
more tracks we could use fuzzy matching so that more spelling mistakes are
corrected. Additionally, one could identify songs by comparing the sound of a
given song with sounds of known songs1.

Integrate TOP100 data into the Jukefox Website We provide the TOP100
list of most popular artists in the JSON format (as explained in the appendix).
Using this data one could extend the Jukefox website2 to display the most pop-
ular artists of the current month.

Use the embedding in the Jukefox player The Jukefox player relies on
the notion of similarity to recommend music to users. Using our embedding one
could try to improve the quality of recommendations. Artist coordinates can be
retrieved using the API described in the appendix.

Improve the quality of the embedding One could improve the quality of
the embedding by using a better method or combining3 different methods. It
might be a challenge to find good algorithms that are efficient and scale well.
Methods that are able to provide meaningful visualizations of the artists should
be preferred.

1The open source acoustic fingerprint system AcoustID provides a way of identifying songs
by sound.

2http://www.jukefox.org
3A combination of different methods can give better results than each individual method.
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Chapter 7

Conclusion

We provide a system that can be used to identify music and deliver similarity
information about artists. Our system automatically recomputes the embedding
every day so that users get accurate similarity information about artists that
become increasingly popular. The more music taste data we collect the better
the quality of our embedding will be.

Processing a large amount of data is more difficult than processing a small
amount of data: Every step in the transformation of the collected data to a
measure of music similarity has to be efficient. Suitable programming languages
and index data structures help in achieving a good performance.

We hope that our embedding will provide music applications like Jukefox with
a new foundation that will help users to explore their personal music collection
using the notion of similarity.
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Appendix A

API

Information about artists, releases and tracks can be obtained in JSON or XML
format. One can request information about musical entities by specifying all
names seperated by a comma (as shown in the examples). This information can
be obtained using a HTTP GET or POST request. If one would like to obtain in-
formation about multiple musical entities, we recommend to use a HTTP POST
request since a HTTP GET might not work because of a URL length limit. We
provide some examples using the command line tool curl1.

Remarks

• We use comma (i.e. ,) as a separator. Hence we remove any comma that
might appear in a name that appears in the request.

• We use the MusicBrainz naming conventions (the term release is used in-
stead of album!). Everything is explained at the MusicBrainz website2.

• XML responses can be obtained by just replacing .json with .xml in the
url.

1http://curl.haxx.se
2http://www.musicbrainz.org
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API A-2

A.1 Artist information

We can get artist information by name or id. The following four example requests
produce the same response:

Example requests
curl http://jukefox.org:3000/artists.json?names=The+Beatles,John+Williams
curl http://jukefox.org:3000/artists.json -d "names=The Beatles,John Williams"
curl http://jukefox.org:3000/artists.json?ids=303,94
curl http://jukefox.org:3000/artists.json -d "ids=303,94"

Listing A.1: JSON Response containing two artists

[
{
"begin_date_year":1957,
"comment":null,
"coordinates":[],
"country":"GB",
"end_date_year":1970,
"gender":null,
"gid":"b10bbbfc-cf9e-42e0-be17-e2c3e1d2600d",
"id":303,
"name":"The Beatles",
"ref_count":25457,"type":"2"

},
{
"begin_date_year":1932,
"comment":"soundtrack composer & conductor",
"coordinates":[],
"country":"US",
"end_date_year":null,
"gender":"1",
"gid":"53b106e7-0cc6-42cc-ac95-ed8d30a3a98e",
"id":94,
"name":"John Williams",
"ref_count":12482,
"type":"1"

}
]



API A-3

A.2 Release information

We can get release information by providing either artist and release name or
just the id. The following four example requests produce the same response:

Example requests
curl http://jukefox.org:3000/releases.json?names=John+Williams,From+A+Bird
curl http://jukefox.org:3000/releases.json -d "names=John Williams,From A Bird"
curl http://jukefox.org:3000/releases.json?ids=1062097
curl http://jukefox.org:3000/releases.json -d "ids=1062097"

Listing A.2: JSON Response containing one release

[
{
"artist_id":238569,
"barcode":null,
"comment":null,
"date_day":null,
"date_month":null,
"date_year":2008,
"gid":"48a018a7-5168-45ab-971a-56cce792becb",
"id":1062097,
"name":"From a Bird"

}
]



API A-4

A.3 Track information

We can get track information by providing the track id or one of the following
valid parameter for the attribute names:

• names=<Artist1>,<Release1>,<Track1>,<Artist2>,<Release2>,<Track2>,...
(If we have information about the release.)

• names=<Artist1>,,<Track1>,<Artist2>,,<Track2>,...
(If we do not have any information about the release.)

The following four example requests produce the same response:

Example requests
curl http://jukefox.org:3000/tracks.json
?names="John+Williams,From+A+Bird,Prelude+to+a+Song"?hash=<user hash>

curl http://jukefox.org:3000/tracks.json
-d "names=John Williams,From A Bird,Prelude to a Song" -d hash=<user hash>

curl http://jukefox.org:3000/tracks.json?ids=12920594
curl http://jukefox.org:3000/tracks.json -d "ids=12920594"

(If one specifies a hash that identifies a user, we log the request to our database.)

Listing A.3: JSON Response containing one track

[
{
"artist_id":238569,
"coordinates":[],
"id":12920594,
"name":"Prelude to a Song",
"recording_gid":"f607d95f-87c6-4aab-8874-39907c1f4307",
"recording_id":12614706,
"release_id":1062097

}
]



API A-5

A.4 Artist TOP100

We can get the 100 most popular artists of a specific month as follows:

Example request
curl http://jukefox.org:3000/popular artist logs.json?year=2011&month=8

Listing A.4: JSON Response containing the TOP100 for the chosen month

[
{
"id":303,
"name":"The Beatles",
"log_count":71306

},
{
"id":946,
"name":"Eminem",
"log_count":60334

},
{
"id":57186,
"name":"Lil Wayne",
"log_count":56588

},
...

]

The log count refers to the number of requests we got for the corresponding
artist in the specified month.
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