
WLAN-Opp-based RPG

Bachelor Thesis

Nicolas Imhof

January 13, 2013

Advisors: Sacha Trifunovic
Supervisor: Prof. Dr. Bernhard Plattner

Computer Engineering and Networks Laboratory, ETH Zurich

2

Abstract

During this bachelor thesis, a role playing game, short RPG, for android smart-
phones has been created. The player can choose one of three different character
classes, fulfill quests, and improve his or her character. For communication with
other players, the application makes use of opportunistic networks by using the
WLAN-OPP service. This way the game serves as basis to gather data about
the efficiency and usefulness of WLAN-OPP. To ensure that enough data is col-
lected the application needs to be popular and therefore the final goal is to put
it on the android market. To test the user acceptance a beta version of the game
has been made available for four months. In total 17 people downloaded and
played the game. This beta test gave some additional insights and was source
for many changes after its evaluation.

2

Acknowledgments

First of all, I would like to thank all people that participated in the beta test
of the game. The collected usage data and crash reports helped to debug the
game and improved it in various ways. Thank also goes to the person behind
the pseudonym ”Lorc” for his large amount of freely usable black-and-white
pictures. [1] Drawing so many icons for the game by myself would not have
been feasible in addition to the game implementation. Special thank goes to
my advisor Sascha Trifunovic for his extraordinary support, ideas and insightful
discussions and the provided smartphones for testing purposes and last but not
least to Prof. Dr. Bernhard Plattner, my supervisor.

2

Contents

1 Introduction 5

2 Related Work 7
2.1 WLAN-OPP . 7
2.2 Comparable Games . 7

3 Game 9
3.1 Gameplay . 9
3.2 Character Classes . 10

3.2.1 Warrior . 10
3.2.2 Mage . 10
3.2.3 Thief . 10

3.3 Quests . 11
3.4 Multiplayer . 11

4 Design 13
4.1 Appearance . 13
4.2 Navigation . 14

4.2.1 Starting Screen . 14
4.2.2 Game Character Creation 15
4.2.3 The PlayActivity . 15
4.2.4 Quests . 16
4.2.5 Battles . 19
4.2.6 The Game Character . 19

4.3 Attributes . 20
4.3.1 Inventory And Merchant 21
4.3.2 Other Players . 22
4.3.3 Skills . 23

5 Implementation 29
5.1 General . 29
5.2 Server Structure . 29
5.3 Multiplayer . 30
5.4 WLAN-OPP Integration . 31
5.5 Quests Integration . 31
5.6 Battle Calculations . 34
5.7 Evading and Accuracy . 34
5.8 Critical Strikes . 37

3

6 Evaluation 39
6.1 Beta-Test . 39

6.1.1 Usage Reports . 40
6.1.2 Crash Reports . 40
6.1.3 Results . 41

7 Future Work 45
7.1 Concrete Ideas . 45

7.1.1 Talent trees . 45
7.1.2 Lands . 45
7.1.3 Location Based Gaming 46

8 Conclusion 47

A Items Overview 49
A.1 Equipment (16) . 49
A.2 Consumable (17) . 49
A.3 Ingredients (24) . 50
A.4 Other Items (3) . 51

Bibliography 53

4

Chapter 1

Introduction

Computer games are an inherent part of modern society. While in the past
games were played mostly on the console or the personal computer, playing
on mobile devices becomes more and more popular. There are over ten billion
downloads of apps from the Android market. While statistics [2] show that a
good quarter of those apps are games, there is still a deficit of free, good and
textbased RPGs on the Android market. To go against this issue an RPG was
created with the present work.

Modelling 3D figures or drawing images takes a lot of time. Therefore, a text
based RPG offers the advantage that one can fully concentrate on the actual
game content. Playing against the artificial intelligence can be fascinating, but
multiplayer offers more diversity and a different kind of challange. Using direct
device to device communication, the multiplayer part can be realized without
the need of a fixed infrastructure like a server. Players don’t need any internet
connection and can play anywhere by forming Ad-Hoc networks.

The following chapter will go more into detail about WLAN-OPP, the service
that enables the device to device connectivity, as well as other related work.
Afterwards in Chapter 3 the basics of the game are introduced. The subsequent
Chapter 4 depicts the design of the game and gives a concrete impression of game
mechanical elements such as quests or battles. While the following Chapter
5 shows how important parts of the application have been implemented, the
Chapter 6 evaluates the data from the beta test conducted with 17 people and
shows which results have been derived from it. It also shows that the game has
become quite complex. Then, in Chapter 7, some ideas are given on how the
game could be further improved and extended. Finally, Chapter 8 summarizes
what has been reached with the application and concludes that, in spite of the
already wide content, it would still be a good idea to spend more time on the
game and add more content, before it is put on the android market.

5

6

Chapter 2

Related Work

2.1 WLAN-OPP

WLAN-OPP is a service application developed at the ETH Zurich, that allows
mobile devices to form opportunistic networks. In opportunistic networks, de-
vices can connect and disconnect at any time and they offer the advantage that
no fixed infrastructure is needed. Unfortunately, most mobile devices are not
capable of Ad-Hoc networking, so opportunistic networks are not often used.
Also using Bluetooth is not an option for opportunistic networking because it
is too limited due to its short range. The solution proposed in the paper of
Sascha Trifunovic et al. [3] is an alternative way that makes use of common
smartphone features and realizes opportunistic networks by using existing WiFi
networks as well as the access point mode of mobile devices. The proposed so-
lution offers even some advantages over conventional Ad-Hoc networks; such as
less battery power consumption. In the present work, the WLAN-OPP service
is successfully and actively used for the communication between the players.

2.2 Comparable Games

The android market offers heaps of games to play. The more sophisticated
games are mostly not for free and if they are then they offer the possibility to
spend money ingame. Of course there are too many games out there than could
have been tested in a search for related work. So the search was reduced to read
the description of comparable games and only download and test those that are
for free. The fact that only games were sought-after that are text based role
playing games, reduced the range a lot. In the end there were some games found
that had similar properties to the intended work but there was no exact match.

In the following three games are listed that share some commonalities with
the created game.

Aardwolf RPG [4] is a purely text based RPG game that requires internet
connection to play and that simulates a world where the players can in-
teract with each other. The game requires the user to type a lot of text
as actions, which seems quite inconvenient.

7

Wizard’s Choice [5] is basically just a thrilling story that can be read and
in which one has to make wise decisions in order to not die before having
reached the end of the story. In this game there are no items that can
be collected, there is no multiplayer part, and no character to level up.
While the first story can be downloaded for free, the sequels demand a
small charge of the player.

Shakes and Fidget [6] is originally a browser game but is also available as an
app. It’s the game that probably resembles the most to the present work.
It has similar character classes and offers text based quests. However,
the player is not allowed to make decisions to change the direction of the
quest. It is also not possible for the player to trade with other players or
to craft items. The game offers the possibility to buy ”mushrooms” with
real money, which then serve as currency in the game to buy equipment.

8

Chapter 3

Game

The created game belongs to the game genre of role playing games, short RPG.
In general a role playing game lets the user control one or several game characters
in a virtual world. Usually players can solve quests, gain levels and improve
their game characters, which is something that can have a strong fascination on
people, so that they spend a lot of time on the game. Depending on the game
the actual goal can be to solve the main quest or sometimes it is to just make
the game character as strong as possible. In other words: The journey ist the
reward.

3.1 Gameplay

The player starts by creating a new character. Therefore, he or she has to choose
a name and one of three available character classes. After the creation of a game
character, one can actually start playing. At the beginning the character does
not have any gold, which serves as currency in the game, and the inventory
hardly contains any items. The few start items that there are depend on the
chosen character class. The warrior’s inventory starts with a rusty sword and
armor as well as some coal which can be used for forging. The mage starts with
a feeble wand, an old dirty mage robe and some empty phials which can be
used to create potions. The thief has a dull dagger and a scale armor from the
beginning, as well as some picklocks.

The player should first equip his or her game character with the weapon and
the armor from the inventory and then choose one of the available quests. By
solving the quest, the player usually gains experience and rewards like gold or
new items. Often, there is an adversary to fight in a quest. In those battles the
character usually loses health. It is then necessary to wait for the character’s
health bar to refill; otherwise the player takes an increased risk to fail in the
battle of the next quest. When fighting, not only health is lost, but also the
equipped weapon and armor lose durability and can break. Broken items can be
repaired by the local blacksmith for gold. Gold can also be used to buy needed
items from the merchant. For example a warrior can buy an iron ingot to forge
a new weapon with his blacksmith skill.

The experience that is obtained in quests makes the character level up when
a certain threshold is reached. That way, the character grows stronger and

9

stronger and with every new level better items can be produced and equipped
and new quests become eventually available.

3.2 Character Classes

The three character classes are warrior, mage and thief. Each of them has
two unique skills and benefits slightly different from the attributes strength,
intelligence and agility.

3.2.1 Warrior

Warriors have a lot of strength, which is why they can make use of heavy
weapons such as iron swords and battle axes and often wear heavy armors that
offer strong protection. With the skill ”mining” the warrior is able to extract
materials from ores, such as gems or metals. The gems can be sold to mages
and the metals are often used by the warriors by their second skill ”blacksmith”,
which allows them to forge new equipment like weapons or armors. Another
advantage of this skill is that the warrior can repair broken equipment by himself
which often saves a lot of money.

3.2.2 Mage

Mages are not strong but highly intelligent which allows them to make use
of powerful magic wands as weapons. Because of their lack of strength, they
usually wear robes or light chain armors. The skill ”enchanting” allows a mage
to create new magic wands and to extract magic powder from gems which can
then be used to enchant equipment to permanently provide additional benefits
like increased attributes. Furthermore, with ”alchemy” a mage knows how to
mix magic potions. Depending on the used ingredients, a potion can increase
attributes for some time or regenerate health when consumed. It is even possible
to generate potions with permanent effects, but the ingredients needed for this
are very seldom and expensive.

3.2.3 Thief

Thieves compensate their deficit of strength with high agility which greatly
allows them to evade attacks. They often use daggers as weapons and wear
chain or scale armors. With the ”lock picking” skill, a thief is able to open
chests and to get the treasures that have been locked inside. Other classes like
the warrior or mage have no other choice than to either sell a locked item or to
ask a thief for help. The second skill of the thief, toxicology, allows to create
poisons and antidotes. Poisons can be used on weapons to inflict additional
damage to an adversary on hit or to decrease the target’s attributes. Unlike
enchantments, poison effects on weapons loose their effect after some battles
and need to be reapplied.

10

3.3 Quests

The quests are structured by four categories. The category simple quest con-
tains the basic quests that can be solved alone and without the need of any
special items. The strength of the enemies encountered in the quests is adapted
to the level of the player but can vary in difficulty. The category group quest
contains quests that are obviously intended for more than one player and the
category special quest offers quests that force the player to get certain items
or to look for another player with a certain skill. The last category is the main
quest. It’s a sequence of quests that tell a story and which are not dynamically
adapted to the level of the player. At the moment the main story can usually
be completed around level twelve.

A concrete example of a quest is presented later in the design chapter in the
section 4.2.4.

3.4 Multiplayer

The game offers various possibilities to interact with other players. There is a
global chat where the players’ messages address all locally connected players, as
well as the possibility to have private chat conversations. Players can have duels
to compare their strength and they can exchange items and gold by trading.
Trading is an essential part of the game. Since all character classes need different
resources and services from other classes, a player that trades can improve the
character’s skills faster and is usually richer. The figure 3.1 shows the essential
trade dependencies.

Note, that there could also be a second diagram drawn with inverted arrows,
where all the items are shown that the character classes need as ingredients for
their skills.

11

Figure 3.1: Trade dependencies

12

Chapter 4

Design

4.1 Appearance

The first intention, when creating the game, was to focus on content and func-
tionality and not to spend much time on its appearance. Because drawing
images is a time consuming work, the game should be a simple looking text
based RPG. However, during implementation this view changed and time was
then spent on designing own buttons and backgrounds with GIMP [7], a freely
available graphics editing programm.

Luckily, a huge collection of about 700 small and freely available RPG black-
and-white pictures (Figure 4.1) where then found in the internet. Those pictures
served perfectly as icons for the game and the fact that there were so many of
them had the advantage of homogeneous style. The pictures are under a license
[8] which allows modification and the commercial use of them.

Figure 4.1: Some pictures of the found icon set.

The found icons improve the optical representation of the game remarkably.
However, the quadratic style as well as the black and white colors of the new
icons did not fit with the existing design of self made, rounded brown buttons.

13

Therefore, the buttons and backgrounds were redesigned and the current style
was finally established.

Figure 4.2: Comparison of old and new design.

(a) Old design (b) New design

4.2 Navigation

This chapter shows the possible interactions of the player with the user interface
and the transitions between the activities.

4.2.1 Starting Screen

In figure 4.3a the starting screen of the game is shown. When the game is
started, the screen is faded in slowly using an animation. At the top of the
screen, information about the currently selected game character is shown. If
the game is started for the first time the screen looks different, because no game
character exists. The play button is then gone and the Change Character
button is renamed to Create Character and does directly lead to the character
creation instead of showing the list of created characters. At the bottom of the
screen, the current game version is displayed. If a new game version is available,
then an additional Download button and a red text informing about it, is
visible. A click on that button directly starts the download of the new version.

The button Options opens a new activity that allows the player to change
certain parameters like disabling the sending of crash reports or the checking
for updates on game start. The button More leads to a new activity whose
layout is displayed in figure 4.3b. Again there are several buttons which all open
new activities. The activity of the first button Share this Game! helps to
easily share the game, by providing the link for the download and the important
hint that ”unknown sources” needs to be activated in the phone settings. In
addition, there is a picture of a QR code with the same link encoded, so that the
user does not need to enter the link in his or her phone if a scanner is available.

14

Credits shows information about who was involved in the creation of the game
and Contacts encourages the player to give feedback by sending an email or
to register at the official game forum. Just for fun, a dancing android man has
been added to this activity. A click on the About button explains the original
purpose of the game; that it was created as a bachelor thesis and that it is
intended to gather data for WLAN-OPP. The back button finishes the activity,
so that the starting screen appears again.

(a) Main screen (b) More

4.2.2 Game Character Creation

To create a new character the player is first asked to enter a name for the new
character (Figure 4.3c) and then to choose a character class (Figure 4.3d). Of
course the chosen name has to comply with a certain minimal and maximal
length.

4.2.3 The PlayActivity

With a click on the Play button the PlayActivity is started. (Figure 4.4)
This is the central activity from which the player can reach everything. The
yellow long bar at the top shows the character’s health bar. Below the health
bar the current character’s name, in this case ”Gandalf”, and the current level
is indicated. The very small progress bar below the level displays the experience
of the character. When it is full, the character receives a level up.

15

Figure 4.3: Creating a new game character.

(c) Choosing a name for
the game character.

(d) Deciding for a charac-
ter class.

Figure 4.4: The PlayActivity.

Various buttons are located below the experience progress bar. In the fol-
lowing each button and its connected activities are explained.

4.2.4 Quests

The Quest button is centered in the middle of the PlayActivity’s layout and
has increased size to signal its importance to the user, since the quests are the
heart of the game. A click on it opens a new activity that shows the four quest
categories in list. (Figure 4.5a) A click on one of the categories opens again a new
activity with a list, which shows the available quests of that category. (Figure

16

4.5b) Not all quests are straight away available from the beginning. Some of
them require the game character to have reached a certain level. That’s the
reason why in the picture only the quest ”Hunting” and ”Bounty Hunter” are
executable. The others are greyed out. After a quest has been done it takes a
while, depending on the quest, until a quest of the same type can be done again.
The quest is then greyed out and simplified information about when the it will
be available again, like for example ”Less than ten minutes”, is displayed next
to it. A click on the quest shows the exact waiting time.

In the category special quest there is an additional button Change Quest
which allows the player to discard the current quest to get a new one after a
certain time. This has been added because sometimes the special quests are
hard to fulfill. With the possibility to change the quest, the player can decide
if he or she wants to keep trying it or to change it for a new quest that might
better suit the current situation.

Figure 4.5: Quests

(a) The four quest cate-
gories.

(b) The list of simple
quests.

In the following a short example of a quest is given.

Example Quest

A quest always starts with some text telling a short story, optionally followed
by a description of the encountered adversary and/or the possible reward. At
the bottom part of the quest are the options listed that the player can choose.
In the figure 4.6a the player can choose to either attack the two angry peasants,
that want to throw an old woman down a cliff, or he can decide to just observe
the situation. Depending on the player’s choice the quest develops in a different
direction. If the player decides to attack the two men, then the quest will end
with a battle. Otherwise, by picking the passive option, the player might see
the witch falling down the cliff and receives an annoying witch curse that lowers
the character’s attributes for some time. (See figure 4.6b) The outcome of a

17

decision on a quest is not always deterministic. Sometimes there are several
possibilities on how the quest continues when a certain option is picked. For
example, it can also happen that the witch transforms the two angry peasants
with her black magic into chickens and then attacks the player. (See figure 4.6c)
Note that a click on the witch’s icon reveals some additional information.

Figure 4.6: Witch quest.

(a) Making decisions in
quests.

(b) Getting cursed by the
witch.

(c) Getting attacked by
the witch.

Group Quests

In a group quest (Figure 4.7) the player can click on the Invite Player button
to look for another quest participant. Group quests can also be done alone, but
obviously it is much easier with the support of another player.

Figure 4.7: Group quests offer the possibility to invite other players.

18

4.2.5 Battles

Sooner or later the player will have to fight an adversary in a quest. The
outcome of a battle is calculated automatically, so the player can not take any
action during a battle. Depending on the quest and the player’s decisions in the
quest, the player or the adversary has the first attack.

After a battle has taken place, the player gets informed about the result.
(Figure 4.8a) The player sees directly how much health was lost because of the
battle, how much experience gained, gold found and which items were received
as a reward. With a click on the button Show Battle Log, more details about
the battle can be read. (See figure 4.8b) Important information, such as critical
attacks, evaded attacks, broken equipment or received poison, is highlighted
with colors.

Battles can also include more then two entities. In figure 4.8c the player has
to fight against several spiders.

Figure 4.8: Battles

(a) Getting the reward. (b) The battlelog. (c) Multiple adversaries.

4.2.6 The Game Character

By pressing the Character button information about the character is displayed
as visible in figure 4.9a. The two icons show the currently equipped weapon and
armor. In this case it’s a dull dagger and a coat of mail. A click on one of the
icons reveals more information about the item and allows interactions such as
unequiping the item, selling it to the merchant or repairing it. (Figure 4.9b)

The button Effects opens a new activity with a list of all effects that are cur-
rently influencing the character. The activity opened by the button Attributes
allows the player to examine the values of all attributes and skills of the char-
acter. The figure 4.9c shows the level of the two skills of a mage (alchemy and
enchanting) and the five base attributes health, regeneration, strength, intelli-
gence and agility. A click on an attribute reveals more exact information about
it. So for example a click on the attribute regeneration informs the user about

19

how long it takes to regenerate the character to full health.
The small buttons with the yellow numbers on the right side in figure 4.9c

are only visible after the player reached a level up and therefore earned an
attribute point. Attribute points can be spent on attributes by clicking on
those small buttons. Note, that the picture does not show all information about
the character. So for example the two attributes Accuracy and Evading below
Agility are not shown.

Figure 4.9: Clicking on the Character button reveals more information.

(a) A Character. (b) Item description. (c) Character attributes.

4.3 Attributes

Game characters have various attributes that determine the character’s strength
in battles. On every third level up, the character’s regeneration increases by one
point. On every single level up, the maximum health increases by ten and the
player gets one attribute point which can be spent on either health, regeneration,
strength, intelligence or agility. It is the player’s choice which attribute he or
she wants to improve by spending the point. If the player decides to spend the
point on health then the maximum health of the character is increased by seven.
The other attributes only get raised by one.

In the following a short overview of the different attributes is given.

Health
Health is lost in battles and regenerated slowly over time. A battle is lost
if the health drops to zero.

Regeneration
Regeneration determines how fast a character regenerates health after a
battle.

Strength
A certain amount of strength is often a requirement for wearing equipment.

20

Besides this, it increases the chance for a critical strike (a more powerful
attack) for warriors and thieves. Additionally, warriors’ attacks become
stronger with every point of strength.

Intelligence
Intelligence is very important for mages. It allows them to make use of
powerful magic wands and increases their attack damage and chance on a
critical strike. For warriors and thieves it is of no importance in a fight,
but it has a good effect on their skills. An intelligent warrior is more
successful in mining and has a better chance to forge equipment of high
quality and an intelligent thief has fewer difficulties to pick a lock and
generates deadlier poisons.

Agility
With more agility a character has a bigger chance to evade attacks as well
as to successfully hit an enemy with the own attack. For thieves agility is
of big importance because it directly increases the attack damage.

Evading
Evading improves the character’s chance to completely evade an attack of
an adversary.

Accuracy
Accuracy is the counter part of evading. It decreases the chance that an
adversary manages to evade an attack of the game character.

Armor
A game character does not come with armor by itself. It is only acquired
by equipped items. In a battle, armor helps the character to survive longer
by decreasing the taken damage of adversarial attacks.

Weapon Damage
Like armor, the weapon damage is only acquired by equipped items.
Weapon damage directly increases the damage dealt by the attacks of
the game character.

4.3.1 Inventory And Merchant

The Inventory button opens the game character’s inventory, where all items
are shown in an expandable list that are currently in the character’s possession.
The activity opened by a click on the Merchant button is very similar. The
difference is that it shows the items that the merchant is offering for sale. (Figure
4.10) In the list, the items are represented by their name, their level and the
quality. On the right side, there is a number indicating how many exemplars of
the item are available. A click on an item of the list creates a new activity that
reveals all the information of the selected item and shows buttons for interaction.
If the click was on an item of the merchant there is actually just a Buy (X
gold) button visible, where X is the amount of requested gold. Otherwise, if
the item is in the player’s inventory, then, depending on the item, are various
options available. The item can be sold to the merchant, equipped/unequipped,
consumed, used on a weapon, repaired, lock picked and opened.

21

Figure 4.10: The merchant.

4.3.2 Other Players

The button Other Players shows all other human players that are currently
connected over the same network as the player.

In figure 4.11a the player is connected with another player called Wutui that
is playing with a level two warrior. The player can also see to which network the
phone is currently connected. This is very helpful because if two player want
to play together but are not in the same network, they won’t see each other in
the game. The checkbox at the bottom allows the player to see all the neighbor
devices that have been found by WLAN-OPP in the same network and which
are running the WLAN-OPP service. If the checkbox is unchecked, only the
neighbors are listed that have installed the game and that are currently running
it. A click on a player in the list reveals more information about that player’s
character and displays options for interaction.

In figure 4.11b the player can send a private text message to Wutui, have
a duel to see who is stronger or start a trade as shown in figure 4.11c. If the
player decides to do such an action, a message is sent to the other player which
creates a popup that appears in a fluent animation. If the action was a trade
request, then the button Invitations, which is visible on most layouts and
located at the bottom left, changes it’s name to Invitations (1) where the
number in the brackets is the number of currently unanswered invitations such
as trade requests or quest invitations. A click on that button shows a list of the
invitations.

The Message button at the bottom right behaves in a very similar manner
but it shows a list of chat conversations with other players.

The Global Chat button between those two buttons changes its color if
there are unread messages that have been sent over the global chat. A click on
that button opens the GlobalChatActivity which shows the global chat messages
and has a text field and a send button to allow the user to send messages to all
connected players. It also shows the number of connected players, so that the
player knows how many people will receive the message when it is sent.

22

Figure 4.11: Other players

(a) Connected with a war-
rior named Wutui.

(b) Possible interactions
with Wutui.

(c) Wutui offers 110 gold
for two items.

Trade

If a player clicks on an invitation, which is a trade request, then the TradeAc-
tivity is started for both of them. Each player sees ten empty item slots. Five of
them belong to one player, the other five to the other player. By clicking on one
of the own empty item slots, the inventory of the player is opened and an item
can be selected for the trade. A click on a slot that is not empty lets the user
change the amount of the selected item that he or she wants to trade. A click
on an item slot of the other player shows, if not empty, information about that
item. Besides items, also gold can be traded. A simple button allows the user
to enter the amount of gold that he or she wants to give to the other player. To
complete the trade, both players have to click on ”Accept”. Whenever a player
changes an item or the amount of gold, both accept checkboxes are reset.

The players can communicate directly in the TradeActivity by sending chat
messages. The exchanged messages are displayed below the white field where
the player can enter a chat message.

4.3.3 Skills

With a click on one of the two icons below the buttons in the PlayActivity a new
activity with information about the selected skill is opened. As seen in figure
4.12a the skill level and experience is displayed as well as a short description
of the skill. In the following the skills of the character classes are presented in
more detail.

Blacksmith

A click on the button Forge Item shows an expandable list with blacksmith
recipes. (Figure 4.12b) Note, that not all recipes are available from the be-

23

ginning. Most of them require a certain skill level. When the player selects
a recipe, he or she can choose to see the description which shows information
about the item that will be produced by the recipe, as well as the required re-
sources. Conveniently, missing resources are colored in red. If the player decides
to use a recipe the ForgeActivity is opened showing an animated fire and its
temperature. In figure 4.12c the forging activity is shown. In this case an Iron
Sword is being produced. By pressing the hammer button, the quality of the
produced item can be improved. A sword of a higher quality deals more damage
and can be sold for more gold. Of course you can not just hammer forever until
the maximum quality is reached. Instead there is a chance depending on skill
level to break the item. Before the item breaks a warning appears. The player
can still try to hammer more but then there is the risk that all the materi-
als and all the work was in vain. Additionally you can add coal to the fire to
increase the temperature which decreases the risk to break the produced item
when hammering. Like this a player can try to create an item of high quality
by spending additional resources.

Figure 4.12: Skill Blacksmith

(a) The blacksmith skill. (b) Blacksmith recipes. (c) Forging an item.

Mining

The design of the mining skill is quite simple. If the player has an item of type
”Ore Deposit” in the inventory then this skill can be used to extract materials
from it. For each ”Ore Deposit” the player can click the hammer icon three
times. After that, the item is destroyed and the next item can be taken for
extraction, if available. (Figure 4.13b) On every click on the hammer the player
has a chance to extract a material. In figure 4.13c the player was lucky and
extracted an item.

24

Figure 4.13: Skill Mining

(a) Extracting. (b) Taking the next. (c) Successful extracting.

Alchemy

Alchemy is a very complex skill. It allows a mage to mix all sorts of potions
by mixing all sorts of ingredients. Potions can increase attributes for some time
or regenerate health when consumed. It is even possible to generate potions
with permanent effect, but therefore ingredients are needed that are very rare
and expensive. What distinguishes alchemy substantially from other skills like
enchanting or blacksmith is that there are no recipes. Instead, the player has
to figure out by himself which combination of ingredients lead to which potion.

The figure 4.14b shows the mixing of a potion by combining the items heart,
brain and witch blood which results in a potion of intelligence (+11) as visible
in figure 4.14c.

The resulting potion of a combination of ingredients is not hard coded. Ev-
ery ingredient has certain tendencies to favor certain attributes. For example
the ingredient ”heart” will increase the tendency that the resulting potion will
increase the player’s health or regeneration, but it does not contribute much to
intelligence or agility. So the combination of three hearts will definitely gener-
ate a good potion of health. But when combining a heart with two brains, the
brains will dominate the effect and lead to a potion that increases the attribute
intelligence. However, it will be less effective as if the combination consisted of
three brains.

25

Figure 4.14: Skill Alchemy

(a) Skill description. (b) Adding ingredients. (c) Potion created.

Enchanting

Enchanting grants the possibility to permanently improve a weapon or armor.
Enchanted items provide an additional attribute bonus, health or armor. Only
one enchantment can be active on an item at the same time. With enchanting
a mage can also create magic wands which can then serve as weapons. The
required materials for enchanting are gained by extracting magic powder and
essences from gems like amethysts or diamonds. The figure 4.15b shows an iron
armor being enchanted with +23 Health.

Lock Picking

Sometimes the player finds locked items in quests and as a thief the player
can try to unlock them. To do this, the player simply clicks on the locked
item in the inventory. The description of the item appears and the player has
an additional button Pick Lock (50%) where the number in the brackets
describes the chance to be successful. (Figure 4.16a) To unlock an item a thief
needs a picklock. Unfortunately picklocks are very fragile and on every attempt
to unlock an item the used picklock might break. So if the player decides to
pick the lock of an item, either a success message or a message informing about
the broken picklock is shown. With a higher skill level, the chance to break
a picklock decreases and it gets easier to open even difficult locks. Picklocks
can either be bought by the merchant or produced by a warrior with the skill
”blacksmith”. If the thief successfully unlocked an item, the Pick Lock button
disappears and a new button Open is shown. (Figure 4.16b) The item can now
be opened by anybody to see what is inside.

26

Figure 4.15: Skill Enchanting

(a) Skill description. (b) Enchanting an item.

Figure 4.16: Skill Lock Picking

(a) Locked chest. (b) Unlocked.

27

Toxicology

The second skill of the thief, toxicology, which allows to create poisons and
antidotes is mostly similar to alchemy, except that the player can not mix three
arbitrary ingredients but has to seclect a recipe, like in the blacksmith skill.

28

Chapter 5

Implementation

5.1 General

The application was implemented using eclipse as software development envi-
ronment together with the Android plug-in. For the implementation of the game
only one additional library was used besides the WLAN-OPP library. The ad-
ditional library is the Gson 2.2.1 library [9] which helps to automatically map
fields of classes to JSONObjects and vice versa. This functionality was really
useful because many data structures needed a conversion to a JSONObject in
order to be able to send them to other devices.

In general one could say that the code of the application is low coupled which
is mostly due to its distribution with the Android activities. Parts can easily
be changed without having an effect on others. A metrics plug-in for eclipse
revealed about the application, that there is a total number of 23979 lines of
code and 172 Java classes in total.

5.2 Server Structure

In order that the game could be easily shared and updated, a server structure
was created. With the link http://n.ethz.ch/student/nimhof/MyRPG/download.
php the latest version of the game can be downloaded. The used PHP code of-
fers the advantage that it counts how many times the file was downloaded and
stores the result in another file. The link for the WLAN-OPP service, which
needs to be downloaded seperately, is provided in the game as soon as the player
accesses a multiplayer component.

Furthermore the server contains the files checkForUpdates.php, createUsageRe-
port.php and createCrashReport.php. The first one, when accessed by the game,
returns the number of the latest game version. Like this the game can compare
its own version to the one available on the server. The second file is used to
store information at the server about how long and especially how the player
played the game. For every player, a separate folder is created, which contains
a subfolder for each game character. The last file handles the creation of crash
reports. Here the files do not need to be ordered by the game characters. In-
stead, a daily folder is created. More details about the usage and crash reports
is revealed in section 6.1.1 and 6.1.2, respectively.

29

5.3 Multiplayer

The communication with other devices is handled by the classes of the con-
nection package. If information needs to be sent to another device, then the
Connection and Protocol class are directly used. The Connection class offers
the public methods to send a message to a single IP address or to all connected
neighbors. The message is then sent by an instance of the class SendTask, which
implements the interface Runnable so that it can be started as thread, since the
GUI thread is not allowed to open a TCP connection. All the messages that
can be sent and interpreted correctly by the game are generated by the static
methods of the Protocol class. For instance, if the player wants to attack an-
other player, then the following code will generate the message and send it to
the other device.

1 St r ing message = Protoco l . getAttackPlayerMessage () ;
2 Connection . sendMessage (IP , message) ;

The Protocol class takes care of creating the message. In this case, the mes-
sage is encoded as JSONObject with three parameters. (Figure 5.1) The first
parameter serves as identity for the type of the message. It is always encoded
with the key vCMD. The second parameter encodes the information about the
player’s character. This information is needed by the other device to calculate
the duel. The last parameter is a random number which will be used as a ran-
dom seed in the calculations of the battle. Note that no result of a battle is
transmitted. Instead, both devices calculate the battle and therefore a number
needs to be transmitted so that both use the same random seed. The message
is received by an instance of the ReceiveTask class which continuously waits
for TCP connections. The ReceiveTask is an extension of the AsyncTask. The
received message is given as parameter to the inherited method publishProgress,
so that it can be handled by the GUI thread in the inherited onProgressUp-
date(String... values) method. This method then passes the message further
to the Protocol class, which extracts the key vCMD to understand what type
of message it is. Then the message is passed to the corresponding method, in
this case handleAttackMessage(), which then calculates the battle and sends an
answer message back to the originator of the message. The originator then ex-
tracts the information of the other player’s character and calculates the battle
as well.

30

Figure 5.1: The code of the Protocol class to generate an attack message.

1
2 public stat ic St r ing getAttackPlayerMessage () {
3 PlayerCharacter p = Game . getCurrentCharacter () ;
4 i f (p == null) {
5 l ogg e r . l ogErro r (” getAttackPlayerMessage () own Character i s nu l l

. ”) ;
6 return null ;
7 }
8 JSONObject a t tacke r = p . getCharacterViewAsJSON () ;
9

10 JSONObject j son = new JSONObject () ;
11 try {
12 j son . put (vCMD, ATTACKMESSAGE) ;
13 j son . put (vCHAR, a t ta cke r) ;
14 j son . put (vRANDOMSEED, (long) (Math . random () ∗ Long .MAXVALUE)) ;
15 } catch (JSONException e) {
16 l ogg e r . l ogErro r (e) ;
17 }
18 return j s on . t oS t r i ng () ;
19 }

5.4 WLAN-OPP Integration

During the development of the game also WLAN-OPP improved and evolved
continuously. At the beginning certain devices were not able to connect to others
or the connection was just unidirectional. Step for step, with newer versions,
those problems disappeared. Also the integration of the WLAN-OPP service in
the own application changed a lot.

For a long time the code for registering a content observer and to start the
service had to reside in the game application. Now an application just needs
to include the WLAN-OPP library that handles this part and offers a clear
interface and dedicated methods.

The figures 5.2 and 5.3 show two code pieces for the service without the
library while figure 5.4 shows the much simpler code that uses the library.

For the application to actually start and stop the service just the code in
figure 5.5 is needed in a super activity from which all activities inherit. The
reason for the delayedStop() is that the service should not be stopped during a
transition from one Android activity to another.

5.5 Quests Integration

The quests are the most important part of the game. They need to be available
in a large number and have to be diversified. Hard coding the quests is not an
option. A structure was needed that allows creating quests in an easy way but
also grants enough freedom. Players should be able to make decisions in quests,
to fight enemies, to get items and to receive effects. This has been realized by
mainly three classes: Quest, QuestPage and QuestPageOption.

The Quest class serves as basis and contains information like the type of
quest (simple, group, special, main), its title, level, difficulty, required level,
icon and so on. Also game characters, items and effects can be added to the

31

Figure 5.2: Code before the library

1
2 /∗∗
3 ∗ I n i t i a l i z e s the content observer t ha t c a l l s the method

updateNeighbors () when the data changes .
4 ∗/
5 public stat ic void startNeighborUpdates (Ac t i v i t y a c t i v i t y) {
6 i f (ne ighborCursor == null | | neighborCursor . i sC l o s ed ()) {
7 f ina l ContentResolver r e s o l v e r = a c t i v i t y . getContentReso lver () ;
8 f ina l St r ing [] p r o j e c t i o n = { ” ip ” , ” d e v i c e i d ” } ;
9 ne ighborCursor = r e s o l v e r . query (

10 Uri . parse (” content : // ch . ethz . csg . burundi . NeighborProvider /
d i c t i ona ry ”) ,

11 p ro j e c t i on , null , null , null) ;
12 }
13
14 // r e g i s t e r a ContentObserver to ge t informed about changes .
15 neighborObserver = new ContentObserver (new Handler ())
16 {
17 @Override
18 public void onChange (boolean se l fChange)
19 {
20 super . onChange (se l fChange) ;
21 updateNeighbors () ;
22 }
23 } ;
24
25 a c t i v i t y . getContentReso lver () . r eg i s t e rContentObse rve r (
26 Uri . parse (” content : // ch . ethz . csg . burundi . NeighborProvider /

d i c t i ona ry ”) ,
27 false , ne ighborObserver) ;
28 }

32

Figure 5.3: Code before the library

1
2 /∗∗
3 ∗ Gets the new l i s t o f ne ighbors .
4 ∗/
5 public stat ic void updateNeighbors () {
6 ArrayList<Neighbor> new ne i g hbo r s l i s t = new ArrayList<Neighbor

>() ;
7
8 neighborCursor . requery () ;
9

10 neighborCursor . moveToFirst () ;
11 while (! ne ighborCursor . i sA f t e rLa s t ()) {
12 St r ing ip = neighborCursor . g e tS t r i ng (neighborCursor .

getColumnIndex (” ip ”)) ;
13 St r ing id = neighborCursor . g e tS t r i ng (neighborCursor .

getColumnIndex (” d e v i c e i d ”)) ;
14 Neighbor temp = new Neighbor (ip , id) ;
15 n ew ne i g hbo r s l i s t . add (temp) ;
16 neighborCursor . moveToNext () ;
17 }
18
19 neighborCursor . d ea c t i va t e () ;
20
21 // handle the changes
22 updateNeighborsList (n ew ne i g hbo r s l i s t) ;
23 }

Figure 5.4: Code that uses the library.

1
2 c o n t r o l l e r = WlanOppController . g e t In s tance (a c t i v i t y , new Handler ())

;
3 try{
4 obse rve r = NeighborObserver . getInstanceWithTask (new Handler () ,

a c t i v i t y ,
5 new NeighborObserverTask () {
6
7 @Override
8 public void run (Lis t<Neighbor> ne ighbors) {
9 updateNeighbors (ne ighbors) ;

10 }
11
12 }) ;
13 }
14 catch (Exception e) {
15 return ;
16 }

33

Figure 5.5: Starting and stopping the service.

1
2 public stat ic void onResume () {
3 i f (c o n t r o l l e r != null) {
4 c o n t r o l l e r . cance lDelayedStop () ;
5 c o n t r o l l e r . startWlanOpp () ;
6 }
7 i f (obse rve r != null) obse rve r . r e g i s t e r () ;
8 }
9

10 public stat ic void onPause () {
11 i f (c o n t r o l l e r != null) c o n t r o l l e r . stopDelayed () ;
12 i f (obse rve r != null) obse rve r . un r e g i s t e r () ;
13 }

quest in this class. The Quest class further contains a set of QuestPages and
knows which one of them is currently to display. The QuestPages correspond
to single pages in the quest and store parts of the quest’s story. An instance
of a QuestPage can also be configured to display an adversary or reward that
has previously been added to an instance of the Quest class. In addition the
QuestPages contain the QuestPageOptions which define the possible options
that the player can choose when doing the quest. The QuestPageOptions store
what happens if the player chooses that option. This can either be a fight, the
distribution of items, the receiving of effects or the end of the quest.

Of course this implementation of the quests imposes certain restrictions.
For example so far it is not possible to create QuestPageOptions that are only
available if the player’s character’s intelligence is high enough or that have a
different outcome depending on an attribute of the character at the time the
quest is done. But the classes can easily be extended to support these features
if needed.

The actual generation of the quests is done by the class QuestGenerator.
Whenever a quest is solved, this class replaces that quest with a fresh one. When
generating a new quest, the player’s level is taken into account and the new quest
is initialized with adequate enemies and rewards. To add some variance in the
quest difficulty, some random variance is added to the used level in the quest
initialisation.

5.6 Battle Calculations

This section gives additional details on the calculations that occur during a
battle.

5.7 Evading and Accuracy

A game character’s chance to evade an attack depends on the defence value
which is tested against the hit rating of the attacker. The defence value is
the combination of the attribute agility and evading, while the hit rating is
calculated by adding the agility and accuracy of the attacker. The code in
figure 5.6 shows the method for obtaining the chance to evade.

34

Figure 5.6: Evading system

1 /∗∗
2 ∗ Ca l cu l a t e s the chance f o r the de fender to evade the a t t a ck o f

the a t t a c k e r .
3 ∗ Chance go from 0 to 30%
4 ∗ @param a t t a c k e r
5 ∗ @param defender
6 ∗ @return The chance to evade fo r the de fender t imes 100.

So 1400 means 14%.
7 ∗/
8 public stat ic int getChanceToEvade (GameCharacter attacker ,

GameCharacter de fender) {
9

10 int hi tRat ing = at tacke r . g e tAg i l i t y () . va lue ()+at tacke r .
getAccuracy () . va lue () ;

11 int defenceValue = defender . g e tAg i l i t y () . va lue ()+de fender .
getEvading () . va lue () ;

12
13 i f (h i tRat ing == 0) h i tRat ing = 1 ;
14
15 int t o t a l = defenceValue + hitRat ing ;
16 int evadeSuccessBorder = defenceValue ∗3000/ t o t a l ;
17
18 return evadeSuccessBorder ;
19 }

The goal of the system is to get a percentage ranging from zero to 30 which
is achieved by the multiplication by 3000 instead of 10000 in the last step. Note
that the value 10000 represents 100%. The 30% border is to avoid game char-
acters evading every attack which could be frustrating for the unlucky attacker.
The code below shows the previously used system.

1 i f (h i tRat ing >= defenceValue) {
2 evadeSuccessBorder = defenceValue ∗ 1750 / h i tRat ing ;
3 } else {
4 evadeSuccessBorder = 3250 − hi tRat ing ∗ 1500 / defenceValue ;
5 }

Note, that in both system the actual evade chance only depends on the
relation of the defence value to the hit rating. In figure 5.7 the graphs for the
two systems are plotted. Figure 5.7a shows the graphs with the defence value
being smaller then the hit rating and figure 5.7b shows the opposite.

Since it is up to the player to spend points on attributes, the system has to
deal with defence values and hit ratings that might differ substantially in di-
mension. A thief on level one hundred is probably going to have ten times more
agility than a mage. Using a linear system to calculate the chance to evade,
for example by using the calculation evadeChance=Math.max(0,Math.min(30,
defenceValue-hitRating)) is therefore not a good idea, because that way it doesn’t
matter anymore if the mage has ten or twenty agility. The mage will always
have the worst possible chance if he is not close to the thief’s agility.

Comparing the two previously described systems in figure 5.7, the new sys-
tem was preferred because increasing the defence value or hit rating has more

35

effect on the actual evading chance, when the value that it is compared to is of
much bigger size.

Figure 5.7: Evade Chance Graphs

(a)

(b)

36

5.8 Critical Strikes

The chance for a critical strike is calculated by the simple formula criticalHi-
tRating - defenderLevel * 7 / 10, where the criticalHitRating is equal to
the attribute strength for a warrior or thief and intelligence for a mage. Because
of this calculation, the chance for a critical strike grows continuously and is not
bounded. On higher levels, the chance can exceed 100%. Of course this is not a
good solution for long, but to reach the level where it gets problematic takes a
very long time. For example with level 30 the chance is around 60% and reach-
ing that level can take up to four months. Nevertheless, this system should be
replaced and maybe a counter attribute should be added.

37

38

Chapter 6

Evaluation

The game has grown quite big and has reached a certain complexity. There are
three character classes with a total of six skills and seven attributes, not counting
armor and weapon damage. There are sixty different items and thirteen quests
with nineteen quest adversaries. In the quests, a character can get poisoned by
three different poisons or receive one of three other effects, like a burn wound.
Items have various values like quality and durability. Players can interact in
various ways with each other. They can have a duel, do group quests together
and exchange items and gold.

The following sections inform about the beta test. They show how the data
was acquired and what results were derived from that data and the feedback of
the beta testers.

6.1 Beta-Test

From October 2012 until the end of January 2013 a small beta test was con-
ducted. In total, 17 people downloaded and played the game. While one player’s
three characters reached level 31, 27 and 21 and the player is still playing, others
stopped playing earlier. Another player reached level 13 with the first character
and level eight with a second character. Four players reached level five or six.
The remaining did not play long enough to increase in level.

Figure 6.1: Character level distribution.

39

To get interesting information about how and how long the people played
the game, the application stores usage data, generates crash reports and sends
them to a server.

6.1.1 Usage Reports

The usage reports are generated on a (at most) daily basis. The data is sent
anonymously and contains only data about the player’s ingame actions, the
game characters, game version and the device that it is played on. The IMEI
number is only transmitted as a hash value. The figure 6.2 shows a real usage
report that has been received by the server. Note, that for better readability,
the information about the game character has been partially omitted.

Figure 6.2: usage-report-11-02-13

1
2
3 USAGE REPORT
4 GAME VERSION: 0 .15
5 MANUFACTURER: HTC
6 PRODUCT: htc ace
7 MODEL: HTC Des i r e HD A9191
8 DEVICE: ace
9 API VERSION: 10

10 Leve l : 33
11 CharacterClass : Mage
12
13
14 AccountID=1351487258447
15 AccountIMEIHash=e24be5cd
16 Email=null
17 gameVersion=0.15
18 potionsMixed=57
19 enchantments=29
20 wardsCreated=25
21 simpleQuestsDone=851
22 spec ia lQuestsDone=9
23 mainQuestsDone=3
24 daysPlayed=81
25 merchantVis i ted=210
26 itemsBought=156
27 PlayerCharacter={” r eg ene ra t i on ” : 10 , ”merchant” :{ ” inventory ” :{ ”

array equipment ” : . . .
28 PlayerCharacterName=abc

6.1.2 Crash Reports

Not only usage data is sent to the server. Likewise, whenever the game crashes
a crash report is generated and sent to the server. Consider figure 6.3. The
crash report consists of four parts.

The first part shows information about the player’s device, the level and
character class and the game version. The second part contains the thrown
exception that caused the application to stop. It follows the PlayerActionLog
which gives insights on what the player was doing before the application crashed.
It is cleared every time the game is started and it logs every click of the player.

40

The last part of the crash report is an internal error log. That error log contains
all the ”half expected” errors, like for example when a method is called with a
null reference as an argument which should actually never be null. One could
actually talk of violated pre- and postconditions.

In the given example of a crash report the error was quite easy to figure
out. As visible from the PlayerActionLog, the player pressed a page option in
a quest quickly two times in series so that the action was handled twice. This
led to a null pointer exception when it was pressed the second time.

6.1.3 Results

The beta test gave some useful insights. It showed that the game can have
an addictive influence on people and therefore has potential. It clearly demon-
strated, that additional game content is needed to encourage the users to keep
on playing after having reached level five since at level five all simple quests
were accessible for the beta testers. In the newer version, an additional quest
for level ten has already been added. Furthermore the usage reports gave clues
on how long it takes to reach a certain level. For example the usage report in
6.2 showed that it took the player 81 days to reach level 33.

To summarize, the most heard critic was that there are not so many quests.
Especially at the start of the game when the most used category ”simple quests”
only offers two distinct quests.

Another conclusion, which was drawn from the usage reports, was that the
special quests were done quite rarely. In the example usage report (Figure
6.2) the player did only nine special quests but about 851 of the simple ones.
Of course, a higher number of simple quests was expected, but not in this
proportion. To come up with a compensation for this, the special quests were
made more attractive. They now provide better rewards and are easier to solve.

The beta test revealed various other balancing issues. Since its end a lot of
balancing was done. The drop rates of items in the quests have been adapted as
well as the partially random generation of the items that are sold by the mer-
chant. The merchant did not offer enough equipment for sale, so that classes
like the thief or mage, which can not create all the needed equipment by them-
selves, could not buy reasonable equipment. Also the prices of items have been
adapted. Certain items, like for example potions and antidotes, were too ex-
pensive.

Another issue was that the repair costs for equipment was too high. Espe-
cially items of higher quality were not economical.

The beta test also showed that the scaling of the player’s strength on higher
levels (e.g. level 30) compared to the encountered enemies in the quest was too
strong. One problem was that the health/damage balance slid from health to
damage, so that the fights became shorter which led to a decreased difficulty
in fights where the player attacked first and an increased difficulty in the other
case. Furthermore, some of the poisons, that the character could suffer from
after a fight, were just too strong.

In addition, the collected data also showed that the players did hardly ever
make use of the multiplayer part. The reasons for this probably are that in
the used game version was no group quest integrated and that the game is not
widely spread.

41

Figure 6.3: crash-report-19-12-12-03-53-15.txt

1
2 CRASH REPORT
3 GAME VERSION: 0 .15
4 MANUFACTURER: HTC
5 PRODUCT: htc bravo
6 MODEL: HTC Des i r e
7 DEVICE: bravo
8 API VERSION: 8
9 Leve l : 5

10 CharacterClass : Thie f
11
12 java . lang . Nul lPo interExcept ion
13 java . lang . Nul lPo interExcept ion
14 at rpg . que s tba s i s . Quest . doFight (Quest . java : 393)
15 at rpg . que s tba s i s . Quest . handleOptionCl icked (Quest . java : 584)
16 at rpg . a c t i v i t i e s . QuestAct iv i ty . handleOptionCl icked (QuestAct iv i ty

. java : 371)
17 at rpg . a c t i v i t i e s . QuestAct iv i ty . acce s s$1 (QuestAct iv i ty . java : 364)
18 at rpg . a c t i v i t i e s . QuestAct iv i ty$2 . onCl ick (QuestAct iv i ty . java : 296)
19 at android . view . View . per formCl ick (View . java : 2408)
20 at android . view . View$PerformClick . run (View . java : 8817)
21 at android . os . Handler . handleCal lback (Handler . java : 587)
22 at android . os . Handler . d ispatchMessage (Handler . java : 9 2)
23 at android . os . Looper . loop (Looper . java : 144)
24 at android . app . Act iv ityThread . main (Act iv ityThread . java : 4937)
25 at java . lang . r e f l e c t . Method . invokeNat ive (Native Method)
26 at java . lang . r e f l e c t . Method . invoke (Method . java : 521)
27 at com . android . i n t e r n a l . os . ZygoteInit$MethodAndArgsCaller . run (

Zygote In i t . java : 858)
28 at com . android . i n t e r n a l . os . Zygote In i t . main (Zygote In i t . java : 616)
29 at da lv ik . system . Nat iveStar t . main (Native Method)
30
31 PlayerActionLog :
32 rpg . a c t i v i t i e s . MainActivity : onCl i ckSta r tP layAct iv i ty
33 rpg . a c t i v i t i e s . P layAct iv i ty : onCl i ckSta r tOtherP laye r sAct iv i ty
34 rpg . a c t i v i t i e s . P layAct iv i ty : onCl i ckSta r tCharac t e rAct iv i ty
35 rpg . a c t i v i t i e s . Characte rAct iv i ty : onC l i c kS ta r tAt t r i bu t e sAc t i v i t y
36 rpg . a c t i v i t i e s . P layAct iv i ty : onC l i ckSta r t Invento ryAct i v i ty
37 rpg . a c t i v i t i e s . P layAct iv i ty : onC l i ckShowFi r s tSk i l l
38 rpg . a c t i v i t i e s . P layAct iv i ty : onCl i ckStar tQues tAct iv i ty
39 rpg . a c t i v i t i e s . Mult iQuestAct iv i ty : onItemClick Simple Quests
40 rpg . a c t i v i t i e s . Ques tL i s tAct iv i ty : onItemClick Hunting
41 rpg . a c t i v i t i e s . QuestAct iv i ty : handleOptionCl ickedSearch a c t i v e l y

for the beast in the woods .
42 rpg . a c t i v i t i e s . QuestAct iv i ty : handleOptionCl ickedSearch a c t i v e l y

for the beast in the woods .
43
44 ERRORLOG:
45 13 Dec 19 53 20 rpg . que s tba s i s . Quest : : L inkedLis t enemies in Quest

conta in s an enemy that i s null .
46 13 Dec 19 53 21 rpg . que s tba s i s . Quest : : L inkedLis t enemies in Quest

conta in s an enemy that i s null .

42

When the application is on the Android market, it is important that new
versions will not destroy the players’ existing game characters. In this sense
the beta test gave some experience in updating the game without losing old
characters.

43

44

Chapter 7

Future Work

There is lot that can be done to improve the user’s playing experience. The
number of possibilities to add new game content is nearly limitless. Obviously
one can add additional quests, enemies, new items and the recipes to craft them
as well as completely new character classes. Doing so, one should still have
in mind that a new player should not be bombarded straight away from the
beginning with too many things.

7.1 Concrete Ideas

In this section, some more complex ideas, which might be worth integrating in
the game, are listed.

7.1.1 Talent trees

Well known from many games, talent trees usually force the player to make
decisions on how to specialize his or her game character. Each character class
could have its own talent tree which would also increase the differences between
the character classes and therefore make it more appealing to try playing several
characters. As a concrete example a warrior could have a talent which converts
the next attack to a critical strike whenever the target evaded his or her attack.
And as alternative there could be a talent that decreases the damage taken
from magical attacks. Like this, the first talent would give the player better
chances in a fight against agile adversaries like thieves, while the second one
would obviously help against adversaries that make use of magic attacks like
mages.

7.1.2 Lands

There could be a map in the game with several lands or kingdoms. The lands
all provide different quests and offer different shopping possibilities. The player
could then explore new lands and move from one land to another. The new
lands could become available with the progress in the main quest.

45

7.1.3 Location Based Gaming

The game could make use of the location of the user. One could design quests
that force the user to visit a certain position in the real world to fulfill them. A
highly interesting idea would be to take companies into account. For example,
there could be daily extras like a free in game muffin that regenerates the player’s
health and which would be available when he or she enters a Starbucks.

46

Chapter 8

Conclusion

The goal of this thesis was to create a game that makes use of opportunistic
networks with the WLAN-OPP service and which could be deployed on the
Android market. The game is in a reasonable state that would allow such a
deployment. The graphical appearance of the game is better than originally
intended and the game has become quite complex: Players can create and level
up a character, solve quests and interact with other players. It can be played
alone or with other people for quite a while. In addition, a server infrastructure
is used to receive usage data and crash reports.

Even though the game contains a lot, it would still be a good idea to spend
some more time on improving it and on adding even more content. That way
bad ratings on the Android market can possibly be avoided, since the main
critic from the beta testers was that they wanted more quests. Nevertheless,
the beta test also showed that the game has potential and that it will help
to gather usage data for the WLAN-OPP service. This is even done if the
multiplayer components are not actively used by the player since the service is
started together with the game as long as WLAN-OPP is installed.

47

48

Appendix A

Items Overview

This document gives a short overview on the different items that can be found
or created in the game. The number between the brackets indicates the amount
of different items of this category. Note that the number of potions is higher
than the number of visible pictures. This is due to the fact that there are several
potions using the last picture. (Actually one for each attribute.)

A.1 Equipment (16)

Weapons (11)

Armors (6)

A.2 Consumable (17)

Consumables like potions can be used to get temporary or even permanent
positive effects on attributes. Poisons can be used on weapons to improve their
damage or to weaken the enemy. Antidotes can cure from illnesses which reduce
the characters efficiency. Beer is a fun item which is not at all useful

Potions (11)

49

Weapon Poisons and Antidotes (5)

Fun Items (1)

A.3 Ingredients (24)

Ingredients can be used and processed with the player’s characters skills. In
general, the end product is a new item of the type of the category equipment
or consumable. However, it can also be an improvement of an existing item. In
the following, all ingredients are listed and grouped by the skill for which they
are useful.

Mining (1)

Blacksmith (4)

Enchanting (4)

Alchemy (12)

Toxicology (4)

50

A.4 Other Items (3)

In this category are all items that do not really belong to a category. Actually,
one could argue that picklocks or even chests belong to the ingredient category
but since a chest is opened instead of really transformed into a new item and
because a picklock is more like a tool, they are categorized as ”Other Item”.

51

52

Bibliography

[1] Lorc’s collection of rpg icons. http://opengameart.org/content/700-rpg-
icons.

[2] Statistics on the android market. http://android-
developers.blogspot.ch/2011/12/closer-look-at-10-billion-downloads.html.

[3] Dominik Schatzmann Franck Legendre Sacha Trifunovic, Bern-
hard Distl. Wifi-opp: Ad-hoc-less opportunistic networking.
http://www.csg.ethz.ch/people/sachat/papers/Trifunovic2011WiFiOpp.pdf,
2011.

[4] Aardwolf. http://www.aardwolf.com/.

[5] Wizard’s choice volume 1. https://play.google.com/store/apps/details?id=wizardsChoiceV1.toucher&hl=de.

[6] Shakes and fidget. http://www.sfgame.de/.

[7] Gimp, graphics editing program. http://www.gimp.org/.

[8] Icon license. http://creativecommons.org/licenses/by/3.0/legalcode.

[9] Gson library. http://en.wikipedia.org/wiki/GSON.

53

