
Distributed
 Computing

Music Tagging – A Social Game
Bachelor’s Thesis

Dominic Plangger

dominicp@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Samuel Welten, Tobias Langner

Prof. Dr. Roger Wattenhofer

June 16, 2012

Acknowledgements

My special thanks go to my supervisors Samuel Welten and Tobias Langner who
guided, supported and helped me in every phase of this thesis.
Furthermore I would like to thank Professor Dr. Roger Wattenhofer for giving me
the opportunity to realize this interesting thesis in the Distributed Computing
Group.
Last but not least thanks to my friends who helped me to test and design the
application and provided me with great ideas and problem solutions.

i

Abstract

During this thesis, we developed an application on the Android platform called
Soundmate, which generates song–tag assignments while users are playing it. It
works as follows: two players get assigned to each other and they have to answer
certain questions about a currently played song (about genre, instruments, mood,
etc.). The goal is to give the same answers to the questions as your partner.
While playing, Soundmate sends all given answers to a central server which
collects all answers, processes them and makes them publicly available on the
Soundmate website1.
After developing, we released Soundmate and the tag collecting started. We
could observe how well the application spread and whether the users liked it
or not. In the end, we could evaluate the quality of the collected tags with a
customized quality measurement.

1Soundmate website: www.soundmate.ch

ii

www.soundmate.ch

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Goal of this Thesis . 1

1.3 Outline . 2

2 Related Works 3

2.1 MajorMiner . 4

2.2 Herd–it . 4

2.3 Soundmate . 4

2.4 Improvements in Soundmate . 4

3 Soundmate – The Game 6

3.1 Introduction . 6

3.2 Gaming Screen . 7

3.3 Features . 11

4 System Design 14

4.1 Overall Structure . 14

4.1.1 Component Roles . 14

4.1.2 Communication Protocol 16

4.2 Client . 18

4.2.1 Internal Design . 18

4.2.2 GUI . 22

4.3 Server . 24

4.3.1 Game Instances . 25

iii

Contents iv

4.3.2 Client Acceptor . 26

4.3.3 Radio Station Handler . 27

4.3.4 Database Utility . 29

4.4 Web Server . 29

5 Promotion and Results 31

5.1 Promotion . 31

5.2 Results . 31

5.2.1 Quality measurement . 31

5.2.2 Tag Popularity . 33

6 Future Work and Conclusion 34

6.1 Future Work . 34

6.1.1 Quality Measurement . 35

6.2 Conclusion . 35

Bibliography 37

Chapter 1

Introduction

1.1 Motivation

Discovering and downloading new songs is as easy as never before. Nowadays,
you can purchase and access music just with a few clicks (for example using
Amazon or iTunes). This leads to a drastically increasing size of the average
personal music collections. Having more than 5’000 tracks in the own music
collection is very common these days.
However, along with this trend arises an inconvenient problem; how do we main-
tain such big music collections? Often you want to sort the songs by music
characteristics like genre, instruments, or mood. Doing that by hand is tedious
and practically not feasible any more.
A solution would be to assign each song a finite set of categorized tags which
describe the song. For example you could have genre tags like Rock, Punk or
Jazz which identify the genre of the song. You could also have instrument tags
like Guitar, Trumpet or Violin, which describe what music instruments occur in
the song. Having such a song–tag assignment for each song would obviously solve
the problem of ordering and sorting the own music collection (more information
about music tags at [1]). The only question is where to get these tag assign-
ments from? Assigning them by hand is not a practicable solution. Our idea is
to create a social game that automatically generates such song–tag assignments
while people are playing it.

1.2 Goal of this Thesis

The overall goal of this thesis is to collect categorized high–quality tags for ex-
isting songs. Tag categories are for example genre, instruments, tempo, etc. The
collected tags should be freely available on the internet and usable without any
license restrictions.

This goal should be achieved in the following way:

1

1. Introduction 2

• Developing, releasing and promoting a social game on the android plat-
form1 that automatically generates song tags while people are playing it.
The game should send all generated tags to a central tag collecting facility.

• Developing a server which acts as the central tag collecting facility. It
should collect and process all tags received by the game.

• Developing a web–server which provides a public interface (i.e. a website)
through which one can access all collected tags. The interface should pro-
vide a possibility to download all collected tags but also a search function
to search for tags of specific songs or artists.

The process of developing a program is composed of different phases. It starts
with the requirement engineering where the feature specifications and function-
alities are elaborated. Afterwards follows the design and implement phase where
the actual program code is written. In the end follows the testing phase where
all program functions are tested with respect to their intended behaviour.

1.3 Outline

This thesis is organized in the following way: Chapter two presents some related
projects and shows the improvements in this project. Chapter three is about the
gameplay of Soundmate; in other words, how to play it and how it looks like.
The core of this thesis is chapter four. It explains thoroughly the architecture
of the system and motivates possible design choices. Afterwards, chapter five
describes the highlights of this thesis, namely the release of the application and
the results and insights gained by this project. Finally, chapter six provides a
conclusion and an outlook on what can be done in the future on this topic.

1Android: http://en.wikipedia.org/wiki/Android_(operating_system)

http://en.wikipedia.org/wiki/Android_(operating_system)

Chapter 2

Related Works

The idea of wrapping tasks that cannot be efficiently done yet by computers into
games for humans is not new [8, 6]. The first game implementing this idea is the
ESP game. It follows a specific mechanism: always two players are given a cer-
tain object they have to describe (i.e. to tag). The goal is to tag the object using
the same words as the other player [2]. In the case of the ESP game the objects
are images. Having always two players tagging an object enhances the accuracy
of the tags. Since the two players have nothing in common except the object,
using words that corresponds to the object is the only reasonable behaviour for
the players. As the ESP game is about image tagging and not song tagging, we
will not discuss it any further but you can find more information at [7].

Now back to Soundmate. A question that may arise is: does there not
already exist a public song tag collection? The answer is yes and no. There exist
some public tag collections that contain a pretty large amount of song tags (e.g.
the Last.fm database). But the problem is that their tags have low quality and
they are not categorized. A low tag quality means that some tags may occur
several times with similar names (e.g. Rock and Roll and Rock’n’Roll) or that
the tags are often very general and abstract (e.g. Techno instead of Progressive
Techno).
Another question that may arise is: does there not already exist a project imple-
menting the idea of collecting song tags with a social game? The answer is again
yes and no. There are some similar projects but they differ in some aspects to
this one. In this chapter we will introduce two of them, namely MajorMiner and
Herd–it, and then show what is new in Soundmate, our project1.

1Two similar projects that we do not cover here are TagATune and Listen Game [2, 5]

3

2. Related Works 4

2.1 MajorMiner

MajorMiner is a game you can play online on their website2. The gameplay is
pretty simple. You listen to a song for 10 seconds and you can type words into a
textbox which should describe the song. Depending on whether somebody else
already entered the same word for the song you get more or less points. You
may also receive points in the future if somebody enters a word to a song that
you already entered.
The important characteristic of MajorMiner is that you play alone, there is no
partner. Furthermore you cannot see the title of the song during playback.

2.2 Herd–it

Herd–it is an application for Facebook [4]. Currently it is unavailable due to
unknown reasons. However, Herd–it works as follows: at the beginning you join
automatically a group of about ten people (your ‘herd’). Then all of the group
hear a song and a question about the song appears with a set of possible answers.
After you have chosen your answer, you get points depending on the number of
people in your group that have chosen the same answer.
The important characteristic of Herd–it is that you play with a group of partners.
Furthermore like in MajorMiner, you cannot see the title of the song during
playback.

2.3 Soundmate

Before we discuss the improvements we give a brief introduction to Soundmate.
It mainly follows the game mechanism of the ESP game. You have one partner
and you can listen to a certain song. Then some questions about the current
song appear (about genre, instrumentation, etc.) with a set of possible answers.
Your goal is to give the same answer to the questions as your partner. After
about four questions, the song changes.

2.4 Improvements in Soundmate

As all other projects that we investigated did not spread well, we had to analyse
the weaknesses of them. In the following we discuss the main improvements
in Soundmate through which we tried to address the weaknesses of the other
projects.

2MajorMiner: http://majorminer.org/info/intro

http://majorminer.org/info/intro

2. Related Works 5

The most important improvement is what we call the focus on the soulmate
principle. It is essential that a player has exactly one partner to play with. Hav-
ing one partner makes the game personal. This binds the user much more to the
game than having no partner (MajorMiner) or a group of partners (Herd–it).
We tried to improve the personal relationship between a player and his partner
with different features. For example you can see the name, the avatar and the
current location (city) of your partner. In addition there exists a next button
that you can use for direct interaction with your partner (the next button is used
to ask your partner to skip the current song).
Another improvement in Soundmate concerns the fact that simply tagging
songs is not very entertaining. The idea is to enhance the game experience
with focus on the aspect of discovering new music. To this end we provided for
example a song history, where you can look up all occurred songs. Furthermore
we also display the cover art, the title and artist name of the current song. This
should ease the process of discovering and remembering new songs. To further
enhance the game experience, we also created special effects and introduced a
time limitation for answering the questions (see more in section 3.2)
The last bigger improvement in Soundmate is that you can only choose tags
from a predefined set of tags. You cannot create your own tags. This big dif-
ference to most of the other projects increases the quality of the collected tags
drastically. It is not possible any more that you have several names for one tag
(e.g. Rock and Roll and Rock’n’Roll). Furthermore, in this predefined set of
tags we can assign each tag a category (e.g. genre, instrument, etc.) and even
establish a hierarchy between the tags (for example Metal is parent of Speed
Metal). This is the reason why we can collect tags with higher quality that are
categorized.

Chapter 3

Soundmate – The Game

Soundmate is a collaborative game developed on the Android platform. The
concept of Soundmate is simple. Start it and you get assigned to another
player who is currently playing Soundmate. Both of you will hear the same
song. Then some questions about the song will appear (about gerne, instru-
ments, mood, etc.). To each question there is a set of possible answers (tags). If
you and your partner choose the same answer, you score points, otherwise you
lose some. After four questions, the song will change and you will hear a new
one. Your goal is to collect as many points as possible.

In this chapter, the first section gives an introduction to Soundmate explain-
ing how Soundmate wants to achieve its goal, the tag collecting. The second
section is about the core of the application, the gaming screen. The third section
focuses on the different features like the profile or highscore that Soundmate
offers.

3.1 Introduction

Before we dig into the details of Soundmate, we want to answer the follow-
ing question: how does Soundmate achieve its goal, namely the generation of
categorized high–quality song tags while people are playing it? The answer is
simple. The words that you chose as answers to the questions in the game are
directly used as tags for the corresponding song. For example, if you choose the
word ’Jazz’ as an answer to the question ’Genre?’, Soundmate adds ’Jazz’ as
a tag under the category genre to the song. Then this tag is sent to the central
server that collects it as a potential tag for the song. It is only a potential tag
because a single occurrence of a tag is not enough to be sure that the tag really
corresponds to the song. We require a high confidence of a tag to finally assign
it to a song. The exact quality measurement of a tag is described in section 5.2.

6

3. Soundmate – The Game 7

3.2 Gaming Screen

The gaming takes place on one main screen which is divided into three parts
(see figure 3.1). The top most third is about the current partner. It contains
the partners name, his avatar and his current location. The location includes
the country and the next bigger city close to him. The location is based on the
IP address he uses. The central third of the screen is about the current song. It
is composed of the song title, artist name, cover art, current points and a next
button. The next button can be used to ask the partner to skip the current song.
The bottom most third is about the current question. It displays the question
phrase and shows below the set possible answers.

Figure 3.1: The gaming screen of Soundmate. The top most third is about the
partner, the central third shows the current song and the bottom most
third contains the current questions with all possible answers. The figure
shows a mismatch (the player chose ’Wake up’ and his partner ’Break up’).

3. Soundmate – The Game 8

Transitions

There are always four consecutive questions for one song. To replace one question
with a new one we introduced a visible, intuitive transition which should make
clear to the user what happens. The transition is simple: First the old question
and answers fade out to the left side of the screen. Then the new question and
answers fade in from the right side of the screen. This transition is also applied
to the cover art, song title and artist name when the current song should be
replaced with a new one.

Bot

If you start Soundmate and there is no other player available, you get a bot as
a partner. A bot is a ‘computer–player’ with a predefined behaviour. Mostly you
do not recognize a bot. He possesses also a name, an avatar and a location. The
only way to reveal your partner as a bot is on the basis of the answers that your
partner gives. As the bot is only a computer, he may give some strange answers
sometimes. The behaviour of a bot is as follows: either he chooses the same
answer as his partner (with a probability of 30–40%) or he chooses a random
answer1.
Now if another player starts playing Soundmate while you are playing with a
bot, then your bot partner is replaced with the real player. The replacement
is signalized with a pop up containing the phrase ’You get a new partner’. To
effectively replace your partner, the above mentioned transition is applied to
the name, location and avatar of your partner. This should further clarify the
partner replacement.

Questions

One might ask what exactly the questions are. The following list contains all
questions we use including some example answers.

• Genre? Answers: Pop,Rock,Jazz,Hip Hop,etc.

• Feels like...? Answers: Motivating, Sad, Strange, Sleepy, etc.

• Tempo? Answers: Fast, Normal, Slow, etc.

• Vocal style? What is it like Answers: Chant, Hum, Hiss, No vocals, Whis-
tle, Rap, etc.

1If a song was never tagged before, it is hard to do better than choosing a random answer.
A little improvement would be to assign each tag a certain overall occurrence probability that
the bot can take into account or use external tags from the Last.fm database or similar tag
collections

3. Soundmate – The Game 9

• Any instruments...? Answers: Guitar, Cello, Drum, Violin, Flute, etc.

• Listening time? Answers: Driving, Saturday–night, Sleeping, Break up,
Being–creative,etc.

There were two more questions that we took out because they were rather irri-
tating than entertaining for the user.

• Do you see a color?. Answers: red, blue, green, gray, etc.

• Dynamics of the song?. Answers: soft, normal, loud, etc.

Answer Sets

The answer set of a question is the set containing all possible tags, that might be
displayed as answers to the question. The point is that we often cannot display
the whole answer set because that would overcrowd the smartphone display. In
average we can display about seven tags. Most of the answer sets contain lots of
more tags.
The answer sets to the questions about vocal style and listening time are un-
structured. To decide which tags should be displayed as answers, we simply
choose a random subset of the whole answer set. This can be done because the
answer sets of these two questions are very small (about 10 entries).
In contrast the questions about genre, instruments, mood and tempo have a
hierarchical answer set. That means the tags can have parents and children. A
parent tag is more general (e.g. House) and a children tag is more concrete (e.g.
Acid House). To further illustrate this structure we provided an excerpt of the
genre answer set in figure 3.2.
A hierarchical structure is needed when an answer set contains too many tags to
display all of them. For example let us consider the genre answer set. It contains
about 400–500 different genre tags. With the hierarchical structure we are able
to display only the most import genres at the beginning (i.e. display only the
root nodes). This would be Pop, Rock, Electronic, Jazz, Folk, etc. Now if both
players choose the same tag, for example electronic, then the next question is
only about the sub–genre of electronic (Dance, House, Techno, Minimal, etc.).
This goes on until either the players do not choose the same tag or the chosen
tag does not have any children.

As it can be seen in figure 3.1, there is always an answer tag called None–
of–them. It should be used when none of the given answer tags are applicable.
This is possible because we cannot always display the whole answer set.

3. Soundmate – The Game 10

Electronic

Dance House

Acid House Latin House

Techno

Figure 3.2: An excerpt of the genre answer set. Every child defines a sub–genre of
its parent. For example Acid House and Latin House are sub–genres of
House.

Time, Matches and Special Effects

To enforce a basic game flow, we introduced a maximum time limit to answer.
The time limit is based on how many answers are displayed. It ranges between
7–20 seconds. When the time runs out, a random tag is chosen. The time left
is indicated through a progress bar at the bottom of the screen (see figure 3.2).
The color of the progress bar goes from green to red depending on how much
time already passed.
To further motivate the player to choose an answer rapidly, the points you score
respectively lose depend on the elapsed time. Answering quickly results in scor-
ing more respectively losing less points.

There is also a progress bar at the top of the screen indicating how many
consecutive matches the player had with his partner. In other words, it tells how
often they have chosen successively the same answer. As soon as the they choose
different answers, the bar goes back to zero. However a transparent second color
still indicates the maximum of consecutive matches they had overall.

To make the game more appealing, we added some special effects. When the
player and his partner choose the same answer, an achievement award pops up
with a short background music. The award and the background music depend
on how many consecutive matches the players had. Let us make some examples.
One match results in ‘Not bad’. Five consecutive matches results in ‘Awesome’.
Nine consecutive matches get you a ‘Godlike’. If you manage ten consecutive
matches, you get ‘Soundmate’ with some fanfares as background music. Achiev-
ing ten consecutive matches is very hard and can be seen as another goal of the
game besides collecting points. At this point we would like to point out that the
received points per match do not depend on the current amount of consecutive
matches.

3. Soundmate – The Game 11

3.3 Features

In the last section we presented the main screen where the gaming takes place.
In this section we look at the other screens like the profile, the highscore or
the song history that Soundmates offers. All this other screens are accessible
through the corresponding button on the start screen.

Profile

The one thing you should do before playing is to adjust your profile (see figure
3.3b). The profile is deliberately kept simple. It consists of a text–box where you
can enter your name and a list of possible avatars to chose. It is important to
adjust your profile, because your partner can see it.2 What you cannot determine
is your location. Your location (the next bigger city close to you) is automatically
determined based on your current IP address.
One might ask what the purpose of avatars is. Obviously they are not needed for
the gameplay. They exist to enhance the personal relationship between the player
and his partner. It is a further possibility to customize ones profile. The avatars
are intendedly chosen to be as different as possible. One is male and sends a cool
and strong signal, the other is female and sends a funny and likeable signal and
so on. Last but not least we should not forget the simple fact that in general
people like choosing avatars.

Highscore

The highscore is divided into two parts (see figure 3.3c). The upper part is the
global highscore. It contains the top five players including their best score, their
country and the date when they achieved their best score.
The lower part is about the personal highscore. On the left side is a listing
containing the numbers how often each achievement award has been received.
The right side contains:

• Your best score (the maximum points you have ever reached)

• Your longest consecutive match

• Your current rank based on your best score

Song History

Like the name already suggests, the song history contains entries for all songs
that you encountered while playing Soundmate (see figure 3.3d). An entry

2Looking at figure 3.1, you can see in the top most third of the screen the name and avatar
of your partner.

3. Soundmate – The Game 12

consists of a song name, an artist name and a cover art of the corresponding
album.
The purpose of the song history is to enhance the music discovering aspect of
Soundmate. If you come across a song you like while playing, you mostly do
not have the time to write down the name of the song. Using the song history,
you can conveniently go through all heard songs after you finished playing.

About and Howto

The about screen explains the greater good behind Soundmate (see figure 3.3e).
Namely the collecting of categorized high quality tags. It may further motivate
people to play this game if they know, that they contribute to a good cause. To
this end we also reference the Soundmate website 3 which contains a counter
for the currently collected tags.
The howto screen introduces the player into the gameplay of Soundmate (how
it works and what the goal is. See figure 3.3f).

3Soundmate website: www.soundmate.ch

www.soundmate.ch

3. Soundmate – The Game 13

(a) Home (b) Profile (c) Highscore

(d) Song History (e) About (f) Howto

Figure 3.3: The different screens of Soundmate (except the gaming screen, which
can be found in figure 3.1). The screens c–f are accessible through the
corresponding buttons on the home screen. The profile can be accessed by
clicking on the avatar or the name.

Chapter 4

System Design

In this chapter we describe the system architecture and its design. The system
has three different components. There is the client (the Android application
Soundmate), the server that organizes the tag collecting and the web server
that provides a public interface (i.e. a website) for accessing the collected tags.
First we focus on the overall structure of the system. The overall structure defines
the relationship between the different components, how they communicate with
each other and which roles (i.e. tasks) each component has to fulfill. Afterwards
follows a detailed description of each component. All three components are
developed in Java.

4.1 Overall Structure

The overall structure of the system is best described by a diagram (see figure
4.1). It is basically a simple client–server model extended with a standalone web
server that accesses the tag database. As the web server provides an interface
to the tags, access to the tag database is required.
The central server communicates with all clients, whereas the clients do not
communicate directly with each other. All communication between the clients
comes and goes through the server. The server is the central organization unit
that coordinates the gameplay between the players.

4.1.1 Component Roles

To make clear which component does what, we would like to give an overview
over the distribution of the most important tasks between the components. We
tried to follow the thin–client paradigm as much as possible. In other words, we
tried to do most work on server side. This has some advantages: after releasing,
updating the server is much easier than updating every client. Furthermore, a

14

4. System Design 15

Visiting Soundmate websitePlaying Soundmate with client

Webserver providing
website

Server with tag
database

Accessing tag database

Figure 4.1: The overall structure of the system. The Android clients send all generated
tags to the central server. The latter collects all tags and maintains them
in a local database. There is no direct communication between two clients,
every message comes and goes through the central server. The web server
provides a public website through which the tag database can be accessed.

central architecture is less complex than a distributed one. And last but not
least, as most smartphones have little computing power, they reach their limita-
tions very fast.

Client

As already mentioned, most work is done on the server side. Therefore the clients
tasks are more or less just displaying the contents received by the server and send
the user actions to the server. The following list contains a few more details on
the tasks of the client.

• Sending a start request to the server when the user wants to start playing.

• Informing the server about all user actions; actions like giving an answer
to the questions, making a next request or quitting the game.

• Displaying the contents received by the server. This includes the informa-
tion about the partner (his name, location and avatar), the current song
title and artist name, but also the cover art of the corresponding song
album. The server sends only the link to the cover art, thus the client
first has to download the image from the target location. Furthermore the
client has to display the question phrase and the corresponding answer set,
which he receives also from the server.

• Managing the playback of the current song. We use internet radio stations
as a source of music (this decision is motivated in section 4.2). It works

4. System Design 16

as follows: the server sends a link of a chosen internet radio station to the
client. Then the client starts streaming from the radio station. As soon as
enough music is downloaded, it starts the playback of the song.

Server

The following list contains all tasks for which the server is responsible.

• Accepting client start requests, creating pairs between new clients and
starting a new game for each new pair.

• Managing and synchronizing the game of each pair. That means telling
each client which radio station he should listen to, who his partner is (i.e.
his name, location and avatar), what the current question including the
answer set is, where to find the cover art of the album and of course what
the current song title and artist name are. Furthermore, the server has
to exchange the answers between the two players (synchronizing the two
players).

• Maintaining a list of possible internet radio stations. The server has to
know which song is currently played on which radio station, so that it can
direct the clients to the desired radio stations.

• Maintaining a database that contains for example all collected tags, all
users, the user highscores, a log, etc.

Web Server

The web server is not part of the game. Its main task is to manage the public
access to the collected tags. To this end, the web server provides a website that
allows downloading a dump of all collected tags. The website also contains a
search function through which one can search for tags of specific songs or artists.
Last but not least, the website references the Soundmate application on Google
Play and explains the main purposes of Soundmate.

4.1.2 Communication Protocol

A central aspect in the system architecture is the communication between the
components. As the web server does not directly communicate with the other
components, we only have to discuss the communication between the client and
the server.
The communication is based on string messages sent and received using sockets.
The messages have a header and a body. The header is a unique string that
identifies the message type. The message body is a JSON string containing the

4. System Design 17

name–value pairs that we want to transmit. JSON is a simple human readable
format for data exchange. To create the JSON string, we used the GSON library
from Google1. It allows to convert (serialize) objects into strings with JSON for-
mat and vice versa (deserialize). This may sound complex, but looking at listing
4.1 should make the message structure clear.

1 StartRequestMessage

2 {

3 "name": "Dominic"

4 "userID": "550e8400 -e29b -11d4-a716 -446655440000"

5 }

Listing 4.1: An example of a start request message. We want to transmit a player
name and his unique ID. The first line is the header (a unique string)
identifying the message type. The other lines are the body: an object
serialized to a JSON string using the GSON library.

Now that we defined the message structure, we can talk about the message
protocol. There are three main message types. We already saw the first type,
namely the start request message. As already mentioned, a start request mes-
sage is used once at the beginning to inform the server that the user wants to
play. The next message type is the new round message. As the name already
suggests, it is used by the server to start a new round on the client side. A
round corresponds to a song and four questions. As soon as all four questions
are answered, a new round begins. Therefore a new round message contains the
link to a new radio station and the first question to the new song. The last
message type is the answer message. It is used by the client to send the answer
tag chosen by the player to the server. Then the server forwards the answer
message to the other player. However, before forwarding the message the server
automatically appends the next question to the answer message. This simplifies
the communication protocol and saves one more message exchange.
An example of an average communication between a client and the server is
shown in figure 4.2.

For the sake of completeness we want to mention that there exist five other
message types. Two of them are used for the highscore (one to request the
highscore and the other to send the highscore). The other three are used to
implement the next request (one to do a next request, one to deny and one to
grant a next request). A next request can be used by a player to ask his partner
to skip the current song. The partner can either accept or deny the next request.

1GSON: http://en.wikipedia.org/wiki/GSON

http://en.wikipedia.org/wiki/GSON

4. System Design 18

Start request message

New round message

Answer message containing own answer

Answer message containing partners answer

and new question

Answer message containing own answer

Answer message containing own answer

New round message

Client Server

Figure 4.2: An example of the communication between a client and the server. To
start, the client sends a start request message. The server answers with
a new round message containing the new song, the new partner, the first
question, etc. Then the client sends its own answer and receives afterwards
another answer message containing the answer of his partner.

4.2 Client

4.2.1 Internal Design

The client is designed to be as stateless as possible. The client mainly sends
the input from the user to the server and displays whatever the server sends
back. If the server sends a new round message with a new song, then the client
simply replaces the old song with the new one. If the server sends an answer
message containing the answer from the partner, then the client simply displays
the answer from the partner.
Designing the client stateless has some advantages. First the client is way more
robust and flexible. The server can change the gameplay (e.g. how many ques-
tions per round) without changing the client. A stateful architecture is also often
more error–prone. Secondly a stateless architecture is less complex to implement
because there are no states to take care of.

4. System Design 19

The overall structure of the client is simple. Each screen that we presented in
chapter three corresponds to an Android activity2. In the following we want to
discuss some important aspects of the client design like the network IO handling
or the music streaming without going into too much implementation details.

Client ID

The central server needs a way to distinguish and identify all clients. After a
Soundmate restart, the server still must be able to identify the client. Without
that, the server could not count the number of total Soundmate players or save
personal highscore data like the current rank or so. Therefore, every client owns
a unique ID. The ID is generated locally the first time the client is started. We
use UUID’s3 as ID’s. Therefore the probability that two clients generate the
same ID is so small and we shall assume a total uniqueness of the ID’s.
The client ID is specified in every start request message so that the server can
identify the client. Furthermore, the client ID is also used when requesting the
personal highscore (the rank of the player). An example of a UUID can be found
in listing 4.1.

Network handling

The only two activities that need network handling are the activities for the
gaming screen and the highscore screen. In both cases, the network handling
is done by a background thread. The background thread waits until a message
from the server arrives. Then it tries to identify the message type and forwards
the message content to the corresponding activity.
The background thread for the gaming activity is also responsible for setting up
the connection with the server and sending the start request message. When
trying to connect to the server, the thread always tries to connect to an alterna-
tive port if the main port failed. This is not essential but it leaves more freedom
in cases of server crashes or server updates.

Music Streaming

The music streaming from radio stations works as follows: first the client starts
streaming from the radio station until a certain amount is buffered. Then it
starts playback and continues with streaming. The goal is to stream enough
data at the beginning so that the buffer is never empty and the playback never
has to stop until the round finishes (no buffer interruptions). Unfortunately, with

2If you do not know Android activities, just think of it as a programming module that
is responsible for a certain screen of the game. More about Android activities on: http:

//developer.android.com/guide/topics/fundamentals/activities.html
3UUID: http://en.wikipedia.org/wiki/Universally_unique_identifier

http://developer.android.com/guide/topics/fundamentals/activities.html
http://developer.android.com/guide/topics/fundamentals/activities.html
http://en.wikipedia.org/wiki/Universally_unique_identifier

4. System Design 20

an average internet access it takes up to five seconds for this initial streaming.
Obviously it would be unacceptable to let the players wait about five seconds for
playback after every song change.
The dangerous aspect of this problem is that not solving it good enough would
completely destroy any game flow that might come up while playing Sound-
mate. Therefore we spent much time finding and implementing an acceptable
solution. The main idea is the following: we always start buffering the next two
songs (using two background threads). Ideally, the buffering of the second song
finished completely when the new round begins. As an average round takes about
25 seconds, this is almost always the case. Nevertheless there is one problem:
When the players successively use the next button to skip songs, the buffer pro-
cess may eventually not catch up any more. That means, skipping immediately
at least two songs may lead to buffer interruptions in the playback. However
practical experience has shown, that on average the buffer system can tolerate
up to five or six successive skips before buffer interruptions are needed4.

Another important aspect of the music streaming is the bit–rate of the radio
streams. The client downloads the different songs from lots of different internet
radio stations. Every radio station can configure its on bit–rate of the stream.
We registered bit–rates from eight bits per seconds up to 917 bits per seconds.
Now, as already mentioned the client initially downloads a certain amount before
playback starts. We found out that downloading about five seconds of the song
is a good threshold to avoid almost any future buffer interruptions. However, to
know how many bytes corresponds to five seconds of the song, we need to know
the bit–rate of the stream. To this end the server automatically specifies the
bit–rate of every new internet radio station in the new round messages (section
4.3 explains how the server obtains the bit–rates). This allows the client to com-
pute the number of bytes to download for the initial streaming.

The download of the cover arts works the same way. The two background
threads that are responsible for downloading the songs download also the cover
arts. They first download the cover art, which often takes much less than a
second. Then they start streaming from the radio stations.

Highscore

The highscore is composed of a global and a personal highscore. The global
highscore contains the top five players with their best result. The client always
queries the global highscore from the server when the user goes to the highscore

4The practical reason for this is that a next request contains some delays. It usually takes at
least two to three seconds until the partner answered the request and the message is propagated
back to the requester.

4. System Design 21

screen (no caching). This is for the simple reason that the entries of the global
highscore might change at any time. In contrast, most of the personal highscore
is saved locally5. The only thing the client queries from the server concerning the
personal highscore is the current rank of the player (including the total number
of players). The current numbers of achievement awards, the player’s best score
and his maximum matches are saved locally.
To query the server for highscore values, the client uses a background thread
that sets up a connection to the server and sends a highscore request message
containing the clients unique ID. In return the server sends back the highscore
values. We would like to point out that the highscore contains only one entry per
client. That means even if one player manages to achieve the best two scores,
he would only be displayed at first position. This is for the reason that the
highscore is a player highscore and not a point highscore.

Song History

The central question about the song history is: how to remember (save) the
details of the occurred songs? For the song title and artist name, the client just
writes them as a list into a local file (internal storage). More important is how
to save the cover arts. There are two possibilities. Either one writes all images
directly into a local file or one just saves the link to the images. The client im-
plements the second solution because it is simpler to save links than images and
it does not need as much memory6. Every time the user opens the song history,
the client downloads all cover arts again. As the images are not very big, the
total download finishes after a reasonable amount of time. It is implemented
with a background thread that successively downloads the images and informs
the song history activity after every image download. In this way we do not have
to wait until all images are downloaded.
The last thing to say about the song history is that it has a limit of 100 entries.
If the limit is reached, for every new entry the oldest one gets deleted.

Error Handling

Finally we want to cover some aspects of the error handling. The general be-
haviour in case of an error is to close the current screen (activity), return to
the home screen and display the general error message (see figure 4.3). Most
errors are due to a bad internet connection. That means that the server closes

5For the ones who are familiar with Android: the client uses Shared Preferences to save the
best score and the maximum matches. For the achievement awards, it uses internal storage.
More on http://developer.android.com/guide/topics/data/data-storage.html

6To write the list of links into a file, we use Java object streams. More about that on:
http://docs.oracle.com/javase/tutorial/essential/io/objectstreams.html

http://developer.android.com/guide/topics/data/data-storage.html
http://docs.oracle.com/javase/tutorial/essential/io/objectstreams.html

4. System Design 22

Figure 4.3: The general error message when something went wrong while playing.
Most errors are due to insufficient network connectivity (timeouts). In
case of an error, the current game is closed and Soundmate returns to
the home screen.

the connection to the client because of a timeout. It is also possible that an
unexpected internal error happened or that the server closes the current game
because of some errors on the server side. However, as it would be very expen-
sive to implement an error handling that distinguishes between all different error
causes, we just use a simple general error message.
The general behaviour of returning to the home screen in case of an error might
be improvable. There are errors that are recoverable without closing the current
screen. For example, in case of a timeout the client may just try to reconnect
instead of closing the game. Unfortunately we had to drop any error handling
improvement due to time reasons.

4.2.2 GUI

Now that we discussed the internal design of the client, we can move on to the
graphical interface of the client. The goal of this section is not to present the
GUI (that happened in chapter 3), but rather to motivate the graphical design
choices and to give an insight on how the different GUI elements have been built.

Style

Our goal was to create an intuitive, clear and modern design. We came up
with a simple color style that is present throughout the whole application. The
background is black, text is white and special symbols or titles are orange. We
have deliberately chosen a black background which is neither fancy nor creative.
But it is neutral, it provides good contrast to most other colors and it does
not distract the user from the text on top of it. Using a white text on a black
background ensures a good readability of the text. The orange title and symbol
color is mainly chosen because the logo and the icon are orange. We could take
them from the Jukefox project (figure 4.3 contains the icon and figure 3.3a the
logo of Soundmate) .

4. System Design 23

Text Element

Image

Underlying
Layout

Figure 4.4: The structure of a button on the home screen. The underlying layout
defines the shape of the button. The color of the layout is a gradient going
from dark gray to light gray. The layout contains also a thin border of an
even lighter gray to delimit the clickable area. On top of the layout is a
text element and an image describing the action of the button.

Button Structure

Without going into implementation details, we want to illustrate how the GUI
elements in Soundmate are built. To this end we discuss the structure of the
buttons on the home screen. This type of button did not exist as template, we
had to build it using different components. Looking at figure 4.4 wee see that
such a button is composed of three different elements that are organized on two
levels. On the bottom level is a rectangular layout that defines the shape of the
button (the clickable area). The main color of the layout is a gradient going
from dark gray to light gray7. The layout contains also a thin border consisting
of an even lighter gray to delimit the button area. On the second level on top of
the rectangular layout is a text element that describes the action of the button.
Below the text element is an image further clarifying the action of the button.
The goal of the image is that even if the user is not sure what the text element
means, he still can imagine what the button does.

After the discussion of the button structure we can now move on to the next
component of the system, the server.

7Precisely: from #464646 to #222222

4. System Design 24

4.3 Server

The overall structure of the server is best described by figure 4.5. The server is
composed of four different programming modules and the database. The client
acceptor module accepts new client start requests and tries to make pairs be-
tween the clients. For each new pair it creates a new game instance. A game
instance is a thread that manages and synchronizes the gameplay between the
two assigned clients. It uses the global radio station handler which provides a
list of radio stations and their currently played song. The database utility is a
module that abstracts the access to the SQL database.

Client
Acceptor

Game
Instances

Radio Station
Handler

Database
Utility

Database

Figure 4.5: The structure of the server. The client acceptor accepts start requests
and creates a new game instance for every two players. A game instance
manages and synchronizes the gameplay between the two assigned play-
ers. The radio station handler provides a list of radio stations with their
currently played song. The database utility is used to abstract the access
to the database.

The main priority for the server design was robustness. We do not want a
server crash after release. We designed the server modules in a way that they are
able to recover from all expected errors or failures without affecting any other
modules. To this end, we tried to reduce the communication and dependencies
between them to a minimum.

In the following we discuss the four different programming modules; i.e. how
they work and how they communicate with each other.

4. System Design 25

4.3.1 Game Instances

The game instances are the core of the server. For every active game between
two players exists a corresponding game instance on the server side. A game
instance is a single, isolated thread that manages a particular game. Having
individual threads for each game that do not communicate or interfere with each
other enhances the robustness of the server. In this way, a crash of a single game
instance cannot affect any other game instances.
The behaviour of a game instance is basically depicted by figure 4.2. Essentially,
it just repeats the following two steps: first it sends a new round message to the
two players. Then it exchanges four times the given answers between them. In
case of a next request from one of the players, the game instance forwards the
next request to the partner. If he grants the request, the game instance cancels
the current round and starts the next round. If she denies the request, the game
instance informs the requester and continues normally.

A central part of the game instances concerns the new round messages. We
know that they contain a radio station and a cover art (links), a song title, an
artist name, a question and a set of answers. The question we want to answer
is: how do the game instances choose these values? The radio stations with the
song titles and artist names are retrieved from the global radio station handler,
but more on that later. The questions for each round are chosen randomly,
except that the first question is always about the genre. The answer sets of the
questions are saved in the database. The game instance uses the database utility
module to retrieve the answer set for a certain question. Which answers of the
current answer set are finally used depends on the question and is described in
section 3.2. What remains to explain is where the game instances get the links
to the cover arts from.

Cover Arts

Here it gets a little bit trickier. The following list contains all sources where the
game instances try to find a cover art for the current song.

• Amazon Product Advertising API

• Last.fm database

• CDDB and FreeDB databases

The Amazon Product Advertising API allows access to all cover arts from Ama-
zon’s music products. We retrieve most cover arts from this source. The API is
accessible with either a SOAP or a REST protocol. We use the REST protocol
as it is more lightweight. Listing 4.2 shows an example REST query. The query

4. System Design 26

specifies among others a set of search keywords, the type of the result items, an
access key and the associate tag. The last two are mandatory8. The result of
such a query is an XML file containing a link to the cover art (if available). If
there is no result for a certain song, we try the query again but just using the
artist name as a keyword. This may lead to a slightly wrong cover art, but that
is still better than no cover art.
The Last.fm database also contains cover arts for a certain amount of albums.
Unfortunately, it does not provide information on which song corresponds to
which album. And as we only know the song that is currently played on a ra-
dio station, we need this information. Therefore we use the Last.fm database
combined with the CDDB and FreeDB database which provide exactly such a
album–song relationship. But as the average image quality of the Last.fm cover
arts is rather bad, Last.fm is the last resort only in case the Amazon Product
Advertising API did not give any results.

1 Http :// ecs.amazonaws.de/onca/xml

2 ?AWSAccessKeyId =*********

3 &AssociateTag =*********

4 &Keywords=One%20 Republic %20All%20the%20 Right %20 Moves

5 &Operation=ItemSearch

6 &ResponseGroup=Images %2 CItemAttributes

7 &SearchIndex=All

8 &Service=AWSECommerceService

9 &Timestamp =2012 -06 -07 T17%3A28%3A45Z

10 &Version =2012 -04 -12

11 &Signature=ONkMbCX9XiNHBdAh94mqtllRkGfwINrw0f378G0xers %3D

Listing 4.2: An example REST query used to retrieve the cover art of the song ‘One
Republic - All the Right Moves’ from the Amazon Product Advertising
API. The Keywords parameter specify the set of words to search for in
the Amazon product database. The ResponseGroup defines the type of
the result items. The signature is computed out of the remaining query.

4.3.2 Client Acceptor

The client acceptor is responsible for managing all new clients that want to start
playing. For every two clients, it creates and starts a new game instance. If there
is no partner for a client, it creates a new bot that acts as partner for the client.
The client acceptor listens on a specified port if any new start request message
from a client arrives. As soon as one arrives, it puts a player structure represent-
ing the player that wants to play into a global queue and continues listening on

8For more information about the query structure, go to http://docs.amazonwebservices.

com/AWSECommerceService/latest/DG/Welcome.html?r=2392

http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/Welcome.html?r=2392
http://docs.amazonwebservices.com/AWSECommerceService/latest/DG/Welcome.html?r=2392

4. System Design 27

the port. Parallel to that exists a scheduled task that periodically goes through
the mentioned player list and tries to create pairs between the contained players.
For every pair, the task creates and starts a new game instance. From then on,
the game instance is responsible to start and handle the game between the two
players.

4.3.3 Radio Station Handler

The radio station handler provides a public list containing links to valid internet
radio stations including the song titles and artist names of the currently played
songs. The list is accessed by the different game instances (for every new round)
to get a new internet radio station.

Motivation

Before we dig into how the radio station handler works, we want to say some
words about why we chose radio stations as our source of music. We have a
database table containing about 12’000’000 different songs, which we got from
Last.fm. Our goal is to finally assign tags to all of these songs. Therefore we
need a music source which can (at least eventually) provide all of these songs.
Some researches yielded at least three possible music sources that we can use:
Jamendo, Youtube and internet radio stations. Jamendo is a free public song
collection where artists can add their songs under public domain. The problem
with Jamendo is that it only contains about 350’000 songs. Using Youtube as
a music source might be a good choice at first sight. However it proved to be
hard because of possible license restrictions and the fact that most of the songs
exists several times with similar names. Therefore a better solution is to use
internet radio stations because just directing clients to radio stations surely does
not violate any license restrictions. Furthermore, one can assume that using lots
of different radio stations make sure, that a reasonable fraction of the 12’000’000
songs will eventually occur.

Structure

Now after we motivated the choice of radio stations, we can talk about how
the radio station handler works. In our database is a table containing about
50’000 links to different internet radio stations. We got these links from different
websites providing such lists. The central questions is: how does the radio station
handler know, which song is currently played on which radio station? There
are at least two ways to find that out. One could periodically start streaming
a short time from the radio stations just to take the song information out of
the included metadata of the stream. The problem with this approach is that

4. System Design 28

lots of radio stations do not like it. It distorts their user statistics because we
would periodically start and stop streaming from their radio station. The second
approach – the one we implemented – is to use their status website. As all of our
radio stations use either SHOUTCAST or ICECAST as a stream server, their
status websites have all the same structure (at least if they have a status website).
And this structure includes also the currently played song of the stream. That
means the second approach is to read the currently played songs out of the radio
station websites. Figure 4.6 shows an excerpt of an example SHOUTCAST
status website.

Current Stream Information

Server Status: Server is currently up and public.
Stream Status: Stream is up at 128 kbps with 0 of 40 listeners (0 unique)
Listener Peak: 5
Average Listen Time: 1m 15s
Stream Title: RADIO.IPIP.CZ: One Dance Radio
Content Type: audio/mpeg
Stream Genre: Top40, Pop, Dance,RnB
Stream IRC: Music Life
Current Song: Miley Cyrus - Party In The Usa

Figure 4.6: An excerpt of a SHOUTCAST radio station website. The website provides
information about the currently played song. The radio station handler
uses this fact to periodically check the websites of all radio stations to
know which radio station plays which song.

To realize this approach, we have a set of so–called stream crawlers and one
global list which contains the information which radio station plays which song
at the moment. A stream crawler is a thread to which about 20 radio station
are assigned. It goes periodically (about every ten seconds) through the websites
of all assigned radio stations, and extracts the current song out of the website
HTML. If any radio station changed its current song, the stream crawler replaces
the old song of the radio station in the global list with the new song. We have
about 20 stream crawlers that are working in parallel. In this way we have
one global list that provides the current song information for about 400 radio
stations.
One problem with this approach is that we do not know, when a song will change.
It would be irritating if we direct a client to a radio station and the song changes
during the round. To solve this problem, we use just radio stations that have
made a song change in the last 90 seconds. As most songs have a length of
at least 3 minutes and an average round finishes after 25 seconds, this solution
reduces the possibility of a song change during a round to a minimum.
Another problem is that there are some radio stations that are broken and do

4. System Design 29

not send any music or that often stream conversations instead of music. To
eventually remove these bad radio stations from the global list, we periodically
replace the assigned radio stations of every stream crawler with better ones. To
this end we assume that the players make next requests if the current radio
station is bad. To remember how often a next request has happened to each
radio station, we maintain a ‘next counter’. Using only the radio stations with
the lowest next counter for replacement, we eventually use better and better
radio stations. However, one might say that some players make next request just
because they do not like the current song and this would increase perhaps the
next counter of a good stream. That is true, but we want to allude to the fact
that the next counter of a stream is just increased if the other player accepts the
next request. Therefore, the next counter of a good stream is only increased if
both players do not like the current song.
Finally we want to point out that this approach is only on best effort basis. The
format of the current song on the SHOUTCAST or ICECAST websites differs
from website to website. And we can only use radio stations that play songs
that are contained in the list of the 12’000’000 songs that we know. That means
there are lots of radio stations we cannot use9

4.3.4 Database Utility

All database queries that the server needs are written in the database utility
module. Our database is an SQL database, thus the database utility contains
just a set of SQL queries. Every database access is done over the database utility.
As all stream crawlers and all game instances use this module, the database
accesses are highly parallelized. Creating a new database connection for every
query could be a bottleneck. Therefore we make connection pooling using the
library c3p010. Basically connection pooling is the process of caching database
connections for future use. In this way, one does not have to create a new
connection for every query.

4.4 Web Server

The web server is the third component of the system. Its purpose is to make all
collected tags freely available to the public without any license restrictions. As
the web server is a rather small component, we can keep the discussion short.

The web server provides a website for Soundmate using the HttpServer
library from sun. The two most important contents of the website are a link

9From the initial 50’000 radio stations that we know, there are finally about 15’000 which
provide a status website and stream in a usable format.

10c3p0 manual: http://www.mchange.com/projects/c3p0/

http://www.mchange.com/projects/c3p0/

4. System Design 30

to the current tag dump and the search function. The tag dump is an SQL
file containing a dump of the database table with the collected tags. The table
has the following columns: song name, artist name, tag name, tag category, tag
quality, quantity and song ID. The tag quality is the quantity divided by the
number of other tags collected for the same tag category. The search function
can be used in three ways. If you specify just the artist, then the website lists
all songs of that artist11. If you specify just the song name, you get a list of all
artists which produced an equally named song. If you specifying the artist and
song name, then the website lists all available tags for this song and suggests a
list of similar songs (according to the tags).

11Unfortunately, querying all tags for a certain artist would take too long because some artists
have up to 7’000 songs in our database. Therefore we cannot provide an artist to tag search
function.

Chapter 5

Promotion and Results

In this chapter we first talk about the promoting that we have done for Sound-
mate. Then we show some interpretations and illustrations of the data gathered
during the first several weeks after release.

5.1 Promotion

Since the game experience of Soundmate is much better when playing it with
a real partner instead of a bot, it would be desirable that there are always
some people playing it. Therefore we used several places to promote and spread
Soundmate.

The first possibility to promote an Android application is to upload it to
multiple ‘App–stores’. We uploaded Soundmate to Google Play, Getjar and
the App Center of Androidpit. The second possibility is to directly contact IT–
blogs asking them to spread the word about the application. We contacted lots of
different IT–blogs including Gizmodo, Androidpit, Engadget, etc. Unfortunately,
we did not get a big reaction from them. Another possibility is to present the
application in forums or similar platforms. We assume that we reached most of
our players through the forums from Androidpit, Androidcentral and Reddit.

5.2 Results

5.2.1 Quality measurement

By now, we have collected about 15’000 tags. That is enough to make a first
interpretation on the quality of the collected tags. As our goal was to collect
high–quality tags, we would like to have a quality measurement for each collected
tag describing our confidence that it accurately describes the respective song. A
first approach was to take the relative occurrence rate of the tag as measurement.

31

5. Promotion and Results 32

For example if we have ten times the tag Guitar and five times the tag Drum
for a certain song in the category instruments, the tag Guitar has 10

10+5 = 2
3 and

the tag Drum 5
10+5 = 1

3 confidence. However this example also shows a severe
flaw of this strategy. It is not possible to have more than one confident tag
in a category. If there are two tags that occurred exactly equally often, they
both just have a confidence of 0.5. Therefore we extended this measurement
in the following way: we consider all tags that occurred at least about 80%
of the highest occurrence frequency as maximum tags. When computing the
confidence for maximum tags, we do not include any other maximum tags in
the computation. For not maximum tags, the computation remains the same.
For example lets say we have the following three instrument tags for a certain
song: 20 times Guitar, 18 times Violin and six times Piano. As 20 is the highest
occurrence number, Guitar and Violin are maximum tags. Therefore Guitar has
20

20+5 = 4
5 and Violin 18

18+6 = 3
4 confidence. The computation of the confidence

for Piano remains the same as it is not a maximum tag: 6
6+18+20 = 3

22 . In this
way we have also a more explicit distinction between good and bad tags. The
latter have often very low quality numbers whereas the former have high quality
numbers. Normally, there is not much between.
To further illustrate the concept of the quality measurement, figure 5.1 shows the
collected maximum tags for the song ‘NOFX – Bob’ with their confidence. After
listening to the song, it gets clear that most of the tags are justified. NOFX is
a punk–rock band and the song Bob contains a guitar, heavy screaming and is
fast.

NOFX - Bob

Tag name Category Quality Quantity

Positive Mood 0.33 8 of 24

String Instr. Instruments 0.5 8 of 14

Punk Genre 0.36 24 of 65

Fast Tempo 0.55 11 of 16

Scream Vocal style 0.4 6 of 13

Break up Listening time 0.45 5 of 14

Fighting Listening time 0.45 5 of 14

Figure 5.1: The collected tags with the highest occurrence rate for the song ‘NOFX –
Bob’. The tags describe pretty good the real characteristics of the song.
The quality measurement is a function of the relative occurrence of the
tag.

We want to point out that there are several other possibilities to compute

5. Promotion and Results 33

the confidence of a tag. Chapter 6.1.1 presents a further quality measurement
that is probably a lot more accurate. However, due to time reasons we could not
implement it.

5.2.2 Tag Popularity

One general problem with music tagging games is, that the players will always
try to game the system [3]. For example, they often choose generic tags like Pop
over less common tags like Melodic Death Metal. To prevent such a behaviour,
one can forbid popular tags or – like we did – create a hierarchical tag structure
and force the player to choose less common tags (child tags) after they have
chosen generic tags (top–level tags).
However, we could observe the behaviour of choosing the most generic tag also
between different top–level tags. For example, the top-level tag Pop was chosen
much more frequently than all other top-level tags in the category genre. Figure
5.2 shows the distribution between all genre top-level tags. Just to remind you,
top–level are the root tags of a hierarchical answer set.
We point out that figure 5.2 does not necessarily prove the mentioned behaviour
of the players. It is possible (and reasonable) that the genre of the played songs
by the radio stations are not uniformly distributed.

0
100
200
300
400
500
600
700
800
900

Genre Tag Distribution

Figure 5.2: The absolute frequency of all genre root tags. Obviously the three most
general tags Pop, Rock and Electronic have been chosen much more fre-
quently than the others. This is for the reason that choosing more general
tags is a better win strategy than choosing less common tags. The fact that
the genres of the played songs may not be distributed uniformly further
amplifies the phenomenon.

Chapter 6

Future Work and Conclusion

6.1 Future Work

Thinking in long terms, creating a Soundmate version for iPhone and a version
for computers would be surely a good possibility to get more players. As the
game suffers from a lack of publicity, a reasonable amount of work should be
invested into the promotion and the spreading of Soundmate.

Thinking in short terms, there are some features that could be added to
Soundmate. The most important one would be a possibility of doing a self–
assessment after every given answer. That could be a simple bar from one to ten
where the player can easily indicate after every question how sure he is about
the just given answer. The bar should also display the self–assessment value of
the other player. These self–assessments can be used for quality measurements
(see chapter 6.1.1) but are maybe also another fun factor for the players1.
Another feature would be the possibility to favour certain songs and (if possible)
to save them locally on the phone for future use. This feature would increase
the desired aspect of music discovering while playing Soundmate.
Furthermore, a possible improvement concerns the interaction between the two
players. We realized that the game makes much more fun, if there are possibilities
to interact with your partner. Therefore one could add for example a chat facility
or a rating function to rate the answers of your partner.
The last extension would be to assign titles and levels to the players. If they
reach a certain amount of points, they can move on to the next level. For each
level, they get a certain title.

1For example, we could inform a player that he underestimates himself in case when she
often indicates a low confidence of the answer but regardless chooses tags with a good quality
measurement

34

6. Future Work and Conclusion 35

6.1.1 Quality Measurement

In the standard quality measurement (we use this term to reference the approach
presented in chapter 5.2.2) we considered the answers from different players as
equally good. All tag occurrences had the same weight. Unfortunately, in re-
ality, this is not true. There are big differences between the tagging skills of
the players. Therefore, the idea is to first make a quality measurement on the
players themselves before measuring the quality of the tags. With such a quality
measurements of the players, we could assign a weight to each tag occurrence.
A tag occurrence from a player with a high quality is weighted higher than an
occurrence from a player with a lower quality. These weights could be used to
further improve the accuracy of the standard quality measurement.
The quality of a player consists of a set of quality numbers. Each quality num-
ber corresponds to one tag category. The quality numbers indicate how often a
player has chosen a tag that can be assumed as correct from the corresponding
tag category. To find out which tags can be assumed as correct, we simply use
the standard quality measurement. To make the quality numbers of the players
even more accurate, one could further consider the self–assessment values de-
scribed above in the computation.

The big benefit of this approach is the following: first we compute the qual-
ity of the players using songs that have been tagged enough times so that the
standard quality measurement is accurate. Then we can use the quality of the
players to state the confidence of tags for songs that have not been tagged enough
times yet so that the standard quality measurement is accurate. For example, if
we know that five players with very high quality have chosen the same tag for a
certain song, we can sate the quality of this tag much higher than the standard
quality measurement can.

6.2 Conclusion

Collecting tags with a social, collaborative game is not easy. The critical part
is to get enough people playing it. We assume that the developers of the other
mentioned projects got the same insight. At the time of writing we have not col-
lected enough tags yet so that they can really be used (due to too little players).
However, during this thesis we gained much understandings concerning music
tags and the collecting of them. Especially we want to emphasise the benefit of
using a predefined, hierarchical set of categorized tags. It is maybe more time–
consuming to build one, but it significantly simplifies any further usage of the
collected tags.
Another part of the thesis we would like to highlight is the use of internet radio
stations as a music source. It was one of the central problems we had to solve in

6. Future Work and Conclusion 36

this thesis, namely where to get the music from. Using internet radio stations,
one can listen to high quality music without worrying about license restrictions.
With the developed program module, we can retrieve live information about the
currently played songs from thousands of internet radio stations. This program
module can be easily used in other projects, as it has no external dependencies.

All in all, we think that with the development of Soundmate we made
another step towards a revolutionary new way of handling big music collections.
By now, we are not there yet, but this state might not last long. One famous
blogger and one big IT website promoting Soundmate and the situation maybe
looks completely different. Anyway, we are looking forward to an exciting future
where creating customized playlists and sorting songs is not in the slightest
annoying any more.

Bibliography

[1] P. Lamere, Social tagging and music information retrieval, Journal of New
Music Research, Routledge, 2008, pp. 101–114.

[2] E. Law and L. von Ahn, Input-agreement: A new mechanism for collecting
data using human computation games, CHI ’09 Proceedings of the 27th inter-
national conference on Human factors in computing systems, 2009, pp. 1197–
1206.

[3] D. Turnbull, L. Barrington, and G. Lanckriet, Five approaches to collecting
tags for music, ISMIR 2008: Proceedings of the 9th International Conference
of Music Information Retrieval, 2008, pp. 225–230.

[4] D. Turnbull, L. Barrington, G. Lanckriet, and D. O’Malley, User-centered
design of a social game to tag music, HCOMP ’09 Proceedings of the ACM
SIGKDD Workshop on Human Computation, 2009, pp. 7–9.

[5] D. Turnbull, R. Liu, L. Barrington, and G. Lanckriet, A game-based approach
for collecting semantic annotations of music, Proceedings of the 8th Interna-
tional Conference on Music Information Retrieval (ISMIR 2007), 2007.

[6] L. von Ahn, Games with a purpose, IEEE Computer Magazine (2006), 96–98.

[7] L. von Ahn and L. Dabbish, Labeling images with a computer game, CHI
’04: Proceedings of the SIGCHI conference on Human factors in computing
systems, 2004, pp. 319–326.

[8] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum, recaptcha:
Human-based character recognition via web security measures, Science 321
(2008), 1465–1468.

37

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goal of this Thesis
	1.3 Outline

	2 Related Works
	2.1 MajorMiner
	2.2 Herd–it
	2.3 Soundmate
	2.4 Improvements in Soundmate

	3 Soundmate – The Game
	3.1 Introduction
	3.2 Gaming Screen
	3.3 Features

	4 System Design
	4.1 Overall Structure
	4.1.1 Component Roles
	4.1.2 Communication Protocol

	4.2 Client
	4.2.1 Internal Design
	4.2.2 GUI

	4.3 Server
	4.3.1 Game Instances
	4.3.2 Client Acceptor
	4.3.3 Radio Station Handler
	4.3.4 Database Utility

	4.4 Web Server

	5 Promotion and Results
	5.1 Promotion
	5.2 Results
	5.2.1 Quality measurement
	5.2.2 Tag Popularity

	6 Future Work and Conclusion
	6.1 Future Work
	6.1.1 Quality Measurement

	6.2 Conclusion

	Bibliography

