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Distributed computation frameworks use large amounts of bandwidth to propagate input and result
data between nodes. As the amount of nodes and the amount of data being processed on them grows,
high-traffic routes on the network become a bottleneck. Cloud services offer their tenants no control over
the network infrastructure, potentially leading to sub-optimal resource utilization. Current approaches try
to overcome these shortcomings by using faster networking technologies or alternative network topologies.

In this paper, we explore the approach of complementing a generic switch with a general-purpose
computer to form an in-network processing element and providing software-level support for controlling
the locality of computations in a distributed computation framework. As such we make the network
infrastructure more transparent to tenants of our computation framework, allowing them to implement
application-specific data routing and processing. We call this model Network as a Service (NaaS). Pre-
vious data center simulations of NaaS have shown promising results.

We present NaaStorm, a concrete implementation of a distributed computation framework modeled
on the Network-as-a-Service concept. We show that in-network processing yields substantial speedups
compared to the standard model.

In the process of implementing our worker module we have decided to forgo Twitter Storm integration
and instead create a stand-alone distributed processing framework. We demonstrate our work in multiple
benchmark applications.
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Chapter 1

Introduction

1.1 Motivation

The ascent of the Internet has enabled people to share information in a scale previously unknown. Every
day millions go online to communicate via services such as E-mail, instant messaging and social networking
sites. In 2007 [1] estimated that 6 million users posted 65 million tweets on Twitter per day, predicting a
doubling of posts each month. More recent numbers suggest 100 million active users[2] and 200 million
tweets per day[3].

Researchers and enterprises have harnessed this massive amount of content generated. For instance, [4]
explores how sentiment analysis can predict stock market movement. Tweets stating explicitly the mood
the author is in are extracted by searching for terms like “I’m feeling” and “makes me”. These are passed
to tools which output moods such as calm, alert, sure, vital, kind and happy. Using machine learning
techniques the authors establish a link between e.g. “calm” and the Dow Jones Industrial Average.

Sakaki et al [5] use social networks to detect earthquakes in real-time. Each user is considered as a
sensor, each tweet as sensor information. Keywords such as “earthquake” and “shaking” return possibly
relevant posts which are classified using machine learning techniques. An approximate location estimation
is made by reading users’ GPS coordinates. The authors show that in most cases notification E-mails are
sent within a minute, with a detection rate of 96% for JMA intensity scale 3 earthquakes. In comparison,
official channels have a response time of 6 minutes.

Processing massive amounts of data in real-time can only be achieved by distributing the workload across
many computers. While software frameworks such as Apache Hadoop, Google’s MapReduce and Twitter
Storm exist for this purpose, studies have shown [6, 7] that their scalability is limited by the throughput
of core-level switches. Traditional data center networks are strictly hierarchical and are divided into
core, aggregation and access layers [8]. In order to maintain that structure the common approach taken
is to install faster hardware to alleviate the bottlenecks. Scaling up is expensive and is limited by the
technology available.

An alternative is the use of non-standard network topologies [9, 10, 11] or multi-path networks[12, 13].
However, these come at the cost of custom routing protocols, management and maintenance overhead
and may exist only for specialized systems.

SideCar[14] presents a conventional network topology complemented by off-the-shelf servers connected
to each switch via redirection mechanisms. While the paper presents an approach to pervasive network
instrumentation and programmability, their extended network topology can be re-purposed for a novel
approach to distributed computation frameworks.

1.2 Idea and Approach

In their paper[15], Costa et al argue that in-network processing can benefit tenants of cloud infrastruc-
ture and platform services by giving them application-level control over network forwarding decisions.
Traditional network infrastructure separates computation in the end hosts from end-to-end routing in
the network. They argue that the separation negatively impacts both performance and flexibility. In
their model, applications implement custom data aggregation, stream processing, caching and redun-
dancy elimination protocols assisted by in-network processing elements. These are either connected via
high-bandwidth links to switches or integrated into switch hardware. They coin this network architecture
and programming model Network-as-a-Service (NaaS). Simulations show promising results, with greatly
increased application performance and reduced overall data center traffic.
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In this paper we aim to demonstrate the practical viability of NaaS by applying the model to a modern
distributed computation framework. We aim to achieve a significant speedup of reference applications
on our modified framework when compared to the plain vanilla installation, both through the efficient
bandwidth utilization of in-network processing and through our machine-native implementation. Our
goal for raw throughput is to achieve at least 1 Gib/s, ideally 10 Gib/s. Like in all real-world scenarios
there are applications which experience little to no speedup. As such we will identify both positive and
negative examples of programs suitable to the NaaS model.

We build our system, called NaaStorm, to integrate with the distributed real-time computation frame-
work Twitter Storm[16]. Building upon an existing framework benefits us by providing:

• a tested and well-performing base, eliminating many frequent pitfalls when constructing a system
from scratch,

• a convenient and fully-featured interface, which is usually not a consideration for research platforms,

• a proven track-record with companies and an existing application base, substantiating our aim of
showing real-world applicability and

• a user base with mailing list and wiki, which can be helpful for solving common problems.

In short, building upon an existing framework allows us to focus on the relevant aspects of implementing
a scalable in-network processing system.

Twitter Storm was selected as our basis for the following reasons:

• Social network
Twitter1 is one of the world’s largest social networks. Many previous research projects in a variety
of fields have resorted to feeds of user tweets for relevant input. As such Twitter provides us with
wide range of interesting usage scenarios and data streams with Storm acting as a catalyzer.

• Active project
Twitter Storm is a young project which is actively developed. A modern and manageable code base
is also beneficial as it largely liberates us from dated code and crude APIs.

1.3 Contributions

This project has made the following contributions:

• Network-as-a-Service concept demonstration (chapters 3, 4, 5.1.3)
We showed by way of an implementation how a Network-as-a-Service architecture can be designed
and constructed in practice. Its gains and drawbacks have been evaluated with several demo
application benchmarks.

• Design of external component integration into Twitter Storm (sections 3.3, 4.2)
We showed that it is feasible to integrate components of an external project into the Storm frame-
work, independent of the component’s implementation language and internal architecture, by way
of a step-by-step design and a prototype wrapper layer.

• Kryo serialization format portability (section 4.5)
We designed a Kryo-compatible serializer in a non-JVM language and showed that it can be used
for a concrete project.

• Serializer evaluation (section 5.1.1)
We evaluated the performance of the Kryo and KryoCpp serializers and showed their characteristics
when encoding a selection of data types.

• ZeroMQ evaluation (section 5.1.2)
We evaluated the performance of the ZeroMQ message-oriented middle-ware and showed that it’s
use has minimal performance impact compared to TCP/IP.

1http://twitter.com
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1.4 Report Structure

First we give an introduction to the relevant concepts and projects behind our work in the Background
(chapter 2). We give an overview of Twitter Storm and its foundations, ZeroMQ and Kryo.

In the Design chapter (3) we describe our design of NaaStorm and its logical and physical placement
in the cluster. We try to give insight into our decisions and discuss the alternatives.

Then we immerse into the implementation details (chapter 4) of our project. Here we explain the
inner workings of our system and how we implemented a Kryo-compatible serializer. Again we discuss
alternatives and justify our decisions.

Chapter 5 provides graphs and numbers of the performance results achieved. We analyze them in
detail and try to give a sensible interpretation. We discuss our project and its limitations. We provide
insight into what challenges and problems we had during the design and implementation phases.

Finally, we conclude (chapter 6) our project, reflecting what we have learned and decisions we would
make differently the second time. We summarize the goals we have achieved and discuss those which
have eluded us. We give an overview of how our project could be extended and future work.
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Chapter 2

Background

In this chapter we give an overview over related work and the background information necessary to
understand our project’s design and design considerations.

2.1 Message-Oriented Middleware

2.1.1 Overview
Traditionally application-layer communication is done either directly with low-level socket programming,
as with the TCP and UDP protocols, or with remote procedure calls.

Low-level sockets establish a uni- or bidirectional point-to-point connection between two end points.
Transmissions are efficient and fast. However, implementations are specific to the programming language
and operating system, limiting platform portability. Their use is often cumbersome, leaving the developer
to handle multiple targets and sources, communication patterns and failures.

RPC enables locally called procedures to transparently executed on a remote host. While this facil-
itates a number of applications, it is inflexible and reliability semantics vary between implementations.
Furthermore, RPC implementations are often bound to a certain programming environment.

[17] defines message-oriented middleware as “any middleware infrastructure that provides messaging ca-
pabilities”. Aiming for flexibility, message-oriented middleware is an abstraction layer which generally
provides multiple interaction models, reliability, availability and security, with both synchronous and
asynchronous semantics[18, 19].

Several common interaction models are point-to-point, request-reply, publish-subscribe and push-
pull. Request-reply is found in in many internet applications, e.g. file and HTTP client to server pattern,
publish-subscribe is found in event processing systems. Push-pull is a basic pattern for unidirectional
communication.

There are many proprietary and open-source message-oriented middlewares on offer. However, we only
describe ZeroMQ in greater detail as it forms the basis of Twitter Storm’s communication layer.

2.1.2 ZeroMQ
Overview ZeroMQ[20] is a fast, modern networking protocol implemented in C++. It abstracts
low-level communication to provide a more convenient and consistent API. Multiple common patterns
are implemented in ZMQ sockets for both local and remote connections. Unless otherwise specified,
transmissions are sequenced, reliable and connection-oriented. Furthermore, by default transmissions will
block until both source and destination are ready. Multiple senders and receivers on a single connection
are supported. A message can be attributed to a node as each node has an identifier.

Socket Types A description of the most important ZeroMQ socket types for this project:

Push and Pull ZMQ_PUSH and ZMQ_PULL represent a pipeline communication pattern.
A source node pushes messages to one or multiple destination nodes. Each destination node can pull

messages from one or multiple source nodes. Communication is unidirectional, meaning sending is on pull
sockets and receiving on push sockets is undefined. When multiple senders are active received messages
are fair-queued. When sending to multiple receivers messages are round-robin-ed. If a predefined sending
window is full or no receiver is ready the sending socket blocks.
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An example use case of push and pull is Map-Reduce. A mapping process distributes working sets
among multiple worker nodes. Their output is sent to a reduction process. ZeroMQ takes over the
responsibility of scheduling as messages are queued when sending and receiving.

Pair ZMQ_PAIR represents a one-to-one connection. Communication is bidirectional, meaning
both nodes at either end of the connection can send and receive. However, because a single ZMQ socket
cannot be used by multiple threads at the same time, listening for incoming messages and sending must
be alternated. Take note that a pair connection is only defined for local, inter-thread communication.

Dealer ZMQ_DEALER represents a one-to-many connection. A dealer distributes messages to
multiple receiving nodes in a round-robin fashion. Connections are bidirectional and incoming messages
are fair-queued among nodes. If the sending window is full or no receiver is ready the socket blocks on
send.

An example use case is a message broker. On one end a specified socket receives messages. These are
passed to a dealer socket, which distributes them among several worker nodes or threads. The workers
send their output to the dealer, which passes it on to the outside socket.

Router ZMQ_ROUTER represents a many-to-one connection. A router receives messages from
multiple sending nodes in a fair-queued fashion. Connections are bidirectional, outgoing messages are
sent to the node specified in the identifier field. If the receiving node is not ready the message is dropped.

Router sockets allow raw access to messages node identifier. Each message consists of at least two
parts. The first part is the node identifier, specifying the origin node if the message was received or the
destination node if the message is to be sent. ZMQ identifiers are between 1 and 255 bytes long, where
the first bit must not be 0. The second part and all further parts are payload data.

An example use case is a server application. A router socket listens for incoming requests. Each
request is processed and the result returned to the corresponding client. Take note that requests can be
processed asynchronously as each client can be linked to its request by the ZMQ identifier.

Client thread 

IO worker 
threads 

Pair socket 

Mailbox 

Session 
map 

Application 

ZeroMQ API 

Mailbox 

Context 

State IO worker thread 
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TCP / IP IPC 
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P
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Figure 2.1: ZeroMQ Overview

Design and Implementation

Structure ZeroMQ is a large project which involves much inter-thread communication. Figure
2.1 gives a high-level overview of the structure and the allocations of components to threads. API calls
and all subsequent operations up to the queuing of messages and notifications of worker threads are
performed in the client thread. IO worker threads then handle the network, inter-process or inter-thread
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communication.
Noteworthy components are:

• User-facing API: Consists of the context, socket and message interfaces. A context has one or
more sockets, contains a system notification mailbox object, IO worker threads and holds state
information shared between its sockets. The socket class is a proxy[21] to the socket base class,
itself sub-typed by the socket types described in 2.1.2. Each socket has a mailbox, session map
with open connections and corresponding mutex. A message is simply a struct. It notably contains
a pointer to the payload with function pointer to a destructor and a reference counter which is
incremented on message copying.

ZeroMQ provides both C and C++ APIs. The C++ API is a proxy to the C API. The implemen-
tation of the C interface in turn references components in the library, which is exclusively written
in C++.

• Communication framework: The foundation of the communication framework is the pipe. Pipes
are the means of transportation used between sockets, IO threads and user threads. For example,
the ZeroMQ inproc protocol utilizes pipes for inter-thread communication in a process.

A pipe is made up of a reader, writer and queue. Reader and writer classes represent facades[21]
to the queue. Two main goals are achieved by abstracting:

– Client communication: To handle concurrency efficiently the writer explicitly makes previously
written elements accessible to the reader by executing a flush command. Flushing updates
the only shared variable, a sentinel which stores the location of the last cleared element. The
reader may then access all elements up to that point and stores the last known sentinel locally.
The cached sentinel is updated upon reading past it’s location. Furthermore, when the queue
has reached a defined maximum length, the reader will signal the writer on detaching elements.

– Send rate limitation: The High Water Mark is enforced in the writer by limiting the queue
length.

The queue is modeled on a doubly linked-list with arrays as elements. Head and tail array indexes
and pointers to head and tail array chunks are stored. The data structure itself does not provide
guarantees on concurrent access, thus a wrapper implements lock-less concurrency. On flush and
sentinel prefetching the sentinel is updated via a CMPXCHG instruction[22] on x86 compatible
processors. No blocking is performed, the client is responsible for repeating requests if an access
fails.

Allocations are avoided by storing the most recent unused array chunk cleared by the reader instead
of deallocating it. The likelihood of the chunk still being in a shared cache is high, which is beneficial
for performance. Swapping pointers atomically is done with XCHG[23].

• Notification framework: The heart of ZeroMQ is its notification framework. It enables the lock-
free design of independent threads which make up the concurrency model of ZeroMQ. Threads
communicate exclusively via message passing, where messages are defined as commands. Each
thread has a mailbox on which it listens for incoming commands. Mailbox uses Unix poll to
passively listen for requests. When a signal is received, the mailbox accepts commands over it’s
pipe. Commands are processed by extensions of the template method[21] object, which defines an
interface for inter-thread communication. The incoming command enumeration is inspected and
the appropriate method called.

Limitations

• Thread-safety of sockets: A ZeroMQ socket can only be accessed from a single thread. A full
memory-barrier must be used when migrating a socket between threads[24].

This inherently limits e.g. multiple threads processing requests in parallel. ZeroMQ provides a
solution in form of the request-reply-broker pattern[25] using router and dealer sockets.

• Socket-type incompatibilities: Due to the strict pattern approach of ZeroMQ, users must be aware of
socket-type incompatibilities. If an application does not fit the patterns provided, custom solutions
by way of mixing and matching sockets is not possible.
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For example, a stream aggregation and redistribution proxy cannot be implemented. Publish-
subscribe is meant only for subscription to a single stream, push and pull sockets are incompatible
with router and dealer. Thus the user would be forced to resort to a solution outside of ZeroMQ,
possibly still using ZeroMQ as means of transportation.

• Limited flow control restrictions: As the high water mark controls only the rate of messages and
message size is arbitrary, it provides no effective control over the transfer rate. Furthermore, the
HWM only limits the sending rate. No control of the receiving rate is provided by ZeroMQ. This
can lead to a receiver allocating space for unprocessed messages until a memory overrun occurs.
Solutions are to either enforce a maximum transfer rate on each sender with HWM, a cap on
message size and limit the number of senders or implement flow control in the client.

• Inseparability of message header and payload: The ZeroMQ API provides no means to extract the
payload of a received message in-situ. This limits the client architecture as a pointer to the ZMQ
message must be stored and payloads must no be deallocated by themselves.
A solution is to provide a message wrapper in the client which handles payload access and deallo-
cation.

2.2 Serialization

2.2.1 Overview
Transferring raw objects over networks, storing them in files or memory buffers destroys the context the
object was stored in. Memory addresses and byte orders change, type information is lost or invalidated
and the object layout differs. The lifetime of an object is limited by the run-time of the process it resides
in. Serialization is thus the process of abstracting the content of an object to make it independent of
system architecture and object environment, making objects portable and persistent.

An overview of the common serialization formats XML, JSON, Apache Thrift and Google Protocol
Buffers is provided by [26]. They can be divided into two general categories:

• Binary: Binary formatting encodes types into raw bytes of data. A naive way is to directly copy
types as found in memory. More sophisticated approaches try to avoid storing high-order zeros and
avoid storing redundant information.
Advantages typically include CPU-efficient serialization and deserialization and compact storage.

• Human-readable: Data is encoded as strings. Fields are encapsulated with text identifiers. While
being more verbose than binary formatting, text compression is often used to reduce size.
The aim of human-readable serialization is to allow humans to directly read and edit serialized
data. Especially when developing and debugging this property is useful. Use of strings provides
byte-order independence.

[27] compares performance and size of binary and XML serialization formats in .Net and Java, con-
cluding that binary formats are faster by up to an order of magnitude and use 25% to 30% as much space.

Distributed applications extensively use serialization for message passing and remote method invoca-
tion. Java serialization[28] has therefor been thoroughly investigated and many improvements suggested.
In their paper[29] Opyrchal et al describe how pickle sizes in the standard Java serialization algorithm
can be reduced by 50%, saving bandwidth. Although compression yields even better results, it introduces
significant additional latency.

Avoiding conversion into an intermediate representation can yield speedups of up to 300%. A seri-
alization routine is dynamically specialized according to the receiver’s platform. Deserialization is thus
simplified as the receiver must not unpack and reconstruct objects. Furthermore, using a hash table of
references can avoid object retransmission[30].

While [31] describes many runtime and format optimizations to Java serialization, CoLoRS[32] shows
that it is possible to avoid serialization altogether when sharing objects in memory between different
object-oriented languages. The authors define a common class/object model, which is translated to each
language runtime by intercepting field accesses. A profound restriction is that no code sharing between
languages is allowed, because checking equivalence of two functions is in general undecidable. Pointers
from the shared heap to a private heap are not allowed to avoid violating type safety.
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2.2.2 Kryo
Kryo[33] is a serialization framework designed as a fast, efficient and simple replacement for the default
Java serializer. Several default serializers for Java base types are included. Additionally custom serializers
for user-defined objects can be registered dynamically. Shallow and deep copying of objects, compression,
encryption and chunk encoding are supported. Forward and backward compatibility of objects can also
be handled.

Kryo supports serialization of general, previously unknown class types. Registration of object serializers
makes the process both faster and more space-efficient.

Registration saves an identifier for the class type in a hash map to the serializer. The ID is either
specified by the user or automatically generated by Kryo. Generated IDs depend on the order in which
serializers are registered, which must be taken into account by both reader and writer clients. If a class
is not registered the fully qualified class name is used for identification and class member information is
transmitted for reconstruction.

Custom serializers can be defined by extending the CustomSerializer interface. By default, if a
serializer for a type does not exist it is constructed automatically. Kryo uses built-in generic serializers,
e.g. array, map, collection, or uses Java reflection to retrieve a description and constructor for the class
type. For most cases built-in and generated serializers suffice. With custom serializers it is possible to
exert complete control, e.g. over which fields are included and how they are serialized.

Limitations
• Language interoperability: Java is the only supported language by Kryo. This extends to other

languages which are built upon JVM (Scala, Clojure, etc.). Type and model incompatibilities make
it difficult to support Kryo on other environments in its current form.

• Persistency: The default Kryo serializers have no facilities for extension of class types or serialization
format. This limitation is alleviated by the included TaggedFieldSerializer in version 2, which
makes field changes in classes possible. However, serialization still includes no version information
for format forward and backward compatibility.

2.3 Applications for NaaS

2.3.1 MapReduce
MapReduce[34] is a concept for distributed computation of large data sets developed at Google. It is
inspired by the map and reduce operations found in functional languages. The primitives are implemented
by the tenant:

• Map: Takes as input a key / value pair. Outputs a set of intermediate key / value pairs.

• Reduce: Merges intermediate pairs with equal keys. The output is stored e.g. on a distributed file
system or in a central database.

Input is partitioned to multiple map instances. The map jobs typically save their intermediate output
on local storage. From there it is read and sorted in a distributed fashion before being passed on to the
reduce instances. An optimization is to interpose a combiner function locally on the host executing the
map job. The function performs a reduction on the local set of intermediate outputs to reduce its size.
In their paper Dean and Ghemawat have noted that network bandwidth is a scarce resource and have
counteracted with locality optimizations.

Restricting the computation model simplifies the implementation of parallel, distributed applications
greatly. The MapReduce run-time system takes over responsibility for data partitioning and load bal-
ancing, job scheduling, failure handling and communication between jobs.

The approach has gained popularity in the industrial and academic worlds. Next to the proprietary
Google implementation there exists the open-source Apache Hadoop project. Research targeting MapRe-
duce has formalized the underlying concepts, exploited data locality on multi-core nodes, harnessed the
computational power of multiple clusters to distribute work among them, applied a high-level SQL-style
declarative approach to MapReduce and implemented MapReduce on GPGPUs[35, 36, 37, 38, 39].
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2.3.2 Twitter Storm
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Figure 2.2: Storm Overview

Twitter Storm[16] is a distributed real-time computation system written in Clojure and Java. The project
aims to fill the void left by the Hadoop and MapReduce systems. These provide general frameworks for
batch processing, while Storm provides a general framework for real-time processing.

For example, Twitter processes tweets in real-time with Storm for their publisher analytics product,
Groupon builds data integration systems on Storm to analyze, filter and normalize user input, and many
others apply regular-expression filters on logs in real-time with Storm.

Concepts
Topology A topology is a set of tasks, a task being either a bolt or a spout, connected by streams.
These can be viewed as a elements of a directed graph, where tasks represent vertices and streams
represent directed edges. Because a topology is assumed to process a real-time stream, a termination
criterion as such does not exist. The only way to terminate a running topology is to send the “kill”
command. An exception to this rule exists for development purposes, where a timeout with subsequent
termination may be defined.

For example, a spout emits a stream of generated tuples to a bolt, which does the first half of the
processing and sends the intermediate result to a second bolt. The second bolt completes the processing
and sends the final result to a third bolt, which aggregates all final results sent to it in a distributed
relational database.

A parameter can be set to control the parallelism of bolts, in other words how often a bolt is replicated
in the topology. For each bolt a stream grouping is set, which defines how the results are distributed.

Note that a topology only describes an abstract relationship between tasks. The physical layout of
an active topology is controlled by the Storm scheduler.

Figure 2.2 depicts the described example topology, with all bolts having parallelism set to two.

Streams and Tuples

• A stream is defined as an unbounded sequence of tuples.

• A tuple is defined as a named list of values. The values of fields may have different types.

As mentioned previously, a stream can be split, its tuples directed to multiple bolts for parallel
processing.
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Every stream is assigned an identifier for selecting it from a set of streams. Every tuple is assigned
an identifier, used to acknowledge a tuple for reliability. We will go into further detail shortly.

Task Tasks are concrete computational elements in a cluster. They emit and absorb streams. Spouts
and bolts are summarized as tasks:

• A spouts is defined as a source of one or more streams, emitting tuples. A spout can source data
from anywhere, e.g. files, databases, a non-Storm stream, etc.

• A bolt is defined as a processing element absorbing one or more streams and emitting none, one or
more streams. A bolt can do any type of computation on the stream, e.g. aggregation, filtering,
transformation, etc.

All tasks are assigned a component ID, which is used to identify its position in the topology, and a
task ID, which is used for locating a task instance in the cluster and routing its streams to it.

Stream Grouping A stream grouping defines the method of distributing a stream’s tuples among
the parallel instances of a bolt. A bolt absorbing multiple streams can define a different stream grouping
for each stream.

The stream groupings provided by Storm are:

• Shuffle grouping: A uniform distribution of tuples to bolts.

• Fields grouping: A field of a stream is defined as the key. Tuples with equal keys are mapped to
the same bolt instance.

• All grouping: A broadcast. The stream is replicated on all bolt instances.

• None grouping: Distribution of tuples is undefined. The current Storm implementation does shuffle
grouping.

• Direct grouping: The emitting task specifies the absorbing bolt for each emitted tuple.

• Local or shuffle grouping: Bolts located on the same worker as the emitting task are preferred.
Equivalent to shuffle grouping for remote bolts.

By default the shuffle grouping is used. Custom stream groupings can be defined by implementing an
interface.

Architecture
The components of a Storm cluster are shown in figure 2.2. We describe them one by one:

Nimbus A Storm cluster is controlled by a master process, called “Nimbus”. Nimbus implements a
set of Apache Thrift[40] RPC functions which read and adjust the cluster state. A command-line client
exists to call these function. Alternatively, the RPC functions can be called directly from any language
supported by Thrift.

The most important functionality of Nimbus is:

• Defining a topology: A topology can be defined by passing Nimbus a Java archive (“jar”) containing
a class which builds a topology using Storm’s TopologyBuilder class. The class is a wrapper around
a subset of the remote functions Nimbus implements. Thrift RPC can also be used for setting up
a topology from outside of Storm.

• Starting a topology: The Nimbus scheduler keeps track of how many assignments each worker has.
When a topology is started tasks are scheduled. If there are empty slots available on supervisors,
tasks are assigned to those slots. Otherwise tasks are assigned to running workers, the most lightly
loaded workers are given preferrence. The files belonging to the task are uploaded to the supervisors
by Nimbus before starting the topology.

• Killing a topology: Nimbus first stops all spouts, waits a defined timeout for the bolts to finish
processing in-flight tuples and then stops the bolts.
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• Registering supervisors: When a new supervisor is started it registers itself with Nimbus. Most
importantly, Nimbus stores the number of available workers on the supervisor and its IP address
or domain name.

• Monitoring supervisors and tasks: Both supervisors and tasks send heartbeats to Nimbus in regular
intervals. If a supervisor goes down the tasks of its workers are reassigned to another supervisor.
If a task goes down it is reassigned to another worker.

• Rebalancing tasks: When the available worker pool changes, e.g. new supervisors start or go down,
the workload may become unevently distributed. An explicit call for rebalancing re-distributes
tasks to workers.

ZooKeeper Apache ZooKeeper stores the cluster configuration and state. For example:

• Topology, supervisor, and task information written by Nimbus.

• Supervisors and workers read their configuration from ZooKeeper.

• Task statistics on processed, in-flight and failed tuples.

• Heartbeats of supervisors and tasks.

User Interface The user interface accesses statistics and state information stored on ZooKeeper
and displays them via HTTP. Controlling the cluster from the UI is not possible.

Supervisor Storm workers are managed by a supervisor local to each node. A supervisor has one or
more slots, each slot specifying the port a worker listens on.

The supervisor functions as follows:

• A new worker is launched when a task is assigned to a slot which is not yet filled. The worker is
assigned a generated ID, a slot (port) and its supervisor by the supervisor.

• On launch of a topology, all files necessary for launching a task are downloaded from Nimbus and
copied to all directories of workers assigned to the topology.

• Running workers are monitored. If a worker heartbeat times out too often, the worker is cleaned
up, i.e. the process killed if it still exists and files removed.

• ZooKeeper is monitored for changes. If there are open slots workers are started on-demand, worker
configuration changes are written to file.

All communication with workers is performed via file I/O. Worker heartbeats are written in a heartbeat
directory as files with increasing sequence numbers as names. Worker configuration is passed in system-
specified files.

Worker Tasks are assigned to and run by worker processes. Workers have an ID, although workers
are often identified by their node and port.

Every task is started in its own thread and the worker does the following:

• In a thread the worker starts a “virtual port”. The virtual port binds the worker’s assigned port with
a ZeroMQ pull socket and multiplexes tuples from all incoming Storm streams to the respective
tasks based on the task ID found in the tuple. ZeroMQ pair sockets are used for passing tuples to
tasks.
ZeroMQ is described in section 2.1.2.

• Tasks write outgoing tuples to a Java LinkedBlockingQueue[41], which is thread-safe. The worker
sets up ZeroMQ push connections to the superset of destinations of all tasks. A thread blocks on
the queue and multiplexes tuples to their destination nodes.

• The worker monitors its configuration file for changes. Tasks and outgoing ZeroMQ connections
are added and removed on demand.

• A thread writes heartbeat files, as described previously.
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Task A Storm task implements either a bolt or a spout interface. The worker is designed as an implicit
loop, hence functions of the interface are called in a loop by the worker. The task registers the types
of fields in outgoing streams with Storm. Serialization and deserialization of tuples is done with Kryo
(section 2.2.2) before passing a tuple to the task and after the task has emitted a tuple.

The core functions bolts and spouts implement are:

• Bolts implement execute, which processes an incoming tuple passed as argument.

• Spouts implement next tuple, which generates a tuple.

Both call a function emit to send processed or generated tuples. emit determines the destination task via
the stream grouping function defined by the topology. Tuples are then pushed onto the worker’s outgoing
queue.

Reliability Storm provides a reliability framework for guaranteed tuple processing:

Every tuple is given an ID. Every tuple emitted by a spout is seen as the root of a tree. When a tuple is
processed by a bolt, the new result tuples are added to the tree as children. Adding children to the tree
must be done explicitly by anchoring the tuple being emitted to another tuple. At each step traversing
down the tree an acknowledgment or negative acknowledgment (fail) message is sent to a tracking task
(acker).

If all children up until the leafs are acknowledged successfully, the whole tree is considered fully
processed. Otherwise, if either a fail is sent or a tuple times out, the whole tree is considered failed and
the root tuple ID is passed to a failure handler in the spout.

Limitations
• In the current Storm implementation the task scheduler does not consider locality, which could

potentially reduce network traffic.

• The scheduler does not consider the processor load, memory usage, available bandwidth and other
system information when allocating tasks. The sole consideration is the number of tasks running
on a worker. This could lead to uneven load distribution among nodes.

• Setting up a topology from a language other than Java is cumbersome. In Java a native wrapper
API with convenience features is provided, all other languages must interface the Thrift API.
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Chapter 3

Design

In this chapter we present the NaaStorm architecture and both its physical and logical placement in
the cluster. We reason about our design decisions and alternative choices. Some design choices are
consequences of design choices made in the Storm project, others are more of practical nature. We try
to give an understanding of the “why” and the “how” we constructed NaaStorm the way we did.

3.1 Data Center Placement

Aggregation layer 

Access layer 

Core layer 

Server racks 

Intranet / Internet 

NaaS box Server rack Network switch 

Figure 3.1: Placement of NaaStorm within Data Center Network

In our design we assumed a common data center layout as described in section ??. Figure 3.1 shows
placement of nodes running NaaStorm workers. Selected switches, preferably at higher layers, have
NaaStorm nodes directly attached via high-speed interconnection (i.e. ≥ 10 Gib Ethernet at aggregation
layer or ≥ 50 Gib Ethernet at core layer). This placement gives maximum throughput and equal latency
to all Storm worker nodes located on leaf nodes.

Depending on the task at hand, NaaStorm nodes in larger networks may become overloaded. A
measure to counteract this is to place NaaStorm workers at lower layer switches, offloading those at
higher layers. Lower latency is an additional benefit of locating nodes closer to server racks.
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3.2 Storm Cluster Placement
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Figure 3.2: NaaStorm Overview

Integration of NaaStorm into the Storm cluster, described in section 2.3.2, can be done in several ways,
keeping in mind the goal of accelerating a task and executing it on an predefined node in the cluster.

Component replacement Two levels of the Storm topology were considered for replacement:

• Supervisor: Replacing from the supervisor downwards gives full control of the node. Most impor-
tantly, the topology of supervisor, worker and task could be redefined e.g. to merge supervisor and
worker. Merging of supervisor and worker would simplify monitoring, as worker heartbeats would
be eliminated, and make task assignment cheaper, as we substitute inter-process for inter-thread
communication. When keeping the original topology, assignment of tasks to workers and monitoring
the workers could be adjusted.

Re-implementing the supervisor requires being able to communicate with Nimbus and understand-
ing the Storm topology information, in addition to the requirements of re-implementing a worker.

• Worker: Replacing the worker gives us full control over the implementation language, semantics of
a task, the task API and data flow in the worker. Partial control over communication routing is
also achieved, although re-routing breaks the topology setup by Nimbus and is best avoided.

Depicted in figure 3.2, the approach chosen is to replace the worker, since our main goal at this
structural level is the acceleration made possible by control over implementation language, data flow and
task API. We trade off full control of the node for a simplified design. Replacing the supervisor would
yield only questionable gains in exchange for considerable additional effort.

Task to node allocation Task to supervisor mapping is defined by Nimbus in the topology
state stored in Zookeeper. Again there are multiple ways to alter cluster topology, three of which were
considered:

• Modification of Nimbus: Adding functionality for client-defined topology mapping to Nimbus is
architecturally clean and has no ill side-effects in topology management. It requires in-depth un-
derstanding of Nimbus, as an implementation touches many areas in code. Changes to code may
negatively affect stability and performance of Storm and make version updates more elaborate if
they are not included upstream.

• Accessing Zookeeper: Topology state is held in Zookeeper as a struct. It can be accessed via
Zookeeper’s RPC interface. For changes made there to take effect, they must occur after Nimbus
has written the topology configuration and before the first supervisor issues a read request on
start-up. Furthermore, each time physical cluster topology changes (supervisors, tasks added or
removed) Nimbus adjusts running topologies. Therefor Zookeeper must be monitored for changes
issued by Nimbus and corrected when necessary.
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• Packet interception: All messages relevant for task operation, encapsulated in IP packets, are
necessitated to pass through precisely the switch the NaaStorm node is attached to. Deep packet
inspection could be used to filter and intercept Storm messages. The clear benefit of this method
is that it liberates us from modifying Storm source code.

The method also has several unfavorable drawbacks:

– Switch support for deep packet inspection (DPI), defined as forwarding packets based on
content in addition to structured information found in the header[42], must be present. In
data centers this is increasingly the case for higher layer switches[43, 44], however in test-
beds it is not yet common. Lack of hardware DPI can be circumvented through software
implementations. In either case DPI impacts throughput and latency of all packets processed
by the switch.

– Packet header processing for DPI cannot be done by their respective protocol libraries. Basic
parsing would need to be implemented to filter Storm messages.

– Substitution of Storm tasks is limited as the topology structure is not modified. For example,
in a simple topology with two tasks, where one node counts strings sent by the other, replacing
the sending spout by a in-network task would still necessitate running an idle Storm spout to
construct the topology. In the described topology replacement of the bolt is also not possible,
however if two bolts are chained together the first one could be eliminated entirely. Spout
packets could be intercepted and results forwarded to the remaining bolt. From Storm’s
perspective, a task would be processed implicitly.

The first approach was chosen. While the initial implementation may be difficult, it gives us the most
flexibility in setting up topologies and has the least potential for later problems.

3.3 Storm Integration

3.3.1 Worker Start-up and Heartbeats
When the supervisor launches a worker, we want to decide if it starts a Storm or a NaaStorm worker
based on the assigned task. Worker heartbeats must also be solved to prevent the supervisor from timing
out on heartbeats and starting new workers. Our choices are:

• Modification of the supervisor: Since the supervisor has all necessary information on hand when
executing the worker, modifying it to make a decision which worker type to launch is a small change.
Disabling heartbeats could be achieved by commenting out the code responsible.

• Interception or overloading of syscalls: The Storm worker is an independent process which is started
with a system call. We could intercept it with a loadable kernel module[45] or overload the library
it is calling[46] to start an initialization program. The initialization program would retrieve the
necessary information from Zookeeper and then decide on how to proceed. It would also take over
the worker heartbeats.

Apart from being fragile, this approach is unnecessarily complicated, as we will see in the next
option.

• A compromise: The path to the worker launched by the supervisor is modified in code to start an
initialization program which functions as described above. Changing a path is a very small change,
the main effort would lie with the initializer.
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Figure 3.3: NaaStorm Process Stack

The approach chosen is the described compromise. Figure 3.3 shows the process stack of our ap-
proach starting a NaaStorm worker. The supervisor launches an initializer, which takes over the decision
which worker to start. Since tasks also heartbeat to Nimbus, the initializer takes over both worker and
task heartbeats if the NaaStorm worker is chosen. This relieves us from re-implementing the heartbeat
functions if the NaaStorm worker is written in a different language than Storm.

3.3.2 Communication with Storm Cluster
Communication between nodes is the essence of a distributed system. Integrating into Storm means
adopting Storm node’s behavior in NaaStorm. NaaStorm’s communications are split into following parts:

• Configuration and topology retrieval: The NaaStorm worker’s configuration and topology, e.g. port
number, task identifiers, destination nodes and ports, are retrieved from ZooKeeper by the initializer
and passed to the worker as command-line arguments. The initializer already retrieves this data
partially for its decision which worker to start, retrieving the remainder thus requires little effort.

The data is non-persistent, using command-line arguments is simple and, in contrast to a config-
uration file, requires no common format if the implementation languages of Storm and NaaStorm
differ. We must take care not to exceed the maximum argument length defined by the operating
system. Modern versions of Linux define their argument size as 1/4 of the stack size[47]. Maximum
argument length is therefor unlikely to become a problem, even with a large topology.

• Worker and task heartbeats: Described in section 2.3.2, Storm monitors tasks and workers for
failures and lock-ups by listening for heartbeats. In the previous section (3.3.1) we looked at how
the initializer handles heartbeats for both workers and tasks. Our approach does not monitor the
status of NaaStorm workers and tasks. Heartbeats are performed solely to minimize modifications
to Storm, because Storm cannot be configured to disable heartbeats. Reliability is not a concern
for this project. Disregarding implementation of a robust reliability framework simplifies design
and implementation considerably.

• Inter-task messaging: Streams of tuples are sent between tasks via ZeroMQ. Section 3.4.2 explains
in detail how NaaStorm tasks communicate.

• Tuple acknowledgments: Storm tasks expect all sent tuples to be acknowledged within a defined
time frame, either individually or in groups. Since reliability does not concern us, we do not handle
tuple acknowledgments and disable them in Storm.
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3.4 NaaStorm Worker Architecture
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Figure 3.4: NaaStorm Worker

A NaaStorm worker consists of a thread pool embedding a task framework with client tasks, an incoming
communications thread, a thread pool of outgoing communications and multiple message queues. A high-
level overview is given in figure 3.4. To understand the assignments of the components, their interaction
and the design choices and trade-offs made we inspect them in turn.

3.4.1 Task Framework
Clients run an explicit work loop which waits on incoming messages. The messages are processed and
placed on the respective outgoing queue linked to the node of the target task. It is the responsibility of
the task to know the cluster topology. Necessary topology information, such as component ID to target
mapping, is provided by the task API. Message meta-data, e.g. the source task ID, is provided for each
incoming tuple.

Like the Storm task API, the NaaStorm API formats messages as tuples of typed fields and handles
the serialization and deserialization thereof. The task must specify the tuple type on receiving and
sending a tuple. Note that dynamically changing the tuple type, e.g. sending an int and then a string, is
not supported as this would require sending explicit typing information along with each tuple, incurring
overhead.

Formatting messages as tuples simplifies the API and thus the client application. Hiding the imple-
mentation gives us more design choices and flexibility in the implementation and optimizations made in
our framework benefit all client applications.

An explicit loop gives the client more flexibility in ordering the processing of messages. For instance,
a client may want to form a window of x messages to calculate a moving average or reorder messages
before processing them. It is difficult to achieve an equivalent amount of freedom with an implicit loop,
in which the task framework loops over calls to abstract functions the client implements.

Explicitly selecting an outgoing message’s destination relieves us from implementing stream groups
as found in Storm. Most stream groupings, such as shuffle, field, all and global grouping, are trivial to
implement for a client. Not including this functionality makes the task API more compact in exchange
for defining the equivalent of a custom grouping in each task. The stream grouping for the destination
bolt defined in the topology can be disregarded as routing tuples is the responsibility of the source task.

All tasks run in their own thread, the threads being managed in a thread pool. By giving tasks their
own threads we are using the operating system’s scheduler and thread control facilities. The tasks are
expected to run for a long time, i.e. hours or days, marginalizing the thread start and join times.

Light-weight user-space threads present an alternative to running each task in a kernel thread. Their
advantages include cheap start times and context switches, which come at the cost of additional thread
scheduling complexity. Because the expected number of tasks does not exceed the number of physical
processor threads and task threads have long run-times, the additional complexity in implementation
exceeds their usefulness.
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3.4.2 Inter-task Communication
• Incoming connections: Each worker has one TCP port assigned to it by its supervisor. The worker

listens on its port for incoming ZeroMQ connections. Each arriving ZeroMQ message is read to
parse the Storm message header. Most significantly, the header contains the destination task ID.
The corresponding task queue is looked up in the task table and the message is queued. Multiplexing
input to tasks is therefore performed by the incoming communication thread.

• Outgoing connections: A topology defines the set of destination nodes for each of its tasks. The
superset of all destination nodes of tasks running on the worker is the set of nodes the worker must
open ZeroMQ connections to.

For each destination node we set up an outgoing message queue and a thread waiting to process
messages on the queue. This is feasible because the expected number of destinations is small, i.e.
≤ 10. These threads are aggregated to an outgoing communication thread pool. Each thread sets
up a ZeroMQ connection to its assigned destination node. Messages on the queue are encapsulated
in a Storm message with header and sent on the ZeroMQ socket. Multiplexing output is therefore
performed by the task.

Multiplexing in the sending communicator is an alternative design choice. The benefit is that only
one outgoing communication thread is needed, eliminating the thread pool and making memory
consumption constant in regard to the number of destinations. The drawbacks are contention on the
single outgoing message queue, as all tasks must access one queue, and Storm message encapsulation
occurring in the task, making a clean architectural separation of task and communication more
difficult.

Threading the incoming message listener and outgoing message senders enables them to block on a
socket or a queue, respectively. Incoming messages must be multiplexed to tasks, which necessitates a
thread listening on the worker’s port.

With outgoing messages the situation is more interesting. As described in the limitations of ZeroMQ
(2.1.2), sockets cannot easily be shared between threads. However, each task could open its own connec-
tions to destination nodes. While this would reduce local overhead when sending by eliminating queuing
of messages, we argue that setting up and maintaining duplicate, persistent ZeroMQ connections over
the network is more expensive than queuing messages locally.

All queues used in the NaaStorm worker must be thread-safe for both multiple readers and multiple writ-
ers. These constraints could be relaxed, as messages from different tasks must not be strictly ordered.
Also, the only scenario occurring is multiple writers and a single reader.

The scenario of multiple readers and multiple writers does occur when we enable the client to improve
throughput by concurrently processing tuples in the task. For this reason and for practicality we keep
with the standard model of a concurrent queue. Note that if the serializer is not thread-safe, each thread
must have a private instance.
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Chapter 4

Implementation

In this chapter we present the implementation-specific details of the most interesting components in our
project. We give code examples of logic and interfaces. We attempt to explain how the architecture
described in chapter 3 was given a concrete face.

4.1 Rationale

The goal of the project is to reach multi-Gib/s throughput, performance is therefor an important con-
sideration. Storm is written in Clojure and Java, we have chosen C++ for its comparatively low-level,
close to metal performance characteristics, but also because the language empowers us to use the proven
methods of object-oriented design.

Portability is not a design consideration as this project is purely conceived a research device. Linux
on Intel x86 / x86-64 was chosen as our platform for its widespread support, although FreeBSD was
considered as an alternative.

To give a high-level overview, we present the architectural diagram again:
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Figure 4.1: NaaStorm Worker

Note on implementation changes: Storm integration has been dropped from the scope of our
project for the reasons described in section ??. Instead, NaaStorm is implemented as a stand-alone
framework. For the purpose of showing how the Storm integration in our design could be achieved we
have included the described initializer.

4.2 Initializer

The initializer solves three problems:

• Decide whether to start a Storm or a NaaStorm worker depending on the assigned task.

• Retrieve the cluster information to launch a worker with a task provided by functions implemented
in Clojure.
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• Nimbus replaces workers if it stops receiving heart-beats form a worker. Perform heart-beating with
functions implemented in Clojure.

The initializer is written in Java to access Java data structures and Clojure functions. When launched it
does the following:

Command-line arguments passed in from the supervisor are parsed. These include the worker ID and
port, supervisor ID, Storm ID and library paths.

The Storm configuration file is read. It contains the address and port of the ZooKeeper server. A
connection to ZooKeeper is established and the cluster state is retrieved. Using the worker ID and port
the map of tasks is fetched and IDs and names of tasks assigned to the worker are looked up. With the
task ID map we look up the nodes, ports, task IDs and stream IDs of the worker’s targets.

The task names assigned to the worker are inspected. If any is listed as being a NaaStorm task, the
initializer starts a heart beat thread for the worker and each of its tasks. Then a NaaStorm worker
is launched with the information retrieved previously passed as arguments. Otherwise, no additional
threads are started and a Storm worker is launched, passing through the arguments received from the
supervisor.

Scenarios where both Storm and NaaStorm tasks are assigned to the same node are not supported.
We assume the client segregates these to different nodes.

Clojure functions are called from Java with the clojure.lang package:

• The Clojure packages containing the function or struct are imported

• A Clojure function is invoked by providing the package and name as arguments to a Java method
“invoke”

• If the function is a query, thus has a return value, the return value’s type is void. It must be cast
to the expected type. Since we initially do not know which type to expect, we first deduce this by
observing the dynamic type of the return value. Then a cast to the evaluated type can be applied.

4.3 Command-line Parser

Before starting a worker must know details about its assignment. The initializer provides these details
and communicates them to the worker via command-line arguments. The parser is called immediately
after the worker is executed.

Important arguments are:

• Task names with IDs to be run on the worker.

• Targets consisting of the task ID, host name or IP address and, optionally, port.

• Target task ID to component ID mappings.

To perform the parsing we use the Boost[48] Program Options library.

4.4 Communication Framework

Divided into client and server, the communication framework interfaces the ZeroMQ library. Both
implement a run member function, which is executed in a Boost thread. The client is passed a reference
to an outgoing queue, the server is passed a reference to the incoming queue.

Boost threads are wrappers around the native system’s thread libraries, e.g. Posix threads on Linux.
While this makes it more simple to port the NaaStorm worker to other systems, the main reason for
using Boost threads over Posix threads is their support for C++ member functions.

The client connects to an address and port passed to it on construction. It sets up a ZeroMQ context
and push socket. The high water mark is set and then a connection is established.
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From then on the communication client blocks on its outgoing queue. If a ZeroMQ message is in the
queue, the message is retrieved and sent on the socket.

The server listens on an interface and port passed to it on construction. Like the client it sets up a

Listing 4.1: Listen loop in the communication server

while ( true ) {
msg = new Message ( ) ;

for (more = true , i = 0 ; more ; i++) {
zmqMsg = new zmq : : message_t ( ) ;

rc = socket−>recv (zmqMsg ) ;
socket−>getsockopt (ZMQ_RCVMORE, &more , &moreSize ) ;
i f ( rc && ( i > 0 | | zmqSocketType != ZMQ_ROUTER))

bytesRece ived += zmqMsg−>s i z e ( ) ;

i f ( zmqSocketType == ZMQ_ROUTER && i == 0) {
// save c l i e n t ID
msg−>se tOr i g i n ( ( char ∗)zmqMsg−>data ( ) , zmqMsg−>s i z e ( ) ) ;
delete zmqMsg ;

}
else {

// save message (may have mu l t i p l e par t s )
msg−>push_back (zmqMsg ) ;

}
}
// mu l t i p l e x packe t s
t a r g e t = BufferHeader : : t a r g e t (msg−>begin ( ) ) ;
queue = taskidToQueue [ t a r g e t ] ;
i f ( queue != 0) // i f queue f o r t a r g e t e x i s t s , cont inue

rcvbuf [ queue ] . push (msg ) ;
else

delete msg ;
}

ZeroMQ context and pull socket.
The communication server then blocks on the listening port. When a ZeroMQ message arrives its

header is parsed to retrieve the target task ID. The ID is the key to the target task’s queue saved in a
hash map. The message is pushed onto the corresponding incoming queue. Listing 4.1 shows the server
listening on the socket.

Client and server support arbitrary ZeroMQ socket types, although NaaStorm only utilizes push and pull,
as well as multi-part ZeroMQ messages and ZeroMQ IDs. The ZeroMQ ID is located in the first part of a
multi-part message and is used to identify the sender or specify the receiver when using a router socket.

ZeroMQ messages are abstracted by the Message class. It hides the complexity of dealing with the
ZeroMQ interface:

• Only reference is needed when dealing with messages. The distinction between ZeroMQ message
pointer and pointer to the payload is eliminated.

• Templates are used to type the payload data. A type is specified on retrieving the payload and the
data is structured and cast accordingly.

• Multi-part ZeroMQ messages are hidden. The data of all message parts is exported as an array of
arrays.
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• STL-like iterators to message parts are provided.

• The cumbersome ZeroMQ interface for destructing payload on sending ZeroMQ messages is hidden.
The message class provides a generic destructor functor. If required a custom destructor can be
set.

4.5 KryoCpp

Kryo (section 2.2.2) is the standard serializer Storm uses for flattening tuples before sending them as
ZeroMQ messages. Unluckily for us, Kryo is a Java-only serializer and is not available for C++. To work
around this limitation we devised our own Kryo-compatible serializer, KryoCpp.

Our example applications, e.g. multi-media byte streaming and wordcount, use only a subset of Java’s ba-
sic data types and data structures. Hence our intent was not to construct a fully-fledged re-implementation
of Kryo, but a high-performance, compatible serializer for the necessary types.

4.5.1 Serialization of Important Data Types
Before describing the implementation, we must understand how Kryo serializes types. Recall that Kryo
serializes from and to a Java ByteBuffer. Important are:

• byte: bytes are written into the buffer in raw form.

• int: Two modes are defined for serializing integers: standard and optimize positive. Standard mode
divides the range between positive and negative numbers equally, whereas optimize positive gives
priority to positive numbers.

An encoded integer has a maximum length of 5 bytes. 7 bits go into a byte - the highest-order bit
of each byte determines if there is a next byte. If all remaining high-order bits of the integer are 0,
encoding stops.

Standard mode places the sign bit at the lowest-order bit of the first byte. If the number is negative,
it is bit-wise inverted before further encoding.

• array: The first byte contains the number of dimensions of the array. The first dimension immedi-
ately follows. Each dimension is started with an integer storing the size of the current dimension. If
the last dimension has been reached, the elements are deserialized by the respective method. Else
the next dimension is processed.

Some values can be predefined to optimize space and run-time:

– Number of dimensions.

– Sizes of dimensions. This also specifies the number of dimensions.

– All elements have same type. Type information must then only be stored for the first element.

• string: An integer at the front specifies the number of characters in the string. The characters are
then read and a string object constructed.

Java supports UTF-16 by way of representing supplementary characters as surrogate pairs[49].
Each UTF-16 character is encoded into two or three bytes, ASCII characters are encoded with up
to two bytes. The highest-order bit in all bytes specifies single- or multi-byte encoding. In case of
multi-byte, the four highest-order bits of the first byte specify if the character is two or three bytes
long.

Before writing an object to the buffer, Kryo pushes a byte specifying if the object is or isn’t null. If the
object is null, 0 is pushed and the serializer returns, otherwise 1 is pushed and the object is written.
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Listing 4.2: KryoCpp public interface

class KryoCpp {
public :

KryoCpp ( ) ;
virtual ~KryoCpp ( ) ;

template<class T, class I n I t e r = Input I t e ra to r ,
class OutIter = OutputIterator>

stat ic s i ze_t wr i teObject ( OutIter& out i t e r , T const& ob j e c t ) ;

template<class T, class I n I t e r = Input I t e ra to r ,
class OutIter = OutputIterator>

stat ic int readObject ( I n I t e r& i n i t e r , T& ob j e c t ) ;

template<class T, class I n I t e r = Input I t e ra to r ,
class OutIter = OutputIterator>

stat ic T readObject ( I n I t e r& i n i t e r ) ;

template<class T>
stat ic s i ze_t getBound (T& ob j e c t ) ;

}

4.5.2 Interface
The client creates an instance of the KryoCpp class. A STL byte queue, passed by reference on each call
to the serializer, is used for storing serialized values. The public interface accessible to clients is shown
in listing 4.2.

The functions readObject and writeObject read and write serialized objects to and from the buffer.
The client must specify the expected type explicitly when reading via return value. This is unnecessary
when writing or reading via reference as the type of the parameter passed is known. The buffer is accessed
exclusively with iterators to support different underlying buffer types. Input and output iterators are
assumed to conform to the STL forward iterator type.

Single-dimensional arrays are supported via std::vector and std::array. Vectors can be dynamically
re-sized, thus they can be used for arrays of arbitrary length defined at run-time. Alternatively C++11
std::array can be used. However, the length must then be defined at compile-time.

Multidimensional arrays are not supported as they exceed our requirements and there are multiple
ways Kryo serializes them.

getBound returns an upper bound for the serialized size of a specified object. This is useful to determine
the necessary buffer size to store an object.

KryoCpp is not thread-safe. While parallel operations on two unrelated buffers are supported, operations
on the same buffer are not safe as multiple subsequent accesses, required for several data types, are not
performed atomically.

4.5.3 Internals
The basis of KryoCpp is the bridge pattern, described in [21]. The KryoCpp class is an abstraction of the
implementing Serializer class. The is-null Boolean byte is handled in KryoCpp before calls to Serializer.

Serializer provides two template function stubs get and put. These are the pendants to readObject
and writeObject and they are implemented by overloading the template functions[50]. For example, the
implementation of get for integers is shown in listing 4.3.

The functions getArray and putArray process the array dimension before calling getSequence and
putSequence, respectively. These retrieve or push a sequence of given type on the queue and are also used
by the string serializer.
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All API functions are defined as static to avoid constructing a KryoCpp object and passing it in on
each call. Some serializers, e.g. for value of type int, can be configured with constant member variables
and can therefore not be static. However, these functions are in-lined by the compiler, the variables
substituted for their constants and no objects are created.

Run-time serializer registration as in Kryo is not possible in the current implementation of KryoCpp as

Listing 4.3: KryoCpp integer serializer

int S e r i a l i z e r : : get ( I n I t e r& i n i t e r , int& ob j e c t ) {
int o f f s e t ;

ob j e c t = 0 ;
for ( o f f s e t = 0 ; o f f s e t < 32 ; o f f s e t += 7) {

uint8_t byte = ∗ i n i t e r ;
++i n i t e r ;

i f ( ( byte & 0x80 ) != 0) {
ob j e c t |= (~0x80 & byte ) << o f f s e t ;

}
else {

ob j e c t |= byte << o f f s e t ;
break ;

}
}

i f ( ! op t im i z ePo s i t i v e )
ob j e c t = ( ( ( unsigned int ) ob j e c t ) >> 1) ^ −( ob j e c t & 1 ) ;

return 0 ;
}

we only need support for basic data types. However, user-defined class serialization could be done by
implementing the function template stubs of get and put as fallback for the overloaded versions. These
generic functions would then check the run-time type of the template parameter and search for the type
in a hash table of serializers. If the key is found the serializer could be called, otherwise an error returned.

4.6 Task

The task is the most important component in NaaStorm. It is the framework the client works with
and the NaaStorm worker’s core. A task consists of the Task, TaskInfo and TaskTools classes, the task
interface and the KryoCpp serializer described in section 4.5.

4.6.1 Interface
A nstask, be it a bolt or a spout, implements the abstract, virtual run function of the TaskInterface class
shown in listing 4.4. A TaskTools instance is provided for use by the client. The TaskInfo object provides
information about the task itself and the topology.

As only the Task class must have access to run and the fields, it is a friend class of TaskInterface.

Tuples are defined as STL tuples, introduced by C++11. Alternatively a tuple can be a STL array, as
these can also be accessed via the STL tuple interface. Both shall simply be referred to as “tuple” from
here on unless otherwise specified.

TaskTools handles all communications with the cluster. It it are defined the absorb and emit functions.
absorb retrieves a tuple and returns an integer specifying if a flush has taken place. emit takes a task
specifier and a tuple. Tuples are always retrieved and passed by reference to avoid memory copying. The
source task ID of the most recently absorbed tuple can be retrieved by calling getSource. Tuples are
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Listing 4.4: Task interface

typedef std : : pa ir<int , int> TaskSpec ; // <ta s k id , queue id>

class TaskInte r f ace {
friend class Task ;

public :
Task Inte r f ace ( ) { }
virtual ~TaskInte r f ace ( ) { }

protected :
virtual void run ( ) = 0 ;

TaskTools ∗ t a s k t o o l s ;
TaskInfo ∗ t a s k i n f o ;

} ;

class TaskTools {
public :

template<class T> int absorb ( std : : tuple<T>& tup l e ) ;
template<class T, s i ze_t N> int absorb ( std : : array<T, N>& tup l e ) ;

template<class T> void emit ( const TaskSpec target ,
s td : : tuple<T>& tup le ) ;

template<class T, s i ze_t N> void emit ( const TaskSpec target ,
s td : : array<T, N>& tup le ) ;

template<class T> void f l u s h ( const TaskSpec t a r g e t ) ;
int getSource ( ) ;

TaskTools∗ copy ( ) ;
} ;

class TaskInfo {
public :

int id ;
s td : : s t r i n g name ;
std : : multimap<int , TaskSpec > component idToTaskspec i f i er ;

} ;

buffered internally, this buffer can be flushed by calling flush with a task specifier. After absorbing the
last tuple of a flushed buffer, thus the buffer is empty, absorb returns 1 instead of 0.

copy returns a new instance of TaskTools. In a multi-threaded task each worker thread must have its
own TaskTools object for thread-safety.

These functions could have been provided in the task interface itself by way of the template method
pattern[21]. However, overriding of the methods must be prevented as, by way of the information
hiding principle[51, pp. 51-53], the client should not have direct access to the interfaces necessary for
re-implementation or overloading.

TaskInfo contains the task’s own ID and name and a mapping from component IDs to task specifiers.
When defining the topology in Storm, the component IDs of the next components is set. Hence the com-
ponent IDs specifying the next bolts is known before run-time. At run-time the task must find instances
of these bolts. As all tasks are identified by their unique task ID and must run in a worker on a node,
they are specified by their task ID and the queue ID of the outgoing queue directed at the hosting worker.
These are provided by the task specifiers retrieved from the mapping.
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4.6.2 Internals
The Task class is defined as a functor. Its objective is to finalize construction of the client’s NaaStorm
task (which we dub “nstask”) and to provide a compact interface to launch a task. The design is modeled
on the proxy and builder patterns[21].

Starting a task Tasks are stored in a task registry by mapping a nstask’s name to a wrapper around
its constructor. On launch the worker receives a task name on the command-line. The given name is
looked up in the registry and a concrete instance of the nstask is constructed.

The Task functor is started as a Boost thread. On construction it takes pointers to the incoming queue
and all outgoing queues to nodes hosting its task’s messaging destinations, as defined in the topology. A
pointer to a concrete instance of the task interface, the nstask, and task ID are also required for creation.
A new TaskTools object is instantiated and the queues and task ID passed to it. A TaskInfo object with
set fields is received by a member function and assigned to the nstask instance.

Lastly, the run method of the nstask is called, completing the start of a task.

Interacting with the Cluster absorb and emit in TaskTools each have two interfaces: one for
STL tuples and one for STL arrays. Both versions are adapters to a private, template implementation.

Serialized tuples are stored in a buffer, each buffer beginning with a message header. This is done for
performance reasons to which we will come back later.

When emitting a tuple it must be placed on the specified target queue. Each target queue has an
associated buffer along with a buffer iterator at the current position and a tuple counter. These are
loaded and the buffer is checked if enough space is available for the current tuple via the upper bound
retrieved from KryoCpp. If so, the tuple is serialized and the tuple counter is incremented by one. If not,
the message header is written to the buffer, the buffer is placed on the specified outgoing queue. A new
buffer is allocated and the iterator is updated.

Flushing loads the specified target buffer and the header is written to the buffer. In the header the flush
bit is set and the buffer is placed on the appropriate outgoing queue. A new buffer is allocated and the
buffer iterator is set.

On absorbing a tuple checks are made to ensure that a buffer exists and the buffer’s end has not yet been
reached. If so the tuple is deserialized and the tuple counter is increased by one. If no buffer exists, the
a buffer is popped off the incoming queue. The buffer iterator and end sentinel are set and the source is
retrieved from the message header. If the end of the current buffer has been reached, the buffer is deleted
and the header checked if a flush has been issued. If so the buffer struct is reset to initializing values
the function returns with a return value indicating the flush. If not a new buffer is fetched as described
previously.

Retrieving the source task ID of the most recent tuple load and returns the source field from the buffer
struct.

Tuples may have arbitrary length and types, posing the question of how to serialize them. Because the
tuple type is known at compile-time and the KryoCpp functions are either overloading or templates, the
serializer conforming to the type is chosen by the compiler. For this to happen the tuple must be broken
down into its components. Via template meta-programming the tuple fields are iterated and passed to
KryoCpp.

The same technique is used for deserialization and bounds checking.

The message header is formatted as eight bit fields, the least significant indicating a flush, four bytes
encoding the source task ID and four bytes encoding the target task ID. Multi-byte values are stored in
network byte order.

Performance tuning To enable the compiler to inline functions all definitions are stored in C++
header files.
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The first bottleneck we hit were the send and receive function calls to ZeroMQ. Because the ZeroMQ
library does not define them in the header the compiler cannot inline them resulting in a function call for
each transferred tuple. Combining multiple tuples in a buffer and transmitting the buffer removes calls
to ZeroMQ as bottleneck. Additionally it reduces contention on the concurrent queues, cache misses are
reduced through spacial locality and message header overhead is marginalized.

The variables accessed on absorbing or emitting are assembled to structs to ensure close spacial locality.
These are stored as class member fields and on accessing them the implicit “this” pointer is dereferenced.
Profiling identified this as the most time consuming factor of a simple emit loop. Dereferencing on each
emit is avoided by caching the most recently used buffer struct in a static variable. Caching increases
performance by 50%, but brings a number of problems with it:

• Static variables are private to a function, but globally only one instance of the variable exists over
all class instances. In a worker running one single-threaded task absorb and emit are exclusively
called from the same context, the task loop, and the cache is private to the task. However, multiple
tasks running in parallel and multi-threaded tasks will cache different buffer structs, corrupting the
cache. Substituting the global static variable with a thread-local static variable makes the cache
private to each task thread.

• flush requires the current buffer state, but does not have access to emit ’s local cache. Writing
back the cache after each emit defeats the performance gain, thread-local static class variables for
non-trivial types are not yet supported by GCC[52]. By adding a Boolean in the function interface
which forces a write-back when set flush gains access the current state.

• The cache is invalidated when the task specifies a new target. To detect the switch the current
target queue ID is stored alongside the buffer struct. Switching targets triggers a write-back and an
update of the queue ID. Initially the queue ID is set to an invalid value to force loading the cache.

• To measure performance a recent state of the tuple counter must be accessible. In an attempt to
compromise performance and accuracy a write-back of the buffer struct occurs each time a new
buffer is allocated.

Absorbing tuples is tuned similarly, differentiating only in that a target switch is not required. Note
that the write-back on fetching a new buffer is necessary both for the performance measurement and for
keeping the source task ID updated outside of the cache, saving an explicit write-back on each call to
getSource.

Further tuning includes substituting passing by value with passing by reference, passing branch prediction
information to the compiler for specific branches and ordering struct members by their access order.

Thread-safety Running multiple tasks in a single worker and multi-threaded tasks require the task
interface to be thread-safe. In our high-level design we have already taken into account the necessity of
concurrent queues, enabling the queuing and dequeuing of tuples by multiple threads.

The task interface is modeled on having no points of contact between the threads, barring the queues.
This both simplifies the threading model and increases performance as no contention occurs outside the
queues. Each thread has thread-local buffers, associated iterators and counters. Care must be taken to
not circumvent this, e.g. with static variables as caches as described above or when multi-threading a
task. When threading a task the client must explicitly construct a new instance of TaskTools for each
thread accessing buffers to maintain thread-safety by calling the copy function.

copy constructs a new ThreadTools object while retaining all information from the current task, e.g. the
queue references and task ID are copied to the new object, but new buffers and iterators are allocated.

4.6.3 Assembling the Pieces: An Example
To show how the task interface is used to implement a task, we provide an example of an incrementer
bolt in listing 4.5. The bolt absorbs an integer, performs an increment by one and emits the result as a
shuffle stream grouping to all tasks with component ID 0.

The task inherits the TaskInterface and implements the abstract run function. The target component
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Listing 4.5: Implementation of an incrementer bolt

class IncrementBolt : Task Inte r f ace {
virtual void run ( ) {

const int component = 0 ;
tuple<char> tup l e ;
int rc ;

// ge t t a r g e t s and cache t a r g e t s p e c i f i e r s
auto ta sk s = ta sk in f o−>component idToTaskspec i f i er . equal_range ( component ) ;

// absorb tup l e s , emit as s h u f f l e stream grouping
while ( true )

for (auto i t e r = task s . f i r s t ; i t e r != ta sk s . second ; ++i t e r ) {
do

rc = ta sk too l s−>absorb ( tup l e ) ;
while ( rc == 1 ) ; // i f f l u s h e d repea t absorb
++get<0>(tup l e ) ;
t a sk too l s−>emit ( i t e r−>second , tup l e ) ;

}
}

} ;

ID is set to 0 and the tuple is defined as a single char.
Before entering the work loop we retrieve a range of task specifiers with the defined component ID,

our targets. The range is given via a pair of iterators defining the beginning and end.
Inside the work loop a second loop iterates over the range of targets. For each target we absorb a

tuple and check the return code. If the buffer has been flushed we have not absorbed a tuple and retry.
Otherwise we increment the tuple by one and emit it to the current target.

Performance could be improved by precaching the target specifiers in an array, as e.g. the GCC STL
returns the target range as a tree and the retrieving function is not in-lined.

To make use of target caching another loop could be added to send a predefined number of tuples to
the same target before switching to the next target.

Since buffers are rarely flushed, a branch prediction hint could be added to codify this knowledge.
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Chapter 5

Evaluation

In this chapter we present the performance measurements and interpret their meaning. In the Discus-
sion section we review the problems we encountered while designing and implementing our project, the
limitations our project has and how these limitations could be resolved.

5.1 Performance

The test hardware and software configurations are:

Dell r710 (d710)

• 1 x Intel Xeon E5530 @ 2.40 GHz

• 12 GiB memory

• Ubuntu 12.04, Linux kernel 2.6.38.7-1, x86_64

Dell r820 (d820)

• 4 x Intel Xeon E5-4620 @ 2.20 GHz

• 128 GiB memory

• Ubuntu 12.04, Linux kernel 3.2.0, x86_64

Software stack

• GCC version 4.6.3, CXX_FLAGS=”-std=c++0x -O3 -g -Wall”

• Java version "1.7.0_03", OpenJDK (IcedTea7 2.1.1pre)

• ZeroMQ version 2.2.0

• Kryo version 1.04

• Intel TBB version 4.0_20120408

5.1.1 KryoCpp
In this section we measure the performance characteristics of the Kryo and KryoCpp serializers.

Test Setup
The test setup consists of a loop serializing and deserializing items in the same loop iteration. The
purpose of this is to avoid distortion of results through cache misses. The items are pregenerated before
the loop is entered and saved in an array for spacial locality.

KryoCpp is tested with a selection of underlying data-structures:

• STL Deque: a double-ended queue

• STL Vector: an array with support for dynamic re-sizing

• preallocated array
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Following data types are tested:

• Java byte and C++ uint8_t

• Java and C++ int

• Java and C++ string of 6 characters. Here we store pointers to strings in the C++ array to mirror
Java’s references. We explicitly avoid spacial locality by introducing a layer of indirection in C++
as locality would distort results. We also avoid non-ASCII characters in Java as KryoCpp does not
support UTF-16 (double byte) representation.

The tests are performed in a best of 5 scheme on array lengths of 4 ∗ 107 for bytes and integers, 2 ∗ 107
for strings. We assume a uniform distribution over the ranges of the respective data types.

Results and Interpretation
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Kryo 2.455 3.648 2.902

KryoCpp Array 0.05 0.251 0.545

KryoCpp Deque 0.215 0.665 0.991
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Figure 5.1: Evaluation of Kryo and KryoCpp performance

Figure 5.1a shows the time spent for serialization and deserialization, figures 5.1b and 5.1c show the
throughput. Gross throughput is the output data rate, net throughput is the input data rate.

KryoCpp shows the largest gains with small data types. The speedup of byte serialization with Deque
is 11.418 in comparison to 2.928 for strings of 6 characters. When preallocating the buffer our gains are
even greater with a speedup of 49.100 and 5.325 for byte and string, respectively.

Our reasoning for this is the structure of KryoCpp: function overloading avoids a hash map look-up
of the type-specific serializers at run-time. The compiler inlines functions and in some cases uses SIMD
instructions. Furthermore, when using arrays memory can be preallocated. All these factors make the
serializer very efficient.

The performance gradient from bytes to integers to strings can be explained by the serializer’s com-
plexity. On x86_64 the byte serializer consists of two move instructions, whereas the string serializer
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performs a function call for each character. The character serializer is comparatively large and has many
branches. Nevertheless we can still see substantial gains by implementing algorithms machine-natively.

Best-case bandwidth is achieved with bytes at 5.960 Gib/s net and 11.9209 Gib/s gross. Worst-case
bandwidth is at 1.6405 Gib/s net and 3.0076 Gib/s gross with strings. All results support our goal of
multi-Gib/s throughput on high-performance hardware.

5.1.2 ZeroMQ
In this section we measure and compare the throughput of ZeroMQ and TCP/IP.

Test Setup
There are two test setups: two d710 nodes with 1 Gib/s network links and two d820 nodes with 10
Gib/s network links. We measure TCP/IP throughput with the Iperf benchmark suite and ZeroMQ
throughput with the ZeroMQ benchmark suite. For closer comparison and evaluation of the overhead
the gross throughput of ZeroMQ and TCP is measured with bwm-ng at OSI layer 2. The ZeroMQ
suite is modified to use Push and Pull sockets instead of Publish and Subscribe sockets. The standard
implementation is included as a reference.

The d820 nodes are bench-marked with MTU sizes of 1500 and 9000 bytes.

Results and Interpretation
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Figure 5.2: Evaluation of ZeroMQ performance

ZeroMQ shows net throughput almost equal to TCP/IP up to 1 Gib/s. With transmission rates faster
than 1 Gib/s small messages sizes prove to be a bottleneck. Although ZeroMQ batches messages smaller
than 255 bytes[53] before sending them over the network, the overhead of calling a function for every
transmitted message and the batching process is significant. For 64 KiB messages and larger the through-
put is again near that of TCP/IP. The speedup of TCP/IP throughput in comparison to ZeroMQ is <

33



1% at 1 Gib/s and 4.19% respectively 5.68% for MTU sizes 1500 and 9000 at 10 Gib/s. Note that the
gross throughput of both protocols is the same.

Near 10 Gib/s we found that performance is CPU-constrained. Profiling identified the tcp_recvmsg
kernel function, a part of the Linux IP stack, as culprit. The bottleneck is alleviated by using jumbo
Ethernet frames. For an equivalent amount of transmitted data the jumbo MTU size of 9000 bytes versus
the standard 1500 bytes reduces the packet processing overhead as less packets transverse the networking
stack. The net TCP performance graphs in figure 5.2d give evidence.

At 512 and 1024 bytes on d710 nodes, pictured in figure 5.2a, we observe an anomaly. As the d820
measurements show no such anomaly and the software stacks are the same except for the kernel, it is
most likely due to a Linux kernel regression or a hardware limitation.

In figure 5.2c we see that Publish / Subscribe sockets outperform Push / Pull sockets for message sizes
64K, 100K and 128K. Publish / Subscribe is defined to drop packets when the high water mark is reached
whereas Push / Pull provide reliable transport. Although no packets are dropped in the benchmark, the
throughput deviation is likely due to additional overhead in the latter scenario.

5.1.3 NaaStorm

Test Setup
In this section we measure the performance characteristics of the NaaStorm worker. We contrast the NaaS
topology to the regular cluster topology and test how our implementation scales with high-performance
hardware.

We have three setups:

• Standard topology: 5 NaaStorm workers running on d710 nodes are connected via a switch with 1
Gib/s links. One node is assigned the task of distribution or aggregation point.

• NaaS topology: a NaaS box is connected to 4 leaf nodes via direct 1 Gib/s links, totaling 4 Gib/s.
The NaaS box is the distribution or aggregation point. The NaaS box and leaf nodes consist of
d710 nodes.

• High-performance reference: 2 d820 nodes, connected by a 10 Gib/s link, run one worker each.
They are included to evaluate the throughput limitations of a NaaStorm worker.

The benchmarks performed are:

• Byte streaming: We stream a set of random bytes from one or more spouts to one or more workers.
The bytes are stored in an array which is iterated multiple times. The bolts receive and discard
the data.

This scenario occurs when data can be efficiently retrieved by the spout and that the bolts are not
CPU bound such that the application is network bound. The first assumption is reasonable if the
stream is received at another network interface or a local, special-purpose device and dumped into
main memory. The second assumption is valid if there are enough bolts in the cluster providing
processing power for the application at hand.

The purpose of this benchmark is to show the maximum throughput of a NaaStorm NaaS box. We
demonstrate both multi-threaded spouts and multiple spouts in a single NaaStorm worker instance.
Tuples are made up of a single byte to show that both KryoCpp and NaaStorm efficiently handle
small tuples.

As proof-of-concept we add benchmarks of dual-threaded spouts to show the feasibility of threading
NaaStorm tasks.

• Distributing word count: We send a stream of strings from a spout to multiple bolts counting the
words. The strings are predefined and are stored in an array, which is iterated multiple times. Each
word is a key in a hash map containing word counters. On receiving a word the bolt looks up the
respective counter and increments it by one.

String comparisons are CPU-intensive operations, thus in this benchmark we show the behavior of
NaaStorm when the task at hand is limited by the CPU power or memory throughput of bolts.

• Aggregating word count: We aggregate multiple streams of strings sent by multiple spouts at a
single node. The setup is otherwise equivalent to the distributing word count.
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Here we show the throughput of NaaStorm if the aggregation point, e.g. the NaaS box, is bound
by CPU power or memory throughput.

• Local data transfer: We demonstrate the raw performance of a single NaaStorm worker by sending
random, single byte tuples over the loop-back interface and receiving them in bolts running in the
same worker instance as the spouts.

In each benchmark we increment the number of spouts and bolts until a plateau or the maximum network
throughput is reached. Benchmarks are run for 10 seconds, excluding a warm-up and shut-down period to
start and stop the cluster. Measurements are taken with the bwm-ng monitoring tool at the distribution
or aggregation point. As such the measurements represent the gross network throughput. Results are
presented as the statistical mean with standard deviation.

Results and Interpretation

0

2

4

6

8

10

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Spouts 

d710 NaaS Topology d710 Std Topology d820

(a) Byte stream - spouts

0

2

4

6

8

10

12

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Bolts 

d710 NaaS Topology d710 Std Topology d820

(b) Byte stream - bolts

0

2

4

6

8

10

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Spouts 

d710 NaaS Topology d710 Std Topology d820

(c) Threaded Byte stream - spouts

0

2

4

6

8

10

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Bolts 

d710 NaaS Topology d710 Std Topology d820

(d) Threaded Byte stream - bolts

35



0

2

4

6

8

10

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Spouts 

d710 NaaS Topology d710 Std Topology d820

(e) Distributing word count - spouts

0

2

4

6

8

10

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Bolts 

d710 NaaS Topology d710 Std Topology d820

(f) Distributing word count - bolts

0

2

4

6

8

10

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Spouts 

d710 NaaS Topology d710 Std Topology d820

(g) Aggregating word count - spouts

0

2

4

6

8

10

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Bolts 

d710 NaaS Topology d710 Std Topology d820

(h) Aggregating word count - bolts

0

5

10

15

20

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Spouts 

d710 d820

(i) Local data transfer - spouts

0

2

4

6

8

10

12

14

16

1 2 3 4 6 8 10 12 14 16

G
ib

/s
 

Bolts 

d710 d820

(j) Local data transfer - bolts

Figure 5.3: Evaluation of NaaStorm performance

Figures 5.3a to 5.3h show the measured gross throughput of the cluster. The number of spouts or bolts
is held constant while the other is scaled. Depicted is the total number of spouts or bolts, respectively.

We look at the benchmarks one by one:

• Byte streaming: A single thread is capable of sending 2.69 Gib/s, the spout being CPU-bound in
the KryoCpp serializer. Adding more spouts shows near-linear scaling up to the point of maximum
network throughput. Deserializing is even more efficient with a single bolt receiving 4.88 Gib/s.
Again throughput is limited by the network when scaling up the number of bolts on a 10 Gib/s
link and a single bolt on a 1 Gib/s link.

The dual-threaded spouts show performance equivalent to two of their single threaded counterparts.
This is unsurprising when we consider the implementation: each thread owns a private TaskTools
instance. Absorb and emit in a multi-threaded task function identically to running multiple single-
threaded tasks. The added value of a multi-threaded task is that a client can control the interaction
of the threads, e.g. communication via a shared-memory model.
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Considering these results we argue that if a task is embarrassingly parallel there is no gain in
threading a task. However, if tuples must be processed in a single instance, threading a task may
effectively facilitate throughput bottlenecks.

The slight performance variations seen at 10 Gib/s are due to test bed inconsistencies described in
section 5.2.1.

• Distributing word count: A single spout is capable of emitting at 2.64 Gib/s and scales near-
linearly until it is network-bound, fortifying our previous byte streaming results. As expected bolts
are CPU-bound, a single bolt processing 0.7 Gib/s. With linear scaling at least 6 bolts are necessary
to saturate two spouts at 3.67 Gib/s, or 14 bolts for saturating 4 spouts at 9.22 Gib/s. Since the
scaling is not precisely linear, 16 bolts are necessary to reach the hardware limitations of the d820
nodes.

• Aggregating word count: As in the distributed word count, a single bolt processes 0.7 Gib/s. On
our quad-core d710 NaaS box we are limited to running 4 bolts at 2.71 Gib/s. The NaaS box
is CPU-bound, demonstrating the limitation of the NaaS concept. Nevertheless the speedup over
the standard topology is 2.94. The spouts show throughput equal to the distributed word count
benchmark, verifying the result.

On the 32 core d820 nodes it is possible to scale to more bolts until the maximum network through-
put is reached.

In figures 5.3g and 5.3h we have included the d820 results from 5.3e and 5.3f again as a reference.

• Local data transfer: The spouts scale linearly up to 9.15 Gib/s on d710 nodes, at which point we
are CPU-bound. As a single bolt already achieves very high throughput, the throughput of bolts
is limited by that of the spouts. Considering that the 8 tasks are all running on the same CPU
and the d820 transfers 15 Gib/s with 8 spouts, we speculate that a d710 node could emit tuples at
a rate up to 15 Gib/s if given the networking equipment. Based on our results we argue that our
NaaStorm implementation has headroom for more throughput.

In all benchmarks we see a considerable speedup when comparing the NaaS topology to the standard
topology. Only when the NaaS box is CPU-bound does it not saturate the network links, but even here
we observe a substantial speedup. At the same time we observe that a more powerful NaaS box enables
scaling until we are network-bound. If a single NaaS box does not satisfy the network capacity, multiple
NaaS boxes could again push the limits.

We argue that the best case of NaaS is full utilization of the available network capacity, the worst
case is equal to the standard topology.

5.2 Discussion

5.2.1 Problems Encountered
• Test-bed problems:

When starting out the project with evaluating ZeroMQ performance, we had issues with the NIC
driver. Throughput would fluctuate for no apparent reason in both Iperf and ZeroMQ. After a
update to the system, NIC performance was as expected. However, GCC now refused to link
binaries. We could not find a solution to the problem and Clang did not have this issue, so
development continued with Clang.

Development of the concurrent lock-free queue necessitated use of compiler intrinsics, making code
compiler-specific. Clang is a relatively new project and GCC currently has much better documen-
tation of their intrinsics, hence the queue was developed with GCC.

Finally, time slot constraints made it necessary to move test beds and all further development was
done on Emulab.

On Emulab we experienced throughput inconsistencies on d820 hardware. Symptoms included
low throughput with high variance between benchmark runs and high variance between directions
(node0 → node1 different from node1 → node0). Our solution was to repeat the benchmark runs
until results were in an expected range. At the time of this writing (8 September 2012) the d820
nodes have just recently been announced and there remain further issues such as not all NICs being
connected but not being recognized as non-functional by the Emulab link test.
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• Storm documentation:
As mentioned in the introduction chapter, Storm is a relatively young project. The first public
release was on 17 September 2011. Documentation on Storm’s concepts and Java and Thrift
APIs existed and were useful for building our project. However, only recently (April 2012) has
documentation of Storm’s internal design and structure started to appear. At the time of this
writing (18 June 2012) three of six parts listed in the index are pending.
Much of our own knowledge on Storm had to be acquired by reading Clojure code, a language we
were initially completely unfamiliar with. Thus assumptions were made on how various components
work and interact. Unsurprisingly, many assumptions made were wrong and preliminary designs
had to be revised. Towards the end of the project, more documentation surfaced and our overview
improved as we spent time reading code and familiarizing ourselves with Clojure.

• Clojure type inference and Java:
Clojure is a non-pure functional language designed to run on the JVM. Unlike other functional
languages it supports structs, which make it possible to use and implement Java classes and functions
by passing the struct as the first parameter. Sadly, the reverse case is not strictly enforced. While
types of struct fields and function arguments may be defined, like in other functional languages
type inference often makes this unnecessary.
The Java clojure.lang.rt package enables the calling of Clojure functions from Java. The static
return value of the package’s functions is of type Object. While this is sufficient to call other
Clojure functions, it does not enable further processing in Java itself. Thus the dynamic type must
be manually worked out and the object cast to that type. This process greatly slowed us down
when implementing the NaaStorm initializer.

• Storm message format:
Knowing the Storm message format is essential to us because we must access the tuples and header
information stored in the message’s fields in the NaaStorm worker itself. This is presumably the
last critical detail of Storm missing to complete the implementation of NaaStorm.
The current status is that we do know the underlying communication layer, which is ZeroMQ and
can be directly accessed from C++. We know that fields are serialized with Kryo and Storm’s
custom field serializer, which have both been implemented in C++. What remains to be done is to
ascertain all information which is contained in fields and in which order it is serialized. This has so
far eluded us, as the serialization is seemingly done in several layers within Storm and we are still
not completely comfortable with Clojure as a language.

5.2.2 Limitations
• Storm integration:

Due to time constraints we did not achieve integration of NaaStorm into Storm. The final hurdle
to overcome is understanding and implementing the inter-task message format of Storm. However,
NaaStorm can be used as a standalone application separate from Storm.

• Physical location of tasks in Storm cluster:
As of now we cannot control the assignment of a certain task to a certain cluster node. This ability
is critical for the NaaS model, without it we cannot assign tasks to a NaaS box at a switch.
The undertaking is ambitious, as it requires understanding the task scheduler in Nimbus and then
modifying it. Time constraints and limited knowledge of Clojure have prevented us from imple-
menting our own solution. On the bug tracker a discussion[54] has taken place about this very
feature, because other Storm tenants have specific needs for it. Their reasons are:

– Manual load distribution in the cluster, as some tasks can be more resource intensive than
others. Storm currently only considers the number of tasks per worker when scheduling.

– Locality of two or more tasks, as sometimes few tasks communicate more intensively with one
another than with other tasks. When assigned to the same worker tasks communicate via the
ZeroMQ inproc protocol.

– Software licensing limitations.

The first version of Storm to be released with pluggable scheduler support is 0.8.0. A release
candidate is estimated for July 2012.
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• Task interface limitations:
Our task interface was designed to be powerful while still being usable and not overly complex to
implement. As such we made several trade-offs, which we discussed in section 3.4.1.

• Dynamic task loading:
Tasks must be statically compiled into the NaaStorm worker, as this is sufficient for our purposes.
The design could be extended to use the polymorphism of the task interface to dynamically load
new task classes. [55] shows an example of how this can be accomplished in C++. Note that the
tuple type used by dynamically loaded task must conform to the types the task interface is compiled
with.

• Limited scalability with respect to number of target nodes:
In section 3.4.2 we describe how and why we chose to give each outgoing port its own thread. The
assumption that the number of destinations is small is easily refuted: spouts in large clusters could
send messages to all bolts, possibly making the number destinations reach into the hundreds. The
alternative design decision described would have been the better choice for large clusters, as the
memory consumption for each new destination is smaller and adding new destinations does not
impact the system’s process scheduler.

• KryoCpp extensibility:
KryoCpp is extensible only by implementing serializers as function template specializations. The
design considerations, limitations and a possible future extension are discussed in detail in section
4.5.

• Reliability:
As mentioned in section 3.3.2, to bound our project’s scale we have neither implemented Storm’s
nor a custom reliability framework. If tuples are lost in transit and this leads to a failure or error,
there is no provided recovery process.
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Chapter 6

Conclusion

Limited network throughput between nodes is a bane for bandwidth-intensive cluster applications. The
Network-as-a-Service architecture empowers tenants to tap into the network backbone and exploit the
tree-hierarchy to their benefit. The abstraction of the physical topology of a cloud services is transpar-
entized and control over task locality handed to the tenant.

NaaStorm has given Network-as-a-Service a face. We have demonstrated the potential of using the
NaaS model in cluster applications and fulfilled our goal of saturating a 10 Gib/s network link in multiple
benchmarks with headroom for even faster connections on current hardware. We have shown that even
in the case of the NaaS box not being network-bound the larger bandwidth resources in our model are
of value.

Along the way we have produced a C++ implementation of Kryo, demonstrating that the serialization
format is not constrained to Java and that the already fast throughput can be further increased. In our
evaluation of the ZeroMQ messaging library we have observed that the overhead over TCP/IP is minimal.
The library has been a powerful asset, relieving us from designing an extensive communication framework
ourselves.

Our implementation’s high performance comes by way of an efficient design and careful engineering.
Finical avoidance of memory copies throughout the program stack, cache locality and even reducing
the number of pointer indirections have yielded performance gains. Choosing C++ over higher-level
languages like Java enabled us to inspect the generated machine code and utilize advanced low-level
profiling tools. However, NaaStorm is a proof-of-concept framework and as such lacks some practicability
aspects such as task scheduling, dynamic task loading and reliability guarantees.

During the course of our project the goal of extending Twitter Storm to the NaaS model was exchanged
in favor of a stand-alone solution. Lack of documentation and difficulties with the Clojure language
hindered rapid progress. In the end the integration of our work had to be halted and work continued
without Storm.

Although our efforts have yielded fruits, there remain additional, unanswered questions. How much
additional effort is required to utilize NaaS in applications? How does NaaS impact other data center
applications? Where are the limits of NaaS performance scalability in a larger, data center-sized setting?
Integration with an existing distributed computation framework, porting real-world applications to the
NaaS concept and large-scale tests would lead to more answers.

In retrospective, we would go about things differently. Being specific about as many design goals
as possible early on helps to get a quick start. While unraveling the project as we went certainly was
interesting, avoiding late changes to the project is very desirable. Yet we do understand that research is
often open-ended and the laying of concrete milestones is not always practical. Writing background and
documentation on-the-go is arduous, but it helps in reflecting design choices and feasibility in general.
Stepping up our efforts there would also reduce the strain when finalizing the project. Lastly, evaluating
the chosen base platform more diligently beforehand or designing for stand-alone operation from the start
would save time.

In conclusion, we believe NaaStorm has proven the viability of Network-as-a-Service and laid ground-
work for further research on the concept of in-network processing. The valuable lessons learned in the
research process will carry us on in our future studies.
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