
RFID-powered vending machine
A group project at D-ITET, ETH Zurich

Fabian Brun
Johannes Suter

September 2, 2012

We enhanced an ordinary vending machine to empower ETH students to get free

drinks with their RFID capable student IDs. For this reason we dived into vending

machine specifications, RFID communications and Python programming. As a result

we are able to control the vending machine from our own embedded computer. Thanks

to the stable, extensible framework, additional features are easily possible - RFID-

powered vending is the first cruical step.

Contents

1 Introduction 3

2 Background 4
2.1 Controlling a vending machine: MDB 4
2.2 Reading student IDs: RFID . 5
2.3 Limiting the free drinks balance . 6
2.4 Requirements . 6

3 Hardware 7
3.1 Vending machine . 7
3.2 MDB to PC converter . 8
3.3 RFID reader + adapter . 9

4 Implementation 10
4.1 Basic environment . 10
4.2 System overview . 10
4.3 MDB communication . 12
4.4 RFID reader . 14
4.5 Identity providers . 15
4.6 Audit log . 15

5 Evaluation 18
5.1 Testing setup . 18
5.2 Results . 19
5.3 Security . 19

6 Conclusion & Outlook 22

7 Bibliography 23

8 Figures and Tables 24
8.1 List of Figures . 24
8.2 List of Tables . 24
8.3 Listings . 24

2

1 Introduction

The student association for mechanical and electrical engineering students at ETH

Zurich (AMIV) bought a beverage vending machine in 2011 to be put in a student

lounge. The main idea is that every student of the participating associations would be

able to get free (or cheap) drinks with their student ID, depending on each associations

policy.

To achieve this, we need to get control over the vending machine. We will accomplish

this by connecting an embedded computer to the vending machine. This computer

would also connect to a RFID reader device, the authentication device. Authorization

will be provided by different web-based interfaces, one for each of the participating

student associations. An overview about the system can be seen in Figure 3.1.

In the following chapter we give some background about the technologies involved

in this project. In chapter 3 we describe the hardware setup and what we have to do

to get each component working. Chapter 4 then contains implementation details of

our own software. In chapter 5 we describe the test setup and the results, and we give

an outlook to the possible future of this vending machine in chapter 6.

3

2 Background
This is an overview about the relevant technologies we used to reach our goal.

2.1 Controlling a vending machine: MDB

Current vending machines use the multidrop bus (MDB) protocol for communication

between the different components (e.g. machine controller, coin validator, card reader).

A multidrop bus in general describes a computer bus system where all components

listen to each other on the same wire at the same time. The MDB protocol runs on

such a multidrop bus topology and uses a 9-bit serial protocol for communication: 8

data bits together with 1 mode bit. Such 9-bit serial protocols are pretty rare, they

usually only use 8 data bits (1 byte, no mode bit) with the ASCII1 encoding.

The current MDB specification [1] defines three different feature profiles. While

MDB Level 1 defined the basic command set, the levels above almost only extend

that commands to send more data with it. Our vending machine is modern enough to

communicate with us on MDB Level 3, so we will use that command set.

In the MDB model, the vending machine controller (VMC) is the master on the

bus, and all attached components (up to 32) are considered slaves. This means that

the master is the arbiter on the bus: the slaves usually listen, and only respond to

commands of the master addressed to them. The master regularly polls all components

to make sure they are still online; if not, they get reset. There are several categories of

peripheral components defined in the MDB spec. One such category is the “Cashless

device”2, which perfectly fits our use case.

1https://secure.wikimedia.org/wikipedia/en/wiki/ASCII
2see section 7 of [1]

4

https://secure.wikimedia.org/wikipedia/en/wiki/ASCII

There are some challenges when connecting the MDB interface to a computer:

• The 9-bit protocol in use. It makes it more complicated because we have to read

the data as a bit stream rather than a simple byte stream. This is cumbersome

to handle in most higher level programming languages (they usually don’t really

know “bits”) unless you use a converter which translates the bits into a byte

stream.

• There is a check byte. It is computed as the sum over all other bytes and has to

be inserted at the end of each transmission.

• The timing requirements posed by the MDB specification. This is a smaller

challenge since our computer should be fast enough to compute the response in

time in general. If not, the vending machine controller will reset our component,

which looks like a broken transaction to the user.

2.2 Reading student IDs: RFID

The ETH introduced new student IDs back in 20083. They include a RFID chip of the

“Legic Prime”4 family, which is a proprietary system using the standard 13.56 MHz

radio frequency5. The RFID chip on the ETH student ID carrys a unique six-digit card

ID and some (encrypted) memory slots. It is used especially for after-hours entry to

specific ETH buldings. There is no publicly available mapping of RFID card numbers

to ETH students.

A word about security: The card number is the only “public” information the chip

discloses. It is also printed on the back of the student ID. Since we only use this card

number, an attacker could claim to be someone else.
3http://www.eth-karte.ethz.ch
4http://www.eth-karte.ethz.ch/data/security
5http://www.legic.com/de/legic_prime.html

5

http://www.eth-karte.ethz.ch
http://www.eth-karte.ethz.ch/data/security
http://www.legic.com/de/legic_prime.html

2.3 Limiting the free drinks balance

The main goal of extending the vending machine is to be able to give out free drinks to

the registered students. Therefore there also has to be a mechanism to enforce limits

on the free drinks balance. The participating student associations all have their own

member databases, and the rules for the amount of free drinks should also be individual

per association. These rules can be even more diverse inside of one such association.

This problem will be addressed by introducing “Identity Providers”, which expose an

API to the student associations databases. Basically this is a HTTP(S) endpoint per

association, which returns the amount of free drinks a specific RFID card number is

still eligible for.

2.4 Requirements
The final product should be able to:

1. read out student IDs,

2. check the identity providers if it is eligible for a free drink, and

3. communicate with the vending machine, especially to release such a free drink.

6

3 Hardware

Some parts of the complete system as seen in Figure 3.1 deserve a little more attention.

vending
machine

MDB
adapter

voltage
converter

RFID
reader

/dev/ttyS0 /dev/ttyUSB0

embedded
computer

internet access

eth0

Figure 3.1: High-level overview over the system.

3.1 Vending machine

The vending machine to be extended is a second-hand, off-the-shelf beverage vending

machine (see Figure 3.2). It features the aforementioned MDB capable VMC, and

a state-of-the-art coin changer (connected as MDB slave). In the end we want to

communicate with that VMC.

7

Figure 3.2: The vending machine, half-way opened.

3.2 MDB to PC converter

To avoid the hassle of connecting MDB to our serial port directly (see section 2.1),

we reached out to Abrantix1, a Zurich based company with focus on cashless payment

systems. They developed a MDB-to-PC converter chip, of which they sent us a de-
1http://www.abrantix.com/

8

http://www.abrantix.com/

velopment sample (and later the real product) to experiment with. This converter

does all the required conversion for us: adhere to the timing restrictions, calculate the

checksum byte and hand over a simple 8-bit serial signal to our computer.

3.3 RFID reader + adapter

The RFID chip on the student IDs is proprietary system. A standard RFID reader

won’t be able to read out data. The only way to talk to the ETH student IDs was

to get the official reader hardware from Legic itself. The reader comes with a non-

disclosure agreement (NDA), so some parts of the code are left out of the (otherwise

publicly available) code sources.

We also need a Serial-to-USB converter: The official reader hardware outputs its

data over a serial link with voltage levels of 0V/5V . However, the RS-232 plugs of

our embedded computer expect voltage levels of ±18V . AMIV member Pascal Gohl

designed a little PCB for us. It has a level shifter on it and lets us connect the RFID

reader to a USB port on our computer. That is convenient, since our serial port is

already blocked with the MDB connector.

9

4 Implementation

The whole controlling software is written with the Python scripting language, using

the 2.7 version.

4.1 Basic environment

The code runs on a linux box1 powered by an embedded AMD Geode CPU with 500

MHz, backed by 256MiB of RAM and a 8GB CompactFlash card. The RFID reader

hardware will be wired up on the first USB port. The MDB-to-Serial converter chip

will be wired up to the serial port of the box.

The software runs in three threads: One for the core controller (section 4.2), one

for the MDB translator (section 4.3), and one for the legireader (section 4.4).

This is because the latter two components must not be blocked by the core controller

routine at any time. All components are implemented as Python classes. Those who

are supposed to run in threads have a special run method to start their main loops.

4.2 System overview

The core controller is the main component as it controls all other components. As

seen in Figure 4.1 all data flows from or to the core controller. The notable exception

is the direct exchange of MDB serial data (and only that) between the translator

and the MDB state machine.

1PC Engines ALIX3d3: http://pcengines.ch/alix3d3.htm

10

http://pcengines.ch/alix3d3.htm

Core
Controller

RFID
reader

MDB
translator

MDB
state

machineinit

init

MDB data
from serial

MDB response

init

RFID card nr
after read

check dispense status
handle dispense
handle denied

Connector
#2

Connector
#1

Connector
#n

.

.

.

init
auth

report

user data
if card nr
is known

Identity
Provider

#1

Identity
Provider

#2

Identity
Provider

#n

Figure 4.1: System overview

On startup, the controller initializes itself, but does not yet initialize the other

components. This is done in a second step when the start method is explicitely

called. The start method first makes sure that only one controller is running at the

same time (in the same python process). It then initializes all connectors, the MDB

components and the RFID reader.

After startup, the core controller waits for the RFID reader to identify a student ID.

It then asks all identity providers for the user behind the card and his remaining free

drinks balance. This is done sequentially for all connectors. It is aborted early as soon

as one connector returns a user with remaining free drinks balance. The controller

11

then starts a timer of 8 seconds, after which the user request expires.

The MDB state machine module asks the core controller in regular intervals if there

was a successful legi read/auth. With the help of the translator (see section 4.3) it

then unlocks the vending machine and the user gets to chose a drink. The MDB state

machine reports either “success”, “denial” or “timeout” (in case the user waited too

long) back to the controller. It also locks the vending machine again. If the vend

was successful, the controller would instruct the responsible connector to report the

vend back to the identity provider. After that, the controller will wait until the next

successful RFID card readout to start over.

If there is a RFID readout while another user is still processed, the newly read out

RFID takes precedence. The older session gets terminated by the MDB state machine.

4.3 MDB communication

The MDB communication part is split into two sub-components. The translator is

connected to the serial port which is connected to the MDB-to-PC adapter. It recieves

MDB commands sent by the vending machine, and responds with appropriate data.

The MDB state machine is the other component, which takes the commands from

the translator and returns the data to be sent back, depending on the state it is in

(and conforming to what the MDB specification expects).

The translator recieves MDB commands byte by byte. It collects these bytes until

the command (and its data) is complete, and then feeds it to the state machine. There

are six different states this state machine cycles through (see Figure 4.2):

1. DISABLED: The Cashless Device (CD) does not do anything, until a reset or

enable command is recieved.

2. INACTIVE: The CD is ready, but expects setup data or an enable command.

12

3. ENABLED: The CD is waiting on a successful RFID read (it regularly polls the

core controller).

4. SESSION IDLE: A RFID has been successfully read out and is eligible for a free

drink. The CD starts a MDB session with the vending machine.

5. VEND: The CD signals to the vending machine to unlock the dispense functionality

INACTIVE

DISABLED

ENABLED
SESSION
IDLE

SESSION
END

VEND

enable
reset

disable

controller
init

reset

reset

reset

setup /
enable

session begin +
authenticated rfid

reader cancel or
session complete

vend request +
pending, valid

dispense

no pending
dispense or
other error

vend failure /
vend cancel /
vend success

reader cancel
or session
complete

no rfid

Figure 4.2: The MDB state diagram. The blue path shows the (default) state transi-
tions after startup; The red path shows the (default) state transitions after
reading and authenticating a rfid card.

13

to the user. It also records the choice made by the user.

6. SESSION END: The CD ends the open MDB session with the vending machine.

In this state, the CD performs mainly cleanup tasks.

4.4 RFID reader

The legireader component recieves the data from the reader hardware. To make that

reader work, it has to send an “enable” command to activate the reading mode. We

send the enable command on startup of the legireader component, and directly after

every successful read. We can’t reveal the enable command, because this information

is protected by the NDA.

Upon detection of a student ID, the RFID reader sends 14 bytes of data over the

serial connection:

byte 1 2 3-10 11-13 14
value (hex) 0D 80 (don’t care) (card number) (data end)

Only bytes 11 to 13 are interesting to us: they contain the card number. We don’t

care about the other bytes, as long as the response from the reader has 14 bytes. Our

legireader code is basically an endless loop trying to read 14 bytes from the serial

connection. Once it gets 14 bytes back, and they start with 0x0D80, we extract and

convert the bytes 11-13. They get then passed back to the controller. This is done via

a callback installed on initialization of the legireader. The legireader subsequently

returns to waiting for another student ID readout.

14

4.5 Identity providers

To make the identity provider part extensible, the interface described in Listing 4.1 has

to be implemented by a connector to any such identity provider. The connectors to

the participating student associations from the start have already been implemented

by us.

On controller initialization time, the connectors implementing this interface would

get the base configuration. From there, the connector is advised to prepare everything

he will need in the auth and report methods, e.g. database connections. In general

they also want to load their own configuration data here.

In the auth method, the connector asks his identity provider for a user with the

specified RFID card number. If the identity provider knows the card, the connector

should return this information together with the “free drinks balance“.

When the report method gets called, the connector should report back to his iden-

tity provider about the (successful) vend. For this purpose it gets passed the RFID

card number as well as the chosen slot.

All identity provider communication happens over an SSL encrypted connection to

prevent against eavesdropper.

4.6 Audit log

The core controller maintains its own audit log. Every attempted vend (internally

called ”transaction“) gets logged in there, even vend denials (but no timeouts). This

audit log is based on redis2, a fast in-memory key-value store. The transactions are

recorded by day and whether they were successful or not. For every transaction, there

is an additional hash3 with metadata about that transaction.

2http://redis.io
3Overview over all redis datatypes: http://redis.io/topics/data-types

15

http://redis.io
http://redis.io/topics/data-types

The redis data is saved to the disk in regular intervals (complete dumps every few

minutes, and a command journal all the time).

16

1 class IdProvider (object):
2 """ Base interface for identity providers .
3

4 Attributes :
5 orgname : The human readable name of this identity provider

(i.e. "AMIV "). Will be used in logs etc.
6 """
7 orgname = None
8

9 def __init__ (self , baseconf):
10 """ Initialization of the connector .
11

12 Args:
13 baseconf : The main ConfigParser configuration object .
14 """
15 self. baseconf = baseconf
16

17 def auth(self , rfid):
18 """ Authenticates the given legi number if possible .
19

20 Args:
21 rfid: The six digit RFID number (int as str).
22

23 Returns :
24 True if authentication was successful , False otherwise .
25 """
26 raise NotImplementedError (
27 " Method ’auth ’ must be implemented by class ’%s’" % (
28 self. __class__ . __name__
29)
30)
31

32 def report (self , rfid , slot):
33 """ Reports a vending from the given user back to the org.
34

35 Args:
36 rfid: The six digit RFID number (int as str).
37 slot: The slot the user chose (int).
38

39 Returns :
40 True if reporting was successful , False otherwise .
41 """
42 raise NotImplementedError (
43 " Method ’report ’ must be implemented by class ’%s’" % (
44 self. __class__ . __name__
45)
46)

Listing 4.1: Interface for IdentityProviders

17

5 Evaluation

5.1 Testing setup

To test the proper function of our code, we set up our embedded computer with the

Ubuntu 12.04 Server Edition1. On top of that comes a Python virtual environment

with the virtualenv package2. Running our setup script with the Python interpreter

of the newly created environment installs additional Python packages we depend on

in our code.

We then connect everything:

1. The MDB-to-PC adapter to the vending machine’s MDB plug, and on the other

side to the serial port on our embedded computer.

2. The RFID reader to the Serial-to-USB converter board, and the latter to the

embedded computer.

3. The power supply and an ethernet cable to our embedded computer.

We perform our tests with different student IDs. They were kindly pre-configured

into the AMIV identity provider according to Table 5.1. With these student IDs, we

run the following tests (expected outcome in parentheses):

1. Banned User : Use ID 0 to request a drink from any slot (denied, no balance).

2. User timeout: Use ID 1 to authenticate, don’t press any button for 10 seconds,

then request a drink from any slot (denied, vend request timed out).

1http://www.ubuntu.com
2http://www.virtualenv.org

18

http://www.ubuntu.com

student ID configuration
0 not a member: no free drinks at all
1 normal member: 1 free drink per day
2 board member: unlimited drinks per day

Table 5.1: Configuration of test student IDs

3. Normal vend: Use ID 1 to request a drink from any slot (successful, correct slot

reported).

4. No-balance vend: Use ID 1 to request a drink from any slot (denied, machine

never gets unlocked).

5. Multiple vends: Use ID 2 to request three drinks in a row from three different

slots (all successful, correct slots reported)

5.2 Results

To start the software, we run a bootstrap script with the Python interpreter from the

virtual environment. The source code is prepared with a lot of debugging log messages.

That gives us a good impression of where we are in the code at any given time. See

Figure 5.1 for an example of the debug output.

When performing the five tests with the three pre-configured student IDs, all tests

passed with the expected results. Additionally, the program ran without throwing or

logging any other errors. A long term stability test was not yet possible to perform.

5.3 Security

As mentioned in section 3.3, an attacker could impersonate another student, as long

as he knows the card number and can communicate with our RFID reader. This is a

19

feasible attack since the security of the ”Legic Prime“ system in use has been broken3

in 2009. However we do not really consider that a real threat at the moment due to

the following reasons:

• There is a limited amount of beverages available in the vending machine. Even

if somebody tries to get a lot of free beverages with this trick, the harm is

manageable from a monetary point of view.

• There is one specific person in charge for refilling. This person would recognize

an increased demand and probably look closer.

• There are always a lot of people in the room. A person trying to get a lot of

beverages from the vending machine would probably not go undetected.

• Students who do not get their free beverage would report a problem. A lot of

such reports would be striking, and the audit log would probably help to detect

the attack afterwards.

In summary, we think that such an attack would work once (or for a very limited time)

only. A countermeasure would be to authenticate the student ID in any way, e.g. with

an additional PIN code to enter.

Another weakness in the first system design was the reporting of the vend back to

the issuing identity provider. If the machine can’t report back (e.g. due to a network

error because the ethernet cable has been unplugged), the identity provider would

allow another free drink the next time the student tries (because it does not know

about the previous ones). The countermeasure we implemented is a simple blacklist:

If the reporting fails, the rfid card number gets blocked for the rest of the day.

3http://events.ccc.de/congress/2009/Fahrplan/events/3709.en.html

20

http://events.ccc.de/congress/2009/Fahrplan/events/3709.en.html

Figure 5.1: Example log output of our software.

21

6 Conclusion & Outlook

The initial work described in this report has set the ground for more creative work

with this rather unusual piece of hardware. The delivered software stack works stable

and should be easily extensible for additional features.

Such features may include:

1. The vending machine has a very powerful coin checker/changer. A possible idea

to include it in our system: Only serve drinks when a valid student ID has been

shown (also for paid drinks). The rationale behind this would be to restrict the

vending machine to students of the participating student associations, since this

is their service for their students.

2. A status screen has been wished a lot by the AMIV board. It would be built into

the vending machine’s body. Besides status data (display free drinks balance or

history), other student related information could be displayed (e.g. upcoming

events and the like).

3. Such a status screen may additionally enable students to write apps, such as

minigames (to be played with a touchscreen and unlocked by the student ID) or

statistics apps.

22

7 Bibliography
[1] National Automatic Merchandising Association (2003). Multi-Drop Bus / Inter-

nal Communication Protocol, Version 3.0. http://www.vending.org/technical/
MDB_3.0.pdf

23

http://www.vending.org/technical/MDB_3.0.pdf
http://www.vending.org/technical/MDB_3.0.pdf

8 Figures and Tables

8.1 List of Figures
3.1 High-level overview over the system. 7
3.2 The vending machine, half-way opened. 8

4.1 System overview . 11
4.2 The MDB state diagram. The blue path shows the (default) state tran-

sitions after startup; The red path shows the (default) state transitions
after reading and authenticating a rfid card. 13

5.1 Example log output of our software. 21

8.2 List of Tables
5.1 Configuration of test student IDs . 19

8.3 Listings
4.1 Interface for IdentityProviders . 17

24

