
Distributed
 Computing

Smart Shopping
Semester project

Denitsa Dobreva, Dimitrios Gkounis, Konstantinos Karvounis

dobrevad@student.ethz.ch, dgkounis@student.ethz.ch,

kostas213@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zurich

Supervisors:

Jochen Seidel,

Prof. Dr. Roger Wattenhofer

August 31, 2012

Abstract

Even though technology penetration in everyday life increases constantly there
still is the burden of how to manage your personal shopping history and store
all receipts. Still all shopping bills are in the old fashioned paper format which
makes it difficult to analyze the information. Inspired by this the Smart Shopping
project aims to build an innovative and user-friendly Android application which
helps the users to keep track of all bought items. The application furthermore
performs an analysis on the stored user data and gives suggestions for products
which the user most probably would like to buy in the next days. The application
also incorporates the capability to browse reduction offers from favorite shops
and include them into the next shopping list.

i

Contents

Abstract i

1 Introduction 1

1.1 Description . 1

1.2 Organization . 2

2 Architecture of the application 3

3 Client 4

3.1 Design . 4

3.2 Implementation . 5

3.3 Tesseract and Leptonica . 7

3.3.1 Training Tesseract . 7

3.3.2 JNI . 7

3.4 Receipt Recognition . 8

3.5 Corrections and Predictions . 10

3.5.1 Corrections Algorithm . 10

3.5.2 Predictions . 11

3.6 Reductions . 12

4 Database 13

4.1 Remote database . 13

4.2 Local database . 15

4.3 Synchronization . 15

5 Server 18

5.1 Communication with the client 19

5.2 Connection to the database . 21

ii

Contents iii

6 Web Interface 22

6.1 GUI and Functionality . 23

6.2 OpenID . 26

7 Future Work and Conclusion 27

A Building Tesseract A-1

B Training Tesseract B-1

C Web Application Development C-1

D Web Application Deployment D-1

Chapter 1

Introduction

1.1 Description

The purpose of this semester project is to automate the process of storing receipts
and making use of this information in a lightweight way. For the scanning we
use an existing OCR library, namely Tesseract and extend it with an overlay
interface supporting recognition for different receipt layouts. The OCR engine
does not always perform an errorless text recognition. Therefore, the project
introduces a collaborative word correction. The idea is that when a product is
introduced for the first time to any user the user can correct manually the name.
From then on the product will be presented in its corrected version to any other
user.

Further, we take into consideration that smartphones offer great connectiv-
ity capabilities. Based on this we built a three-tier system where part of the
functionality and storage is pushed to a remote application and a database tier.
Moreover, the system is partially distributed. Every user has a copy of his or
her shopping history and can synchronize with the shared remote server when
there is internet connectivity.

To get a better perspective on the main use cases of the Android application
we refer to figure 1.1. One of the usage options is to scan a receipts. This
makes a call to the OCR engine and image analysis, which is described in details
later. Users can also create shopping lists to help them with the shopping. A list
can be created using suggestions by the application or simply adding manually
any other product. All scanned receipts and created shopping lists can further
be browsed and edited. Users can keep track of their money balance using the
application and reset the balance at any time. Without the need to refer to any
third party websites or application users can check the reduction offers of their
favorite shops and add the desired ones to a shopping list.

1

1. Introduction 2

Scan New receipt

Create Shopping List

Check Shopping Lists

Check Reduction

O ers

Check Money Balance

Choose a Shop

Get Predictions

Add to Shopping

List
User

<<Include>>

<<Include>>

<<Include>>

Figure 1.1: Use Case Diagram of the Android application

1.2 Organization

Firstly we describe the architecture of the project as a whole (Chapter 2). In
Chapter 3 we describe thoroughly the architecture of the client and its functions.
These functions include the recognition of the receipts, the correction and pre-
diction algorithms and the search for reduction offers. Next we give a description
about the databases used in the project, their schemas and the syncrhonization
procedure used for communication between them. In Chapter 5 we analyze the
architecture of the Server and its services. In Chapter 6, we describe the web
interface of the Server and its functionality. Finally we present some ideas about
future extensions of the project and draw conclusions about our experience con-
structing the system.

Chapter 2

Architecture of the application

The project consists of two subprojects: an Android application (Client) and
a web service (Server). Both parts contain a database for data storage and
communicate with each other to exchange information between the databases.

Figure 2.1: Architecture diagram

The Android application is developed based on the Android API Level 10
and it is compatible with devices running at least Android 2.3.3. Also it uses an
OCR library (Tesseract) and an image processing library (Leptonica). The two
libraries are compiled via Android NDK and the application accesses them via
JNI. There is finally a SQLite database for local data storage.

The web server runs on an Apache Tomcat server. It consists of a web
service based on Google Web Toolkit (GWT). The web service connects to a
MySQL database via Java DataBase Connectivity (JDBC) API. GWT provides
two communication means for the web service: RequestFactory and RPC. The
former is used for the communication with the client application and the latter
for the communication with the web interface.

3

Chapter 3

Client

3.1 Design

The Client has a modular architecture. The motivation to design it in a loosely
coupled way is to support easy future extension. A separate component supports
every main feature where on top of everything we build an intuitive and user-
friendly GUI.

On Figure 3.1 are presented the main components of the Client architecture.
The purpose of the Reductions Collector is to supply the data for the reduction
offers. It is implemented as an interface which gives the possibility to support
easily any additional shop using the parsing methods. For the moment we do
support Lidl and Denner.

The next important component in the Client architecture is the Receipt
Recognition. It has a special place there because it handles the main functional-
ity of the application and namely the receipt analysis. This component is build
again around an interface that allows extension in the number of shops. The
Receipt Recognition uses the two modules: Tesseract and Leptonica. Leptonica
is used for image enhancement together with Tesseract to give better results on
the recognition. More details on this follow in the next sections.

Corrections and Predictions are both based on algorithms we run on the
local database. The Corrections is used to improve the results from the Receipt
Recognition. It uses the corrections which the user or other users have done
before so that it can avoid future errors in the text recognition. The Predictions
component performs an analysis on the user behavior by means of how often
and what kind of products does the user buy. It makes suggestions about next
purchases. This improves the application usability by leaving less work for the
user.

To offer an offline usage of the application and higher performance by limited
interaction with the server we introduce a local database. This keeps a copy of
the user’s data. The database is synchronized with the server when Internet
connection is detected. The synchronization is done by the Sync module.

4

3. Client 5

Figure 3.1: Architecture Design of the Client

The Sync is used to keep the local and the remote databases updated. Only
the new and altered entries are send to the remote database so that the server
has an up-to-date copy of the user’s local database. In the opposite direction,
the server sends on demand the new product entries from other clients. These
are used by the correction algorithm.

3.2 Implementation

In this section we describe the connections between the separate packages in
the Client project. On Figure 3.2 we show a Package Diagram of the Client
implementation. Classes for the Tesseract Engine and Leptonica reside in the
com.googlecode package with nested packages tesseract.android and leptonica.android.
These packages are responsible for image processing. Therefore we separate them
logically from the other code.

The shared package contains all definitions of objects exchanged between the

3. Client 6

com.googlecode

leptonica.android

com.smart.shopping

tesseract.android

algorithms

connection

camera

shopTemplates

activities

database

utilities

reductions

recognition

shared

Figure 3.2: Package Diagram of the Client

Client and the Server which are used for the synchronization. It resides on the
Server side but is linked from the Client project in order to avoid copying of
code.

The com.smart.shopping package contains the rest of the client logic im-
plemented in nested packages. All Android Activities reside in the activities
package. It serves most for presentation purposes where the other packages im-
plement the functionality or deliver the data.

ShopTemplates together with the recognition package and the com.googlecode
contain the implementation of the image processing for the supported shops. The
shopTemplates package defines the rules for the image recognition and links both
recognition and com.googlecode for the invocation of the image processing.

3. Client 7

3.3 Tesseract and Leptonica

3.3.1 Training Tesseract

We use version 3.01 of Tesseract. It has support for a variety of languages but the
recognition of those languages requires that the text font is among the supported
ones otherwise the results are bad. To improve the text recognition we trained for
specific fonts. To do that one has to first build Tesseract. For more information
please check with Appendix A.

The training on its own is a challenge. The process is very tedious since most
of it has to be done manually. The process has two major steps:

• Create the training documents

• Train Tesseract

To create the training documents there are two options: one can either create
them from text files if the font of the receipt is known in advance or train with
images of the receipts. Since we have no information about the exact font of the
receipt we trained Tesseract using the second option. However, training was not
successful because scanned receipts have a special layout with big spaces between
the columns and the text is not homogenous. Further, to get good results we need
quite big data sample which was another issue. Therefore the current version
of the project is using the language files provided with Tesseract. However, it
would be a good extension to improve this as a future work. For more details
about the training procedure please see Appendix B: Training Tesseract.

3.3.2 JNI

The Tesseract engine is written in C and C++ therefore we need something
that wraps it and makes Java access to the API possible. The standard way
to do that is the Java Native Interface (JNI) which enables Java calls to the
natively-compiled Tesseract and Leptonica APIs. Since there are already existing
solutions for that we decide to make use of the most appropriate one and focus
on the domain of the project.

The tess-two1 project is an open source project that is implemented on top
of Tesseract and Leptonica. It uses the compiled libraries together with JNI
and offers a Java based API. We use it as a library project into the Android
application. It serves as a bridge to Tesseract and Leptonica and gives us access
to all native methods we need to use for image enhancement and text recognition.

1https://github.com/rmtheis/tess-two

https://github.com/rmtheis/tess-two

3. Client 8

3.4 Receipt Recognition

Figure 3.3: Sample Receipt from Coop Figure 3.4: Sample Receipt from Aldi

Every shop has its own receipt template and if we run Tesseract on the entire
image the output of the recognition is above 50% incorrect. To avoid this we add
another layer on top of the OCR. This layer adds a template for every supported
shop.

We see from Figure 3.3 and Figure 3.4 a sample shopping receipt from Coop
and Aldi. These two shops are among the supported ones. The difference in the
layout between the receipts is huge in terms of information ordering. Therefore
we cannot rely on automatic column recognition that will detect the separate
columns and give us the type with respect to product name, price, etc. As wee
see from the images Coop has a dedicated column for every information type
whereas Aldi has only two columns: a dedicated one for the prices and the first
one containing everything else. If we add all different shops to the picture we
will see that it is almost impossible to automatically distinguish the information.

We approach this problem by handling each specific receipt layout in a dedi-
cated class. This resolves into a hierarchy, where we have an abstract class Shop,
which hides the concrete shop implementation for the rest of the source code.
In detail, we need two methods from each child - detectColumns() and extract-
ShoppingList(). detectColumns() handles the specific receipt layout, and ex-
tractShoppingList() performs a shop specific content extraction from the parsed
layout. Figure 3.5 shows the class hierarchy of the supported shops. This hier-
archy provides an easy way to add more shops to the application in the future.
One only needs to introduce a new implementation of the abstract Shop class
with the above mentioned methods. Moreover, a factory class is introduced to
completely isolate the creation of the different shop implementations from the

3. Client 9

+Aldi(recognition : Recognition)

#detectColumns() : void

#setLists() : void

-correctPrices(prices : String []) : String []

Aldi

(com::smart::shopping::shopTemplates)

+Coop(recognition : Recognition)

#detectColumns() : void

#setLists() : void

Coop

(com::smart::shopping::shopTemplates)

+Migros(recognition : Recognition)

#detectColumns() : void

#setLists() : void

-correctPrices(prices : String []) : String []

Migros

(com::smart::shopping::shopTemplates)

#recognition : Recognition

#tess : TessBaseAPI

#bm : Bitmap

#pix : Pix

#prices : String[]

#reductions : String[]

#amounts : String[]

#products : String[]

#borders : int[]

#height : int

#width : int

#Shop(recognition : Recognition)

+readReceipt() : void

#setLists() : void

#detectColumns() : void

Shop

(com::smart::shopping::shopTemplates)

Figure 3.5: Class Diagram of package com.smart.shopping.shopTemplates

rest of the program logic.

Let us now describe the concept of the algorithm for detecting the text
columns of a receipt. Before that we need to clarify that for every shop template
this algorithm has a tweaked implementation which accounts for the different
column number, minimum expected space between columns, etc. The algorithm
tries to define the virtual borders between the separate columns. To do that it
analyses the image from top to bottom and defines for each line of width one
pixel whether it is part of a text column or an empty space. If it finds enough
white vertical lines in sequence we conclude that there can be drawn a virtual
border. To visualize the process we show screenshots from the application. On
Figure 3.6 the user is prompted to crop once the image with all product items
and prices. The cropped area is defined with the orange rectangle. Figure 3.7
shows the result of the columns detection, which is hidden from the user. The
virtual borders would look like the dashed green lines added to the screenshot.

3. Client 10

Figure 3.6: Screenshot from the Android
app: Scanning a receipt

Figure 3.7: Screenshot from the Android
app: Virtual Borders

The actual output to the user is shown on Figure 3.8. This process improves the
recognition for two reasons. First, Tesseract performs bad on the receipt tem-
plate but works good on a homogenous text as when we restrict the recognition
to one single column. Second, mixing together alphabet characters and numbers
has also shown to be a drawback for the performance of Tesseract.

3.5 Corrections and Predictions

3.5.1 Corrections Algorithm

The corrections are needed to avoid errors that Tesseract repeats in the text
recognition. Because of problems with the font recognition it tends to make
the same mistakes for particular letters or words. After the OCR is finished we
execute a word correction based on previous corrections by users. In the local
Database we keep the entries for all scanned words and corresponding corrections
if any. Upon synchronization we add to the local Database all pairs of scanned
and corrected words from other users. The algorithm for the corrections is as
follows. For every scanned word we search in the Database for the best match
given a level of tolerance. The best match is the word which is closest to the
current one. The distance is computed using the Damerau-Levensthein distance.

3. Client 11

Figure 3.8: Screenshot from the Android app: Scanned Receipt View

The scanned word is replaced by the corrected version of the best match if it
has a distance below the predefined tolerance level. In the implementation of
the corrections we compute a list of words that fulfills the tolerance criteria and
is sorted based on the distance value. The purpose is to go further and show a
list with possible corrections so that the user can decide on the optimal one. In
the current version of the application we take the best match and replace the
scanned word. Given the current size of the products table this gives optimal
results because it does not require any intervention by the user. However, when
there are many and similar product entries in the database this might not be the
case.

3.5.2 Predictions

The predictions are another important part of the Client project. This com-
ponent performs an analysis on the user shopping behavior based on previous
purchases. We need to model the past purchases and the expected ones. To ap-

3. Client 12

proach this problem we use linear regression. For every product bought at least
once the time of all previous purchases is taken into account and extrapolated
using linear regression. The product is included in the next list of suggestions if
the time for the future purchase fits within a predefined range of time. We set
the range to [-10, +10] days of the current moment. We assume that products
that had to be bought earlier are actually bought but not scanned by the user or
are not relevant any more. This way if the user is periodically buying particular
product he/she will get a suggestion to include this into his/her new shopping
list.

3.6 Reductions

For the Reductions we follow the same approach as with the Receipt Recogni-
tion. To support easy extension for different shop types we define an interface
Reductions with a single method loadReductions(). This interface can be im-
plemented by any shop type where the implementation of the method will be
website specific. To get the reduction offers the application craws the website
and extracts structured data. For proof of concept we implement the reduction
collection for Denner and Lidl. We choose exactly these two shops because their
websites require different technologies to extract the data.

For Denner we use the Yahoo! Query Language (YQL) Web Service. It
enables applications to query data from different sources across the Internet
including Web content using a familiar SQL like syntax. Moreover, it transforms
the data and can deliver it in a JSON format. This makes it a good solution for
our case. We call the YQL Web Service with a simple HTTP Get on the URL
and pass our YQL statement as a parameter to the query. For the statement
we use a CSS selector for HTML which fetches for us the desired elements with
the specified class or attribute. The output is a JSON object containing all the
information for the reduction offers as product name, old and new price, URL
of the picture, etc.

For Lidl we approach the task in a different way. The problem there is that
with YQL we cannot access the image address for each reduction offer. Therefore
we combine the old fashioned XML parsing together with YQL.

Chapter 4

Database

The application handles different types of data. Firstly, there is the information
obtained from the recognition of the receipts. Secondly, the application has to
save and organize the retrieved information of the receipts into lists for every
user and to provide basic sharing functions with other users. Finally, we need to
avoid data duplication and to be able to find the information we need quickly.

For these reasons, the application uses a local database on the phone to save
the data. The database is a SQLite database. The Android Database class
(android.database package)1 provides the creation and the connectivity to the
database.

Furthermore, there is a remote database. The application uses the remote
database to synchronize the local data. The remote database also provides a
way to share data between different devices and users. It is an MySQL database
and the client communicates via a web service. In the next chapter, we describe
in more detail the structure of the server.

4.1 Remote database

There are six primary data types for the application: users, purchases, prod-
ucts, lists, groups and scans. Each of these types corresponds to a table in
the database. There is also a class for each data type in the application. The
asl_users table contains information about the user of the device where the
application runs. Also it may contain data for other users when it is necessary.
During the synchronization, the client downloads from the server the information
of other users only if the user of the device has shared information with another
user. In addition for each type exists a corresponding class. These classes are
used for data exchange between the client and the server.

The schema of the remote database can be viewed in the following figure:

1http://developer.android.com/reference/android/database/package-summary.html

13

http://developer.android.com/reference/android/database/package-summary.html

4. Database 14

Figure 4.1: Remote database schema

The asl_purchases, asl_products and asl_scans table contains the infor-
mation obtained after the receipt recognition. Specifically, the asl_products ta-
ble saves the product names after they are saved by the user. The asl_purchases
table saves the information obtained from the receipt for every single product.
By using two separate tables for products and purchases, data duplication is
avoided: as long as the users use the application, it becomes more probable that
a product name is already scanned. The asl_lists tables helps to organize
the receipts into lists and also gives the ability to store new custom lists. Fur-
thermore, asl_scans is used to save data for every scannning of a receipt and
asl_groups to create groups between users, where every member of the group
is able to see the information of every other member.

4. Database 15

In addition to these tables, there are four tables that connect some of the
primary tables. The table asl_list_users is used to identify the users that
have access to a specific list. The data from this table can be used to share lists
between users. The asl_list_purchases table stores the information about
which purchases belong to a list and asl_group_users is used to connect users
and groups. Finally, asl_scan_products identifies which products belong to a
scan.

All of the tables are common to the two databases. The local databases
adds some fields into every table in order to reference the data on the server
and to check for new data. Another difference between the two databases is
the support of foreign keys. The remote database supports them, but the local
databases does not. The application code does not create references to non-
existing data in order to eliminate problems during the communication between
the databases.

4.2 Local database

The schemas of the two databases are similar between them, as they share the
same table structure with some differences in the fields. Both databases con-
tain the same type of data in each table. The local database has to contain
extra information about the editing of its records (insertion or update of data
by the user). The remote database contains the data of all users, hence the
local database has also to contain a reference to the equivalent data of the re-
mote database. Finally, having an (almost) identical schema between the two
databases was beneficial during the development of the application. A significant
portion of the code written for one of the databases, can be easily adapted for
the other database.

The local database contains the tables described in the previous section. The
difference that each table contains two extra fields: isAltered and server_id.
The application sets isAltered as true when it inserts or updates a record.
During the synchronization, the application sends to the server only the records
that have changed (isAltered=true). server_id contains the ID of the cor-
responding server record. This way the server knows which records to compare
when it receives data from the client.

The schema of the local database is displayed in figure 4.2.

4.3 Synchronization

The synchronization allows the application to connect to a remote server in order
to backup or share data between different devices and users. In the server resides

4. Database 16

Figure 4.2: Local database schema

a web service and a database. The application uses the web service as a middle
layer to connect to the database.

The synchronization algorithm was implemented in a way to minimize data
traffic between the client and the server. The client sends to the server only the
data that have changed from the last synchronization and the server sends back
to the client only the data that need to be updated or inserted into the database.
In this way the data transferred are small enough even for large databases. A
schematic view of the synchronization procedure can be viewed in 4.3.

The client requests from the database the newly inserted or updated records.
Then it encapsulates the data in a single object (instance of a class specifically
made for the synchronization) and sends it to the web service of the server. The
communication between the client and the web service of the server is asyn-
chronous due to the use of Google Web Toolkit on the server. For this reason, it
is convenient to send only one object to the server in order to avoid waiting for

4. Database 17

Local

Database

Remote DatabaseServer (Web

Service)

Client

3.7.1: Decapsulation

3.6: Encapsulation

3.5: Server Data Set #n

3.4: Client Data Set #n

3.1: Decapsulation

2: Encapsulation

3.7.5: Response

3.7.4: Delete irrelevant data

1.1: New/updated client records

1: Request for new/updated data

3.7.3: Response

3.7.2: New/updated server records

3.7: Server Data object

3.3: Server Data Set #1

3.2: Client Data Set #1

3: Client Data object

Figure 4.3: Client-Server communication during the synchronization

specific data (due to dependencies) and having to manage multiple asynchronous
responses. The server then decapsulates the data and compares them with the
remote database. For each table of the database the services sends the client
data to the database and gets back the records that need to be forwarded to
the client. The web service encapsulates the server data into a single object and
forwards it to the client. The client updates its local database with the server
data. At last it deletes the information that are irrelevant or unnecessary to
the user. This last feature is implemented for future use. Then if a user stops
sharing of a list to an another user, then during the sync, all information that are
not longer shared, are deleted. Keeping the local database as small as possible
is beneficial for the performance of the application.

Chapter 5

Server

To encapsulate remote database access in our Android application, we develop
a web application. The web application receives the requests from the Android
application on the mobile device and passes them to the database. Then, the web
application gets the response from the database and returns it to the Android
device (Figure 5.1).

WEB SERVER

GWT WEB

APPLICATION MYSQL DATABASE

JDBCGWT RequestFactory

Figure 5.1: Client-Server Communication

To develop the web application, we use the Java-based Google Web Toolkit
(GWT)1. We use this framework because we want to develop a web application in
the same programming language as the Android application, which is developed
in Java programming language. This also enables us to share database-specific
code between client and server, as discussed in the previous chapter.

By using GWT, there are two ways for enabling client-server communication.
The one uses the GWT-RPC framework2 of GWT and the other uses Request-
Factory3. The GWT-RPC is the way for making Remote Procedure Calls (RPC)

1https://developers.google.com/web-toolkit/
2https://developers.google.com/web-toolkit/doc/1.6/DevGuideServerCommunication
3https://developers.google.com/web-toolkit/doc/latest/DevGuideRequestFactory

18

https://developers.google.com/web-toolkit/
https://developers.google.com/web-toolkit/doc/1.6/DevGuideServerCommunication
https://developers.google.com/web-toolkit/doc/latest/DevGuideRequestFactory

5. Server 19

when using GWT and RequestFactory is an alternative of GWT-RPC. To con-
nect Android to the web application, we use RequestFactory. This is because
RequestFactory has a more data-centric approach than GWT-RPC which fo-
cuses more on services. The GWT-RPC is used to develop the web interface of
the web application, which is discussed in the next chapter. The web applica-
tion uses the Java DataBase Connectivity (JDBC)4 API to enable access to the
MySQL database.

5.1 Communication with the client

As we discussed, we use the RequestFactory of GWT to enable client-server
communication between the Android smartphone and the web application re-
spectively. In order to exchange data between client and server side, one has to
define the data entities in each side. RequestFactory doesn’t use the same data
entities both in the client and the server side. At first, we define the data entities
in the server-side. These entities are just Plain Old Java Objects (POJOs)5 that
persist the data from the remote database. To be specific, classes like AslUsers,
AslGroups, AslProducts etc. in the com.smart.shopping.database package of the
shared folder of our web project set up the server-side entities. Then, we define
their representatives in the client-side. Each client-side entity is mapped to a
server-side entity. Each client-side entity has the same name as its corresponding
server-side followed by the name Proxy, e.g. the AslUsersProxy interface in the
client-side is mapped to the AslUsers class in the server-side (Figure 5.2). All
proxies are interfaces which their corresponding classes implement in the server-
side. The client uses the proxies in the client side to process data that comes
from the server by using methods that proxies contain.

To exchange data between the client and the server, we use an interface be-
tween them. The client invokes methods that the server executes. We implement
these methods, for example to access to the remote database, in the server side
and specifically where the web application service, the ShoppingService, resides.
We also define the same methods, but we don’t implement them, in the client
side. The methods definitions reside in an interface which is the representative
of the web service in the client-side, the ShoppingServiceProxy interface. The
proxy of the service is contained in an interface which extends RequestFactory,
the SmartShoppingRequestFactory. The client first creates a communication in-
terface between the client and the server using this RequestFactory interface.
Then he can make the RequestFactory calls to the server by just invoking the
methods that the proxy of the service defines. These calls are asynchronous, so
the client doesn’t wait for each call to complete before proceeding to the next
call. The client-server interaction is outlined in a diagram in Figure 5.3.

4http://en.wikipedia.org/wiki/Java_Database_Connectivity
5http://en.wikipedia.org/wiki/Plain_Old_Java_Object

http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://en.wikipedia.org/wiki/Plain_Old_Java_Object

5. Server 20

DataProxy
(Interface)

SQLite DB

Data
(Class)

MySQL DB

Client-Side Server-Side

GWT RequestFactory

Figure 5.2: Client and Server Side Data Entities

We use a shared folder in our web project so the Android project can be
linked to some parts of code of the web project. The shared folder is a way
to combine both projects and enable client-server communication between an
Android application and a GWT web application. Thus, as we explained in
previous paragraphs, we have to put the RequestFactory interface and the proxy
interfaces in the shared folder. They reside in the com.smart.shopping.client
package of the shared folder. There are two more packages present in the shared
folder. The first one, com.smart.shopping, contains the IP address of the web
server that hosts our web application. We put it in the shared folder so that both
the Android application and a web client can access to the web application. The
other one, com.smart.shopping.database, contains classes that both the Android
and the web application use but each one for a different purpose. The Android
application hosts a local database and these classes are used for persisting the
data of this database, while the web application uses theses classes to represent
the data entities in the server-side. This was done to avoid writing an additional
set of the same classes to enable the intended functionalities.

Client-server communication in our application happens only when synchro-
nization between the local and the remote database takes place. More details
about what data are exchanged between client and server can be found on the
synchronization section of the report.

5. Server 21

SmartShoppingRequestFactory
(Interface)

ShoppingService
(Class)

MySQL DB

Client Server

implements

Data

ShoppingServiceProxy
(Interface)

Methods Definition

DataProxy

Methods
Implementation

1. invokes

5. transmits data

2. triggers 3. accesses DB

6. processes data

4. retrieves data

Figure 5.3: Client-Server Interaction

5.2 Connection to the database

To connect to the database from the server-side of the web application, we use
the Java DataBase Connectivity (JDBC)6 API. As we explained earlier, we use
a set of classes to persist the data that are exchanged in every server-database
interaction. The names of the classes come from the corresponding database
tables in which we use them. For example, the AslUsers class holds the data of
the AslUsers table of the remote database. These classes contain variables with
the same types and names as the columns of the corresponding database tables.
They also contain getters and setters regarding their variables. We use such a
class to store data to or retrieve data from all columns of a table of the database.
The JDBC technology allows us to access to the MySQL database using SQL
queries. We have implemented many kinds of SQL queries to all tables of the
remote database for the purposes of our application. To be able to access to the
database using this API, it is necessary we put a mysql-connector .jar file in the
war/WEB-INF/lib folder of the web project (unless the server has such a .jar
file already installed) and to declare the same .jar file as a library in the build
path of our web project.

6http://en.wikipedia.org/wiki/Java_Database_Connectivity

http://en.wikipedia.org/wiki/Java_Database_Connectivity

Chapter 6

Web Interface

As part of our semester project, we also develop a website that will allow users to
have almost the same functionalities as when using our Android application but
in a more convenient way (Figure 6.1). We integrate the OpenID standard1,2 to
our web application to authenticate users using Google as our OpenID identity
provider. After having signed in using their Google accounts, users can check
their shopping lists, create shopping lists and check how much money they have
spent shopping. They can create a shopping list easier when using this web
interface than creating one when using their smartphones. They can also check
more clearly what they have bought than trying to check all their purchases on
their smartphones. This website aims at improving the user experience when
using our application.

Web server

GWT WEB

APPLICATION MYSQL DATABASE

JDBCGWT RPC

Web client

Figure 6.1: Using the Web Interface

1http://openid.net/
2http://en.wikipedia.org/wiki/OpenID

22

http://openid.net/
http://en.wikipedia.org/wiki/OpenID

6. Web Interface 23

6.1 GUI and Functionality

When a user visits http://smart-shopping.ethz.ch/SmartShoppingServer using a
browser, he is directed to the website of our application. A login page appears on
screen (Figure 6.2), displaying the logo and the name of our application on top of
the page and below these a message is present prompting the user to sign-in using
his Google account. Next to this message there is the sign-in button. When the
user pushes this button, the browser is redirected to Google login page. Thus,
Google authenticates the user and informs our application about his identity.
More details about this standard and the authentication process are discussed
in the following section.

Figure 6.2: Login Page

Figure 6.3: Home Page

After the user has logged in, a different web page appears on screen (Figure
6.3). The logo and the name of our application on top of the page are present
and in the same position like in the login page. Below these and on the right of
the page, a welcome message exists which is followed by the email of the user.
Below these, there is a tab menu. The user can check the shopping lists he has
created, create a new shopping list, check the money he has spent. He can also
logout from this web page by choosing the corresponding tab. If he does that,
his browser loads the login page again.

The user can check his shopping lists by pushing the appropriate tab of the
menu (Figure 6.4). Then, below the menu and on the left side of the page,
a set of all the shopping lists created by the user appears on screen and their
corresponding entries on the right side. Each entry of a shopping list contains
the name, the amount and the price of a product.

The user can also create a shopping list. After choosing the appropriate
tab of the menu, two buttons appear on screen allowing the user to add a new

6. Web Interface 24

Figure 6.4: Check Shopping Lists Tab

Figure 6.5: Create Shopping List Tab – Add Product

product to his new shopping list and to save this new list respectively. Each time
the user presses the Add button, a new entry appears on the list letting the user
add the name and the amount of the product (Figure 6.5). If the user changes
his mind about a product he has added to the list, he can hit on the red marker
on the left of this entry. This entry is then deleted from the list. When the user
has finished making a shopping list, he can save this list to his set of lists by just
pressing the corresponding button. A dialog then appears (Figure 6.6) asking the
user to type in the name of the shopping list he just created. This dialog doesn’t
disappear from the screen unless the user presses the Cancel button resulting in
returning to the list he just created or the OK button resulting in saving the
list. If the user chooses the OK button, the dialog disappears and the web page
is refreshed so the user can check his new list among his other shopping lists.

Furthermore, the user can keep track of the money he has spent shopping.
The Check Money Balance tab of the tab menu of the home page displays the

6. Web Interface 25

Figure 6.6: Create Shopping List Tab – Save Shopping List Dialog

amount of money spent and the date from which the amount started counting
(Figure 6.7).

Figure 6.7: Check Money Balance Tab

To enable all the discussed functionalities of the website, we use the GWT-
RPC mechanism3. The client (i.e. the user) by pushing a tab from the menu of
the website invokes methods that are implemented on the server-side. In other
words, the client makes RPC calls. In the server-side, many of the methods
implemented access the MySQL database so as the user to see data about his
shopping lists, and the money he has spent. Also, when the user creates a
new list, the client-side sends the data regarding this list to the server using
GWT-RPC and then the server-side stores this data to the remote database.
GWT-RPC works in a similar way with the RequestFactory that we explained
in the previous chapter.

3https://developers.google.com/web-toolkit/doc/1.6/DevGuideServerCommunication

https://developers.google.com/web-toolkit/doc/1.6/DevGuideServerCommunication

6. Web Interface 26

6.2 OpenID

OpenID is an open standard that allows user authentication to be done in a
simple way both for the user and the application that embeds this feature4,5.
The user has to have an account with an OpenID identity provider, such as a
Google account, a Facebook account, a Yahoo account etc. In the case of the web
interface that we develop, we only use Google as OpenID identity provider. The
web interface constitutes a supplementary feature for the Android application.
Considering that everyone that uses an application in an Android-based mobile
phone can be expected to have a Google account, we think that everyone who
wants to gain access to the web interface of our Android application can use
his Google account. A user authenticates himself without having the need of
creating a new account to access to the application. The authentication process
is done via OpenID so our application doesn’t have to store any usernames and
passwords or verify if a user possesses a valid username-password value pair.

To enable OpenID for the authentication process of our web application, we
use an OpenID library6. As we develop in Java, the OpenID4Java library7 is
used.

A problem exists about integrating OpenID in a GWT-based web applica-
tion. In a normal servlet development, redirections can happen in the server-side.
But when using the GWT-RPC mechanism, we cannot make any redirections
because the RPC calls in GWT are asynchronous. A solution to this is to make
a redirection from the client-side by passing the redirection URL to the client.
Thus, we make a GWT RPC call by invoking a method that implements the
OpenID authentication process in the server-side. This method returns the URL
that the browser will be redirected to so the user can authenticate himself. More
details about the OpenID authentication process using Google as OpenID iden-
tity provider can be found on a Google relevant website8. In our web application,
the gmail address of the user is requested from Google to help us identify the
user and provide differentiated services.

4http://openid.net/
5http://en.wikipedia.org/wiki/OpenID
6http://wiki.openid.net/w/page/12995176/Libraries
7http://code.google.com/p/openid4java/
8https://developers.google.com/accounts/docs/OpenID#AuthProcess

http://openid.net/
http://en.wikipedia.org/wiki/OpenID
http://wiki.openid.net/w/page/12995176/Libraries
http://code.google.com/p/openid4java/
https://developers.google.com/accounts/docs/OpenID#AuthProcess

Chapter 7

Future Work and Conclusion

This semester project gives the opportunity to implement many more interesting
ideas. We thought of some possible extension features that could be added to
the next version of the project:

• Multiple foreign languages support for the mobile application and web
interface

• Support for additional shops

• Extension of the website with all additional features of the Android appli-
cation as browsing of reduction offers

• Sharing Shopping Lists with friends

• Dictionary-based corrections

• Price comparison

• Product suggestions based on purchases of friends in a shared group

In conclusion, we believe that this project has reached its goal. It is an
efficient and user-friendly tool for the everyday shopper. Although, there are
many smart-shopping-like applications on the Android market, none of them
offers an OCR of receipts neither can compose a shopping list instead of the user.
This makes the Smart Shopping project unique. During the implementation we
faced many different challenges but the approach we took even added some non
planed features. We first did not take into account that the receipt recognition
could be so error-prone but this lead to the collaborative word correction which
we find to be a very interesting feature. We learned many things while working
on the project and especially while working in a team.

27

Appendix A

Building Tesseract

To build Tesseract on Mac OS X and Linux you need the following libraries:

• libleptonica-dev

• libpng12-div

• libjpeg62-div

• libtiff4-div

• zlib1g-div

Next step is to download the source package tesseract-3.01.tar.gz from the down-
load page 1. The build process is as follows:

./autogen.sh

./configure
make
sudo make install
sudo ldconfig

For more details check with the official web page 2.

For Windows there is an installer which includes English language data.

If you want to run Tesseract from the command line the command is as fol-
lows:

tesseract image outputbasename [-l lang] [configs]

1http://code.google.com/p/tesseract-ocr/downloads/list
2http://code.google.com/p/tesseract-ocr/wiki/ReadMe

A-1

http://code.google.com/p/tesseract-ocr/downloads/list
http://code.google.com/p/tesseract-ocr/wiki/ReadMe

Building Tesseract A-2

To use the different language sets one should first download them from the
official web site. Tesseract is not installed together with the language data.

Appendix B

Training Tesseract

The procedure is as follows. Create a text file with a text which is typically used
for the training. It can be found in the training package on the web site and
with the command:

convert -density 300 -depth 4 lang.font-name.exp0.pdf lang.font-name.exp0.tif

convert it into an image file. Here the lang should be replaced by the short
form of the language that Tesseract uses. E.g. for English we put eng. The font-
name is the the name of the font we train for and expN is the sequence number
of the image for this exact font. Once the image files are present we move to the
second step.

The training of Tesseract consist of first running Tesseract to detect au-
tomatically the letters in the images adding their x, y coordinates: tesseract
lang.font-name.exp0.tiff lang.font-name.exp0 batch.nochop makebox

After this first pass a box file with the name lang.font-name.exp0 is created
for every image named lang.font-name.exp0.tiff. In this box file there need to
be a single character on every line and all letters from the image need to be
in the box file in the correct sequence. On a second run, we manually need to
check if the box file is correct and if not edit it according to the these rules. If
there is a missing letter we need to add it to the box file on a new line or if
two or more letters are recognized together we need to separate them and fill in
the coordinates. This process is very time consuming and since this correction
needs to be done manually it is probable that some letter can be missed or the
coordinates are left incorrect.
After we are finished with the box files we feed them back into Tesseract with
the following command:

tesseract eng.font-name.exp0.tif eng.font-name.box nobatch box.train.stderr

The next procedure is to detect all characters contained in all box files. This is
done by:

unicharset extractor *.box

B-1

Training Tesseract B-2

Next, we create a font properties file. This file needs to contain an entry for
every font we train and set the following characteristics: fontname <italic>
<bold> <fixed> <serif> <fraktur> to true or false.

e.g. eng.verdana.box 0 0 0 0 0

The last steps of the training are to create the clustering data and combine
the files created so far:

mftraining -F font properties -U unicharset -O lang.unicharset *.tr cntraining
*.tr

combine tessdata lang.

This last command creates the final language file used for the OCR.

Appendix C

Web Application Development

To be able to develop a GWT web application using the Eclipse IDE, we have to
download and install the Google Plugin for Eclipse1. We have to make sure that
the GWT SDK and Google App Engine SDK are installed. To be able to run our
web project, please go to the properties of the project and at the App Engine and
Web Toolkit suboption of the Google option, disable the Use Google App En-
gine and Google Web Toolkit option respectively and then press OK. We do that
only if these options are already enabled. Then, even if we hadn’t enabled these
options in the first place, enable them making sure that the App Engine and
GWT SDKs are loaded to the options mentioned above. We can verify that by
choosing the Configure SDKs suboption after we have chosen each of the Google
App Engine and Web Toolkit options. This configuration is mandatory so as
all neccessary libraries for our project are loaded automatically. Furthermore,
we have to do one last configuration. At the Java Compiler/Annotation Pro-
cessing/Factory Path option within the properties of the project, please edit the
path to requestfactory-apt.jar as server project path/lib/requestfactory-apt.jar.
This is neccessary to able to use RequestFactory, i.e. to enable client-server com-
munication.

1developers.google.com/eclipse/docs/download

C-1

developers.google.com/eclipse/docs/download

Appendix D

Web Application Deployment

In order to deploy the web application in a web server, there are some steps
that we have to follow. At first, we have to put all the libraries used (e.g. .jar
files) by the web application project into the war/WEB-INF/lib directory of it.
Then, we can compile the application by choosing the GWT compile option of
Eclipse. It would be useful to clean the project before attempting to compile it.
We can do that by choosing Project and then Clean in Eclipse. By cleaning the
project, we can verify that no error exists in the project that would prevent us
from compiling it.

We have to make sure that before compiling (GWT compile) the web appli-
cation project, we have set the SERVER URL constant in the Constants.java
file of the com.smart.shopping package in the shared folder of the project to the
URL from which we can access to the web application. For example, if we deploy
the web application in a local Apache Tomcat server, then we can access it by
typing http://localhost:8080/SmartShoppingServer in our web browser. In this
case, it would be better to use http://IP of the computer that hosts the local
server:8080/SmartShoppingServer as the SERVER URL constant. This is be-
cause, the OpenID provider uses this URL address to redirect the browser after
the user has successfully signed in.

A point to pay attention when pressing GWT compile is the Entry Point
Modules field on the GWT compile window. The two modules of our application,
the HomeModule and the LoginModule should be loaded. If an error occurs, it
would be useful to remove and add these two modules again.

As part of our semester project we had to deploy our web application in a web
server owned by the Distributed Computing Group of ETH Zurich. As a result,
one can have access to our web application by using the URL: http://smart-
shopping.ethz.ch/SmartShoppingServer.

After having successfully compiled the project, we have to compress (zip) all
the contents of the war directory of the project and then rename this zipped
file to SmartShoppingServer.war. To deploy the web application to an Apache

D-1

Web Application Deployment D-2

Tomcat server, like the one the Distributed Computing Group assigned us, we
have just to put the .war file into the /webapps folder of the server.

	Abstract
	1 Introduction
	1.1 Description
	1.2 Organization

	2 Architecture of the application
	3 Client
	3.1 Design
	3.2 Implementation
	3.3 Tesseract and Leptonica
	3.3.1 Training Tesseract
	3.3.2 JNI

	3.4 Receipt Recognition
	3.5 Corrections and Predictions
	3.5.1 Corrections Algorithm
	3.5.2 Predictions

	3.6 Reductions

	4 Database
	4.1 Remote database
	4.2 Local database
	4.3 Synchronization

	5 Server
	5.1 Communication with the client
	5.2 Connection to the database

	6 Web Interface
	6.1 GUI and Functionality
	6.2 OpenID

	7 Future Work and Conclusion
	A Building Tesseract
	B Training Tesseract
	C Web Application Development
	D Web Application Deployment

