
Department of Information Technology

and Electrical Engineering of ETH Zürich

Computer Engineering and Networks Laboratory (TIK)

Communication Systems Group (CSG)

Master Thesis

“Ultra-fast and Accurate Wireless Link Quality

Estimation and the Benefits it Provides for Detection of

Reactive Jamming”

Michael Spuhler

Supervisor: Prof. Dr. Bernhard Plattner (ETH)
Main advisor: Dr. Vincent Lenders (Armasuisse)
Advisor: Dr. Domenico Giustiniano (ETH)
Advisor: Dr. Franck Legendre (ETH)

Handover Date: 21th of August 2012

ii

Abstract

Link quality estimation is an important feature for wireless network protocols such as jamming
detection, routing, rate switching, handover or topology control mechanisms. Existing link qual-
ity estimators (LQEs) tend to fail on specific link conditions: Packet statistic based LQEs are
accurate in static scenarios but show poor performances due to long estimation times in dynamic
environments such as mobile setups. Whereas signal strength based LQEs are fast but inaccu-
rate.
We propose new LQEs relying on different properties of preamble symbols for direct sequence
spread spectrum transceivers. Our approaches consider chip errors, the number of received
preambles, the variance of the chip errors based LQEs, and hybrid concepts. These new LQEs
are evaluated experimentally using software defined radios on IEEE 802.15.4 under four different
link conditions such as cable, wireless line-of-sight, non-line-of-sight, and mobile environments.
We define CEPPS FWA (Chip Error per Preamble Symbol Filtered Weighted Average) as our
best performing estimator based on preamble chip errors that weights and filters sequential es-
timations on a per-packet level. We show that CEPPS FWA performs in all wireless scenarios
more accurately and faster than state-of-the-art estimators.
Moreover a novel approach to detect sophisticated reactive jamming attacks that target the
start of frame delimiter during a packet transmission is presented. Fast chip error evaluations in
the synchronization header allow to predict the link quality quick enough to accurately detect
jamming attacks for links with packet delivery ratios greater than 40%.

iv

Zusammenfassung

Die Schätzung der Kanalqualität ist ein integraler Bestandteil in drahtlosen Netzwerkprotokollen
wie Störsendererkennung, Datenverkehrslenkung, Wahl der Übertragungsrate, Zugangspunkt-
übergabe oder Netzstruktur Kontrollmechanismen. Bestehende Schätzer der Kanalqualität (SKQ)
weisen unter bestimmten Kanalbedingungen Schwächen auf: Paketstatistik basierte SKQ ar-
beiten in statischen Szenarien genau, scheitern jedoch aufgrund zu langen Schätzzeiten in dy-
namischen Umgebungen wie beispielsweise in mobilen Netzwerken. Hingegen sind signalbasierte
SKQ schnell, weisen aber ungenaue Schätzungen auf.
Wir präsentieren einen neuen SKQ basierend auf verschiedenen Eigenschaften der Präambel-
symbole für Sende-Empfänger Strukturen, die Direktsequenzspreizspektren verwenden. Unser
Ansatz berücksichtigt Chipfehler, die Anzahl Präambelsymbole, die Varianz von Chipfehler-
basierten SKQ und hybride Methoden. Die neuen SKQ werden experimentell mit comput-
ergestützten Programmen für drahtlose Datenübertragungen unter verschiedenen Kanalbedin-
gungen wie Kabelverbindungen, drahtloser Sichtverbindung, verdeckter Sichtverbindung und
mobilen Umgebungen ausgewertet.
Wir definieren CEPPS FWA (Chip Error per Preamble Symbol Filtered Weighted Average) als
unseren besten SKQ, der auf der Auswertung von Chipfehlern basiert und aufeinanderfolgende
Schätzungen auf Paketstufe gewichtet und filtert. Wir zeigen, dass CEPPS FWA in allen draht-
losen Datenübertragungszenarien schneller und genauer die Kanalqualität schätzt als andere
SKQ auf dem letzten Stand der Forschung.
Zusätzlich präsentieren wir einen neuartigen Ansatz für die anspruchsvolle Erkennung von reak-
tiven Störsendern, die Synchronisationssymbole während der Paketübertragung stören. Schnelle
Chipfehler Auswertungen während der Synchronisationsphase erlauben die Kanalqualität genü-
gend schnell zu schätzen, um Störangriffe für Paketübertragungsraten über 40% zuverlässig zu
erkennen.

vi

Acknowledgment

I wish to express my gratitude to my supervisor, Prof. Dr. Bernhard Plattner for his support
and all the contributing input.
Special thanks are due to Dr. Vincent Lenders from Armasuisse for this excellent supervision
of this thesis, the great support and all the motivating discussions we had. Further I would like
to thank Dr. Domenico Giustiniano and Dr. Franck Legendre for the coordination at the ETH
Zürich and the interesting conversations.
Finally I would like to convey my best thanks to Pirmin Heinzer and Björn Muntwyler for their
support and help during this work.

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Goals . 1

1.3 Thesis Structure . 2

2 Link Quality Estimation and Jamming Detection 3

2.1 Link Quality Estimation . 3

2.1.1 Fundamentals of Link Quality Estimation 3

2.1.2 Related Work . 5

2.1.3 Benefits of Preamble Symbol based Link Quality Estimation 9

2.2 Jamming Detection . 10

2.2.1 Fundamentals of Jamming Detection . 10

2.2.2 Related Work . 12

3 Experimental Setup 15

3.1 IEEE 802.15.4 Standard . 15

3.2 Hardware and Software Platform . 18

3.2.1 Software Defined Radio . 18

3.2.2 GNU Radio 802.15.4 En- and Decoding 18

3.3 Scenarios . 21

3.3.1 Link Quality Estimation . 21

3.3.2 Jamming Detection Estimation . 24

4 Estimator Design based on Preamble Symbols 25

4.1 Exploration of Preamble Symbols . 25

4.1.1 Exploration of Preamble Symbol Occurrence 25

4.1.2 Exploration of Preamble Chip Errors . 26

4.2 Link Quality Estimation . 27

4.2.1 Ultra-fast Link Quality Estimation . 28

4.2.2 Fast Link Quality Estimation . 35

x CONTENTS

4.3 Jamming Detection Estimation . 40

5 Results 45

5.1 Selection of Competitive Estimators . 45

5.2 Evaluation Methodology . 46

5.3 Performance of Link Quality Estimation . 47

5.3.1 Cable Scenario . 47

5.3.2 Line-of-Sight Scenario . 49

5.3.3 Non-Line-of-Sight Scenario . 49

5.3.4 Mobile Scenario . 49

5.3.5 Average Case . 52

5.3.6 Error Convergence . 52

5.3.7 Discussion . 54

5.4 Performance of Jamming Detection Estimation 57

6 Conclusions and Outlook 61

6.1 Conclusions . 61

6.2 Outlook . 62

A CD-ROM Content 63

B IEEE 802.15.4 Symbol to Chip Sequence Conversion 65

C Estimator Polynomial Coefficients 67

D Detailed LQEs Evaluation 69

E Master Thesis Task Assignment 73

F Abbreviations 77

List of Figures

2.1 This graph shows the measured probability that a decoded packets has a wrong
frame check sequence (FCS) for wireless and cable connections. A wrong FCS
implies that there occurred one or more bit (or equally symbol) errors in a decoded
packet. Note the logarithmic vertical axis, i.e. the probability that some bit errors
happen decreases very fast for increasing link qualities. We obtain already for a
PDR of 0.5 a probability that at least one bit will be corrupted of 0.05%. 9

2.2 Three different jamming types [1].(b) Proactive jammers emit continually radio
signals so that no transmissions [Fig.1(a)] are possible. If an ongoing transmission
has been detected reactive jammers (c) in contrast jam only once, typically for
the entire packet length. Reactive bit jammers (d) target their jamming signal at
a specific part of the packet and keep the jamming duration to a minimum. . . . 10

3.1 Modulation and Spreading Functions in IEEE 802.15.4 [2] 17

3.2 Frame Layout of an IEEE 802.15.4 Packet [2] . 18

3.3 The USRP1 and the more powerful USRP2 [3] 19

3.4 IEEE 802.15.4 modulation in GNU Radio [4] . 20

3.5 IEEE 802.15.4 demodulation in GNU Radio [4] 21

3.6 Typical measured behavior of the packet delivery ratio over time for a certain
transmit power . 22

3.7 Experimental setup: The transmitted packets were generated at the sender PC
and send via the USRP to the receiver under four different link conditions: (a)
cable, (b) line-of-sight, (c) non-line-of-sight, and (d) mobile. The received packets
were recorded on chip and symbol level and written to a text file. The evaluation
of the logged data was done with Matlab routines. 23

4.1 Cable Connection: Number of received preamble symbols (a) per successfully
decoded packet and (b) per sent packet. 26

4.2 Modification of the decoder: The originally implemented error tolerance (in the
UCLA framework) of 0 chip errors in the first decoded preamble and 1 chip error in
the consecutive preambles (a) has been changed (b) in order to obtain a correlation
that allows unique mappings from CEPPSs to PDRs, (c) and (d). Note that the
originally implemented error threshold (0/1) is not defined by IEEE 802.15.4.
However this error threshold has been optimized in our work that leads to a
suitable correlation curve and to higher possible data rates. Further we didn’t
notice any drawback caused by these settings. 27

xii LIST OF FIGURES

4.3 Data transmission of two packets: (a) the sender starts to transmit the preamble
sequence, the SFD (start of frame delimiter) and the corresponding part of the
packet (named here as the rest of packet). During the transmission of the eight
preamble symbols of the first packet, P1,2, P1,3, P1,4 could not be decoded correctly
due to too much chip errors. E.g. P1,7 was transmitted successfully because
as shown in (d) only three chips were flipped during the transmission and the
maximum error threshold of four chip errors is not exceeded. Due to a corrupted
bit in the SFD1 the synchronization of the first packet fails and the receiver is
not able to decode this packet. Contrary to the first packet, the second packet is
transmitted successfully (c) and only the preambles P2,1 and P2,5 were lost. . . . 28

4.4 Ultra-fast estimation: Correlation of the observed number of preamble symbols
and the packet delivery ratio for the cable, line-of-sight, non-line-of-sight, and the
mobile scenario. 30

4.5 5th degree rational fit for the ultra-fast LQE based on the number of preamble
symbols per packet. 31

4.6 Correlation of the observed chip errors per preamble symbol and the packet de-
livery ratio for the cable, line-of-sight, non-line-of-sight, and the mobile scenario. 32

4.7 5th degree rational fit for the ultra-fast LQE based on chip errors per preamble
symbol . 33

4.8 Ultra-fast preamble chip error based estimator: Error tracking of the absolute
estimation over sequential estimations. This example is taken from the line-of-
sight measurement with a PDR of 50%. There the chip error based estimators show
the largest error variance. To increase the stability, i.e. to reduce the fluctuations
we propose a filtered and weighted average estimator modification. 34

4.9 Correlation of the variance according to the chip error based LQE and the packet
delivery ratio. Because the merged two fitting curves don’t allow an unique map-
ping from a fixed variance to a PDR, a case differentiation has to be done to
know if the solid line fit or the dashed line fit has to be used. This information is
provided by the estimation of the chip error based LQE. Is this estimation above
the vertex of the two fits, the lower fit is used, if it is below this value the upper
fit is used. Note that variances exceeding the vertical limit subtending the vertex
cannot be allocated to any fit and can therefore not be used. 35

4.10 Line-of-sight link: Mean absolute estimation error based on chiperror(·) as a func-
tion of the number of considered preamble symbols. An increase of the estimation
window (number of preamble symbols) results in a smaller estimation error. . . . 36

4.11 Fast estimation: Correlation of the observed number of preamble symbols and the
packet delivery ratio for the cable, line-of-sight, non-line-of-sight, and the mobile
scenario. 37

4.12 5th degree rational fit for the fast LQE based on the number of preamble symbols
per packet. 38

LIST OF FIGURES xiii

4.13 Tracking of the absolute estimation error of the preamble chip error based LQE
in the line-of-sight setup. The figures (a),(c), and (e) on the left side show for the
PDR of 20%, 50%, and 80% the estimation error of the originally CEPPS fast es-
timator on consecutive estimations within 0.5 seconds. The stability improvement
of the CEPPS FWA (filtered and weighted average) estimator is shown on the
right side for the same PDRs. Note as well how the estimation window shrinks for
good quality links (i.e. from top down over the sub figures). This is due to the fact
that the fast estimator estimates the channel after the reception of a successfully
decoded packet - this event is more probable for greater link qualities. Further
note that the mean absolute estimation error (dashed lines) is not the mean with
respect to the first 0.5 seconds but on the entire measurement run. 43

5.1 Cable Scenario: (a) Performance evaluation with respect to the mean absolute
estimation error and (b) shows the average and maximum estimation error over
all link qualities. 48

5.2 Line-of-sight scenario: (a) Performance evaluation with respect to the mean ab-
solute estimation error and (b) shows the average and maximum estimation error
over all link qualities. 50

5.3 Non-line-of-sight scenario: (a) Performance evaluation with respect to the mean
absolute estimation error and (b) shows the average and maximum estimation
error over all link qualities. 51

5.4 Mobile scenario: (a) Performance evaluation with respect to the mean absolute
estimation error and (b) shows the average and maximum estimation error over
all link qualities. 53

5.5 Average Case: Evaluation of the LQE with respect to the absolute estimation
error. In this case we assumed that in 50% of the time, the nodes are moving,
while in the other 50% the nodes are static with half the time line-of-sight and
half the time non-line-of-sight conditions. 54

5.6 Example of the estimation error convergence of the LQEs: ETX, SNR, CEPPS
Fast and CEPPS Ultra-fast, CEPF, and CEPPS FWA. Figures (a),(b), and (c)
show how the absolute estimation error converges within the first 14 ms as in the
example of the line-of-sight scenario for a PDR of 50%. Figures (d) illustrates the
convergence on a larger scale in the first 12 seconds of a transmission of the same
setup. If there is no estimation available then the error is assumed to be 0.5, i.e.
a random guess. 55

5.7 Jamming Scenario: A transmitted packet from the sender (a) is reactively jammed
(b) on the start of frame delimiter (SFD) and prevents the receiver to successfully
decode the packet. The sole information the receiver detects are the preamble
symbols - then the synchronization fails due to the corrupted SFD and the receiver
is not able to start decoding the frame length and the MAC Protocol Data Unit. 57

5.8 Comparison of measured PDRs. The random reactive jammer in (a) and the
continuous reactive jammer (b). The respective diagonal cloud shows the PDR
distribution without any jamming . 58

5.9 Performance evaluation of the random and the continuous reactive jammer with
respect to the false positives and false negatives rate. The false positives are not
affected by the jamming type. 59

xiv LIST OF FIGURES

List of Tables

3.1 The OSI Model . 16

4.1 Overview of different LQEs. 40

B.1 IEEE 802.15.4 Symbol to Chip Sequence Conversion 66

C.1 Coefficients of ultra-fast estimator based on the occurrence of preamble symbols 67

C.2 Coefficients of ultra-fast estimator based on chip errors in the preamble symbols 68

C.3 Coefficients of fast estimator based on the occurrence of preamble symbols 68

xvi LIST OF TABLES

1
Introduction

1.1 Motivation

The rapid evolving wireless technologies like IEEE 802.15.4 or IEEE 802.11a/b/g/n gained
tremendous popularity in the recent past. These types of networks supply a large amount of the
increasing demand for wireless data traffic.
A fundamental problem of these network protocols relates to link quality estimation. The per-
formance jamming detection, routing, rate selection, handover, or topology control mechanisms
heavily depend on accurate and fast link quality estimators (LQEs). However, the task of esti-
mating the effective link quality in real-life wireless networks remains a challenge. Particularly in
dynamic link environments, where moving nodes or objects foster the unpredictable and location-
sensitive nature of wireless channels. Especially in mobile environments, the link quality tends to
be hard to estimate quickly and accurately with estimators that rely on signal strength, packet
statistics, or hybrid approaches [5].
A related topic to LQE is jamming detection in wireless networks. Especially due to the growth
of wireless sensor networks (WSNs) there imposes new requirements to detect jamming-style
attacks. The highly shared medium upon WSNs are built makes it easy for adversaries to launch
signal interference attacks to corrupt sent packets. Specific attacks as reactive jammers turned
out to be very hard to detect [6] and lack new detection approaches.

1.2 Thesis Goals

The goal of this thesis is to develop a new wireless LQE that manages to quickly and accurately
estimate the link quality in mobile networking environments. In particular, we are interested
in estimating the probability that a packet may successfully be received at its destination. To
achieve a rapid estimation, we develop and explore a novel approach that relies on the preamble
of the physical layer. The goal is to estimate the link quality within milliseconds and an accuracy

2 CHAPTER 1. INTRODUCTION

of less than 5% absolute error.
Relying on the preamble symbol in direct sequence spread spectrum systems (DSSSs), we expect
two important benefits. First, unsuccessful packets where the synchronization fails may be
detected and hence used to model the packet delivery ratio (PDR). Second as we will show
in this thesis, the estimation model requires only a few symbols in the preamble and should
therefore allow to quickly estimate the PDR.
To validate this approaches, we implement new estimators and compare them under realistic
wireless channel conditions to a set of existing LQEs. Candidates of the following four estimator
classes were evaluated for comparison:

1. Packet statistics

2. Signal strength

3. Chip errors

4. Hybrid

Moreover the developed approaches are applied to a jamming detection scenario to show the
benefits of the preamble based LQEs.

1.3 Thesis Structure

This thesis is structures as follows: Chapter 2 introduces to the topic of link quality estimations,
focussing on the fundamentals, the related work and eventually points out the benefits of the
preamble symbol based link quality estimation. Besides jamming detection is discussed with its
fundamentals and related work.
Chapter 3 explains the experimental setup in detail and illustrates the different measurement
scenarios. The next Chapter 4 documents the exploration of the preamble symbols and shows
how the different LQEs were designed. The results revealing the performance of the LQEs are
explained in Chapter 5 for different link conditions. Further the results of the jamming detection
estimation is shown. Eventually the conclusions in Chapter 6 complete this thesis and give an
outlook of the presented work.

2
Link Quality Estimation and Jamming Detection

2.1 Link Quality Estimation

This section introduces the topic of link quality estimation and further gives an overview of the
related work which describes different estimation strategies.

2.1.1 Fundamentals of Link Quality Estimation

Link quality estimation is a crucial building block for higher layer protocols of low-power links.
Essential network protocols rely on LQE. For instance routing protocols improve their efficiency
by avoiding bad quality links. Also topology control mechanisms need link quality estimation to
establish stable topologies that resist to link fluctuations [7]. Moreover the performance of rate
selection, handover, or jamming detection algorithms heavily depend on accurate LQEs.
The fundamental approach is to evaluate a certain metric that is related somehow to the respec-
tive link quality. This metric is an arbitrary expression, e.g. signal strength, retransmission rate,
or the number of symbols.
As the term ”link quality” is not generally defined, we need to find a quantity that properly
reflects the quality of a link between a sender and a receiver. For this purpose we define the
random variable X that expresses if a packet was transmitted successfully (X = 1) or got lost
(X = 0). The so called packet delivery ratio (PDR) can then be described as

PDR = P (X = 1).

Henceforth in this thesis we refer to the link quality the probability mass, that a packet is suc-
cessfully delivered, i.e. the PDR.
In experimental measurements it is not possible to determine P (X = 1) at any point of time
to any accuracy due to changing link properties. Therefore the PDR has to be approximated
in a proper way to provide meaningful information about the link quality. For this purpose

4 CHAPTER 2. LINK QUALITY ESTIMATION AND JAMMING DETECTION

two important conditions have to be met. Suppose that a window of e consecutive events
(X was 1 or X was 0) were obtained in the measurement. The first condition is that the consid-
ered amount of samples e is large enough, i.e. the mean of the PDR is converged. Second, the
channel is supposed to be constant over all events e. The approximated PDR in a measurement
within an observation window w can then be calculated as

PDR(w) =
Number of correctly decoded packets within w

Number of sent packets within w
.

The observation window w can be interpreted as w seconds or w received or sent packets de-
pending on the context.
The mentioned second condition becomes crucial in measurement setup where the channel shows
dynamic behavior, e.g. in mobile settings. How fast this changes occur is mainly dependent on
the relative speed of the sender and the receiver v and the carrier frequency fc. The greater
v and the higher fc, the more fluctuations of the PDR over time are expected. The so called
coherence time Tc characterizes how fast the changes of the channel are. To be more precise, the
channel is assumed to be constant over the coherence time Tc. It can be approximated as

Tc ≈
1

4Dspread
,

where Dspread is the Doppler spread. The Doppler spread Dspread itself can be calculated as

Dspread = Dr −Ds,

with Ds the Doppler shift of the sender and Dr the Doppler shift of the receiver. These shifts
are defined as

Dx =
fcvx
c
.

Where c is the speed of light (c = 299′792′458 m/s).

Therefore any window w that considers PDR evaluations has to be smaller than Tc to provide
meaningful information over an amount of time, where the link quality was not changing.

The process until the final estimation of a LQE normally undergoes the following three steps [7]:

1. Link monitoring: A link can be monitored within an observation window w in an active,
passive or hybrid way. If the node is monitoring the channel actively, he sends probe
packets at a defined rate.
Passive monitoring has been widely used in WSNs due to its energy-efficiency compared
to active monitoring [8, 9]. Here the normal traffic of the link is exploit without incurring
additional communication overhead. A disadvantage of passive link monitoring is if the
network operates at unbalanced traffic or low data rate. This may cause a lack of up-to-
date link measurements and the link quality could be estimated inaccurately.
Hybrid link monitoring is a combination of active and passive monitoring. This mix allows
to find a trade-off between energy-efficiency and up-to-date link measurements [10].

2.1. LINK QUALITY ESTIMATION 5

2. Link measurements: Link measurements collect the required data during the transmis-
sion to gain sufficient information for the calculation of the used estimator metric. This can
be done at sender- or receiver-side. Receiver-side link measurements use information of re-
ceived packets, such as sequence numbers, or time stamps. The computation of sender-side
LQEs encounter e.g. packet retransmission count or other attributes.

3. Metric evaluation: The retrieved data from the link measurements were analyzed to
calculate a metric that indicates the link quality, i.e. the PDR. This could be the average
signal strength of a packet, that is mapped to the respective PDR, based on a known
correlation between the signal strength and the PDR [11].

An accurate link quality estimator is characterized by several requirements. These requirements
guarantee that a designed estimator is able to perform well under different conditions. Three of
such important requirements [7] are described next.

1. Accuracy: A challenging task for LQEs is the ability to correctly reproduce the real be-
havior of the link. Since there is no metric that is used universally as a ”real” measurement
of the link quality and the fact, that it is described by different quantities1, comparisons
to a real picture of the link is very difficult.

2. Reactivity: This term refers to the property to react on intermediate-term changes2 in the
link quality. These changes could arise in a network setting where the sender, the receiver
or both move. The ability of an estimator to react on such fluctuations is an essential
quality in mobile settings.
Reactivity depends on two factors: the link monitoring scheme and the estimation window
w. Active monitoring and small w tend to be reactive LQEs. On the other hand large w
are not able to capture short-time changes.

3. Stability: In contrast to reactivity this property expresses the ability to tolerate short-
term fluctuations of LQEs. The stability of a LQE can be characterized by the variance of
the mean. An easy approach to introduce more stability is to calculate a weighted moving
average with a large smoothing factor as proposed in [9].

Generally the two requirements - stability and reactivity - are at odds. For instance consider
a mobile scenario where the nodes move at a certain speed. Due to the speed and the small
coherence time the channel is assumed to vary a lot over time. With the design goal to create
a highly stable LQE we set the observation window w to a large value and use a weighted
moving average with a large memory, i.e. a large smoothing factor. As a result the link quality
estimations are highly averaged out over time and the estimator is unsusceptible to small-term
changes of the link quality. This benefit will be at the cost of reactivity because this long-term
estimator will not encounter link dynamics at a fine grain and will not perform well in dynamic
scenarios. As a consequence an accurate and versatile LQE should provide a trade-off between
reactivity and stability.

2.1.2 Related Work

The related work of LQEs can be divided into four groups: signal power, packet statistic, hybrid
and error based link quality estimation. For each group different important LQE are presented

1Like packet reception rate, packet retransmission or packet delivery ratio as used in this thesis
2In IEEE 802.15.4 networks typically from a few milliseconds to a couple of seconds (see next chapter).

6 CHAPTER 2. LINK QUALITY ESTIMATION AND JAMMING DETECTION

and discussed.

Signal Power based Link Quality Estimation

Received Signal Strength Indicator (RSSI): The RSSI LQE is a hardware-based approach that
reads the received signal strength from an eight bit register in the radio chip. The first eight
symbols, i.e. the preamble sequence which precedes every packet is considered to calculate the
RSSI. For ZigBee applications the CC2420 [12] radio chip from chipson is usually integrated in
the sensor nodes.
This approach is suitable to distinguish between poor link qualities (0% < PDR ≤ 10%), inter-
mediate links (10% < PDR ≤ 90%) and good links (90% < PDR ≤ 100%) [13].

Signal to Noise Ratio (SNR): This on hardware based approach as discussed in [11], encounters
in comparison to RSSI the noise floor as well. It is widely used in theoretical channel modeling
to calculate the expected bit error rate, which can be extrapolated to the packet error rate and
then to the PDR [14]. In practice it is measured using oscilloscopes or read from the hardware-
based RSSI values. The noise floor is determined by measuring the signal strength between two
packets. This technique of including the noise floor is assumed to perform better than the related
RSSI, that encounters only the pure received signal strength. As the noise floor is not identical
at every different node SNR should be preferred over RSSI [13].

Link Quality Indicator (LQI): This as well by hardware (CC2420 [12]) provided LQE is not di-
rectly dependent on signal power but indicates the average correlation value of the eight preamble
symbols. Unfortunately there is no exact algorithm presented and the LQI suffers trustworthi-
ness due to variations of the correlation coefficient between LQI and PDR [15,16].
Interesting is that the relatively high variance of the LQI estimator can be exploit for quality
estimation. Boano et al. [17] were able to distinguish between good links at a low LQI variance
and bad links at a high LQI variance. A mapping function is not presented for the conversion of
the variance to the PDR. In our work we present a LQE approach which is based on the variance
of a designed LQE including the mapping and the performance evaluation.

Kalman filter based quality estimator (KLE): The KLE [18] is used to overcome the poor reac-
tivity of average-based LQEs. To allow an estimation after a single received packet, the RSS
(Received Signal Strength) is extracted and injected to a Kalman filter. This filtering produces
an estimation of the RSS. Further the noise floor is subtracted from the RSS in order to approx-
imate the SNR. This SNR is then mapped to a pre-calibrated PDR-SNR curve to obtain the
KLE link quality. In the studies [18] the accuracy of KLE was not examined. This performance
would be dependent on the PDR-SNR curve, which was considered constant over time. From
this point of view it seems that the promising results found by Senel et al. are due to the steady
environment in the experimental scenario.

Conclusion: The advantage of hardware-based LQEs relying on the signal power is that they
provide a fast and inexpensive way of a rough link quality classification into good or bad. Further
they do not require any additional computation. However these LQEs don’t provide accurate
estimates as reported in previous studies [19, 20]. Mainly for the following three reasons [21].
First these metrics are measured based on the samples of the first eight symbols of a received
packet and not over the whole packet. Second, these metrics are only measured for successfully
received packets. If a radio link is poor, they may overestimate the link quality by not considering
information of lost packets. Third, these hardware metrics are not capable to provide a fine-
grained estimation of the link quality [22, 23]. Especially in the so called transitional region for
PDRs between 10% and 90%. This region occupies a large interval in the possible values of PDR

2.1. LINK QUALITY ESTIMATION 7

and is characterized by high-variances in reception rates and asymmetric connectivity.
Finally G. Zhou et al. showed in [24] that the RSSI varies when changing the propagation
direction from the sender. This irregularity leads to non isotropic PDRs. With other words, the
PDR has not the same value in all directions from the source that complicates estimations based
on the RSS.

Packet Statistic based Link Quality Estimation

Required Number of Packet transmissions (RNP): Cerpa et al. described in [25] this sender-side
estimator that counts the average number of packet transmissions and retransmissions that are
required for a successful reception. This metric is computed for each estimation window w as the
total transmission and retransmission of packets divided by the number of successfully received
packets, minus 1 to exclude the first packet transmission.

Expected Transmission Count (ETX): This receiver-side estimator, proposed by Coutor et al. [26]
uses active monitoring where probe packets are sent periodically. ETX is calculated as the inverse
of the product of the forward delivery ratio df and the backward delivery ratio db encountering
link asymmetries. The value df refers to the PDR based on the received probe packets. db on
the other hand is computed based on the received acknowledgments.

Window Mean with Exponentially Weighted Moving Average (WMEWMA): In [9] Woo and Culler
describe this receiver-side LQE based on passive monitoring. WMEWMA uses an exponential
weighted moving average (EWMA) filter to weight a history of computed PDR with previously
observed ones. Proceeding like this the PDR estimation is smoothed and the result is a metric
that averages out transient fluctuations.

Conclusion: These packet statistic based LQEs were widely used in mesh networks where the
links are relatively stable over short times. Since they require a few packets to determine their
estimation of the PDR (usually above 10 packets), packet statistics are not well suited for fast
link estimation with low channel coherence times as found in mobile settings. But even in static
scenarios where the wireless devices do not move, the properties of the wireless channel will
typically change over time because of the movement in the area around the devices.

Hybrid based Link Quality Estimation

Four-Bit : This universal metric is presented in [22] and uses four bits of information from
different layers. One is from the physical layer to rapidly identify good links on a packet level.
The second bit from the link layer indicating the successful transmission of a packet. The last two
bits are from the network layer and are used for a neighbor table replacement policy. The link
quality is composed of two metrics through the EWMA filter. Namely the RNP and the inverse
of the WMEWMA minus 1. It uses both, passive (data packet) and active (probe packets) traffic
monitoring.

Fuzzy Link Quality Estimator (F-LQE): The benefit of F-LQE [21] is the link quality estimation
on the basis of four link properties. It encounters smoothed packet reception ratio (SPRR),
link stability factor (SF), link asymmetry level (ASL), and channel average signal to noise ratio
(ASNR). ASNR defines the capacity of the link to successfully deliver data. ASL expresses the
difference in connectivity between the uplink and the downlink. SF quantifies the variability
level of the link and the ASNR reflects the degree of noise in the channel. The proposed fuzzy
rule reads: ”If the link has high packet delivery and low asymmetry and high stability and high
channel quality, then it has high link quality.” This quantity is calculated using membership

8 CHAPTER 2. LINK QUALITY ESTIMATION AND JAMMING DETECTION

functions and the received score is further smoothed using the EWMA filter to provide stable
link quality estimations.

Triangle Metric: This metric as described in [27] combines geometrically the information of PDR,
LQI and SNR. The receiver calculates the mean of the LQI and SNR values over an estimation
window of approximately 10 packets. Further the norm

n =

√
SNRmean

2 + LQImean
2

is calculated as comparison to empirical-based thresholds. Then the channel can be quantified
into four different link qualities.

Conclusion: Hybrid estimators combine several metrics to cope with weaknesses of single metric
approaches. These estimators tend to be more accurate than approaches that rely on single
metrics as signal power or packet statistics. But they still require a few packets for the packet
statistic analysis and therefore don’t offer a reliable and fast link quality estimation in dynamic
scenarios as moving nodes or a fast changing environments. Moreover the sophisticated evalua-
tion of different layers or the need of higher memory footprint and computation complexity (e.g.
F-LQE) is in contradiction to the low-energy consumption of WSNs.

Error based Link Quality Estimation

Bit Errors: Studies as in [28–30] propose approaches to predict the packet error rate (PER)
or bit error rate (BER) based on error considerations. This could be extended to the concept
to estimate link qualities based on bit errors. Figure 2.1 illustrates the measured occurrence
of bit errors in our testbed. The vertical axis shows the probability that we obtain a wrong
frame check sequence (FCS) in a transmitted packet. A wrong FCS implies that at least one bit
in the packet is erroneous. Note the logarithmic vertical axis and for a PDR of 0.5 we obtain
already the probability of 0.05% that one or more bits are flipped. However this sparse bit
errors would imply huge estimation windows to provide meaningful information about the link’s
PDR. Therefore these approaches are not suitable for our considerations. Further e.g. [28] relies
on error estimating codes (EEC) that imply additional packet overhead that is no suitable for
approaches based on simple network principles.

The authors in [31] suggest that the chip error rate might be a better channel quality indicator
than signal power based metrics particularly in the presence of interference.

Chip Errors per Frame (CEPF): To the best of our knowledge there exists only one study -
CEPF [5] which considers chip errors in DSSS based systems to estimate the link quality. They
analyze chip errors in the payload on a packet level and map the obtained chip error rate to the
PDR in a measured linear correlation curve of chip errors and PDRs. They evaluated various
LQEs and showed that a LQE based on chip errors perform more accurate than signal strength
approaches and much faster than packet statistic based LQEs. In contrast to our work, they did
not analyze the synchronization header, i.e. the eight preamble symbols.
Conclusion: Due to sparsely occurring bit errors, this metric is not suitable for PDR estimations.
Bit error based LQEs need especially for good links huge estimation windows that makes it
impossible to follow fast link quality changes in dynamic setups as mobile environments.
Chip error based approaches show promising results in terms of fast channel estimation. But
they lack accuracy in static scenarios in comparison to packet statistic based approaches. In
dynamic settings they outperform some LQEs but don’t show the desired superior performance
in terms of accuracy. Obviously it still remains a challenge to exploit chip errors for accurate
link quality estimation.

2.1. LINK QUALITY ESTIMATION 9

Figure 2.1: This graph shows the measured probability that a decoded packets has a wrong
frame check sequence (FCS) for wireless and cable connections. A wrong FCS implies that there
occurred one or more bit (or equally symbol) errors in a decoded packet. Note the logarithmic
vertical axis, i.e. the probability that some bit errors happen decreases very fast for increasing
link qualities. We obtain already for a PDR of 0.5 a probability that at least one bit will be
corrupted of 0.05%.

2.1.3 Benefits of Preamble Symbol based Link Quality Estimation

State of the art LQE approaches still suffer from crucial disadvantages regarding universal us-
ability (e.g. static versus dynamic environments). So far non of the presented LQE could cope
with the challenge to fulfill the mentioned key requirements of a well performing LQE as energy
efficiency, accuracy, reactivity and stability at the same time. Especially the contradiction of
optimizing reactivity and stability at the same time exacerbate the design of universally well
performing LQEs.
Our novel approach of considering preamble symbols comes with significant improvements in
comparison to the above mentioned LQEs. Namely we experience enhancements in accuracy
and reactivity. Further our approach realizes an optimization of the reactivity and stability at
the same time.
By using the preamble symbols we are not dependent on a successful synchronization on a sent
packet. An estimation can already be performed, although the receiver did not synchronize on
the packet. This effect of an ultra-fast estimation becomes even more noticeable if the link qual-
ity is poor and the expected waiting time for a successful synchronization is large. Beside this
time savings, our LQE approach extracts further advantages of being independent on synchro-
nization. We are not evaluating chip errors based on this conditional event (i.e. a successful
synchronization as in [5]), thus we don’t risk to overestimate the channel if the radio link suffers
from excessive packet losses. This allows to rely on a unbiased picture of the channel condition
and leads to more accuracy in the link quality estimation.
Moreover our approach realizes an elegant method to end up with a good trad-off of the above
considerations to meet the requirements of reactivity and stability. To consider reactivity, we

10 CHAPTER 2. LINK QUALITY ESTIMATION AND JAMMING DETECTION

Figure 2.2: Three different jamming types [1].(b) Proactive jammers emit continually radio
signals so that no transmissions [Fig.1(a)] are possible. If an ongoing transmission has been
detected reactive jammers (c) in contrast jam only once, typically for the entire packet length.
Reactive bit jammers (d) target their jamming signal at a specific part of the packet and keep
the jamming duration to a minimum.

provide ultra-fast link quality estimations on symbol level 3. To guarantee stability, this estima-
tions are weighted over a window of successive estimations. Therefore we obtain a large amount
of different link quality estimations within shortest time and are able to obtain an averaged value
without increasing the estimation window to a large value at the cost of reactivity, i.e. ignoring
intermediate-term changes of the link.

2.2 Jamming Detection

2.2.1 Fundamentals of Jamming Detection

Due to the fact that wireless networks are built upon a shared medium it makes it easy for ad-
versaries to launch jamming-style attacks. Such jamming attacks are accomplished by emitting
radio frequency signals that do not follow an underlying MAC protocol [6].
As WSNs gained tremendous popularity in the recent past, security and trustworthiness became
crucial issues. Many wireless security threats may be addressed through appropriately designed
network security architectures [32–36]. These studies are mainly modifications of traditional se-
curity services, namely authentication, confidentiality, and integrity to wireless domain. However
wireless networks are susceptible to threats that are not addressed via cryptographic methods.
Jamming attacks are an important class of such threats that cannot be fend off by conventional
security mechanisms. From this point of view the detection of jamming is an integral part in
seizure of security issues in WSNs. Moreover the ability of wireless devices to detect radio fre-
quency attacks allow to identify regions of poor link conditions. This is a key factor in routing,
handover, rate selection algorithms or restorative mechanisms, such as channel surfing or spatial
retreats [37].
A wide range of different attacker strategies that a jammer can perform is known so far [6,38–41].
The three most important attacker models are described below. For a more detailed description,

3i.e. within less than a milliseconds in our testbed

2.2. JAMMING DETECTION 11

please refer to [38].

1. Proactive jammer: The proactive jammer continually sends out random bits to the com-
munication medium without following the MAC-layer etiquette. Traditional approaches for
the detection of such jammers use the PDR and the received ambient signal strength as a
decision criteria whether the link is proactively jammed or not. It is detected as soon the
PDR and/or the ambient signal strength exceeds a predefined threshold [6, 42]. However
these types of jammers are easily detected due to to long exposure time to the commu-
nication medium and furthermore not well suited for low-power WSNs concerning energy
consumption.

2. Random jammer: This approach imitates the proactive jammer but attacks the network
at random time slots and alternates between sleeping and jamming mode. Compared to
the proactive jammer, this strategy takes energy conservation into account. By adjusting
the sleep time and the jam time a trade-off can be realized between energy efficiency
and jamming effectiveness. Nevertheless great jamming rates cannot be achieved due to
restricted energy supply in WSNs. Further the detection of random jammers are covered
by the same approaches as for the proactive jammer.

3. Reactive jammer: As illustrated in Figure 2.2(d) reactive jammers try to corrupt only
a small fraction of a detected packet. By doing so, the jammer is only exposed to the
communication medium for a very short time slot. This comes with two important benefits.
On the one hand, this minimizes energy consumption on the other hand this exacerbate
the jamming detection drastically. The above mentioned ambient signal jamming detection
approaches are well-suited for mid- or long-term jamming. But they cannot cope with
the challenge of detecting reactive jamming for essentially two reasons [1]: First, existing
approaches rely only on the frame check sum (FCS) of a packet do decide if it was received
correctly. In general it can not be distinguished between packet losses due to weak radio
links and interference. Second, if only a small fraction of a packet is jammed, this does
not necessarily result in a steady and high RSS [43–45]. The increase in the the effective
RSS is thus kept to a very low value and can hence avoid of being detected with current
approaches.

In order to evaluate our jamming detection approach, we will further focus on the reactive
jammer. Moreover we will introduce a jammer attack model that is within the family of reactive
jammers even the most challenging one. By setting the jammed fraction of the packet to the
start of frame delimiter (SFD) that is responsible for the synchronization, the receiver will not
be able to synchronize to any packet. This reduces the information provided at a sender side
jamming detection significantly. Approaches that rely on this lost information as the payload or
the FCS fail rigorously. Our approach does not suffer from such limitations (e.g. a successful
synchronization). To the best of our knowledge no work is proposed that solves this problem of
reactive jamming detecting in a far satisfying way and it still remains a challenge to cope with
such short-term jamming attacks. There is one approach proposed by Strasser et al. [1] that
allows to detect reactive jamming on a packet level. But this work imposes sever restrictions
as predetermined information of a packet, overhead caused by error correcting/detecting codes,
or limited node wiring. This approach is not suitable for versatile wireless scenarios since these
restrictions may not be applicable. In the following section we will discuss this in more detail.

12 CHAPTER 2. LINK QUALITY ESTIMATION AND JAMMING DETECTION

2.2.2 Related Work

Because our novel approach of jamming detection is focussing on reactive jamming, we will not
list related works of other jammer families as e.g. proactive or random jammers. Furthermore
we will explain why our novel approach can cope with the above mentioned jamming attacks on
the SFD.

The Feasibility of Launching and Detecting Jamming Attacks in Wireless Networks [6]: Xu et al.
propose the usage of PDR along with either signal strength at the receiver or location information
as a consistency check for jamming detection. In the first case, jamming is detected if the PDR
is low although the RSS is high. In the second case if the PDR is low although the senders are
close. Unlike our work, their approaches are not able to detect reactive jamming that might
affect only a few bits of a packet.
Detection of Reactive Jamming in Sensor Networks [1]: Strasser et al. proposed the first jamming
detection scheme for sensor networks that enables the detection of reactive (single-bit) jamming
on a per-packet basis. The main idea of their approach is to identify the cause of individual bit
errors within a packet and to deduce therefrom whether the packet was jammed or just sent over
a weak link. If the node receives a packet it records the RSS for each received bit of the packet.
The intuition behind this process is that if there was a bit error although the RSS value was
high, this indicates external interference; if the error was due to a weak signal, the RSS value
should be low.
This process of the identification of bit errors can be accomplished based on three different
restrictions: Predetermined knowledge of the sent packet, error correcting codes, or limited node
wiring.
Obviously they rely on a successful synchronization of the receiver and a sent packet. Thus
this approach will not be able to perform jamming detection in our described attacker’s model,
because no decoded symbols of the MPDU (MAC Protocol Data Unit) are available at the
receiver side due to prevented synchronizations. Common WSNs detection algorithms are not
robust enough to resist jamming attacks of the synchronization header. Strasser et al. proposes
that the sender applies error correcting codes to the header and shuffles the encoded bits according
to a pseudo random sequence based on a secret key shared by the sender and the receiver. This
packet detection algorithm with the additional added overhead of error correcting codes increase
the header length and thus require more energy for a packet transmission and reduce the data
rate. In contrast to our approach, we don’t relay on a successful synchronization and don’t suffer
from these limitations.
A further challenge is to localize the bit errors within the received packet. Note that on simple
DSSS systems as used in WSNs there exist no error localization or correction mechanisms on a
symbol or bit level. One possibility to overcome this problem it the predetermined knowledge of
the sent bit stream as suggested in [1]. Having this sever restriction, the transferred information
in a packet is therefore limited to at best a few bits. As our approach is not relying on any error
position localization, we don’t experience this restriction. Strasser et al. proposed to overcome
these limitations by means of error detecting/correcting codes: These codes allow for detecting
bit errors in arbitrary messages. By comparing the received and the recovered data bit errors
can be localized. Again this technique cause additional overhead and the packet length (and
thus the energy required for its transmission) might be several times higher than the length of
the original packet. In addition if a code word can be identified as being faulty but cannot be
corrected, all bits in the work might equally be wrong and not correctable packet can’t be used
for the jamming detection.
They show a third way to acquire the error position based on limited, short-range sensor node

2.2. JAMMING DETECTION 13

wiring in the form of wired node chains. With the introduced redundancy by transmitting
information over wireless links and cable connections, different versions of RSS-sequences are
combined into an error sample and with further comparisons the errors within a packet can be
localized. Again this sophisticated method of error localization causes the expensive evaluation of
this algorithm and further implies cable connections within the network that is in most scenarios
unwanted and moreover imposes sever restriction on node mobility.
Conclusion: Even Strasser et al. propose a working jamming detection algorithm with very
promising results concerning detection rates. But the mentioned restrictions introduce sever
limitation which are contradicting the policies of WSNs and in a wide range of scenarios not
applicable. Our novel approach does not suffer at all from these restrictions. We experience great
benefits of not being dependent on a successful synchronization or any bit error localization.

14 CHAPTER 2. LINK QUALITY ESTIMATION AND JAMMING DETECTION

3
Experimental Setup

The scope of our investigations of the preamble symbols is only limited to DSSS systems. There-
fore our concept can be extended to any communication systems that show the key characteristic
of DSSS where a sequence of bits are spread to a higher rate sequence of so called chips. The
signal can than be modulated by any appropriate modulation scheme.
To find a suitable platform, our measurements rely on one possible instance of a communication
standard that employs DSSS, namely IEEE 802.15.4. This standard allows relatively simple
communication protocols and facilitates to deal with the respective signal processing blocks.

3.1 IEEE 802.15.4 Standard

The IEEE 802.15.4 standard [2] defines a communication layer in the OSI (Open System Inter-
connection) model as shown in Table 3.1. It specifies the physical layer and the media access
control (MAC) for low-rate wireless personal area networks (WPANs). The intention of this
standard is to provide a low-rate network protocol considering technological simplicity, without
sacrificing flexibility or generality. The benefits as low power consumption or low manufacturing
costs are suitable for ubiquitous devices in many applications.

On top of the IEEE 802.15.X, there established a product-oriented open global standard, called
ZigBee [46]. ZigBee is a group comprised of international technology companies that work to-
gether to enable reliable, cost-effective, low-power, wirelessly networked, monitoring and control
products.
In this standard, the higher layers in the OSI model are specified that enables the interoperabil-
ity of different applications. It is used in a wide range of products, e.g. building automation,
remote control, energy management, health care, home automation or retail services [47]. The
concrete benefits of e.g. home automation provided by the mentioned technology are described
by an online magazine [48] like this: ”You arrive home from a long day at work. As soon as
you use your digital key to unlock the door, your house adjusts the lighting, heat, and window
blinds to your liking and puts on your favorite CD in the kitchen. While you were at work, the

16 CHAPTER 3. EXPERIMENTAL SETUP

No. Layer Data Unit

7. Application Data

6. Presentation Data

5. Session Data

4. Transport Segments

3. Network Datagram

2.
Data Link

Frame- LLC Sublayer
- MAC Sublayer

1. Physical Bit

Table 3.1: The OSI Model

house fed the cat, turned off the space heater your kids accidentally left on in the basement, and
recorded motion-triggered video from security cameras around the property. Your refrigerator
detected an almost empty milk carton and added a gallon of two percent to the shopping list
that it will e-mail to you on Friday.” This could be a description of a home environment using
ZigBee technology where a bunch of network nodes collect and exchange data between each other
or even on the world wide web to please the users needs.

The IEEE 802.15.4 operates on one of three possible unlicensed frequency bands:

� 868.0 - 868.6 MHz (Europe)

� 902 - 928 MHz (North America)

� 2.4000 - 2.4835 GHz (Worldwide)

Among these, our measurements rely on the most widely-used 2.4 GHz band. It is divided into
16 channels each spaced 5 MHz apart with a spectral window of 2 MHz. The channel numbers
0 to 10 are allocated in the two lower bands. Therefore the lowest channel in the 2.4 GHz band
starts at the number 11 and ends at the channel number 26. The center frequency fc of each
channel number k is defined as:

fc(k) = 2405 + 5(k − 11) MHz, k = 11, 12, . . . , 26

In the 2.4 GHz band, data is transmitted at a rate of 250 kbit/s. As a modulation technique,
a 16-ary quasi-orthogonal modulation based on DSSS (Direct Sequence Spread Spectrum) is
employed. This modulation spreads a low rate sequence of bits to a higher rate sequence of
so called chips. The binary source data is divided into groups of 4 bits (later referred to as
symbols) and mapped to a nearly orthogonal 32-chip pseudo-noise sequence (b0, b1, b2, b3) 7→
(c0, c1, c2, c3, . . . , c31), resulting in a chip rate of 2 MChips/s. For example the mapping of the
zero symbol: (b0, b1, b2, b3) = (0, 0, 0, 0) to the respective chip sequence (c0, c1, c2, c3, . . . , c31) is

(0, 0, 0, 0) 7→ (1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0).

The entire predefined conversion according to the IEEE 802.15.4 standard from these 16 different
symbols to the respective chip sequences can be found in Table B.1.

3.1. IEEE 802.15.4 STANDARD 17

MSK

Binary bitstream

Sender

Symbol01011000 0101 1000
S1 S0

Symbol−

0 31

Modulator
O−QPSK

Symbol−

Symbol

0101 1000
0 31

01011000

Receiver

S S1 0

?
Modulated signal

Chip−to−
to−Bit

Bit−to−

to−Chip

De−

Modulator

Figure 3.1: Modulation and Spreading Functions in IEEE 802.15.4 [2]

At the sender side the resulting chip sequences are concatenated and the aggregated string con-
sisting of zeros and ones are modulated onto the carrier using minimum shift keying (MSK),
which is equivalent to offset quadrature phase shift keying (O-QPSK) with half-sine pulse shap-
ing. A simple schema to convert MSK to O-QPSK is described in [49] by J.Notor et al.. The chip
sequence is O-QPSK modulated to a baseband transmission waveform and eventually emitted
by the sender’s antenna, see Figure 3.1.
At the receiver side, the signal is demodulated according to the modulation scheme using O-
QPSK or MSK as O-QPSK modulation with half-sine pulse shape. Further the demodulated
signal is decoded using a correlator to map the received 32 chip sequences back to symbols.
Due to the characteristics of a wireless channel, the received chips may contain errors caused
by fading or interference. A specific received (and maybe corrupted) chip sequence Rj , j =
1, 2, . . . , 232 is compared to the 16 predefined chip sequences Ci, i = 1, 2, . . . , 16. The receiver
chooses the best match, i.e. the Ci, such that h(Rj , Ci) is minimized, where h(·, ·) is the hamming
distance (number of positions containing different chips) between the two arguments. For ex-
ample h((01101), (01110)) = 2 because the two vectors vary in the last two bits which are flipped.

However if too many chips are flipped, the expression h(Rj , Ci) may be minimized for the wrong
i, such that the receiver interprets the received chip sequence as a wrong symbol. The receiver
will detect these symbol errors in an incorrect frame check sum (FCS). Note that there exists
no error correction on a bit or symbol level in the IEEE 802.15.4 standard. Therefore a packet
containing a false FCS is simply discarded and has to be retransmitted.

The PHY protocol data unit (PPDU) frame is structured as illustrated in Figure 3.2. It consists
of a preamble sequence (four bytes of 0x00), a start of frame delimiter (SFD), a frame length and
the MAC protocol data unit (MPDU). The MPDU itself is divided into the frame control field
(FCF), the data sequence number, the address information, the frame payload and finally two
bytes of frame check sequence (FCS). Depending on the type of frame, the address can be left
out or consists of up to 20 bytes. The FCS is the cyclic redundancy check of a 16-bit checksum
of the MPDU. The checksum uses the polynomial p(x) = x16 + x12 + x5 + x.

18 CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.2: Frame Layout of an IEEE 802.15.4 Packet [2]

3.2 Hardware and Software Platform

3.2.1 Software Defined Radio

Software defined radio (SDR) is a system which uses software for modulation and demodulation
of communication signals. The goal of such an implementation is to use as few hardware as
possible. Replacing hardware by software comes with significant benefits concerning flexibility.
Since the 90s, SDRs have been around and started out in the analog modem industry, where the
implementation of modems was done in software. This allowed to easily upgrade the modulation
schemes when a new standard came out, without changing the hardware. This was an incredible
flexibility improvement, though one pays for it with more computing power [4].
SDR offers an efficient and comparatively inexpensive solution to the problem of traditional
hardware based radio devices that limit cross-functionality and can only be modified through
physical intervention [50]. Nowadays SDR found important utility for the military or cell phone
services due to the possibility to change radio protocols in real time.
The main reason to use SDR in our experimental setup is the flexibility of changing parameters
in the whole flow of signal processing. The quickness of compiling and loading software allows
researchers much higher cycle rate in terms of iterative development.
Further the modularity of SDR that enables to build new projects upon existing code has been
exploit in this work by using the GNU Radio community.

3.2.2 GNU Radio 802.15.4 En- and Decoding

GNU Radio [51] is a collection of open source software that allows to implement radios with
low-cost external radio frequency (RF) hardware and commodity processors. GNU Radio pro-
vides a combination of signal and data processing blocks to easily develop further to powerful
modulation, demodulation, or more complex signal processing systems. These applications are
primarily written in the python [52] programming language. The computationally expensive sig-
nal processing primitives are programmed in C++ [53]. An interface compiler SWIG (Simplified
Wrapper and Interface Generator) [54] integrates C++ into scripting language. Further provides
GNU Radio a simple interface to the signal processing blocks from python.
Various applications written in GNU Radio range from decoding HDTV pictures, which can re-

3.2. HARDWARE AND SOFTWARE PLATFORM 19

(a) USRP1 (b) USRP2

Figure 3.3: The USRP1 and the more powerful USRP2 [3]

ceive and send AM/FM broadcast radio to implementations of packet radio system using Gaus-
sian minimum shift keying (GMSK) modulation and demodulation to transmit packets from one
host to another.
GNU Radio supports several hardware platforms [55], like sound cards, and multiple RF fron-
tends to receive different bands of the RF spectrum. The most commonly used one in the
universal software radio peripheral (USRP).

USRP [3] was developed by Matt Ettus as a low-cost and flexible platform for SDRs. It consists
of one motherboard which holds the analog digital converter (ADC), digital analog converter
(DAC), and a field programmable gate array (FPGA). An antenna is connected to the daughter-
board. The function of the daughter-board is to down-convert a specific band from higher
frequency into an intermediate frequency which can be handled by the ADCs. In the most of
our measurements the USRP1 has been used. But in order to reproduce results from related
work [5, 56] partially the USRP2 was utilized to guarantee identical experimental conditions.
Furthermore the used platform, as proposed in [57] for the jamming scenario, which will be
described in the following section, uses the USRP2. In both versions of the USRPs, we used
the XCVR2450 2.4 GHz - 2.5 GHz daughter-board by Ettus Research [3]. One of the major
difference between the USRP1 and the USRP2 is the connection between the device and the
running host computer. In the other USRP1 it is realized by an USB 2.0 link in contrast to the
USRP2, where a gigabit Ethernet (GigE) connection links the device to the computer. GigE
has a maximum transfer rate of 120 MB/s that is equivalent to 30 MS/s. On the other hand
the USB 2.0 link is limited to 32 MB/s, i.e. 8 MS/s. Moreover the user can implement custom
functions in the FPGA, or in the on-board 32-bit RISC softcore on the USRP2.

To implement a whole IEEE 802.15.4 standard based on SDR and the GNU Radio we adapted
the UCLA (University of California, Los Angeles) ZigBee project. The UCLA ZigBee frame-
work proposed by Thomas Schmid [4] implements the missing processing blocks necessary for
modulation and demodulating of the IEEE 802.15.4 standard.

An overview of the modulation is depicted in Figure 3.4 as a block diagram. As a first step,
the messages are received from the python application and are put into a queue. Then the
packet source generates a stream of bytes which are sent into the ieee802.15.4 mod block. This
block translates bytes into chips (Figure 3.1), i.e. it spreads the symbols according to the IEEE
802.15.4 protocol. The next block ”Chips to Symbols” translates the integers to another sequence
of integers where each bit in the integer is represented as a 0 or a 1. The 0 and 1 integers are

20 CHAPTER 3. EXPERIMENTAL SETUP

Squelch
Filter FM Demod

Clock
Recovery

gr.quadrature_demod_cf gr.clock_recovery_mm_ff

ieee802_15_4.ieee802_15_4_demod

Packet Sink:
- Find start of frame l

- Decode chips to symbols

ucla.ieee802_15_4_packet_sink

Message
Queue

Python
Callback

USRP

Figure 6: Block schema of the demodulator imple-
mented in GNU Radio.

Multiply
Symbols to

Constellation
Bytes to
Chips

ucla.symbols_
to_chips_bi

ieee802_15_4.ieee802_15_4_mod

Packet Source

gr.message_source

Message
Queue

Python
send_pkt()

USRP

Chips to
Symbols

QPSK
Modulator

Q-Phase
Delay

gr.packed_
to_unpacked_ii

gr.chunks_
to_symbols_if

ucla.qpsk_
modulator_fc

ucla.delay_cc

Figure 7: Block schema of the modulator imple-
mented in GNU Radio.

block then outputs the symbols which are ready for slicing.
The final stage in the receiving path is the packet sink which
is implemented in the C++ object ucla.ieee802_15_4_
packet_sink. This object implements the physical frame
detector and with the help of the packet length field de-
codes the whole MPDU. Once a complete MPDU is found,
it is added to a message queue. In the current implementa-
tion, the packet sink doesn’t allow any errors in the stream
coming from the synchronizer and it needs to find all four
0x00 preamble bytes. This will most likely be changed in
the next iteration of the code, where we will allow errors in
the decoding process and the block will also detect a frame
if it finds less than the 4 synchronization bytes. This will
most likely improve the reception rate considerably.

An external python thread is observing the message queue
in the packet sink. As soon as there are messages in the
queue, the thread starts to call a callback function which
then can process the MPDU further. The current test imple-
mentation doesn’t do anything to the packet except printing
it to the console.

5.2 Modulation
As for the receiver, there are multiple possibilities to im-

plement the transmitter. [7] describes two of them. The
“2-point ∆Σ PLL Modulator” implements a direct carrier
modulation. This is not possible with the USRP since it
expects a baseband signal and one can not directly change
the carrier output. Therefore, we decided to implement the
“O-QPSK Modulator with Half-Sine Shaping”. But before
we can modulate the data stream, we need to spread it with

the correct spreading sequence. Figure 7 shows the block
schema of this process. First, the messages are received from
the python application and are put into a queue. From there,
the packet source generates a stream of bytes which are sent
into the ieee802_15_4_mod block. This block first trans-
lates the bytes into chips, i.e., it spreads the byte sequence
according to the IEEE 802.15.4 protocol. For each byte,
it takes first the least significant 4-bit block and spreads it
with the 32-bit spreading sequence. Then, it takes the most
significant 4-bit block and spreads it again. This sequence
of 64 bit is then sent to the next block as two unsigned 32
bit integers. The next block, “Chips to Symbols” translates
the integers to a an other sequence of integers where each
bit in the integer is represented as a 0 or 1 integer, i.e., from
one integer input we generate 32 output integers. The block
processes the most significant bit of each integer first. Once
we have the 0/1 integers, we translate them to the constel-
lation, i.e., we map 0 to -1 and 1 to 1.

The stream of -1 and 1 floats is then fed into the QPSK
modulator which outputs the complex baseband QPSK sig-
nal with half-sine pulse shaping. To finally generate the O-
QPSK signal we pass the complex baseband signal through
a Q-Phase delay which delays the Q-Phase by two samples.
Before the signal is sent to the USRP, we multiply it by
the constant 8000 to scale it to the full range of the 14-bit
DAC. At last, the signal is sent to the USRP, where it will
be modulated onto the right carrier frequency.

6. IMPLEMENTATION VERIFICATION
We tested the implementation with the Crossbow MicaZ

[10] mote which features the CC2420 [11] radio transceiver
from Chipcon. On the mote we run SOS [12], an operating
system for mote-class wireless devices developed at the Net-
worked and Embedded Systems Lab (NESL) at UCLA. The
network stack on the mote is the Chipcon proprietary stack
implementation which is compliant with the IEEE 802.15.4
standard.

We created three test scenarios to test the transmitter
and the receiver code. First, we programmed a mote to reg-
ularly send out a message. This should allow us to find out if
the receiver works according to the standard. The messages
were very simple and the pure MAC layer payload consisted
of 27 bytes. Thus, the total number of bytes sent over the
physical channel were 45 bytes. The messages were sent in
an interval of 100ms. We sent out five times approximately
1000 messages and calculated the number of messages suc-
cessfully decoded with GNU Radio. To get a comparison,
we also equipped a second mote with a base-station code
and recorded how many messages it received. On average,
the GNU Radio received 92.8% of the messages the base-
station mote received. This is an expected number because
the GNU Radio code doesn’t allow any errors in the spread
sequence. In a second test, we reprogrammed the mote to
send messages at 50ms intervals. Here, the GNU Radio code
received on average 94.9 % of the messages the base-station
received.

The last test was done to check the transmit code of GNU
Radio. In this scenario, we sent out the same message the
mote produced with the GNU Radio system. A second com-
puter with a second USRP and daughter-board received the
messages. Additionally, a base-station mote also received
the messages and we counted them as well. The messages
were sent out within an interval of 500ms. On average, the

Figure 3.4: IEEE 802.15.4 modulation in GNU Radio [4]

mapped to the constellation points according to 0 7→ −1 and 1 7→ 1.
The generated sequence of -1 and 1 gets into the QPSK modulator which outputs the complex
baseband QPSK signal. To generate the O-QPSK signal, the Q-Phase is delayed by two samples.
Finally before the signal is sent to the USRP, it gets multiplied by the factor 8000 to scale it to
the full range of the 14-bit DAC. In the USRP, the signal will be modulated onto the defined
carrier frequency fc.
The demodulation process at the receiver side is illustrated in Figure 3.5. In order to avoid
unnecessary attempts to decode noise, the received signal is first passed through a squelch filter
that passes only signals which have a certain dB strength. The ”FM Demod” box decodes
the MSK signal and a Mueller and Müller discrete-time error-tracking synchronizer recovers the
clock. The last step in the receiving path is the packet sink which is implemented in the C++
object ucla.iee802 15 4 packet sink. This object stands for the physical frame detector and with
the help of the packet length field decodes the whole MPDU. Once a complete MPDU is found,
it is added to a message queue. In the original implementation the packet sink does not allow
any errors in the decoding process, therefore it needed to find all four 0x00 preamble bytes. This
has been changed in our implementation where the sender synchronizes on a packet, even if less
then four preamble bytes were detected. This improved the reception rate considerably and is
discussed in more detail in Chapter 4.
The message queue is observed by an external python thread in the packet sink. This thread
starts, as soon as there are messages queuing and starts to call a callback function which process
the MPDU further.

3.3. SCENARIOS 21

Squelch
Filter FM Demod

Clock
Recovery

gr.quadrature_demod_cf gr.clock_recovery_mm_ff

ieee802_15_4.ieee802_15_4_demod

Packet Sink:
- Find start of frame l

- Decode chips to symbols

ucla.ieee802_15_4_packet_sink

Message
Queue

Python
Callback

USRP

Figure 6: Block schema of the demodulator imple-
mented in GNU Radio.

Multiply
Symbols to

Constellation
Bytes to
Chips

ucla.symbols_
to_chips_bi

ieee802_15_4.ieee802_15_4_mod

Packet Source

gr.message_source

Message
Queue

Python
send_pkt()

USRP

Chips to
Symbols

QPSK
Modulator

Q-Phase
Delay

gr.packed_
to_unpacked_ii

gr.chunks_
to_symbols_if

ucla.qpsk_
modulator_fc

ucla.delay_cc

Figure 7: Block schema of the modulator imple-
mented in GNU Radio.

block then outputs the symbols which are ready for slicing.
The final stage in the receiving path is the packet sink which
is implemented in the C++ object ucla.ieee802_15_4_
packet_sink. This object implements the physical frame
detector and with the help of the packet length field de-
codes the whole MPDU. Once a complete MPDU is found,
it is added to a message queue. In the current implementa-
tion, the packet sink doesn’t allow any errors in the stream
coming from the synchronizer and it needs to find all four
0x00 preamble bytes. This will most likely be changed in
the next iteration of the code, where we will allow errors in
the decoding process and the block will also detect a frame
if it finds less than the 4 synchronization bytes. This will
most likely improve the reception rate considerably.

An external python thread is observing the message queue
in the packet sink. As soon as there are messages in the
queue, the thread starts to call a callback function which
then can process the MPDU further. The current test imple-
mentation doesn’t do anything to the packet except printing
it to the console.

5.2 Modulation
As for the receiver, there are multiple possibilities to im-

plement the transmitter. [7] describes two of them. The
“2-point ∆Σ PLL Modulator” implements a direct carrier
modulation. This is not possible with the USRP since it
expects a baseband signal and one can not directly change
the carrier output. Therefore, we decided to implement the
“O-QPSK Modulator with Half-Sine Shaping”. But before
we can modulate the data stream, we need to spread it with

the correct spreading sequence. Figure 7 shows the block
schema of this process. First, the messages are received from
the python application and are put into a queue. From there,
the packet source generates a stream of bytes which are sent
into the ieee802_15_4_mod block. This block first trans-
lates the bytes into chips, i.e., it spreads the byte sequence
according to the IEEE 802.15.4 protocol. For each byte,
it takes first the least significant 4-bit block and spreads it
with the 32-bit spreading sequence. Then, it takes the most
significant 4-bit block and spreads it again. This sequence
of 64 bit is then sent to the next block as two unsigned 32
bit integers. The next block, “Chips to Symbols” translates
the integers to a an other sequence of integers where each
bit in the integer is represented as a 0 or 1 integer, i.e., from
one integer input we generate 32 output integers. The block
processes the most significant bit of each integer first. Once
we have the 0/1 integers, we translate them to the constel-
lation, i.e., we map 0 to -1 and 1 to 1.

The stream of -1 and 1 floats is then fed into the QPSK
modulator which outputs the complex baseband QPSK sig-
nal with half-sine pulse shaping. To finally generate the O-
QPSK signal we pass the complex baseband signal through
a Q-Phase delay which delays the Q-Phase by two samples.
Before the signal is sent to the USRP, we multiply it by
the constant 8000 to scale it to the full range of the 14-bit
DAC. At last, the signal is sent to the USRP, where it will
be modulated onto the right carrier frequency.

6. IMPLEMENTATION VERIFICATION
We tested the implementation with the Crossbow MicaZ

[10] mote which features the CC2420 [11] radio transceiver
from Chipcon. On the mote we run SOS [12], an operating
system for mote-class wireless devices developed at the Net-
worked and Embedded Systems Lab (NESL) at UCLA. The
network stack on the mote is the Chipcon proprietary stack
implementation which is compliant with the IEEE 802.15.4
standard.

We created three test scenarios to test the transmitter
and the receiver code. First, we programmed a mote to reg-
ularly send out a message. This should allow us to find out if
the receiver works according to the standard. The messages
were very simple and the pure MAC layer payload consisted
of 27 bytes. Thus, the total number of bytes sent over the
physical channel were 45 bytes. The messages were sent in
an interval of 100ms. We sent out five times approximately
1000 messages and calculated the number of messages suc-
cessfully decoded with GNU Radio. To get a comparison,
we also equipped a second mote with a base-station code
and recorded how many messages it received. On average,
the GNU Radio received 92.8% of the messages the base-
station mote received. This is an expected number because
the GNU Radio code doesn’t allow any errors in the spread
sequence. In a second test, we reprogrammed the mote to
send messages at 50ms intervals. Here, the GNU Radio code
received on average 94.9 % of the messages the base-station
received.

The last test was done to check the transmit code of GNU
Radio. In this scenario, we sent out the same message the
mote produced with the GNU Radio system. A second com-
puter with a second USRP and daughter-board received the
messages. Additionally, a base-station mote also received
the messages and we counted them as well. The messages
were sent out within an interval of 500ms. On average, the

Figure 3.5: IEEE 802.15.4 demodulation in GNU Radio [4]

3.3 Scenarios

3.3.1 Link Quality Estimation

In order to capture effects of different channel conditions such as fading, shadowing, or mobility
on link quality estimation, we set up our testbed in four different types of connectivity which are
described in detail below.
A least biased and environment independent scenario is the attenuated cable connection. Even
our investigations are not focussing on static wired links, it serves as a most reproducible reference
model excluding wireless channel phenomenons. Further we investigated experiments having an
indoor line-of-sight and non-line-of-sight link between sender and receiver. Various fading effects
are affecting the data transmission. Large-scale fading as path loss and shadowing are realized by
varying the transmit power and blocking the line-of-sight path by obstacles. Small-scale fading
is achieved by an indoor office environment where reflections from walls, the floor, the ceiling or
other objects cause multi-path propagation where delayed replicas of the sent signals arrive at
the receiver. As a last, for link quality estimators most challenging scenario, an indoor mobile
scenario was set up. A lot of LQE tend to fail in terms of an accurate short term estimation of the
link at the point where the relative speed of the sender and the receiver cause an unpredictable
and fast changing behavior of the channel.Figure 3.6 gives an impression of the different channel
behavior in the four scenarios at a certain transmit power in a time interval of seven seconds.

To evaluate the LQEs in the whole range of channel qualities, i.e. from very poor channels of
a PDR of about 5% to perfect channels of PDR of 100%, the transmit power of the sender was
adjusted. The packets were transmitted on channel 16 (fc = 2.43 GHz) at 250 kbit/s, a common
data rate of IEEE 802.15.4 networks [2].
To gain the information to implement different LQEs based on various link metrics, e.g. signal
strength, chip errors or number of received symbols, every sent and received symbol was logged
on a chip and symbol level with a corresponding time stamp. At the sender side the information
about the sent symbols were obtained in the ”symbols-to-chip” block of the modified UCLA
ZigBee implementation, that can be found in Figure 3.4. Correspondingly, the receiver logged

22 CHAPTER 3. EXPERIMENTAL SETUP

(a) Cable (b) Line-of-sight

(c) Non-line-of-sight (d) Mobile

Figure 3.6: Typical measured behavior of the packet delivery ratio over time for a certain transmit
power

the information on the chip and symbol level in the packet sink block as well a step before in the
demodulation block to build the digital SNR metric.Figure 3.1 shows in the symbol-to-chip and
chip-to-symbol boxes where we tap chip-level information.
The sender and the receiver code are executed on separate host computers which are connected
to the USRP hardware radio frontends through GigE connection or USB 2.0 links.

Attenuated Cable Connection

The sender and the receiver were connected by a shielded 60 cm coaxial cable with a 30dB
attenuator as depicted in Figure 3.7 in box (a).

Indoor Line-of-Sight

This indoor deployment with line-of-sight (LOS) connectivity and omni-directional antennas
(Ettus VERT 2450 [3]). The devices were placed on a table two meters apart from each other
with perpendicular oriented antennas with respect to the table area. The nodes were static
during the experiments and only moved between different measurement series. Different link
condition are emulated by changing the transmit power of the sender.

3.3. SCENARIOS 23

Sender Host PC
with USRP

.txt File

Evaluation
in Matlab

Receiver Host PC
with USRP

.txt File

Evaluation
in Matlab

(a)

(b)

(c)

(d)

v

Figure 3.7: Experimental setup: The transmitted packets were generated at the sender PC and
send via the USRP to the receiver under four different link conditions: (a) cable, (b) line-of-sight,
(c) non-line-of-sight, and (d) mobile. The received packets were recorded on chip and symbol
level and written to a text file. The evaluation of the logged data was done with Matlab routines.

Indoor Non-Line-of-Sight

The third scenario is identical to the indoor LOS setting beside that the direct LOS component
is blocked by a heavy metal cupboard. The nodes were as well static during the transmissions.

Indoor Mobile

By moving the receiver node, we introduce a faster changing channel characteristic. The sender
is placed again on the table and the receiver is on another table equipped with wheels which has
been moved at a constant speed.
As this setup is not a static scenario, it is assumed that the PDR will vary during a measurement
run. In order to meet the derived requirements for meaningful evaluations from Section 2.1.1, the
measurement run was divided into slices of the length of the coherence time Tc and the receiver
velocity was set to an appropriate value further discussed in Chapter 5.

24 CHAPTER 3. EXPERIMENTAL SETUP

3.3.2 Jamming Detection Estimation

In contrast to the previous link quality estimation scenarios we need for the jamming detection
estimation setup a third node. This new node will be used to influence the data transmission
of the other two nodes. The jamming detection measurement runs have been conducted under
indoor office NLOS conditions. Sender and receiver were placed seven meters away from each
other. The LOS path was blocked by table boards. During the experiment non of the nodes
were moved. The different link conditions were again realized by adjusting the transmit power
of the sender. We analyzed two different types of jammers:

� Continuous reactive jammer. The goal of this jammer is to destroy every packet that
is sent from the sender to the receiver node. As the jammer targets the SFD (start of frame
delimiter) and therefore prevents the receiver from successfully decoding the synchroniza-
tion header - the receiver is not even able to synchronize on any sent packet.

� Random reactive jammer. The random reactive jammer destroys a packet with a certain
probability and generates with his jamming rate between 80% and 100% PDRs of 6%. This
jammer targets as well the SFD and prevents the sender as well from synchronizing on the
most packets.

To realize such sophisticated jamming mechanisms, we use a system called WiFire, proposed
by Matthias Wilhelm et al [57]. WiFire detects and analyzes packets during their transmis-
sion, checking their contents against a set of rules. It relies on reactive jamming techniques to
selectively block undesired communication. It is implemented on the USRP2 software defined
platform for IEEE 802.15.4 radios.
As a measurement of the performance of the jamming detection estimation, we evaluated the

false negatives = P (”Guess Jamming off” | ”Jamming on”)

and the
false positives = P (”Guess Jamming on” | ”Jamming off”).

4
Estimator Design based on Preamble Symbols

4.1 Exploration of Preamble Symbols

4.1.1 Exploration of Preamble Symbol Occurrence

To start with the simplest approach to explore the behavior of the preamble symbols we focus
on the analysis of the number of decoded preamble symbols. We suggest the assumption that
the number of decoded preamble symbols correlates with the PDR. I.e. receiving a small number
of preamble symbols indicates a poor link quality, whether the reception of all eight preambles
would provide an indication of a very good link.
As a first approach we analyzed how many preambles per successfully decoded packet were
detected at the receiver in average. The results based on the attenuated cable setup are illustrated
in Figure 4.1(a) in case of a cable connection. The horizontal axis shows the number of obtained
preambles for a decoded packet. This almost linear relation between the PDR and the number
of detected preambles could be a promising basis of a LQE. Note that this curve shows a shift of
about two symbols to the right. At the point of a PDR of 100% we observe 10 decoded preambles
at the receiver. But there are only eight preambles transmitted according to the IEEE 802.15.4
standard. This additional two symbols occur because of accidentally decoded preamble symbols
on noise during two consecutively sent packets.
Figure 4.1(b) shows the correlation on a per packet level. There we count the average number of
consecutive decoded preambles before a packet got successfully decoded or the synchronization
was lost. This correlation as well shows nice linear behavior and it is assumed that even on a
packet level there could be made some meaningful predictions of the link quality.

26 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

(a) Average number of decoded preamble symbols
per successfully delivered packet

(b) Average number of consecutive decoded pream-
ble symbols per packet

Figure 4.1: Cable Connection: Number of received preamble symbols (a) per successfully decoded
packet and (b) per sent packet.

4.1.2 Exploration of Preamble Chip Errors

Analyzing the chip errors per symbol (CEPS) as shown in [5] for a random generated payload
turned out to be a promising approach to estimate the link quality. The observed linear reciprocal
dependence of the CEPS to the PDR served as the basis for a fast and accurate LQE. Assuming
the same behavior in the synchronization part of a packet, we investigated similar measurements
on the preamble symbols.
As a first measurement we evaluated the correlation of the chip errors per preamble symbol
(CEPPS) to the PDR in the cable scenario. The results are shown in Figure 4.2(a). Every
point belongs to the mean over a window of 200 sent packets. The curve shows an interesting
behavior: the maximum is reached at a PDR of about 50%. For even worse links the chip error
rate decreases again. This peculiarity is due to the implementation of the receiver in the original
implementation. If the receiver is in the search state waiting for the first preamble symbol,
only preambles which were decoded with a zero chip error tolerance were accepted. Contrary,
consecutive symbols after the first one were accepted with one chip error per symbol. As for
poor-quality links a loss of synchronization is more probable, the receiver spends more time in
the search state and is therefore decoding using a zero error tolerance. This causes that the
obtained chip errors per preamble symbol decrease again for bad links.
For the design of a LQE that guesses the PDR based on the observed CEPPS, this resulting
sickle shaped curve is undesirable. To realize more promising dependency of the CEPPS on the
PDR, we varied the error tolerance for the preamble as illustrated in Figure 4.2(b). Note that
this originally implemented error threshold in the UCLA framework is not defined by the IEEE
802.15.4. However this value was set to any value and was not optimized so far considering e.g.
data rates. For this purpose the chip error threshold has been changed between zero and four.
The benefit of increasing the chip error tolerance is the greatly enlarged interval of CEPPS for
the whole range of link qualities. The maximum of the CEPPS interval is obtained for an error
threshold of four. Further increases of result only in shifts of the curve to larger error values and
not in a bigger interval of CEPPS.
Remarkable as well is the increase of the system performance. Especially for poor-quality links
we obtain a huge increase in the PDR of almost 100% from zero to one error. In the range of

4.2. LINK QUALITY ESTIMATION 27

(a) First evaluation of the correlation between the
PDR and the CEPPS in the cable scenario. Due
to the original implementation of the decoder, the
curve is bent in a sickle shape that makes a unique
mapping of the CEPPS to the PDR impossible.

(b) Modification of the decoder chip error thresh-
old. The error tolerance of originally 0 chip errors
in the first preamble and 1 chip error in the con-
secutive preambles (0/1) has been modified to 1/1,
2/2, 3/3, and 4/4.

(c) Resulting correlation of the cable scenario using
a constant chip error tolerance of 4 chip errors in
all preamble symbols.

(d) Resulting correlation in a wireless scenario us-
ing a constant chip error tolerance of 4 chip errors
in all preamble symbols.

Figure 4.2: Modification of the decoder: The originally implemented error tolerance (in the
UCLA framework) of 0 chip errors in the first decoded preamble and 1 chip error in the con-
secutive preambles (a) has been changed (b) in order to obtain a correlation that allows unique
mappings from CEPPSs to PDRs, (c) and (d). Note that the originally implemented error thresh-
old (0/1) is not defined by IEEE 802.15.4. However this error threshold has been optimized in
our work that leads to a suitable correlation curve and to higher possible data rates. Further we
didn’t notice any drawback caused by these settings.

one to four chip errors, the PDR does not change considerably.

4.2 Link Quality Estimation

To derive benefits from the findings in the last section, we describe different approaches of LQEs
separated into two groups: Fast link quality estimation and ultra-fast link quality estimation.
Different approaches are proposed based on the number of preambles, chip errors, and hybrid

28 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

𝑃1,1 𝑃1,2 𝑃1,3 𝑃1,4 𝑃1,5 𝑃1,6 𝑃1,7 𝑃1,8 𝑃2,1 𝑃2,2 𝑃2,3 𝑃2,4 𝑃2,5 𝑃2,6 𝑃2,7 𝑃2,8

Preamble symbols of first packet

𝑃1,1 𝑃1,2 𝑃1,3 𝑃1,4 𝑃1,5 𝑃1,6 𝑃1,7 𝑃1,8 𝑃2,1 𝑃2,2 𝑃2,3 𝑃2,4 𝑃2,5 𝑃2,6 𝑃2,7 𝑃2,8

(a) Transmission over link (b) No successful
synchronization

(c) Successful
synchronization

1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0

(d) Preamble symbol on chip level with three chip errors

𝑆𝑆𝑆1 𝑆𝑆𝑆2

𝑆𝑆𝑆1 𝑆𝑆𝑆2

Preamble symbols of second packet
Rest of first

packet
Rest of second

packet

Figure 4.3: Data transmission of two packets: (a) the sender starts to transmit the preamble
sequence, the SFD (start of frame delimiter) and the corresponding part of the packet (named
here as the rest of packet). During the transmission of the eight preamble symbols of the first
packet, P1,2, P1,3, P1,4 could not be decoded correctly due to too much chip errors. E.g. P1,7

was transmitted successfully because as shown in (d) only three chips were flipped during the
transmission and the maximum error threshold of four chip errors is not exceeded. Due to
a corrupted bit in the SFD1 the synchronization of the first packet fails and the receiver is
not able to decode this packet. Contrary to the first packet, the second packet is transmitted
successfully (c) and only the preambles P2,1 and P2,5 were lost.

implementations that combine both concepts. An overview of all LQEs can be found in Table 4.1.
Note that the following correlation curves in this section between the different metrics and the
PDR are measured for all scenarios and each time shown in the same figure (see receptive leg-
ends). Every correlation point for a specific PDR is then averaged over a whole measurement run
of 40’000 sent packets that correspond to a measurement time of 40 seconds each point. In case
of the mobile setting, the average was each calculated over one coherence time Tc. The environ-
ments were the same as described in Chapter 3. By changing the respective USRP devices we
obtained no changes in the curves. Moreover a change of the measurement room did not affect
the curve. It just has to be considered as already described in the last section, that the decoder
error threshold changes the course of the curve and need to be unchanged after the calibration.

4.2.1 Ultra-fast Link Quality Estimation

The design goal of the ultra-fast link quality estimation is to realize an estimation within a short
amount of time. The idea behind this ultra-fast estimation is to set the estimation window w
to a small as possible value. To meet this requirement, we evaluate the first received symbols
of a packet, i.e. the preambles. This results then in a maximum estimation window w of eight
preambles1 and a minimal w of one preamble. Note that even for a lost packet, where e.g. the
synchronization failed or a bit error occurred during the transmission, this LQE works on a

1That corresponds in our test bed to reaction time of 0.26 ms

4.2. LINK QUALITY ESTIMATION 29

per-packet level and doesn’t rely on a successful packet transmission.
Figure 4.3 illustrates schematically the transmission of two packets, where the first packet is lost
due to a synchronization error and the second packet is transmitted successfully. The ultra-fast
estimator makes a first estimation of the link quality at the point (b) where the synchronization
fails based on the sent preambles P1,1, P1,2, P1,3, P1,4, P1,5, P1,6, P1,7, P1,8 as

P̂DR1 = ultrafast({P1,1, P1,2, P1,3, P1,4, P1,5, P1,6, P1,7, P1,8}),

and a second estimation at (c) after receiving the preambles of the second packet P2,1, P2,2, P2,3,
P2,4, P2,5, P2,6,P2,7,P2,8:

P̂DR2 = ultrafast({P2,1, P2,2, P2,3, P2,4, P2,5, P2,6, P2,7, P2,8}).

Or more generally let Sk denote the set of all correctly decoded preamble symbols in the k-th
packet with the preamble numbering j of the elements in Sk as j = 1, 2, . . . , 8. Then the PDR
estimation is computed as

P̂DRk = ultrafast({Pk,1, Pk,2, Pk,3, Pk,4, Pk,5, Pk,6, Pk,7, Pk,8}).

The function ultrafast(·) is not specified so far but will be discussed in the next two small sec-
tions. First based on the occurrence of the preamble symbols and second, based on chip errors.

Ultra-fast Link Quality Estimation based on the Occurrence of Preambles

In Section 4.1 we obtained a correlation between the occurred number of preamble symbols |S|
per packet and the PDR. The metric mapping function ultrafast(·) is defined as ultrafast(·) :=
count(|·|). Where the function count(·) simply maps the number of decoded preamble symbols
to the PDR, and |·| denotes the cardinality. Note that preambles who could not be detected due
to transmission errors (e.g. P1,2, P1,3, P1,4 of the first packet or P2,2, P2,5 of the second packet)
are considered as empty sets and cannot be used in the estimation process.
According to the example in Figure 4.3 we can calculate the PDR based on the first packet as

PDR Preamble Count Ultra-fast, 1 = ultrafast({P1,1, P1,2, P1,3, P1,4, P1,5, P1,6, P1,7, P1,8}),

and therefore

PDR Preamble Count Ultra-fast, 1 = count(|{P1,1, P1,5, P1,6, P1,7, P1,8}|) = count(5).

For the second packet it follows

PDR Preamble Count Ultra-fast, 2 = ultrafast({P2,1, P2,2, P2,3, P2,4, P2,5, P2,6, P2,7, P2,8}),

and

30 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

Figure 4.4: Ultra-fast estimation: Correlation of the observed number of preamble symbols and
the packet delivery ratio for the cable, line-of-sight, non-line-of-sight, and the mobile scenario.

PDR Preamble Count Ultra-fast, 2 = count(|{P2,2, P2,3, P2,4, P2,6, P2,7, P2,8}|) = count(6).

Or more generally

PDR Preamble Count Ultra-fast, k = count(|Sk|).

The measured correlation of the four different scenarios are depicted in Figure 4.4. Note that
this curve shows a different shape compared to Figure 4.1(b). This es due to the modification of
the receiver chip error threshold that has been increased. The fit of the measured data points is
shown in Figure 4.5. In order to find a reasonable trade-off between the goodness of the fit and
the computational overhead, a 5th degree rational fit has been used for the approximation. The
mapping from the number of preamble symbols |Sk| to the respective PDR is

count(p) =
p0 p

5 + p1 p
4 + p2 p

3 + p3 p
2 + p4 p+ p5

p5 + q0 p
4 + q1 p

3 + q2 p
2 + q3 p+ q4

.

The polynomial coefficients can be found in Table C.1.

This type of LQE is later referred to as Preamble Count Ultra-fast.

Ultra-fast Link Quality Estimation based on Preamble Chip Errors

In the case of a ultra-fast link quality estimator based on chip errors the metric function
ultrafast(·) is defined arbitrary for the k-th received packet as

4.2. LINK QUALITY ESTIMATION 31

Figure 4.5: 5th degree rational fit for the ultra-fast LQE based on the number of preamble
symbols per packet.

PDR CEPPS Ultra-fast, k = ultrafast({Pk,1, Pk,2, Pk,3, Pk,4, Pk,5, Pk,6, Pk,7, Pk,8}) =

chiperror

(∑31
i=0

∑
j∈Sk (Pk,j [i]⊕ P [i])

|Sk|

)
.

Where Pk,j [i] is a row vector containing the 32 chips of the j-th received preamble symbol of the
k-th packet for i = 0, 1, 2, . . . , 31. P [i] denotes the know correct preamble symbol. Therefore the
error vector ek,j [i] of every received preamble symbol can be calculated as ek,j [i] = Pk,j [i]⊕P [i],
where ⊕ is the exclusive or and ek,j [i] = 1 if and only if the i-th chip is false. This becomes more
clear if we write this out for the first transmitted packet in our example:

PDR CEPPS Ultra-fast, 1 = ultrafast({P1,1, P1,2, P1,3, P1,4, P1,5, P1,6, P1,7, P,8}) =

chiperror

(∑31
i=0 (P1,1[i]⊕ P [i] + P1,5[i]⊕ P [i] + P1,6[i]⊕ P [i] + P1,7[i]⊕ P [i] + P1,8[i]⊕ P [i])

|{P1,1, P1,5, P1,6, P1,7, P1,8}|

)
.

With these definitions the input argument of chiperror(·) is simply the average chip errors per
preamble symbol of the considered preambles P1,1, P1,5, P1,6, P1,7, P1,8.

And in the same notation for the second packet the packet delivery ratio is calculated as

PDR CEPPS Ultra-fast, 2 = ultrafast({P2,1, P2,2, P2,3, P2,4, P2,5, P2,6, P2,7, P2,8}) =

32 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

Figure 4.6: Correlation of the observed chip errors per preamble symbol and the packet delivery
ratio for the cable, line-of-sight, non-line-of-sight, and the mobile scenario.

chiperror

(∑31
i=0 (P2,2[i]⊕ P [i] + P2,3[i]⊕ P [i] + P2,4[i]⊕ P [i] + P2,6[i]⊕ P [i] + P2,7[i]⊕ P [i] + P2,8[i]⊕ P [i])

|{P2,2, P2,3, P2,4, P2,6, P2,7, P2,8}|

)
.

To derive the mapping function of the chip error based LQE we need to fit the measured cor-
relation between the CEPPS and the PDR for all four link connections. Figure 4.6 shows this
curve. Because the correlation curve behaves like a simple polynomial, we approximated the
data points with a 5th degree polynomial,

chiperror(p) = p0 p
5 + p1 p

4 + p2 p
3 + p3 p

2 + p4 p+ p5.

Again the precise values of the polynomial coefficients can be looked up in Table C.2.
Figure 4.8 shows how the absolute estimation error of this LQE behaves as a function of time.

This type of LQE is later referred to as CEPPS Ultra-fast (Chip Error per Preamble Symbol
Ultra-fast).

Ultra-fast Link Quality Estimation based on Filtered and Weighted Average of
Preamble Chip Errors

This modification of the above introduced LQE is motivated to increase the stability of the
single metric ultra-fast LQE (see Figure 4.8). As the concept of this new statistical strategy
relies as well on the fast link quality estimation approach, we will explain it in detail in the next
section about fast link quality estimation. However the very first estimation of the link quality
PDR CEPPS FWA, 1, is the same as for CEPPS Ultra-fast. Therefore this estimator provides an
estimation with the same reaction time and in therefore categorized and listed here as ultra-fast

4.2. LINK QUALITY ESTIMATION 33

Figure 4.7: 5th degree rational fit for the ultra-fast LQE based on chip errors per preamble
symbol

LQE.

This type of LQE is later referred to as CEPPS FWA (Chip Error per Preamble Symbol Filtered
Weighted Average).

Ultra-fast Link Quality Estimation based on Estimator Variance

As we will see in Chapter 5, the chip error based LQEs have their worst performance at PDRs
of about 50% and their minimal errors towards 100% and 0%. Therefore it is assumed that the
variance of these estimators is symmetrically distributed around 50% and can thus be used as
well to estimate the PDR. For this purpose we analyzed the second moment of the mentioned chip
error based estimator. The correlation of this variance and the PDR is illustrated in Figure 4.9.
Note that based on this correlation characteristics it is not possible to map a fixed variance to
a unique PDR. From this perspective a case differentiation has to be done to decide whether
the estimation region is below the vertex and the dashed fit has to be used or the estimation
region is above the vertex and the solid line fit has to be used. This information is provided
by the estimation of the chip error based LQE. Note that variances exceeding the vertical limit
subtending the vertex cannot be allocated to any fit and are therefore in the estimation algorithm
not used.
After the reception of the preambles of the first packet, the metric function ultrafast(·) is defined
in this case as

ultrafast({P1,1, P1,2, P1,3, P1,4, P1,5, P1,6, P1,7, P,8}) := variance(var1),

where

34 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

Figure 4.8: Ultra-fast preamble chip error based estimator: Error tracking of the absolute esti-
mation over sequential estimations. This example is taken from the line-of-sight measurement
with a PDR of 50%. There the chip error based estimators show the largest error variance. To
increase the stability, i.e. to reduce the fluctuations we propose a filtered and weighted average
estimator modification.

var1 = Var

(
chiperror

(∑31
i=0 (P1,1[i]⊕ P [i])

|{P1,1}|

)
, . . . , chiperror

(∑31
i=0 (P1,8[i]⊕ P [i])

|{P1,8}|

))
,

and by inserting 1 for the cardinality of the one element sets we obtain

var1 = Var

(
chiperror

(
31∑
i=0

(P1,1[i]⊕ P [i])

)
, . . . , chiperror

(
31∑
i=0

(P1,8[i]⊕ P [i])

))
.

with Var(X) = E
[
(X − E[X])

2
]

where X is a random variable and has the mean E [X]. The

function variance(·) maps then finally var1 to the respective PDR according to Figure 4.9.
The final guess is then calculated as the mean of the first and second order estimation values.
If var1 exceeds the maximum value that can be used, the final link quality estimation is then
simply the first order estimation.
The extension of this approach to the k-th received packet is

ultrafast({Pk,1, Pk,2, Pk,3, Pk,4, Pk,5, Pk,6, Pk,7, Pk,8}) = variance(vark),

with

vark = Var

(
chiperror

(
31∑
i=0

(Pk,1[i]⊕ P [i])

)
, . . . , chiperror

(
31∑
i=0

(Pk,maxj∈Sk [i]⊕ P [i])

))
.

4.2. LINK QUALITY ESTIMATION 35

Figure 4.9: Correlation of the variance according to the chip error based LQE and the packet
delivery ratio. Because the merged two fitting curves don’t allow an unique mapping from a
fixed variance to a PDR, a case differentiation has to be done to know if the solid line fit or the
dashed line fit has to be used. This information is provided by the estimation of the chip error
based LQE. Is this estimation above the vertex of the two fits, the lower fit is used, if it is below
this value the upper fit is used. Note that variances exceeding the vertical limit subtending the
vertex cannot be allocated to any fit and can therefore not be used.

This type of LQE is later referred to as Variance Ultra-fast.

Hybrid ultra-fast Link Quality Estimation

In order to combine the different metrics to cope with the weaknesses of single metric LQEs,
we introduce an ultra-fast hybrid LQE based on the concepts of counting the preamble symbols
and on chip errors. The resulting estimation is simply the mean of the two estimators. This is
calculated as

PDR Hybrid Ultra-fast =
1

2
(PDR CEPPS Ultra-fast + PDR Preamble Count Ultra-fast).

This type of LQE is later referred to as Hybrid Ultra-fast.

4.2.2 Fast Link Quality Estimation

Figure 4.10 shows the mean absolute estimation error based on chiperror(·) as a function of the
number of considered preamble symbols. This motivates to develop a LQE, that analyzes even
more than eight preambles (as in the best case of CEPPS Ultra-fast) as the error still decreases

36 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

Figure 4.10: Line-of-sight link: Mean absolute estimation error based on chiperror(·) as a func-
tion of the number of considered preamble symbols. An increase of the estimation window
(number of preamble symbols) results in a smaller estimation error.

after eight symbols. Therefore for the fast LQE we will increase the observation window w to
obtain a LQE that is more accurate at the cost of the estimator reactivity.
To explain the concepts of the fast LQEs we rely again on the example of Figure 4.3.
As the ultra-fast estimator set his estimation window w to the preamble group of a packet,
no matter if there happened a successful synchronization after the last preamble. However
the rule of the fast LQEs is that they extend their observation window w until a packet got
successfully decoded. Therefore the PDR is estimated based on the received preambles P1,1,
P1,2,P1,3,P1,4,P1,5, P1,6, P1,7, P1,8 of the first packet and on the preambles of the second packet
P2,1,P2,2, P2,3, P2,4, P2,5,P2,6,P2,7,P2,8. It follows

P̂DR1 = fast({P1,1, P1,2, P1,3, P1,4, P1,5, P1,6, P1,7, P1,8, P2,1, P2,2, P2,3, P2,4, P2,5, P2,6, P2,7, P2,8}).

It is clear that the estimation window w converges to the one of the ultra-fast estimation window
for PDRs towards 100%. To keep the consistency of our before introduced notation let k denote
the k-th successfully decoded packet and let the set Sk be all decoded preamble symbols between
the k-th and the (k − 1)-th successfully decoded packet with the preamble numbering j of the
elements in Sk as j = 1, 2, . . . ,maxj ∈ Sk. This leads to

P̂DRk = fast({Pk,1, Pk,2, . . . , Pk,maxj∈Sk}).

Fast Link Quality Estimation based on the Occurrence of Preambles

As in the previous case of the ultra-fast estimation we define the metric mapping function fast(·)
as fast(·) := count(|·|). Note that this function count(·) differs from the one obtained in the
ultra-fast approach. This becomes clear if we consider the resulting correlation between the

4.2. LINK QUALITY ESTIMATION 37

Figure 4.11: Fast estimation: Correlation of the observed number of preamble symbols and the
packet delivery ratio for the cable, line-of-sight, non-line-of-sight, and the mobile scenario.

occurred numbers of preamble symbols and the PDR as shown in Figure 4.11. The mapping
function count(·) is shown in Figure 4.12 as a 5th degree rational approximation,

count(p) =
p0 p

5 + p1 p
4 + p2 p

3 + p3 p
2 + p4 p+ p5

p5 + q0 p
4 + q1 p

3 + q2 p
2 + q3 p+ q4

.

The values of the coefficients are appended in Table C.3.

The estimation of the PDR holds

PDR Preamble Count Fast, 1 = fast({P1,1, P1,5, P1,6, P1,7, P1,8, P2,2, P2,3, P2,4, P2,6, P2,7, P2,8}),

and thus

PDR Preamble Count Fast, 1 = count(|{P1,1, P1,5, P1,6, P1,7, P1,8, P2,2, P2,3, P2,4, P2,6, P2,7, P2,8}|)
= count(11).

Or more generally

PDR Preamble Count Fast, k = count(|Sk|).

This type of LQE is later referred to as Preamble Count Fast.

Fast Link Quality Estimation based on Preamble Chip Errors

In the case of the fast link quality estimation based on chip errors we do not need do define a new
metric function chiperror(·) because since we only average over a larger observation window w of

38 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

Figure 4.12: 5th degree rational fit for the fast LQE based on the number of preamble symbols
per packet.

preamble symbols. The correlation between the chip error and the PDR as depicted in Figure 4.7
does not change. With the extension of the notation of Sk to all preambles between to successful
packets and not restricted to a preamble group of one packet it holds

PDR CEPPS Fast, k = fast({Pk,1, Pk,2, . . . , Pk,maxj∈Sk}) =

chiperror

(∑31
i=0

∑
j∈Sk (Pk,j [i]⊕ P [i])

|Sk|

)

as well.

This type of LQE is later referred to as CEPPS Fast (Chip Error per Preamble Symbol Fast).

Fast Link Quality Estimation based on Estimator Variance

The concepts of the ultra-fast link quality estimation based on the variance apply in the same
way to the fast estimation. Again by Sk to all detected preambles between to successful packets,
it holds in the same way:

fast({Pk,1, Pk,2, . . . , Pk,maxj∈Sk}) = variance(vark),

where

vark = Var

(
chiperror

(
31∑
i=0

(Pk,1[i]⊕ P [i])

)
, . . . , chiperror

(
31∑
i=0

(Pk,maxj∈Sk [i]⊕ P [i])

))
.

4.2. LINK QUALITY ESTIMATION 39

again with Var(X) = E
[
(X − E[X])

2
]

where X is a random variable and has the mean E [X].

The function variance(·) maps then finally vark to the respective PDR according to Figure 4.9.

This type of LQE is later referred to as Variance Fast.

Ultra-fast Link Quality Estimation based on Filtered and Weighted Average of Chip
Errors

As mentioned in Section 4.2.1, we will discuss now the ultra-fast LQE that shows increased
stability. As discussed in section 2.1.1 about the fundamentals of link quality estimation, stability
is one of the key requirements of good LQE. It can be characterized by the variance of the mean.
A classical approach to increase stability is to weight the sequential link quality estimations in
form of a weighted moving average as shown in [9] for estimators based on packet statistics.
We will apply a similar approach in order to smooth consecutive estimations. For this reason
we perform a low pass filtering of the weighted average over a window w of consecutive link
estimations. Suppose Rk is the set of the past l = |Rk| estimations of the original CEPPS
fast estimator at the position k. Let further rk−l, rk−l+1, . . . , rk−2, rk−1 ∈ Rk be the past l
estimations. Then the weighted average wak over these recent l estimations at the position k is
calculated as

wak =

l∑
m=0

βmrk−m,

with the weighting factor β such that

l∑
m=0

βm = 1.

And it further holds

wak =

l∑
m=0

βm chiperror

(∑31
i=0

∑
j∈Sk (Pk−m,j [i]⊕ P [i])

|Sk−m|

)

Using this weighted average wak we compute now the output of the low pass filter fwak (filtered
weighted average) as

fwak = α fwak−1 + (1− α)

(
1

wak
− 1

)
,

where α ∈ [0, 1] controls the smoothness. A small factor α enables to give more importance to
current link behavior and vice versa.
Finally the k-th link quality estimation based on this statistical manipulations is obtained as

PDR CEPPS FWA, k =
1

1 + fwak
.

40 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

Estimator Input Window
(#Packets)

Cali-
bration

ETX packet statistics 10 No
WMEWMA packet statistics ≥ 10 No

Four-Bit hybrid ≥ 5 Yes

SNR signal strength 1 Yes

Preamble Count Fast Number of received preambles 1 Yes
Preamble Count Ultra-fast Number of received preambles 0.1 Yes

CEPF chip errors 1 Yes
CEPPS Fast chip errors 1 Yes
CEPPS Ultra-fast chip errors 0.1 Yes
CEPPS FWA chip errors ≥ 0.1 Yes

Hybrid Fast signal strength and chip errors 1 Yes
Hybrid Ultra-fast signal strength and chip errors 0.1 Yes

Table 4.1: Overview of different LQEs.

The benefits of more stability is illustrated in Figure 4.13. The three figures on the left side show
the estimation error of the originally implement CEPPS fast estimator for three different PDRs.
The respective figures on the right side show the resulting estimation error after filtering and
weighting the estimations for l = 6 and β0 = 0.3, β1 = 0.2, β2,...,6 = 0.1. With the parameter l
the estimation window can be changed in order to allow more or less estimator reactivity.

This type of LQE is later referred to as CEPPS FWA (Chip Error per Preamble Symbol Filtered
Weighted Average).

Hybrid fast Link Quality Estimation

Similarly to the ultra-fast estimation, the hybrid fast link quality estimation weights the esti-
mated PDR of the chip and preamble counting based estimators equally as

PDR Hybrid Fast =
1

2
(PDR CEPPS Fast + PDR Preamble Count Fast).

This type of LQE is later referred to as Hybrid Fast.

4.3 Jamming Detection Estimation

As it will become apparent in the performance evaluation of the various LQEs, the preamble
chip errors propose a very promising metric to estimate the link quality. This finding will be
exploit the design of the jamming detection estimation.
The basic idea is to monitor the link traffic and to check continuously two metrics. The first
metric we observe is the PDR at the receiver, simply recording how many packets arrive within
an observation window wo, with the resulting PDRo. The second metric are the preamble chip

errors within an estimation window we and the respective estimation of the PDR P̂DRe. It

4.3. JAMMING DETECTION ESTIMATION 41

should be clear that if the two windows wo and we are smaller then the coherence time of the
link it should hold PDRo ≈ P̂DRe. Apparently every estimator induces an estimation error and

therefore PDRo and P̂DRe cannot be set equal to each other. The average estimation error can

be calculated as
∣∣∣PDRo − P̂DRe∣∣∣.

Let’s now investigate the case if a jammer tries to prevent the communication by emitting
interference signals. In the case of the introduced reactive jammer that destroys the two symbols
of the start of frame delimiter (SFD), thus non of the sent packets arrive at the receiver because

of the synchronization errors. This is effecting the two expressions PDRo and P̂DRe in the way
that PDRo will tend to zero (as implemented in the continuous reactive jammer - or to 6% as in

the case of the random reactive jammer) but P̂DRe should not be affected because the preamble

symbols are unaffected by the jammer. This occurring discrepancy between PDRo and P̂DRe,

namely ∆ =
∣∣∣PDRo − P̂DRe∣∣∣ if the jammer is active will be exploit for the jamming detection.

The challenge is now to find a suitable error threshold ε for the decision rule if the jammer is

active or not. If the difference between PDRo and P̂DRe exceeds ε, it is assumed that a jammer
is active.
Basically two design goals try to optimize ε. On the one hand side the false positives rate that
tries to push ε to a large value and on the other hand the false negatives rate which tries to
minimize ε. It is clear that ε is optimized for a PDR of 100% to a much larger value than for

instance for a PDR of 10%. Therefore we introduce an error threshold ε that depends on P̂DRe.
Further let’s define the null hypothesis H0 and the alternative hypothesis H1 as

H0 : ”Normal transmission”,

H1 : ”Jammed transmission”.

The sum Λ of probabilities of the the false positives and false negatives can then be calculated
as

Λ = P (accept H0 | H1 is valid) + P (reject H0 | H1 is valid).

In order to obtain the dependency of ε on P̂DRe under the condition that Λ has to be minimized,
we sweeped for every value of PDR over ε ∈ [0, 1]. The optimized ε shows a linear dependency,
i.e.

argmin
ε=f(P̂DRe)

Λ =
1

2
P̂DRe.

This dependency of ε = 1
2 P̂DRe supports as well theoretical reflections, where the error thresh-

old is assumed to lie in the geometric center line of the decision region.

The estimator rule can then be stated under the hypotheses H0 and H1 for ∆ =
∣∣∣PDRo − P̂DRe∣∣∣

as

accept H0, if ∆ > ε,

reject H0, if ∆ < ε,

42 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

and for ∆ = ε a random guess is performed.

Let’s assume Sk is the set of all detected preambles during the estimation window we with the
preamble numbering j of the elements in Sk as j = 1, 2, . . . ,maxj ∈ Sk.

Therefore P̂DRe can be calculated as the k-th estimation

P̂DRe,k = chiperror

(∑31
i=0

∑
j∈Sk (Pk,j [i]⊕ P [i])

|Sk|

)
,

and it follows for the jamming detection estimation rule for the k-th decision

accept H0, if

∣∣∣∣∣PDRo − chiperror
(∑31

i=0

∑
j∈Sk (Pk,j [i]⊕ P [i])

|Sk|

)∣∣∣∣∣ > ε,

reject H0, if

∣∣∣∣∣PDRo − chiperror
(∑31

i=0

∑
j∈Sk (Pk,j [i]⊕ P [i])

|Sk|

)∣∣∣∣∣ < ε.

Clearly, the function chiperror(·) needs not to be defined again, since the mapping from a value
of chip error to the respective guess of the PDR is still valid.

4.3. JAMMING DETECTION ESTIMATION 43

(a) PDR = 20%: Tracking of the absolute estima-
tion error of the preamble chip error based LQE.

(b) PDR = 20%: Stability improvement of LQE

(a) due to filtering and weighting moving average.

(c) PDR = 50%: Tracking of the absolute estima-
tion error of the preamble chip error based LQE.

(d) PDR = 50%: Stability improvement of LQE

(c) due to filtering and weighting moving average.

(e) PDR = 80%: Tracking of the absolute estima-
tion error of the preamble chip error based LQE.

(f) PDR = 80%: Stability improvement of LQE (e)
due to filtering and weighting moving average.

Figure 4.13: Tracking of the absolute estimation error of the preamble chip error based LQE
in the line-of-sight setup. The figures (a),(c), and (e) on the left side show for the PDR of
20%, 50%, and 80% the estimation error of the originally CEPPS fast estimator on consecutive
estimations within 0.5 seconds. The stability improvement of the CEPPS FWA (filtered and
weighted average) estimator is shown on the right side for the same PDRs. Note as well how
the estimation window shrinks for good quality links (i.e. from top down over the sub figures).
This is due to the fact that the fast estimator estimates the channel after the reception of a
successfully decoded packet - this event is more probable for greater link qualities. Further note
that the mean absolute estimation error (dashed lines) is not the mean with respect to the first
0.5 seconds but on the entire measurement run.

44 CHAPTER 4. ESTIMATOR DESIGN BASED ON PREAMBLE SYMBOLS

5
Results

In this chapter we show how the designed LQEs perform under different link conditions. To assess
the performance of the LQEs, we compare them to competitive estimators from related works.
The LQEs that were used for the comparison are described in the next section. The last two
sections show the performance of the LQEs with respect to their estimation error, respectively
to the false positive and false negative rates.

5.1 Selection of Competitive Estimators

To provide comparisons to most diverse LQEs we chose estimators based on packet statistics,
signal strength, hybrid, and chip errors.
In the case of the packet statistic based LQEs we implement two different estimators, ETX and
WMEWMA. For the signal strength LQE we chose the best performing SNR based estimator.
Four-Bit was elected from the hybrid estimators and for the error based LQE, CEPF that
considers chip errors in the payload.

1. ETX [26]: ETX serves as a standard packet statistic based LQE that is widely used in
WSNs. By sending broadcast probes at an average period τ within a window of w seconds
each node can estimate the probe reception rate. The PDR can then be calculated as

PDR ETX =
probes(t− w, t)

w/τ
,

where probes(t− w, t) is the number of probe packets received during the window w, and
w/τ is the number of probes that should have been received. We set τ = 1 second and
w = 10 seconds as proposed in [26].

2. WMEWMA [9]: Compared to ETX, WMEWMA is statistically more sophisticated and is

46 CHAPTER 5. RESULTS

an important LQE that encounters stability and reactivity by using low pass filtering and
calculating weighted moving averages over sequential estimations. It is calculated as

PDR WMEWMA, i = α PDR WMEWMA, i−1 + (1− α) WMEWMA i.

As proposed by Baccour et at. in [19] we set the smoothing factor α = 0.6 and calculate
the instantaneous PDR over a window size of five received packets to obtain WMEWMA.

3. SNR [11]: This single metric LQE represents the group of the fast signal strength based
LQE as it is assumed to perform better than RSSI [7]. Here a predefined correlation
between the average signal strength of the packet and the PDR is used to estimate the link
quality. This correlation is approximated by a linear fit and we found for our testbed the
parameters:

PDR SNR = 0.12 dSNR− 1.7,

where dSNR is the average signal power of a packet divided by the noise floor around the
packet.

4. Four-Bit [22]: Four-Bit is closely related to WMEWMA but applies a filtering step more.
For unicast transmissions the value FourBit can be calculated as

FourBit i = α FourBit i−1 + (1− α)

(
1

WMEWMA i
− 1

)
,

and finally the PDR is obtained as

PDR Four-Bit, i =
1

1 + FourBit i
.

5. CEPF [5]: This estimator considers chip errors in the whole payload. In our testbed the
payload consists of 26 symbols. As proposed in [5] the correlation between the chip errors
and the PDR was approximated by a linear fit. In this case the PDR is calculated as

PDR CEPF = 1− CEPS

Chiplimit
,

where CEPS are the chip errors per symbol and Chiplimit was set to 3.44, as obtained in
the linear fit in our measurements. For CEPS > Chiplimit, PDR CEPF is set to zero.

5.2 Evaluation Methodology

To ensure an efficient and meaningful evaluation, we recorded the entire transmitted packets
down to chip level. This logged data were analyzed in Matlab scrips. This allows the perfor-
mance evaluation of all LQEs on the same tracked data and it doesn’t arise the problem of
computation bottlenecks due to simultaneous real time evaluations of several estimators. Fur-
ther no measurement needs to be reproduced because the logged data are stored and anytime
available. Furthermore the observation window to calculate the effective PDR during the mea-
surement can be set to ± 100 sent packets and half the window considers future values and

5.3. PERFORMANCE OF LINK QUALITY ESTIMATION 47

the other half of the window past values. An instantaneous link quality estimation of a tested
estimator lies therefore in the middle of the estimation window and provides best accuracy of the
ground truth. If we had to calculate the real PDR in real time, only past transmissions could
be analyzed and the instantaneous estimation of a LQE lies then at the end of the estimation
interval of the real PDR.
The applied sliding observation window w of ± 100 sent packets meets the requirement to be
smaller than the coherence time and meets the discussed conditions to accurately assess the
ground truth of the PDR since this value was not changing considerably anymore for larger w.
One measurement run for a discrete PDR value of one scenario consisted 40’000 transmitted
packets of 13 bytes payload. The absolute estimation error of a LQE is simply calculated as the
absolute value of the difference between the observed PDR and the estimated PDR.

5.3 Performance of Link Quality Estimation

We show in the following subsections for every scenario the performance of the mentioned LQEs
with respect to the mean absolute estimation error in the whole range of PDR.
Further for every scenario a ranking of the estimators is provided with the mean absolute es-
timation error over all different link qualities and the respective maximal obtained estimation
error. Moreover we summarize the LQE performances in an average case where the estimator
performances are weighted over the measured scenarios. Finally the convergence of the estima-
tion error as a function of time is shown for selected estimators.
A detailed evaluation of all LQE can be found in Appendix D.

5.3.1 Cable Scenario

The results of the attenuated cable scenario are depicted in Figure 5.1. The cable scenario is
characterized as a very stable link because unpredictable and uncertain factors (e.g. small scale
fading) as observed for wireless links do not occur. Therefore this should lead to suitable link
conditions for packet statistics estimators. This is confirmed by our measurements: These LQEs
perform under wireless link conditions in average 67% worse than with a cable link. The best
performance shows Four-Bit as a double filtered packet statistic based estimator with an abso-
lute estimation error of 3.5%.
Remarkable is the performance of CEPPS FWA that shows smaller errors than packet statistic
approaches as WMEWMA or ETX. Nevertheless the packet statistic estimators are implemented
with realistic parameters that are widely used in related works, it has to be mentioned that the
performance heavily depends on these values.
SNR is supposed to show promising results as well due to no interference. With an average es-
timator error of 7.9%, SNR ranked as the 4-th best estimator. Further shows CEPPS Ultra-fast
compared to CEPPS Fast a 26% larger error. This is due to the fact, that the slower implemen-
tation considers more preamble symbols and can rely on more statistically relevant information
as showed in Figure 4.10. The hybrid approaches, Hybrid Fast and Hybrid Ultra-fast are not
able to outperform one of the single metrics they’re based on. Obviously this is due to the bad
performance of the estimators that only count the preambles: Preamble Count Fast and Pream-
ble Count Ultra-fast. The slower estimator again is able to reduce the error of the ultra-fast
implementation about 37%.
All our designed estimators show arch-shaped curves with vanishing errors towards the PDRs of
100% and 0%. This shape is assumed if we consider Figure 4.9 at least for the chip error based

48 CHAPTER 5. RESULTS

(a) Evaluation of the LQE with respect to the absolute estimation error.

(b) Average and maximum estimation error over all link qualities

Figure 5.1: Cable Scenario: (a) Performance evaluation with respect to the mean absolute
estimation error and (b) shows the average and maximum estimation error over all link qualities.

5.3. PERFORMANCE OF LINK QUALITY ESTIMATION 49

approaches, where the maximum variance is reached around PDRs of 50% and almost very small
variances towards 100% and 0%.
The shapes of CEPF and SNR don’t show this behavior. This can be explained that the fit
for the correlation approximation between the respective metric and the PDR is a linear fit.
Therefore some PDR regions over all different scenarios that are not perfectly covered by this
linear fit cause irregularly errors potentially spread somewhere in the entire interval of PDRs.
This statement can be extended to all scenarios because there is always used just one universal
fit for all scenarios.
Note that the evaluation of the variance based LQEs are only shown for the cable scenario in Fig-
ure 5.1(a). The additional information of the second moment (LQE Variance Fast and Variance
Ultra-fast) does not lead to a smaller estimation error compared the the respective single metric
first moment LQE CEPPS Fast and CEPPS Ultra-fast. Especially in the critical decision region
around a PDR of 50% (Figure 4.9) obviously a lot of confusions occur mistaking the correct fit
and therefore induce relatively large errors. Further the decision rule with very specific values
(i.e. the PDR threshold of 0.4542) and the unhomogeneous correlation between the variance of
the estimator and the PDR suggest that this LQE is sensitive to parameter settings (e.g. PDR
threshold of 0.4542, or the concatenation of two high order rational fits) and not reliable enough
for a versatile estimator. Since only the correlation in the cable scenario is used for this fit (and
already downgrade the results), there is no benefit in extending the approach to all four scenarios.
An approximation of the correlation based on all setup points would induce even more errors.
For that reason it is no longer considered for the remaining scenarios.

5.3.2 Line-of-Sight Scenario

Turning to the first wireless scenario with a line-of-sight link component, we obtain a new order
of the LQE with respect to the performance, see Figure 5.2. CEPPS FWA shows the smallest
error of 4.7%. Since the link can still be assumed as static, the packet statistic based approaches
should perform further on well. The ranking of these LQE reflect this as the 2nd, 3rd and the 4th
best estimator are Four-Bit, WMEWMA and ETX with estimation errors below 10%. Again
the hybrid implementations don’t show improvements compared to both of the single metric
implementations. CEPF still does not show superior results compared to the preamble chip
error based estimators.

5.3.3 Non-Line-of-Sight Scenario

Compared to the line-of-sight scenario, the results in the non-line-of-sight setup don’t reveal
significant differences. The ranking is almost the same as well as the mean absolute estimation
errors. Obviously the lack of the line-of-sight component seems not to influence the performance
of the packet statistic and chip error based approaches. This results are shown in Figure 5.3.

5.3.4 Mobile Scenario

To measure enough data within a coherence time Tc we set the receiver speed to a maximum
value of v = 1 cm/s in order to meet the requirements derived in Section 2.1.1. This results in a
coherence time Tc of about 4 seconds in our setup. This time with our predefined sending data
rate according to the IEEE 802.15.4 standard of 250kbit/s [2] in approximately 500 packets per

50 CHAPTER 5. RESULTS

(a) Evaluation of the LQE with respect to the absolute estimation error.

(b) Average and maximum estimation error over all link qualities

Figure 5.2: Line-of-sight scenario: (a) Performance evaluation with respect to the mean absolute
estimation error and (b) shows the average and maximum estimation error over all link qualities.

5.3. PERFORMANCE OF LINK QUALITY ESTIMATION 51

(a) Evaluation of the LQE with respect to the absolute estimation error.

(b) Average and maximum estimation error over all link qualities

Figure 5.3: Non-line-of-sight scenario: (a) Performance evaluation with respect to the mean
absolute estimation error and (b) shows the average and maximum estimation error over all link
qualities.

52 CHAPTER 5. RESULTS

Tc for a poor link quality of a PDR = 10%. This can be considered as statistically significant
with a converged mean.

The mobile scenario realizes a non static channel behavior. This means that a good performing
estimator needs to be reactive in order to take short term variations of the channel quality into
account. Therefore it is assumed that the packet statistic based LQE are not able to capture such
changes and are too strong relying on their estimation history and fail in dynamic setups. This
assumption is confirmed if we consider the results of the mobile scenario in Figure 5.8. Except
for Preamble Count Ultra-fast, ETX, Four-Bit, and WMEWMA show the worst performance.
Compared to the static scenarios, they have in average an almost 300% estimation error increase
with mean absolute estimation errors between 23% and 26%. Whereas the preamble chip error
based LQE only show a slight increase in the error performance compared to the static setups
of 17%. CEPPS Ultra-fast actually only increases his estimation error of 8.2%, what expresses
the high reactivity of this estimator since the link quality is estimated on a per packet level.
Again as in all wireless setups, CEPPS FWA is the leader of all LQEs with an mean absolute
estimation error of 5.7%. Despite the weighted average over the last six estimations at the cost
of reactivity, this LQE is still reactive enough to beat all the other estimators. Further it has
to be considered that even this estimator weights over an estimation window much larger than
CEPPS Ultra-fast and CEPPS Fast, this estimation window remains small (compared to the
coherence time) because the sequential estimations are as well almost on a per packet level.
Also Hybrid Fast beats the first time his single metric estimator based on chip errors by a narrow
margin of 5% less error. After the preamble chip error based LQE CEPF and SNR perform as
well better than the packet statistics with a mean estimator error of 19.7% and 20.1%.

5.3.5 Average Case

Normally in a real scenario we are not obtaining link conditions as cable connection and wireless
line-of-sight at the same time. This average case tries to encounter a potentially real environment.
Here we suppose that in half of the time the nodes are moving and in the remaining time there
exists a static setup with no movements. Further half of the time exists a line-of-sight path
and the other half the direct component between sender and receiver is blocked. These results
are shown in Figure 5.5. Again the leading estimator CEPPS FWA shows an average absolute
estimation error of 5.2% followed by Hybrid Fast, CEPPS Fast with errors of 12.9% and 13.0%.
The packet statistic based estimators perform in this average case are characterized by large
maximum estimation error that occur during the mobility of the nodes.

5.3.6 Error Convergence

To illustrate the behavior of the estimation error convergence of the different LQEs a typical
example of the line-of-sight scenario with a PDR of 50% is depicted in Figure 5.6. The subfigures
(a), (b), and (c) show how the error of the fast estimators shrink within the first couple of ms
after the start of a transmission. The huge difference in the speed of the convergence can be
seen in subfigure (d) where e.g. ETX needs 10 seconds to reach his converged estimation error.
Note that the time needed for an update (a step in the plot) of the chip error based and signal
strength based LQEs depend on the PDR. As for a higher PDR the expected time for a successful
packet reception decreases, coincidentally the respective estimation times shrink as well. The
opposite happens if the PDR gets poor, the average waiting time for a packet reception increases.
The only estimators that don’t rely on the event of a successful packet reception is the CEPPS

5.3. PERFORMANCE OF LINK QUALITY ESTIMATION 53

(a) Evaluation of the LQE with respect to the absolute estimation error.

(b) Average and maximum estimation error over all link qualities

Figure 5.4: Mobile scenario: (a) Performance evaluation with respect to the mean absolute
estimation error and (b) shows the average and maximum estimation error over all link qualities.

54 CHAPTER 5. RESULTS

Figure 5.5: Average Case: Evaluation of the LQE with respect to the absolute estimation error.
In this case we assumed that in 50% of the time, the nodes are moving, while in the other 50%
the nodes are static with half the time line-of-sight and half the time non-line-of-sight conditions.

Ultra-fast (and the CEPPS FWA), since the probability is very high that even for bad links some
preambles are successfully decoded per sent packet.

5.3.7 Discussion

With the evaluated four experimental scenarios we can confirm the findings from related works
concerning the performance of various LQEs:

1. Signal Power based: The considered estimator SNR provides fast estimations but with an
average estimation error over all scenarios of 20.6%, this LQE lacks accuracy. However
they are suitable for a rough link quality classification into good or bad.

2. Packet Statistic based: ETX, WMEWMA, and Four-Bit show small estimation errors in
stable link environments as cable, or static wireless links (errors < 10%). But due to the
fact that they heavily depend on a large observation window of the past transmissions,
they fail in mobile network settings (errors > 23%).

3. Payload Chip Error based: CEPF is suitable for mobile environments because this LQE
shows approximately the same performance as in the static setups (± 7%). In mobile
settings, CEPF outperforms all packet statistic and signal based LQE, but with an average
estimation error of 19.7% CEPF cannot compete with the the hybrid and preamble chip
error based estimators (e.g. error of CEPPS FWA < 6%).

4. Preamble Chip Error based: This LQEs provide very promising performances in all scenar-
ios. CEPPS WMA shows the best performance over all scenarios with an average estimation
error of 5.0%. Because of their very small estimation window they are extremely suitable

5.3. PERFORMANCE OF LINK QUALITY ESTIMATION 55

(a) CEPPS Ultra-fast estimates the link quality af-
ter the reception of the first preamble group. This
leads to an average estimation time of 0.26 ms. In
the case of the CEPPS Fast estimator that waits
until a successful packet reception, the estimation
time is 0.72 ms.

(b) CEPF and SNR are based in the chip errors
in the payload, respective the average SNR in the
payload. They estimate as well after a packet re-
ception and are therefore estimating on the same
packet as CEPPS Fast. They have an average es-
timation time of 1.46 ms. The estimation time dif-
ference of 1.46 ms - 0.72 ms = 0.74 ms compared
to CEPPS Fast is due to the time that laps away
until the last symbol of the payload is decoded.

(c) ETX needs to wait for 1 second until the recep-
tion of the first probe packet. Therefore the abso-
lute estimation error during the first second is 0.5.
CEPPS FWA makes his first estimation after the
reception after the first preamble group similarly as
CEPPS Ultra-fast. After the successful reception
of the first packet the second estimation is further
updated in the same way as CEPPS Fast after 0.72
ms. Then it further updates the estimation accord-
ing to the weighting and filtering rules after every
packet reception in intervals of 2.12 ms until 13.54
ms when the steady state is reached.

(d) This figure illustrates on a larger time scale up
to 12 seconds how the estimation error of ETX de-
creases after every second due to the sent probe
packets. Because ETX considers an estimation
window of 10 seconds, the error converges after this
amount of time.

Figure 5.6: Example of the estimation error convergence of the LQEs: ETX, SNR, CEPPS Fast
and CEPPS Ultra-fast, CEPF, and CEPPS FWA. Figures (a),(b), and (c) show how the absolute
estimation error converges within the first 14 ms as in the example of the line-of-sight scenario
for a PDR of 50%. Figures (d) illustrates the convergence on a larger scale in the first 12 seconds
of a transmission of the same setup. If there is no estimation available then the error is assumed
to be 0.5, i.e. a random guess.

56 CHAPTER 5. RESULTS

for mobile settings, where they outperform all the other LQEs. But also in the static wire-
less setups consistently they show better performances as CEPF or SNR. The benefits of
analyzing the preamble symbols becomes clear if we compare CEPF and CEPPS Ultra-fast.
CEPPS Ultra-fast has an estimation error 28.2% less over all scenarios than CEPF while
only maximum eight symbols are considered compared to CEPF that analyzes the whole
payload, i.e. 26 symbols.

5. Preamble Counting based: The single metric LQE as Preamble Count Fast and Preamble
Count Ultra-fast are very simple estimation approach since the estimation rule is only
based on counting the received preamble symbols. However with an average estimation
error over all scenarios of 22.2% and 36.4% for the fast and the ultra-fast implementations,
the clearly fail due to estimation accuracy. One can extract advantages from these LQEs
if an extremely simple estimation rule is needed and only distinctions from very poor and
perfect links are needed.

6. Hybrid (4.&5.) based: The hybrid approaches don’t show the desired effect of a superior
performance of the respective single metric LQEs. This is due to the rather bad performance
of the single metric LQEs Preamble Count Fast and Preamble Count Ultra-fast. Only in
the mobile setting Hybrid Fast slightly outperforms CEPPS Fast.

7. Estimator Variance based: As already mentioned in the section about the cable scenario,
Variance Ultra-fast and Variance Fast don’t show a performance improvement compared to
CEPPS Fast and CEPPS Ultra-fast. Since the correlation fit based only on the cable data
points don’t even show benefits, the approach was not extended to all four scenarios since
the additional error caused by the more imprecise fit would worsen the absolute estimation
error even more.

5.4. PERFORMANCE OF JAMMING DETECTION ESTIMATION 57

Preambles SFD Frame Length MAC Protocol Data Unit

Receiver Sender

Jammer

(a)

(b)

(c)

Figure 5.7: Jamming Scenario: A transmitted packet from the sender (a) is reactively jammed (b)
on the start of frame delimiter (SFD) and prevents the receiver to successfully decode the packet.
The sole information the receiver detects are the preamble symbols - then the synchronization
fails due to the corrupted SFD and the receiver is not able to start decoding the frame length
and the MAC Protocol Data Unit.

5.4 Performance of Jamming Detection Estimation

For the performance evaluation of the continuous reactive jammer and the random reactive
jammer we set the observation window wo to 100 packets and the estimation window we to 10
packets. This relatively small we allows to detect changes in the operation of a jammer (currently
active or sleeping) within approximately 10 sent packets.
To explore the performance of the designed jamming detection estimation over all link qualities,
we adapted the transmit power and sent for a specific PDR 10’000 packets that were analyzed
to obtain the false positive and false negative rates:

false negatives = P (”Guess Jamming off” | ”Jamming on”)

false positives = P (”Guess Jamming on” | ”Jamming off”)

The jamming scenario is illustrated in Figure 5.7 where a sent packet is reactively jammed on
the SFD (start of frame delimiter) and prevents the receiver to successfully decode the packet.
The sole information of the packet that reaches the receiver are the uncorrupted symbols of the
preamble sequence.
To gain insight of the impact of the two different jammers, Figure 5.9 shows the affected PDRs.
Subfigure (a) shows the effect of the random reactive jammer. The diagonal cloud (dark points)
shows the measured PDRs when the jammer was turned off, i.e. a normal transmission. The
dark small curve in the middle of this cloud belongs to the already in the link quality estimation
measured correlation between the preamble chip errors and the PDR. As expected if the trans-
mission is not affected by the jammer, the points are spread around this correlation curve. If
the random reactive jammer is active, the position of these points will change. The light grayish
points that amount to the horizontal cloud just above the horizontal axis show the affected PDRs.
As the reactive jammer does not destroy every packet, we still obtain PDR up to 20%. This
observation changes in the subfigure (b) where the situation for the continuous reactive jammer
is depicted. This jammer corrupts every packet and if the jammer is turned on the PDRs tend
to zero, i.e. the observed PDR points coextensive with the horizontal axis. The diagonal could
again stands for the measured correlation points if the jammer was sleeping. It is obvious that

58 CHAPTER 5. RESULTS

(a) Random Reactive Jamming: Comparison of the

measured PDRs if there is no Jamming (diagonal
cloud) and if the transmission is jammed by a ran-
dom reactive jammer (horizontal could on the bot-
tom).

(b) Continuous Reactive Jamming: Comparison of

the measured PDRs with no Jamming (diagonal
cloud) and with continuous reactive jamming (line
on the bottom belonging to PDR = 0%)

Figure 5.8: Comparison of measured PDRs. The random reactive jammer in (a) and the contin-
uous reactive jammer (b). The respective diagonal cloud shows the PDR distribution without
any jamming

a jamming detector will struggle more in the case of the more sophisticated random reactive
jammer, because the clouds tend to overlap for poor link qualities below a PDR of 15% and the
points cannot dedicated clearly to the cases where the jammer was turned on or was sleeping.
To obtain the performance of these two jamming scenarios we measured the false positives and
false negatives as depicted in Figure 5.9. All the evaluated curves show error probabilities below
5% from perfect links to PDR of 50%. Below PDRs of 40% the sophisticated random reactive
jammer causes false negatives over 10% and constantly increasing for worse links. The false
negatives of the continuous reactive jammer show smaller error probabilities that exceed 10%
for PDRs below 20%. The false positives rate for both jammers stays as well for good links very
small and exceeds the error threshold of 10% for PDR below 35% and then increases as well for
worse link qualities.
This general observation of increasing false positive and false negative rates in both jamming
scenarios is due to the fact that the measured PDRs if the jammer was active or turned off are
overlapping. A PDR obtained in poor link environments can hardly be assigned to a jammed
poor link quality situation or a ordinary poor link quality. But it has to be considered that the
benefit in detecting jammers in poor link qualities conditions is not that crucial because the data
flow is maybe anyway rerouted around this link. For good links with PDRs > 50%, an accurate
jamming detection is more valuable. In this region even for the sophisticated random reactive
jammer shows no error rates below 10%. For PDRs > 58% even below 5%.
To the best of our knowledge there is no work known so far that can provide a jamming detection
in our two proposed reactive jammer scenarios where only the transmission of the SFD is de-
stroyed. In the work of Strasser et al. [1] they do not present their evaluation of the false positives
and the false negatives over the whole range of PDRs. This error rates are only presented for
a strong and a weak link (not revealing the respective PDRs) for the three different restrictions
they impose. They obtain for these two links a false positive rate of 0% and a false negative rate
for the strong link between 0% and 15.1% (depending on how many bits were jammed). And
for weak links between 14.8% for two jammed bits and 0% for more than 16 jammed bits. Note

5.4. PERFORMANCE OF JAMMING DETECTION ESTIMATION 59

Figure 5.9: Performance evaluation of the random and the continuous reactive jammer with
respect to the false positives and false negatives rate. The false positives are not affected by the
jamming type.

that the performance comparison of the work in [1] and our evaluation have to be considered
carefully because the results presented of Strasser et al. belong to setups that suffer from sever
restrictions as discussed in Chapter 2. The situation proposed in this work is more general and
imposes no restrictions. The jamming estimation approach in [1] would not work in our jamming
scenario.
A further approach could be to analyze the signal strength in the preamble symbols instead
of the chip errors. This approach would then work similarly as presented here but relying on
a SNR-PDR correlation curve instead of a CEPPS-PDR calibration. Eventually affecting the
performance of the estimator with respect to false positive and false negative rates is the ability
for an accurate link quality estimation. But as shown in this work and discussed in several other
studies [5, 19,20] these LQEs do not provide accurate estimations.

60 CHAPTER 5. RESULTS

6
Conclusions and Outlook

6.1 Conclusions

In this thesis we explored experimentally the performance of different LQEs considering various
properties of preamble symbols. Further we showed their benefits in a jamming detection sce-
nario.
With a software defined radio based implementation of IEEE 802.15.4 we analyzed chip errors,
the number of received preambles, the variance of the chip error based LQEs, and hybrid ap-
proaches of the stated estimators. We showed that chip errors in the preamble symbols serve as
a good indicator to predict a link’s PDR.
As our best performing estimator we defined CEPPS FWA, a chip error based estimator that
weights and filters sequential estimations on a per-packet level. Our LQE proved to be three
times faster than state-of-the-art rapid estimators as CEPF and more accurate than other LQEs
under different wireless channel conditions as mobile, line-of-sight, or non-line-of-sight links. In
average CEPPS FWA shows half the absolute estimation error (5%) of the best performing
packet statics based LQE and four times less error than the signal strength and the payload chip
error based estimators. Especially in dynamic environments like mobile scenarios, our ultra-fast
preamble chip error based LQE is particularly advantageous due to the ability to match up to the
fast changing link qualities. CEPPS FWA fills the gap of an universal LQE that offers superior
performance under different wireless link conditions.
We further proposed a novel approach to detect sophisticated reactive jamming attacks that
target the start of frame delimiter (SFD) during a packet transmission. Analyzing chip errors
in the synchronization header of the physical layer allows to predict the link quality before the
synchronization between sender and receiver fails due to the jamming attack. This undistorted
estimation of the link quality is then compared to the observed PDR at the receiver side that is
affected by the jammer. This resulting discrepancy in case the jammer was active is explored to
make a decision whether the packets were jammed or not.
We showed that we can detect the two different jammer attack approaches (continuous and ran-

62 CHAPTER 6. CONCLUSIONS AND OUTLOOK

dom) with a precision above 90% for PDRs > 40%. For moderate and good links with a PDR >
60% we reach a decisional accuracy above 97.3%. This novel approach relying on preamble chip
errors offers high detection rates of reactive jammers for moderate and good links.

6.2 Outlook

Using software defined radio related to new approaches in link quality estimation and jamming
detection turned out to be a promising approach to gain insight into the channel behavior based
on real measurements. Interesting next steps would be to integrate the ZigBee implementation
on top of the IEEE 802.15.4 standard to determine the benefits of the new designed LQEs in real
applications and moreover in ad hoc network, opportunistic networks, or vehicular networks.
More specific our proposed LQE CEPPS FWA could be further developed in the sense of an
adaptive estimation window. This window would then adapt to the current coherence time of
the channel. Therefore the link quality would be estimated based on a maximum amount of
information provided over a time where the channel is supposed to be constant. This would lead
to more accurate link quality estimations in static scenarios, where the estimation time would be
rather large. Whereas in dynamic setting as mobile environment the estimation window would
shrink in order to capture the fast changing behavior of the link. The coherence time could
be approximated by the approach of CEPPS Ultra-fast, where consecutive averaged estimations
capture changes on a per-packet level and allow an ultra-fast reaction time on link quality
changes.
The reactive jamming detection estimator could be extended to a two metric estimator. In
addition to the preamble chip errors, the SNR could be determined. Especially in the poor
performing region for bad link qualities, the single-metric approach could benefit from the second
metric. Because in general the jammer will increase the received signal strength in case of bad
links significantly. This could be exploit to reach better jamming detection rates for bad link
qualities.

A
CD-ROM Content

Below there is a list of the files provided in the CD-ROM.
The folder Master Thesis Report contains the pdf of this report. The folder Adapted UCLA
ZigBee Versions includes the adapted source code of the UCLA ZigBee implementation of [4].
It embodies the sender and the receiver side of the initial experiments and the versions of the
scenario measurements. In the GNU Radio 3.2.2 Source folder you find the openly available
GNU Radio software platform used in this thesis. The LaTeX Source folder provides you with
the necessary source files of the report.
Matlab was used to analyze and extract information out of the log files generated by the software
defined radio implementation. The Matlab Source folder contains the Matlab functions used to
analyze and evaluate the .txt files.

64 APPENDIX A. CD-ROM CONTENT

It follows the content of the CD-ROM provided
in addition to the document:

- Master Thesis Report
|-- MaterThesis.pdf

- Adapted UCLA ZigBee Versions
|-- gr_quadrature_demod adaptions
|-- ZigBee_Receiver
|-- ZigBee_Sender

- GNU Radio 3.2.2 Source
|-- gnuradio-3.2.2.zip

- LaTeX Source
|-- Thesis

- Matlab Source
|-- scenario data
|
|-- append_error_vector.m
|-- avg_preamble_symbols_per_packet.m
|-- calculate_instantaneous_CEPS_all_preambles.m
|-- calculate_instantaneous_CEPS_same_packet.m
|-- calculate_instantaneous_pdr_all_packet.m
|-- calculate_instantaneous_pdr_all_packet_hybrid.m
|-- calculate_instantaneous_pdr_same_packet.m
|-- calculate_instantaneous_pdr_same_packet_hybrid.m
|-- calculate_PDR_window.m
|-- calculate_PDR_window_MOBILE.m
|-- calculate_PDR_window_MOBILE_prob.m
|-- CEPS.m
|-- CEPS_including_preamble_1.m
|-- chip_error_distribution.m
|-- correct_time.m
|-- count_avg_preamble_symbols_per_delivered_packet.m
|-- count_avg_preamble_symbols_per_delivered_packet_

for_recovered_d.m
|-- count_avg_preamble_symbols_per_successful_packet_

decoding.m
|-- count_delivered_packets.m
|-- count_dropped_packets.m
|-- count_errors_for_chip_position.m
|-- count_preamble_groups.m
|-- count_received_packets.m
|-- count_rec_packets.m
|-- count_sender_preambles.m
|-- Data_Points.m
|-- delete_1_preamblesnotfollowedby2.m
|-- delete_all_No_One_Preambles.m
|-- estimate_CEPPS.m
|-- estimate_fast_preamble.m
|-- estimate_ultra_fast_preamble.m
|-- estimate_var_highPDR.m
|-- estimate_var_lowPDR.m
|-- ETX.m
|-- ETX_real.m
|-- evaluate_inter_preamble_symbol_time.m
|-- evaluate_max_eof_packet_sign_to_next_after_

preambel_break.m
|-- evaluate_max_inter_packet_break.m
|-- evaluate_max_inter_preamble_symbol_break.m

|-- evaluate_min_eof_packet_sign_to_next_after_
preambel_break.m

|-- evaluate_min_inter_packet_break.m
|-- evaluate_min_inter_preamble_symbol_break.m
|-- evaluate_packet_delivery_time.m
|-- evaluate_packet_time.m
|-- evaluate_preamble_time.m
|-- evaluate_rest_time.m
|-- evaluation_estimator.m
|-- find_0_Preamble_1_combinations.m
|-- find_optimal_error_threshold.m
|-- get_error_vector.m
|-- get_indices_of_slicing.m
|-- get_No_One_Preambles.m
|-- get_vector_on_which_preamble_no_sync.m
|-- give_1_a_dummy_time.m
|-- give_lost_packets_time_stamp.m
|-- herrorbar.m
|-- jamming.m
|-- jamming_real.m
|-- LOS_Data_Points.m
|-- map_delta_after_10_10_combination.m
|-- map_delta_after_eop_symbol.m
|-- map_delta_after_preamble_symbol.m
|-- max_preamble_count_between_packets.m
|-- mobile_PDR_CEPPS.m
|-- NLOS_Data_Points.m
|-- number_of_symbols_precision.m
|-- plot_avg_max_preambles_count.m
|-- plot_avg_preambles_got_sync.m
|-- plot_avg_preambles_per_packet.m
|-- plot_chip_error_distribution.m
|-- plot_first_preamble_error_evolution.m
|-- plot_jamming_boarder.m
|-- plot_jamming_performance.m
|-- plot_jamming_performance_real.m
|-- plot_PRR_CEPS.m
|-- plot_PRR_sum_preamble_symbols.m
|-- preamble_nr_on_which_synchronisated.m
|-- preamble_number_fast.m
|-- preamble_number_ultra_fast.m
|-- probability_packetdecoded_CRCwrong.m
|-- probability_packetlost_syncmissed.m
|-- PRR.m
|-- recover_and_map.m
|-- recover_lost_packets.m
|-- remove_end_of_packet_signs.m
|-- remove_noise_start_and_end.m
|-- remove_packet_delivered_sign.m
|-- remove_preamble_cnt.m
|-- search_end_of_packet_indices.m
|-- search_start_end_entire_data.m
|-- show_deltas_preamble_serie_too_long.m
|-- slice_into_Tc.m
|-- slice_into_Tc_prob.m
|-- sliding_window_CEPS.m
|-- sliding_window_PDR.m
|-- Tc_indices.m
|-- time_between_two_packets.m
|-- variance_analyze.m
|-- WMEWMA.m
|-- WMEWMA_real.m

B
IEEE 802.15.4 Symbol to Chip Sequence

Conversion

66 APPENDIX B. IEEE 802.15.4 SYMBOL TO CHIP SEQUENCE CONVERSION

Data Symbol (decimal) Data Symbol (binary) Chip Values (c0, c1, c2, . . . , c31)

0 0 0 0 0 11011001110000110101001000101110
1 1 0 0 0 11101101100111000011010100100010
2 0 1 0 0 00101110110110011100001101010010
3 1 1 0 0 00100010111011011001110000110101
4 0 0 1 0 01010010001011101101100111000011
5 1 0 1 0 00110101001000101110110110011100
6 0 1 1 0 11000011010100100010111011011001
7 1 1 1 0 10011100001101010010001011101101
8 0 0 0 1 10001100100101100000011101111011
9 1 0 0 1 10111000110010010110000001110111
10 0 1 0 1 01111011100011001001011000000111
11 1 1 0 1 01110111101110001100100101100000
12 0 0 1 1 00000111011110111000110010010110
13 1 0 1 1 01100000011101111011100011001001
14 0 1 1 1 10010110000001110111101110001100
15 1 1 1 1 11001001011000000111011110111000

Table B.1: IEEE 802.15.4 Symbol to Chip Sequence Conversion

C
Estimator Polynomial Coefficients

coefficients pi coefficients qi
i = 0 0.0159757288599271 -33.2301201417265
i = 1 -0.331596563212197 433.702812499815
i = 2 2.40895333730046 -2751.11303185885
i = 3 -7.2561605873854 8329.56739738512
i = 4 8.82790181294683 9276.54695248582
i = 5 -3.24278075225798 -

Table C.1: Coefficients of ultra-fast estimator based on the occurrence of preamble symbols

68 APPENDIX C. ESTIMATOR POLYNOMIAL COEFFICIENTS

coefficients pi
i = 0 0.00236380302431496
i = 1 -0.0416198664714094
i = 2 0.258573756450039
i = 3 -0.603901367933267
i = 4 0.0924097366813666
i = 5 0.995581418309675

Table C.2: Coefficients of ultra-fast estimator based on chip errors in the preamble symbols

coefficients pi coefficients qi
i = 0 -0.00786953210672406 4.06703385467094
i = 1 5.67053468215535 81.0202425124916
i = 2 88.3820148833864 -336.464097126432
i = 3 -21.5007638551088 -88.8583243895553
i = 4 40.4204251570841 -15.5506556589827
i = 5 11.334497504376 -

Table C.3: Coefficients of fast estimator based on the occurrence of preamble symbols

D
Detailed LQEs Evaluation

Cable [0% ... 33%] [33%...66%] [66%...100%] [0%...100%] (mean, max)

1 Four-Bit Four-Bit Four-Bit Four-Bit (0.03491, 0.05698)

2 CEPPS FWA CEPPS FWA SNR CEPPS FWA (0.051, 0.07376)

3 CEPPS Fast SNR CEPPS FWA WMEWMA (0.07401, 0.1122)

4 WMEWMA WMEWMA WMEWMA SNR (0.07896, 0.1595)

5 ETX ETX CEPF ETX (0.09507, 0.1393)

6 Hybrid Fast CEPPS Fast ETX CEPPS Fast (0.1018, 0.1638)

7 CEPPS Ultra-fast CEPF Hybrid Fast Hybrid Fast (0.1128, 0.1722)

8 SNR Hybrid Fast CEPPS Fast CEPPS Ultra-fast (0.1286, 0.1837)

9 Pramble Count Fast CEPPS Ultra-fast CEPPS Ultra-fast CEPF (0.1732, 0.4028)

10 Hybrid Ultra-fast Hybrid Ultra-fast Hybrid Ultra-fast Hybrid Ultra-fast (0.1897, 0.2895)

11 CEPF Preamble Count Fast Preamble Count Fast Preamble Count Fast (0.2229, 0.3173)

12 Preamble Count Ultra-fast Preamble Count Ultra-fast Preamble Count Ultra-fast Preamble Count Ultra-fast (0.3527, 0.5609)

LOS [0% ... 33%] [33%...66%] [66%...100%] [0%...100%] (mean, max)

1 CEPPS FWA CEPPS FWA CEPPS FWA CEPPS FWA (0.04669, 0.06797)

2 Four-Bit Four-Bit Four-Bit Four-Bit (0.05596, 0.07452)

3 WMEWMA WMEWMA WMEWMA WMEWMA (0.07512, 0.1047)

4 ETX ETX ETX ETX (0.0984, 0.1345)

5 CEPPS Fast CEPF Hybrid Fast CEPPS Fast (0.1174, 0.1919)

6 Hybrid Fast CEPPS Fast CEPPS Fast Hybrid Fast (0.1214, 0.1917)

7 CEPPS Ultra-fast Hybrid Fast CEPPS Ultra-fast CEPPS Ultra-fast (0.1526, 0.2203)

8 Preamble Count fast CEPPS Ultra-fast Hybrid Ultra-fast Preamble Count Fast (0.2058, 0.3202)

9 CEPF Hybrid Ultra-fast Preamble Count Fast Hybrid Ultra-fast (0.2265, 0.3601)

10 Hybrid Ultra-fast Preamble Count Fast SNR CEPF (0.2379, 0.3813)

11 SNR SNR Preamble Count Ultra-fast SNR (0.3072, 0.5396)

12 Preamble Count Ultra-fast Preamble Count Ultra-fast CEPF Preamble Count Ultra-fast (0.3764, 0.5968)

NLOS [0% ... 33%] [33%...66%] [66%...100%] [0%...100%] (mean, max)

1 CEPPS FWA CEPPS FWA Four-Bit CEPPS FWA (0.04407, 0.07616)

2 Four-Bit Four-Bit CEPPS FWA Four-Bit (0.05023, 0.07363)

3 WMEWMA WMEWMA WMEWMA WMEWMA (0.07595, 0.1066)

4 CEPPS Fast ETX ETX ETX (0.1009, 0.1438)

5 ETX CEPPS Fast Hybrid Fast CEPPS Fast (0.1223, 0.1893)

6 Hybrid Fast Hybrid Fast CEPPS Fast Hybrid Fast (0.1292, 0.1874)

7 CEPPS Ultra-fast CEPF CEPPS Ultra-fast CEPPS Ultra-fast (0.158, 0.2121)

8 Preamble Count Fast CEPPS Ultra-fast Hybrid Ultra-fast CEPF (0.2243, 0.3642)

9 SNR SNR CEPF SNR (0.2283, 0.4142)

10 Hybrid Ultra-fast Hybrid Ultra-fast SNR Hybrid Ultra-fast (0.2352, 0.3491)

11 CEPF Preamble Count Fast Preamble Count Fast Preamble Count Fast (0.25, 0.3175)

12 Preamble Count Ultra-fast Preamble Count Ultra-fast Preamble Count Ultra-fast Preamble Count Ultra-fast (0.4239, 0.5881)

Mobile [0% ... 33%] [33%...66%] [66%...100%] [0%...100%] (mean, max)

1 CEPPS FWA CEPPS FWA CEPPS FWA CEPPS FWA (0.05772, 0.07309)

2 CEPPS Fast Hybrid Fast Hybrid Fast Hybrid Fast (0.133, 0.1962)

3 Hybrid Fast CEPPS Fast Preamble Count Fast CEPPS Fast (0.1401, 0.1826)

4 CEPPS Ultra-fast CEPF CEPPS Fast CEPPS Ultra-fast (0.1586, 0.22)

5 ETX CEPPS Ultra-fast CEPPS Ultra-fast CEPF (0.1971, 0.3163)

6 WMEWMA Hybrid Ultra-fast Hybrid Ultra-fast SNR (0.2098, 0.3801)

7 Four-Bit Preamble Count Fast SNR Preamble Count Fast (0.2117, 0.3239)

8 SNR SNR WMEWMA Hybrid Ultra-fast (0.2124, 0.3518)

9 CEPF Preamble Count Ultra-fast Four-Bit WMEWMA (0.2364, 0.5618)

10 Preamble Count Fast WMEWMA Preamble Count Ultra-fast Four-Bit (0.2491, 0.6281)

11 Hybrid Ultra-fast Four-Bit CEPF ETX (0.2515, 0.4802)

12 Preamble Count Ultra-fast ETX ETX Preamble Count Ultra-fast (0.3011, 0.5783)

Overall [0%...100%] (mean, max)

CEPPS FWA (0.04987, 0.07616)

Four-Bit (0.09755, 0.6281)

WMEWMA (0.11537, 0.5618)

CEPPS Fast (0.1204, 0.1919)

Hybrid Fast (0.1241, 0.1962)

ETX (0.13647, 0.4802)

CEPPS Ultra-fast (0.14945, 0.2203)

SNR (0.20607, 0.5396)

CEPF (0.20813, 0.3813)

Hybrid Ultra-fast (0.21595, 0.3601)

Preamble Count fast (0.2226, 0.3239)

Preamble Count Ultra-fast (0.36352, 0.5968)

Average Scenario* [0%...100%] (mean, max)

CEPPS FWA (0.05155, 0.07616)

Hybrid Fast (0.12915, 0.1962)

CEPPS Fast (0.12998, 0.1919)

Four-Bit (0.1511, 0.6281)

WMEWMA (0.15597, 0.5618)

CEPPS Ultra-fast (0.15695, 0.2203)

ETX (0.17558, 0.4802)

CEPF (0.2141, 0.4028)

Preamble Count fast (0.2198, 0.3239)

Hybrid Ultra-fast (0.22163, 0.3601)

SNR (0.23877, 0.5396)

Preamble Count Ultra-fast (0.35062, 0.5968)

* 50% mobile, 25% LOS, 25% NLOS

72 APPENDIX D. DETAILED LQES EVALUATION

E
Master Thesis Task Assignment

Eidgenössisches Departement für Verteidigung,
Bevölkerungsschutz und Sport VBS

armasuisse
Wissenschaft und Technologie W+T

Master Thesis Task Assignment for
Michael Spuhler (D-ITET)

UUllttrraa--ffaasstt WWiirreelleessss LLiinnkk QQuuaalliittyy EEssttiimmaattoorr ffoorr MMoobbiillee NNeettwwoorrkkss

 Main advisor: Dr. Vincent Lenders (armasuisse)
 Advisor ETH Dr. Franck Legendre (ETH Zürich)
 Supervisor Prof. Dr. B. Plattner (ETH Zürich)
 Start Date: January 17, 2012
 End Date: August 21, 2012 (approved absence during 27.2-23.3

for military service)

1 Introduction
Wireless technologies like IEEE 802.15.4 or IEEE 802.11a/b/g/n have gained tremendous
popularity in the recent past. A fundamental problem of these networks relates to link quality
estimation. The performance of routing, rate selection, handover, or jamming detection algo-
rithms heavily depend on such an accurate and fast estimator. However, estimating the ef-
fective link quality in real-life wireless networks is a quite challenging task given the unpre-
dictable and location-sensitive nature of wireless channels. In particular, low quality links with
a packet delivery rate (PDR) of 10%<PDR<75% tend to be hard to estimate quickly and ac-
curately with estimators that rely on the SNR, packet statistics and/or chip errors. Neverthe-
less, low quality links remain important to exploit in mobile and challenged networks where
the node positions cannot be optimized to yield better performance.

2 Thesis goals
The goal of this thesis is to develop a new wireless link quality estimator that manages to
quickly and accurately estimate low quality links (10%<PDR<75%) in mobile networking envi-
ronments. In particular, we are interested in estimating the probability that a packet may
successfully be received at the receiver. To achieve a rapid estimation, the student should
develop and explore a novel approach that relies on chips synchronization errors in the
preamble of the physical layer. Chips are the smallest unit of transmitted data and represent
bits of information in a direct sequence spread spectrum system (DSSS). For example in
IEEE 802.15.4, four bits (one symbol) are represented as a series of 32 chips. At the begin-
ning of each frame, the IEEE 802.15.4 transmitter sends a preamble of 8 “zero” symbols
which allows a receiving device to synchronize and lock onto the bit stream.
Relying on chip error information from the preamble is expected to provide two important
benefits. First, unsuccessful packets where the synchronization fails may be detected and
hence used to model the PDR. Second, the estimation model requires only a few symbols in
the preamble and should therefore allow to quickly estimate the packet delivery.
To validate this approach, the student should implement a new estimator and compare it un-
der realistic wireless channel conditions to a set of existing estimators. At least one candi-
date estimator should be considered from the following classes for comparison:

• Packet statistics (e.g. [7, 13])

• SNR (e.g. [5])

2/3

• Bit errors (e.g. [8, 10, 11])

• Chip errors (e.g., [12])

• Hybrid (e.g. [15-16])
If time permits, the estimator should be applied to a routing, rate selection, handover, or
jamming detection algorithm in order to quantify the potential gain of the approach in a real
application context.

3 Tasks
The tasks of this thesis consist of:

1. Literature study of existing wireless link quality estimators proposed in the literature
(e.g., [1-16]).

2. Experimental characterization of the chip and symbol error patterns in the preamble
of IEEE 802.15.4 frames using measurements with the URSP/USRP2 software de-
fined radio. Experiments should be conducted under diverse wireless channel condi-
tions (line-of-sight vs. non-line-of-sight, mobile vs. static, etc) to understand the beha-
vior in different fading environments.

3. Developing a model to predict the PDR using chip/symbol level error information from
the preamble of IEEE 802.15.4 frames.

4. Implementing the new link quality estimator on the USRP/USRP2 software defined
radio for IEEE 802.15.4.

5. Evaluating your estimator experimentally in environments with multi-path fading, node
mobility, and interference/jamming. Compare the performance of your estimator with
a packet statistics-, an SNR-, a bit error-, a chip error- and a hybrid-based model.

6. If time permits, showing the superiority of your proposed estimator compared to exist-
ing estimators in an application of your choice (e.g., rate switching, routing, base sta-
tion selection or jamming detection).

4 Deliverables
• At the end of the second week, a detailed time schedule of the thesis must be given

and discussed with the main advisors.
• At the end of the first month, the student has to propose a methodology and

preliminary model answering the second and third bullet, respectively.
• At the end of the second month, a short discussion of 15 minutes with the supervisor

and the advisors will take place. The student has to talk about the major aspects of
the ongoing work using slides.

• At the end of month four, another meeting with the supervisor will take place . At this
point, the student should already have a preliminary version of the written report or at
least a table of content to hand in to the supervisor. This preliminary version should
be brought along to the short discussion.

• At the end of the thesis, a presentation of 15 minutes must be given at armasuisse
and at ETH (in English) during a CSG group meeting. The presentations should give
an overview as well as the most important details of the work. If possible, a
demonstrator should be presented (offline after the talk).

• The final report should be written in English but may be written in German. It must
contain a summary written in both English and German, the assignment and the time
schedule. Its structure should include an introduction, an analysis of related work, and
a complete documentation of all used hardware/software tools. Four written copies of
the final report must be delivered to the main advisor along with CD that includes
developments undergone during the thesis.

References

3/3

[1] The β-factor: Measuring Wireless Link Burstiness: Kannan Srinivasan, Maria Kazand-
jieva, Saatvik Agarwal and Philip Levis, ACM Sensys 2008.

[2] Four-Bit Wireless Link Estimation: Rodrigo Fonseca, Omprakash Gnawali, Kyle Ja-
mieson and Philip Levis, ACM HotNets-VI.

[3] Link Estimation and Routing in Sensor Network Backbones: Beacon-based or Data-
driven?: Hongwei Zhang, Anish Arora, Prasun Sinha, IEEE Transactions on Mobile
Computing 2009.

[4] All Bits are Not Equal – A Study of IEEE 802.11 Communication Bit Errors: Bo Han,
Lusheng Ji, Seungjoon Lee, Bobby Bhattacherjee and Robert Miller, INFOCOM 2009.

[5] Predictable 802.11 Packet Delivery From Wireless Channel Measurements: Daniel
Halperin, Wenjun Hu, Anmol Sheth, David Wetherall, SIGCOMM 2010.

[6] Efficient Packet Error Rate Estimation in Wireless Networks: Bo Han and Seungjoon
Lee, Tridentcom 2007.

[7] A High Throughput Path Metric for MultiHop Wireless Routing: Douglas S. J. De Cou-
to Daniel Aguayo John Bicket Robert Morris, Mobicom 2003.

[8] Efficient Error Estimating Coding: Feasibility and Applications: Binbin Chen, Ziling
Zhou, Yuda Zhao, Haifeng Yu, SIGCOMM 2010.

[9] Efficient Channel-aware Rate Adaptation in Dynamic Environments: Glen Judd, X.
Wang, and Peter Steenkiste, MobiSys 2008.

[10] Evaluation of Packet Error Rate in Wireless Networks: Ramin Khalili and Kavé Sala-
matian, MSWiM 2004.

[11] A new analytic approach to evaluation of Packet Error Rate in the fading Channels:
Ramin Khalili and Kavé Salamatian, CNSR 2005.

[12] Fast and Accurate Packet Delivery Estimation based on DSSS Chip Error Measure-
ments: Pirmin Heinzer, Vincent Lenders and Franck Legendre, INFOCOM 2012.

[13] A. Woo and D. Culler, “Evaluation of efficient link reliability estimators for low-power
wireless networks,” Tech. Rep., 2003.

[14] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis, “Four bit wireless link estima-
tion,” in HotNets VI, 2007.

[15] N. Baccour, A. Koubaa, H. Youssef, M. Ben Jamaa, D. do Rosario, M. Alves, and L.
Becker, “F-lqe: A fuzzy link quality estimator for wireless sensor networks,” in Wire-
less Sensor Networks. Springer, 2010. pp. 240–255.

[16] C. Boano, M. Zuniga, T. Voigt, A. Willig, and K. R¨omer, “The triangle metric: Fast link
quality estimation for mobile wireless sensor networks,” in ICCCN, 2010.

armasuisse
Science and Technology
C4I Networks

Dr. Vincent Lenders
Thun, January 17th 2012

F

78 APPENDIX F. ABBREVIATIONS

Abbreviations

ADC Analog-Digital Converter
AM Amplitude Modulation
ASL Asymmetry Level
ASNR Average SNR
BER Bit Error Rate
CEPF Chip Errors per Frame
CEPS Chip Errors per Symbol
CEPPS Chip Errors per Preamble Symbol
CD-ROM Compact Disc Read-Only Memory
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DAC Digital-Analog Converter
dB Decibel
DSSS Direct Sequence Spread Spectrum
EEC Error Estimation Codes
EWMA Exponentially Weighted Moving Average
FCF Frame Control Field
FCS Frame Check Sequence
FM Frequency Modulation
FPGA Field Programmable Gate Array
FWA Filtered Weighted Average
GMSK Gaussian Minimum Shift Keying
GigE Gigabit Ethernet
GNU GNU’s Not Unix!
IEEE Institute of Electrical and Electronics Engineers
kbit/s kilo bits per second
LOS Line of Sight
LQ Link Quality
LQE Link Quality Estimator
LQI Link Quality Indicator
LR-WPAN Low-Rate Wireless Personal Area Network
MAC Media Access Control
MB Megabyte
MFR MAC Footer
MHz Mega-Hertz
MPDU MAC Protocol Data Unit
MS Mega Samples
MSK Minimum-Shift Keying
NLOS None Line of Sight
O-QPSK Offset Quadrature Phase-Shift Keying
OSI Open Systems Interconnection
PAN Personal Area Network
PC Personal Computer
PER Packet Error Rate

79

PHR PHY Header
PHY Physical Layer
PN Pseudo-Random Noise
PPDU PHY Protocol Data Unit
PDR Packet Delivery Ratio
RF Radio Frequency
RNP Required Number of Packet Retransmissions
RSS Received Signal Strength
Q-Phase Quadrature-Phase
QPSK Quadrature Phase-Shift Keying
SDR Software Defined Radio
SF Stability Factor
SFD Start-of-Frame Delimiter
SHR Synchronization Header
SNR Signal to Noise Ratio
SPRR Smoothed Packet Reception Ratio
SWIG Simplified Wrapper and Interface Generator
UCLA University of California, Los Angeles
USB Universal Serial Bus
USRP Universal Software Radio Peripheral
WMEWMA Window Mean Exponentially Weighted Moving Average
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network

80 APPENDIX F. ABBREVIATIONS

Bibliography

[1] M. Strasser, B. Danev, and S. Čapkun, “Detection of reactive jamming in sensor networks,”
ACM Transactions on Sensor Networks (TOSN), vol. 7, no. 2, p. 16, 2010.

[2] IEEE Standard for Information technology - Telecommunications and information exchange
between systems - Local and metropolitan area networks - Specific requirements, Part 15.4:
Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-
Rate Wireless Personal Area Networks (WPANs), IEEE Computer Society Std.

[3] M. Ettus, “Ettus research llc.” [Online]. Available: www.ettus.com

[4] T. Schmid, “Gnu radio 802.15. 4 en-and decoding,” UCLA NESL, Tech. Rep., 2005.

[5] P. Heinzer, V. Lenders, and F. Legendre, “Fast and accurate packet delivery estimation
based on dsss chip errors,” in INFOCOM 2012. Orlando, Florida, USA: IEEE, 2012.

[6] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting jam-
ming attacks in wireless networks,” in Proceedings of the 6th ACM international symposium
on Mobile ad hoc networking and computing. ACM, 2005, pp. 46–57.

[7] N. Baccour, L. Mottola, Z. Niga, Boano, and M. Alves, “Radio link quality estimation in
wireless sensor networks: a survey,” ACM Trans. Sens. Netw, 2012.

[8] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin, “Statistical model of lossy
links in wireless sensor networks,” in Proceedings of the 4th international symposium on
Information processing in sensor networks, ser. IPSN ’05. Piscataway, NJ, USA: IEEE
Press, 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1147685.1147701

[9] A. Woo, Alec and A. Culler, David, “Evaluation of efficient link reliability estimators
for low-power wireless networks,” 2003. [Online]. Available: http://techreports.lib.berkeley.
edu/accessPages/CSD-03-1270.html

[10] H. Zhang, L. Sang, and A. Arora, “Unravelling the subtleties of link estimation and routing
in wireless sensor networks,” Tech. Rep., 2008.

[11] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Predictable 802.11 packet delivery
from wireless channel measurements,” SIGCOMM Comput. Commun. Rev., vol. 40, pp.
159–170, August 2010. [Online]. Available: http://doi.acm.org/10.1145/1851275.1851203

[12] Chipcon, CC2420 - 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver, 2009. [Online].
Available: www.chipcon.com

[13] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An empirical study of low-power
wireless,” ACM Trans. Sen. Netw., vol. 6, no. 2, pp. 16:1–16:49, Mar. 2010. [Online].
Available: http://doi.acm.org/10.1145/1689239.1689246

www.ettus.com
http://dl.acm.org/citation.cfm?id=1147685.1147701
http://techreports.lib.berkeley.edu/accessPages/CSD-03-1270.html
http://techreports.lib.berkeley.edu/accessPages/CSD-03-1270.html
http://doi.acm.org/10.1145/1851275.1851203
www.chipcon.com
http://doi.acm.org/10.1145/1689239.1689246

82 BIBLIOGRAPHY

[14] M. Zamalloa and B. Krishnamachari, “An analysis of unreliability and asymmetry in low-
power wireless links,” ACM Transactions on Sensor Networks (TOSN), vol. 3, no. 2, p. 7,
2007.

[15] J. Zhao and R. Govindan, “Understanding packet delivery performance in dense wireless
sensor networks,” in Proceedings of the 1st international conference on Embedded networked
sensor systems, ser. SenSys ’03. New York, NY, USA: ACM, 2003, pp. 1–13. [Online].
Available: http://doi.acm.org/10.1145/958491.958493

[16] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker, “Complex
behavior at scale: An experimental study of low-power wireless sensor networks,” Citeseer,
Tech. Rep., 2002.

[17] C. Boano, T. Voigt, A. Dunkels, F. Osterlind, N. Tsiftes, L. Mottola, and P. Suarez, “Poster
abstract: Exploiting the lqi variance for rapid channel quality assessment,” in Proceedings
of the 2009 International Conference on Information Processing in Sensor Networks. IEEE
Computer Society, 2009, pp. 369–370.

[18] M. Senel, K. Chintalapudi, D. Lal, A. Keshavarzian, and E. Coyle, “A kalman filter based
link quality estimation scheme for wireless sensor networks,” in Global Telecommunications
Conference, 2007. GLOBECOM’07. IEEE. IEEE, 2007, pp. 875–880.

[19] N. Baccour, A. Koubaa, M. Ben Jamaa, H. Youssef, M. Zuniga, and M. Alves, “A compar-
ative simulation study of link quality estimators in wireless sensor networks,” in Modeling,
Analysis Simulation of Computer and Telecommunication Systems, 2009. MASCOTS ’09.
IEEE International Symposium on, sept. 2009, pp. 1 –10.

[20] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power wireless research,”
in Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Sym-
posium on. Ieee, 2005, pp. 364–369.

[21] N. Baccour, A. Koubaa, H. Youssef, M. Ben Jamaa, D. do Rosario, M. Alves, and L. Becker,
“F-lqe: A fuzzy link quality estimator for wireless sensor networks,” in Wireless Sensor Net-
works, ser. Lecture Notes in Computer Science, J. Silva, B. Krishnamachari, and F. Boavida,
Eds. Springer Berlin / Heidelberg, 2010, vol. 5970, pp. 240–255.

[22] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis, “Four-bit wireless link estimation,” in
Proceedings of the Sixth Workshop on Hot Topics in Networks (HotNets VI), 2007.

[23] C. Gomez, A. Boix, and J. Paradells, “Impact of lqi-based routing metrics on the perfor-
mance of a one-to-one routing protocol for ieee 802.15. 4 multihop networks,” EURASIP
Journal on Wireless Communications and Networking, vol. 2010, p. 6, 2010.

[24] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Impact of radio irregularity on
wireless sensor networks,” in Proceedings of the 2nd international conference on Mobile
systems, applications, and services, ser. MobiSys ’04. New York, NY, USA: ACM, 2004,
pp. 125–138. [Online]. Available: http://doi.acm.org/10.1145/990064.990081

[25] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin, “Temporal properties of low
power wireless links: modeling and implications on multi-hop routing,” in Proceedings
of the 6th ACM international symposium on Mobile ad hoc networking and computing,
ser. MobiHoc ’05. New York, NY, USA: ACM, 2005, pp. 414–425. [Online]. Available:
http://doi.acm.org/10.1145/1062689.1062741

http://doi.acm.org/10.1145/958491.958493
http://doi.acm.org/10.1145/990064.990081
http://doi.acm.org/10.1145/1062689.1062741

BIBLIOGRAPHY 83

[26] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “a high-throughput path metric
for multi-hop wireless routing,” Wireless Networks, vol. 11, pp. 419–434, 2005. [Online].
Available: http://dx.doi.org/10.1007/s11276-005-1766-z

[27] C. Boano, M. Zu?niga, T. Voigt, A. Willig, and K. Ro?mer, “The triangle metric: Fast link
quality estimation for mobile wireless sensor networks,” in Computer Communications and
Networks (ICCCN), 2010 Proceedings of 19th International Conference on, aug. 2010, pp.
1 –7.

[28] B. Chen, Z. Zhou, Y. Zhao, and H. Yu, “Efficient error estimating coding: feasibility and
applications,” in ACM SIGCOMM Computer Communication Review, vol. 40, no. 4. ACM,
2010, pp. 3–14.

[29] R. Khalili and K. Salamatian, “A new analytic approach to evaluation of packet error rate
in wireless networks,” 2005.

[30] R. Kave, R. Khalili, and K. Salamatian, “Evaluation of packet error rate in wireless net-
works,” 2004.

[31] Y. Qin, Z. He, and T. Voigt, “Towards accurate and agile link quality estimation in wireless
sensor networks.”

[32] Y. Hu, A. Perrig, and D. Johnson, “Ariadne: A secure on-demand routing protocol for ad
hoc networks,” Wireless Networks, vol. 11, no. 1-2, pp. 21–38, 2005.

[33] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: Attacks and coun-
termeasures,” Ad hoc networks, vol. 1, no. 2-3, pp. 293–315, 2003.

[34] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc networks,” in SCS Com-
munication Networks and Distributed Systems Modeling and Simulation Conference (CNDS
2002), vol. 31. San Antonio, TX, 2002, pp. 193–204.

[35] B. Potter, “Wireless security’s future,” Security & Privacy, IEEE, vol. 1, no. 4, pp. 68–72,
2003.

[36] L. Zhou and Z. Haas, “Securing ad hoc networks,” Network, IEEE, vol. 13, no. 6, pp. 24–30,
1999.

[37] W. Xu, T. Wood, W. Trappe, and Y. Zhang, “Channel surfing and spatial retreats: defenses
against wireless denial of service,” in Proceedings of the 3rd ACM workshop on Wireless
security. ACM, 2004, pp. 80–89.

[38] M. Çakiroglu and A. Özcerit, “Jamming detection mechanisms for wireless sensor networks,”
in Proceedings of the 3rd international conference on Scalable information systems. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
2008, p. 4.

[39] Y. Law, M. Palaniswami, L. Hoesel, J. Doumen, P. Hartel, and P. Havinga, “Energy-efficient
link-layer jamming attacks against wireless sensor network mac protocols,” ACM Transac-
tions on Sensor Networks (TOSN), vol. 5, no. 1, p. 6, 2009.

[40] Y. Law, P. Hartel, J. den Hartog, and P. Havinga, “Link-layer jamming attacks on s-mac,” in
Wireless Sensor Networks, 2005. Proceeedings of the Second European Workshop on. IEEE,
2005, pp. 217–225.

http://dx.doi.org/10.1007/s11276-005-1766-z

84 BIBLIOGRAPHY

[41] A. Wood, J. Stankovic, and G. Zhou, “Deejam: Defeating energy-efficient jamming in ieee
802.15. 4-based wireless networks,” in Sensor, Mesh and Ad Hoc Communications and Net-
works, 2007. SECON’07. 4th Annual IEEE Communications Society Conference on. IEEE,
2007, pp. 60–69.

[42] A. Wood, J. Stankovic, and S. Son, “Jam: A jammed-area mapping service for sensor
networks,” in Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE. IEEE, 2003,
pp. 286–297.

[43] Modern Communications Jamming Principles and Techniques. Artech House, 2004.

[44] EW101: A First Course in Electronic Warfare. Artech House, 2001.

[45] G. Noubir and G. Lin, “Low-power dos attacks in data wireless lans and countermeasures,”
ACM SIGMOBILE Mobile Computing and Communications Review, vol. 7, no. 3, pp. 29–30,
2003.

[46] Z. Alliance, “Zigbee specification,” ZigBee document 053474r06, version, vol. 1, 2005.

[47] “The zigbee alliance.” [Online]. Available: http://www.zigbee.org/

[48] “First glimpse, home awareness systems.” [Online]. Available: http://www.firstglimpsemag.
com

[49] J. Notor, A. Caviglia, and G. Levy, “Cmos rfic architectures for ieee 802.15. 4 networks,”
Cadence Design Systems, Inc, 2003.

[50] T. S. D. R. Inc., “What is software defined radio?” [Online]. Available: www.sdrforum.org

[51] B. E. et. al., “Gnu radio.” [Online]. Available: www.gnuradio.org

[52] “Python programming language - official website.” [Online]. Available: http://www.
python.org

[53] “The c++ resources network, 2011.” [Online]. Available: http://www.cplusplus.org

[54] “Simplified wrapper and interface generator.” [Online]. Available: http://www.swig.org

[55] “Supported gnu radio hardware.” [Online]. Available: http://comsec.com/wiki?
GnuRadioHardware.

[56] P. Heinzer, “Wireless link quality estimation in mobile networks,” Master’s thesis, ETH
Zürich, 2011.

[57] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Wifire: a firewall
for wireless networks,” in Proceedings of the ACM SIGCOMM 2011 conference, ser.
SIGCOMM ’11. New York, NY, USA: ACM, 2011, pp. 456–457. [Online]. Available:
http://doi.acm.org/10.1145/2018436.2018518

.

http://www.zigbee.org/
http://www.firstglimpsemag.com
http://www.firstglimpsemag.com
www.sdrforum.org
www.gnuradio.org
http://www.python.org
http://www.python.org
http://www.cplusplus.org
http://www.swig.org
http://comsec.com/wiki?GnuRadioHardware.
http://comsec.com/wiki?GnuRadioHardware.
http://doi.acm.org/10.1145/2018436.2018518

	Introduction
	Motivation
	Thesis Goals
	Thesis Structure

	Link Quality Estimation and Jamming Detection
	Link Quality Estimation
	Fundamentals of Link Quality Estimation
	Related Work
	Benefits of Preamble Symbol based Link Quality Estimation

	Jamming Detection
	Fundamentals of Jamming Detection
	Related Work

	Experimental Setup
	IEEE 802.15.4 Standard
	Hardware and Software Platform
	Software Defined Radio
	GNU Radio 802.15.4 En- and Decoding

	Scenarios
	Link Quality Estimation
	Jamming Detection Estimation

	Estimator Design based on Preamble Symbols
	Exploration of Preamble Symbols
	Exploration of Preamble Symbol Occurrence
	Exploration of Preamble Chip Errors

	Link Quality Estimation
	Ultra-fast Link Quality Estimation
	Fast Link Quality Estimation

	Jamming Detection Estimation

	Results
	Selection of Competitive Estimators
	Evaluation Methodology
	Performance of Link Quality Estimation
	Cable Scenario
	Line-of-Sight Scenario
	Non-Line-of-Sight Scenario
	Mobile Scenario
	Average Case
	Error Convergence
	Discussion

	Performance of Jamming Detection Estimation

	Conclusions and Outlook
	Conclusions
	Outlook

	CD-ROM Content
	IEEE 802.15.4 Symbol to Chip Sequence Conversion
	Estimator Polynomial Coefficients
	Detailed LQEs Evaluation
	Master Thesis Task Assignment
	Abbreviations

