
Institut für
Technische Informatik und
Kommunikationsnetze

Cyrill Bannwart

Predicting the Impact of Denial of Service
Attacks

Master Thesis MA-2012-03
February 2012 to August 2012

Main advisor: Dr. Vincent Lenders
Advisor ETH: David Gugelmann
Supervisor: Prof. Dr. B. Plattner

Abstract

Denial-of-service (DoS) attacks have become a major threat to current systems and networks
in the Internet. Yet the existing infrastructure is rarely tested for potential damage caused
by (D)DoS attacks because no method exist to audit a productive system without flooding
and thus risking system outages and resulting losses. Having a method that does (D)DoS
attack auditing without requiring the observation of the system under massive load is however
crucial when testing critical infrastructure in a productive environment.

We present a novel auditing method to externally assess and predict the impact of (D)DoS
attacks on web servers based on low strength (D)DoS attack measurements. The developed
method reduces the required probe traffic and relies on pre-established (D)DoS attack models
to infer the impact of similar attacks at a stronger attack strength. To model the impact of
(D)DoS attacks a multitude of server-internal as well as server-external metrics has been
analyzed to identify those metrics, that characterize the state of the server and can be
measured externally without requiring privileged access to the system and its network.

The presented auditing method is evaluated for multiple current and common (D)DoS attacks
using extensive measurements, analyzing the influence caused by variations in the intermedi-
ate network as well as in software and hardware on the web server. Calculating the error rate
between prediction and actual measurements the accuracy of the method is verified resulting
in an expected error rate of 10% at a limited attack strength of 30% of the strength causing a
DoS.

Additionally as a prototype an audit framework was developed, which implements the pre-
sented auditing method and allows anyone to asses the impact of a (D)DoS attack on a web
server in the Internet.

3

4

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Goals . 14

1.3 Tasks . 14

1.4 Outline . 15

2 Problem Statement 17

3 Related Work 19

3.1 Impact Metrics . 19

4 Methodology 29

4.1 Lab Network Setup . 29

4.2 Metrics . 31

4.2.1 Measurement Tools . 31

4.3 Additional Tools . 36

4.4 Post-processing . 36

5 (D)DoS Attacks 37

5.1 Attack Taxonomy . 37

5.2 Selected (D)DoS Attacks . 38

5.2.1 UDP flooding . 38

5.2.2 Slow POST . 39

5.2.3 Flash-crowd attack . 39

5.2.4 GET flooding . 40

5.3 Attack Implementation . 40

5.3.1 UDP flooding . 40

5

CONTENTS

5.3.2 Slow POST . 41

5.3.3 Flash-crowd attack . 41

5.3.4 GET flooding . 42

5.4 (D)DoS Attack Strength . 42

6 Mathematical Methods 47

6.1 Spearman’s Rank Correlation . 47

6.2 Significance . 48

6.3 Non-linear Least Squares Method . 48

6.4 Goodness of Fit . 49

6.4.1 Interpretation . 50

7 Modeling 51

7.1 Metric Selection . 51

7.2 Model Fitting . 53

7.2.1 Approach . 53

7.2.2 Flash-crowd attack . 53

7.2.3 Slow POST . 55

7.2.4 UDP flooding . 55

7.2.5 GET flooding . 55

8 Evaluation 57

8.1 Variations in the Setup . 57

8.1.1 Results . 58

8.2 Prediction & Error Calculations . 62

8.2.1 Results . 63

9 Audit Framework 67

9.1 Design . 67

9.2 Requirements . 68

9.3 Configuration Assistant . 68

9.4 Workflow . 69

9.5 Extensibility . 69

6

CONTENTS

10 Conclusion 71

10.1 Summary . 71

10.2 Conclusion . 71

10.3 Future Work . 72

10.3.1 Productive Environment . 72

10.3.2 Additional Attacks . 72

10.3.3 Additional Metrics . 72

10.3.4 Internal Metrics . 73

11 Zusammenfasung 75

A Appendix 77

A.1 Attack Tools . 77

A.1.1 harpoon . 77

A.1.2 Twisted . 77

A.1.3 netcat (nc) . 78

A.1.4 ncat . 78

A.2 Configurations . 79

A.2.1 harpoon . 79

A.2.2 pktgen . 80

A.3 Code . 82

A.3.1 MATLAB . 82

A.3.2 Framework . 84

B Time Schedule 85

References 87

7

CONTENTS

8

List of Figures

4.1 Lab network setup . 30

4.2 Wireshark . 35

5.1 (D)DoS attack taxonomy based on [57] . 38

5.2 Throughput plots for the performed attacks 44

7.1 Attack impact on round-trip time . 52

7.2 Flash-crowd models . 54

7.3 Exponential approximation & Theoretical TCP model 55

7.4 GET flooding . 56

8.1 Parameter variations during flash-crowd attacks 59

8.2 Prediction errors during flash-crowd attacks 64

9.1 (D)DoS attack audit framework . 67

9.2 Configuration assistant . 68

9.3 Audit framework workflow . 69

9

LIST OF FIGURES

10

List of Tables

3.1 DoS impact metrics . 26

3.1 DoS impact metrics . 27

4.1 Internal metrics . 32

4.2 External metrics . 32

5.1 DoS attack strength . 45

6.1 Interpretation of the correlation . 48

7.1 Metric correlation (Spearman’s rho) . 53

8.1 Parameter variation errors . 61

A.1 Description of used MATLAB files . 82

A.1 Description of developed measurement framework 84

11

LIST OF TABLES

12

Chapter 1

Introduction

1.1 Motivation

Since the early days of the commercially used Internet, its systems and network infrastruc-
tures have always been the target of malicious parties [32]. While the number of connected
hosts is ever increasing so do the number of observed attacks, their strength and also
their level of sophistication [2, 86]. Internet criminality has become a well-organized and
profitable business. Access to large Botnets can be rented by anyone [7], making it simple to
send SPAM or launch distributed denial-of-service (DDoS) attacks against their competitors
[15, 87].

In recent years the occurrence of malicious activities has received plenty of attention in the
media. Being it the appearance of sophisticated computer malware such as Stuxnet, Duqu
or Flame [60, 38, 37, 13] and the assumed involvement of governments and government-
sponsored groups in espionage and sabotage [1] or also the increased occurrence of massive,
coordinated DDoS attacks. Using tools that require little knowledge about computer- and
network security allow any Internet user to take part in those attacks, to promote political
ideas [76] or as revenge [14, 41].

The intentional participation in attacks carried out by arbitrary groups, which can often quickly
organize many participants using social platforms, and the fact that little knowledge is required
to perform a simple (D)DoS attack using readily available software, poses further threats to
anyone providing services in the Internet. On these grounds, the interest in attack detection
and defensive measures has been increasing [2]. However while attack and anomaly detection
as well as the mitigation of attacks have become popular fields of research during the last
decade, the impact analysis of attacks has received attention to a much lesser extent.

Yet, due to the cost of defensive measures, which according to a report of a security provider
are at least $100’000 for the typically used hardware equipment and also require employ-
ees to maintain the systems around the clock [42], and the lack of ability to quantify the
consequences of a successful attack, the adoption of mitigation solutions still remains low
[2]. A further survey in the year 2011 showed that although 78% of the 225 questioned IT
executives in the United States were concerned about (D)DoS attacks still 71% did not plan
to implement a (D)DoS mitigation system over the course of the next year.

13

1.2 Goals

1.2 Goals

The goal of this master thesis is to develop and evaluate a novel approach to audit arbitrary
Internet web server systems and to analyze and predict the impact of (D)DoS attacks. While
current impact analysis techniques require the target system to be put under massive load to
be observed, the method developed in this thesis will reduce the required load during the
testing.

Having a method that does (D)DoS attack testing without requiring massive flooding is
essential for system and computer administrators. Reducing the attack strength is key to probe
critical and productive systems, which otherwise cannot be examined due to the performance
degradation and unpredictable side effects on the whole environment. Unexpected issues
may otherwise result in potential system and network outages and as such can cause
significant yet avoidable losses.

System outages caused by (D)DoS attack auditing should by all means be avoided on
productive systems, however any system should be capable to tolerate a short (D)DoS attack,
run at a low intensity. As such this thesis aims to show a new approach for an impact analysis
method that uses measurement data captured during low intensity attacks, to predict the
progress and impact of (D)DoS attacks on the system.

Not only should the master thesis provide new insight on the feasibility and the potential
of the suggested (D)DoS attack auditing method, but also result in an audit framework for
(D)DoS attacks, similar to the existing Nessus vulnerability scanning program for system
vulnerabilities [64].

1.3 Tasks

The master thesis consists of the following tasks:

∙ Reviewing available literature on (distributed) denial-of-service attacks and identifying
related work that aims at predicting the impact of attacks on Internet web servers.

∙ Becoming acquainted with existing network as well as end-to-end measurement tools
that will be used during the thesis.

∙ Developing a prediction model to externally asses the collateral damage or impact of
denial-of-service attacks using probe and attack traffic sent from multiple client nodes.

∙ Implementing or evaluating existing tools to support the model and allow its practical
application.

∙ Testing as well as evaluating the model and its required tools in a lab environment with
varying network and system setups.

14

1.4 Outline

1.4 Outline

After this short introduction the remaining master thesis report is structured as follows:

In chapter 2, a formal problem statement will be presented outlining the expected require-
ments and the potential of the new analysis method.

Chapter 3 presents the related work that has been studied during the master thesis, where the
attention during the literature research has mostly been turned on the existence of available
(D)DoS impact metrics. For each publication that was analyzed and that contained a (D)DoS
impact metric, a short summary of the parts involving the metric is presented.

The methodology of the master thesis is shown in chapter 4. In the beginning of the chapter
the lab network setup, including its hardware and software components as well as the network
layout, will be presented before in the next section the impact metrics used during the thesis
as well as the measurement tools and their configurations, are given.

The next chapter 5 will then dive into the topic of (D)DoS attacks. The chapter involves the
taxonomy of attacks and further the specific attacks that have been selected and analyzed
during the thesis. Subsequently the implementation of the attacks with the used tools, their
functionality and also their configurations will be explained. In the last section of the chapter
the (D)DoS attack strength measurements that have been performed during the thesis to
determine the required attack strength to cause a DoS for a legitimate client are presented.

Chapter 6 introduces the mathematical methods, before chapter 7 presents the modeling
where the methods have been used. The chapter 7 is split into two parts, the first part deals
with the metric selection progress and the second part with the model fitting.

The evaluation of the models is summarized in chapter 8, explaining the setup variations
that have been studied and giving the corresponding results. The results obtained during the
model prediction and the associated error calculations are also presented in this chapter.

The audit framework that has been developed during the thesis is presented in chapter 9.
This chapter outlines the design and requirements of the framework and also explains how
the framework can easily be extended with additional (D)DoS attacks and further options.

Finally the last chapter 10 summarizes and concludes the thesis and takes a look at future
work that the author deems to be suitable to further improve the presented analysis method.

Lastly the appendix will then include additional explanations of used tools and configuration
settings that did not fit in the previous context and also list the audit framework and MATLAB
code developed during the thesis.

15

1.4 Outline

16

Chapter 2

Problem Statement

(D)DoS attacks still represent a major threat in the Internet, especially since the potential
damage on critical infrastructure caused by the attacks is usually not a priori known. As such
the measurement-based auditing method that is developed in this master thesis should asses
the impact of (D)DoS attacks on Internet web servers.

For the auditing method the following systems are assumed to exist:

∙ 𝑠 the Internet web server under consideration

∙ 𝑐 the client system assessing the attack impact using external metrics

∙ 𝑎𝑖 the hosts used to generate the attack (probe) traffic, where 𝑖 = 1, . . . , 𝑁 with 𝑁

being the number of hosts and 𝑁 > 1 in the case of a DDoS attack.

Since the view of an outsider is taken during the analysis, the auditing method requires
no privileged administrator access to the Internet web server under consideration or to the
involved networks.

The auditing process should be such that the client system 𝑐 continuously monitors the web
server under consideration 𝑠 and thus can abort the process when the server becomes
overstressed. Ideally however, the server does not get overloaded during the measurements
due to the trade off of the measurement load with the accuracy of the prediction.

During the auditing process, hosts 𝑎𝑖 send attack traffic to the web server 𝑠 starting with no
traffic and stepwise increasing the strength. The (D)DoS attack strength required to cause a
DoS for legitimate clients depends on the system under consideration and sample values for
the lab system are given in a later stage of this report.

Combining the measurements performed by the client system with the predictive models
of the (D)DoS attacks developed during the thesis, the impact of the (D)DoS attack can
be estimated. To make the application of the auditing method suitable in an operational
environment, the auditing method will trade off accuracy for probe traffic.

The goal of the presented auditing method is to achieve an average error rate between the
theoretically calculated attack impact and the actually measured impact, which is lower than

17

10%. The required attack strength should not exceed 25-50% of the attack strength causing
a DoS condition. This seems to be a reasonable tolerance relating to the current usage of
over-provisioning the bandwidth by 55 to 75% over the traffic peak [27].

18

Chapter 3

Related Work

In this chapter the related work that has been studied in the course of this master thesis is
presented and summarized.

3.1 Impact Metrics

To be able to examine the impacts of DoS attacks one requires accurate metrics. In an ideal
world one would have access to a holistic network-wide view that spans across all involved
networks and allows to fully assess the impact of an attack. In addition any collateral damage
to the transporting networks and users that is caused by the DoS attack or the applied
defense strategy could be captured.

In a real world scenario it is however very unlikely to possess such a view and we are
restricted to monitor a couple of parameters in a few parts of the impacted networks. Due to
the broad range of current DoS and DDoS attacks [2] there exist a variety of impact metrics
often targeted to a specific group of attacks.

In this section an overview over various metrics used in previous work is given. The presented
metrics range from purely economic and theoretical to measurable and application specific
ones. Since the goal of this thesis will be to predict the impact without complete access to
a network, further attention has been paid to the possibility of measuring the attack impact
without any sophisticated knowledge about the attacked network or end-host system. The
results of the literature research are also summarized at the end of the chapter in table 3.1.

In [25] a purely economic damage model for large-scale Internet attacks was presented.
Various types of financial damage, divided into the four categories «Downtime Loss»,
«Disaster Recovery», «Liability» and «Customer Loss», which are expected after any
significant degradation of Internet performance have been included in the model. Since there
is a vast numbers of factors involved that not only depend on the target and its business area
but also on the actual DoS attack, the duration and possible countermeasures, the presented
financial loss calculations can only serve as a rough approximation or worst case scenario.
Due to the required financial insight and situation of risk, the presented model is mostly suited

19

3.1 Impact Metrics

as a basis to estimate how much investment into improved infrastructure robustness and
faster disaster recovery is justified.

A further DDoS impact scale that takes the economic impact of an attack into account was
presented in [74]. The metric has been designed from the perspective of network operators
where particular interest is paid to «cost of SLA violations» and «the cost of losing customers».
In a further step the transition from the proposed impact scale which requires sophisticated
data and knowledge to calculate is made to one that can be easily estimated in practice. Using
only measurable or readily available network data the authors approximate their Measure of
Impact of DDoS AttackS (MIDAS) to ease the computation.

The MIDAS2007 scale factor (SF) [74] which is constructed to be globally applicable is the
approximated cost of a DDoS attack normalized using the network operator’s revenue of the
last year.

𝑀𝐼𝐷𝐴𝑆2007_𝑆𝐹 =
𝐶2007𝐷𝐷𝑜𝑆

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑣𝑒𝑛𝑢𝑒(12𝑚𝑜𝑛𝑡ℎ𝑠)
(3.1)

The approximated DDoS cost consists of the SLA violations and the possible revenue loss due
to the risk of leaving customers. It is defined as 𝐶2007𝐷𝐷𝑜𝑆 = 𝐶2007𝑆𝐿𝐴 +

∑︀
𝑐[𝑅𝑖𝑠𝑘2007(𝑐)*

𝑅𝑒𝑣2007𝑓𝑢𝑡𝑢𝑟𝑒(𝑐)].

The MIDAS2007NET factor [74] is the previously mentioned variant that can be computed
based on collected network data. It has the same properties as the original factor however
they are not directly comparable. The idea behind the approximation is that the provisioned
bandwidth is estimated to be proportional to the actual traffic volumes on the network and
thus proportional to the revenues.

𝑀𝐼𝐷𝐴𝑆2007𝑁𝐸𝑇 =
𝐶2007_𝑛𝑒𝑡𝐷𝐷𝑜𝑆

𝑡𝑜𝑡𝑎𝑙𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
(3.2)

As such the costs of a DDoS attack are defined as 𝐶2007_𝑛𝑒𝑡𝐷𝐷𝑜𝑆 = 𝑡𝑜𝑡𝑎𝑙𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 +∑︀
𝑐[𝑅𝑖𝑠𝑘2007(𝑐𝑖) * 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑐𝑖)] where the total revenues of the provider have been

replaced by the sum of the link capacities at the perimeter of its network and the revenue
from each customer has been replaced by the total link capacities to which the customer
connects to. The model is suited for network operators as in most cases the required network
data can be easily collected.

In the following, we are turning away from the mostly theoretical economic impact models to
the measurement based ones.

The authors of the paper [28] took a look at the impact caused by a particular DDoS attack,
called «Land Attack», to Windows XP, Windows Vista and Mac OS X 10.5. To measure
the impact they monitored and compared the memory and processor exhaustion of the
systems under attack. Since such measurements require full access to the targeted system
they cannot be performed without the system operator’s cooperation.

In [11] the differences between multiple emulation based testbeds versus simulation of TCP
targeted denial-of-service attacks have been explored. For the experimental design the
following metrics were computed.

20

3.1 Impact Metrics

∙ Average goodput in KBps, computed by dividing the transfer size by the transfer
completion time

∙ Average congestion window size in packets, computed by dividing the weighted
congestion window average by the average maximum segment size (MSS)

∙ CPU percentage utilization

∙ Packets per second received and sent on the test network interfaces

The conclusions drawn in the paper were that there exist key differences between emulation
and simulation based experiments with seemingly identical configurations. Some of the
differences were attributed to the assumptions taken by the simulator; as such the authors
recommend the usage of testbed scenarios which are more accurate to real world scenarios
than purely simulated experiments. The chosen metrics again require the cooperation of the
network and system operator.

In another paper [39] a queue-based analysis approach has been taken to qualitatively and
quantitatively analyze the impact on three affected system parameters. As an important
fact the authors stress that the chosen parameters do not have to be observed for a long
time to understand the system degradation that may happen under certain attacks. The
analyzed parameters are the average queue-growth rate which is often used in congestion
control [26], the arrival rate which can be used to detect flooding attacks [33] as well as the
response time which may point to the presence of a DoS attack.

In the paper the authors formally analyzed the performance of the chosen metrics during
flooding as well as complexity DoS attacks. A flooding attack was depicted to correspond
to an attack that sends too many requests to a system resource, thus having a high arrival
rate. A complexity attack was assumed to consist of lengthy requests to a resource without
increasing the arrival rate significantly.

While the average queue-growth rate and the arrival rate are measured server side the
response time can be measured on the client side.

The results of the formal analysis showed that during strong attacks the average queue-
growth rate can detect flooding as well as complexity attacks. Under the assumption that
weak attacks do not pose a significant threat the authors decided not to further comment on
them. The analysis showed that either of both attacks can have more impact on size of the
resource queue depending on the attack parameters. While the queue-growth rate increased
linearly during a flooding attack with increased arrival rate it remained constant for complexity
attacks after a certain level. Likewise the response time of the requests depended on the
chosen attack parameters such that any of the attacks may have a greater impact.

The authors of the papers [47] and [48] decided to take a look at various existing metrics
before presenting their own metrics. The following listing gives an overview over the various
metrics, their definition and usage and also tries to point out in which cases they fail to provide
a useful result.

21

3.1 Impact Metrics

∙ The packet loss is the number of bytes or packets that were lost due to the interaction
of the attack traffic with the legitimate traffic or due to collateral damage caused by the
defense strategy. Its use is primarily to measure the presence and extent of network
congestion that is caused by flooding attacks. As such it cannot be used reliably against
attacks without continuous network congestion as is the case with low rate, pulsing or
attacks that target application vulnerabilities. Another weak point of this metric is the
fact that in general it does not distinguish between the different types of lost packets
although the type provides essential information since they have different impact (e.g.
lost TCP SYN versus lost data packets).

∙ The throughput metric is defined as the number of transferred bytes per time unit.
Goodput is similar however it does not count the retransmitted bytes. Indirectly this
metric captures not only the network congestion but also the prolonged duration of
legitimate transactions since both parameters are connected to TCP-based traffic which
responds to network congestion by lowering its sending rate. However any applications
that are sensitive to jitter or loss of specific (e.g. control) packets may still experience
high throughput levels although the quality of service requirements expected by the
user are not satisfied anymore. Also the metric cannot be applied effectively to traffic
consisting of short connections with few packets since it already has a low throughput.

∙ Denial of service of an interactive application (e.g. telnet) can be measured using the
request / response delay. It is defined as the interval between the issue of a request
and the complete reception of its corresponding response. The metric is inapplicable to
noninteractive applications which already have large thresholds for the delay. Likewise
it is not applicable to one-way traffic where no response is expected.

∙ Looking at a complete set of messages exchanged between a source and its destination
one can define the transaction duration which captures the time needed for such an
exchange. The metric depends heavily on the exchanged data volume and the type
of application (e.g. interactive or congestion sensitive). While accurately measuring
the service denial for interactive applications (e.g. web browsing) it does not capture
applications such as one-way traffic (e.g. media streaming). Also for many noninteractive
applications extended transaction duration does not imply a denial of service and is
accepted by humans.

∙ The allocation of resources is another often considered metric. It is the fraction of a
critical shared resource allocated to legitimate traffic versus attack traffic. The shared
resource may be bandwidth, buffer space or any other application specific resource.
The metric fails to capture the user-perceived service quality and assumes that a lack of
resource is the cause of service denial. Further it fails to capture the collateral damage
since a defense strategy that drops 90% of legitimate traffic and 100% of attack traffic
would appear to be perfect.

The authors of the paper conclude that all those metrics even when combined have the
disadvantage of not being quantitative since they do not specify any appropriate ranges
that correspond to service denial. In fact they bring up the fact that such values cannot be
specified in general because they depend highly on the type of applications (e.g. loss of VoIP
versus DNS traffic). Also the metrics have never been proven to correspond to human user’s
perception of denial of service. Instead the authors propose a new Dos impact metric where

22

3.1 Impact Metrics

they paid attention to application specific QoS requirements. In addition to their research they
extended their findings with those made by the 3GPP consortium in [49] as well as several
findings from further contemporary QoS research [6], [4], [5], [61].

The list of applications can more or less be grouped into five categories each with specific
QoS requirements that have to be fulfilled for a successful transaction. A transaction usually
involves a single request- reply exchange between a client and a server or a very close
sequence of multiple request reply exchanges.

The first category which are the interactive applications such as web, file transfer or e-mail
(between user and server) always involve a human user that sends a request and waits
for its response which has to be served within an user-acceptable delay. According to the
paper a higher total delay is tolerated if the data arrives incrementally. As such the category
has two delay constraints: partial delay between the receipt of any two packets and the
whole delay measured from the end of the request until the entire response has arrived.
Further applications may even have additional delay specific requirements (e.g. echo delay
requirements for telnet < 250ms).

Media applications (e.g. audio or video streaming) have strict requirements for low loss,
jitter and one-way delay. Since media applications usually use multiple channels (control and
data) both of them are required to provide satisfactory results to the users. The control traffic
is considered to be part of the interactive applications category.

Since online games have strict requirements as well for low one-way delay and loss, they
are part of an individual group. The online games are divided into two subgroups of first
person shooters and real-time strategy games as according to research they have different
requirements.

Chat applications may have media channels where the requirements of the media category
apply. Further a threshold value of 4 seconds is defined that applies to each acknowledge
message sent by the server in reply to a user initiated message.

The last category contains any noninteractive services (e.g. e-mail transfer between
servers) where users accept a longer delay as long as the transaction will be success-
ful within a given interval.

The complete list of applications and their defined QoS requirements can be found in table 1
in [48].

According to those QoS requirements the authors came up with the following metrics which
aggregate the transaction success and failure measures.

∙ The percentage of failed transactions (pft) is a metric that is collected per application
type. It quantifies the QoS experienced by the users that captures the impact of a
(D)DoS attack. Instead of directly calculating the percentage as the failed transactions
divided by all transactions, which may give a biased result for certain applications,
the authors chose to calculate the pft as the difference between 1 and the ratio of
successful transactions divided by all transactions that would have been initialized if
the attack were not present.

23

3.1 Impact Metrics

∙ The DoS-hist metric is used to understand the application’s resilience to an attack by
showing the histogram of pft measures across applications.

∙ DoS-level is the weighted average of pft measures. Since it depends highly on the
chosen weight the DoS-level can be biased but is still interesting when a single number
is required to describe the DoS impact.

∙ Finally to quantify the severity of service denial the QoS-degrade metric has been
introduced which is computed for failed transactions. It is the ratio by which the applica-
tions transaction’s measurements exceed its QoS threshold. e.g. A QoS-degrade value
of 𝑁 means that the service of failed transactions was N times worse than a user could
tolerate.

The collection of the required data to calculate the metrics in a testbed or real-world scenario
is complex. Either the client applications have to be modified to compute the required
measurements directly or a trace based approach can be used where the transactions and
request / responses have to be identified later on during the trace analysis which may be
challenging [46].

In [59] the authors employ multiple metrics to evaluate the impact of DDoS attacks on web
services during flash crowd events (legitimate web traffic at high rate). The analysis uses the
following metrics which also according to [46] properly signal denial of service for HTTP, FTP
and DNS traffic.

∙ The throughput which can be divided into goodput and badput, where the goodput is
defined as the number of bits per second of legitimate traffic over the bottleneck link
whereas the badput is the attack traffic per second.

∙ The elapsed time between the end of a request and the beginning of a response is
defined as response time.

∙ The percentage of legitimate request that are being dropped due to congestion on the
bottleneck bandwidth is the percentage of request packets lost.

∙ The legitimate packet survival ratio measures the delivered legitimate packets during
an attack.

∙ Transactions that fail with a RST packet being sent by the targeted server are accounted
under the percentage of failed transactions metric.

∙ Finally the bottleneck bandwidth utilization is defined as the percentage of bandwidth
that is used for goodput.

During a similar simulation based approach to evaluate the performance of web services
under a DDoS UDP flooding attack the same authors [58] additionally used the average
serve / request rate, which is defined as the number of receives generated by the server to
the number of requests generated by the clients.

Flooding attacks with UDP, TCP and ICMP bandwidth flood with FLAT, PULSE and also
RAMP distributions have been as DDoS attack scenarios. The results showed that various

24

3.1 Impact Metrics

attacks had different impact on the measured goodput, the average response time increased
almost 3 to 5 times during the attacks and the average percentage of failed transactions
increased 5 to 10 times. As expected the legitimate packet survival ratio started to decrease
with increased rates of attack traffic. Finally the average bottleneck bandwidth utilization
showed that during an attack the value drops more than 50%.

While the average serve / request rate is close to 1 without attack it decreases as the strength
of the attack increases.

25

3.1 Impact Metrics

Table
3.1:D

oS
im

pactm
etrics

M
etric

internal/external
data

O
S

Ilayer

financialdam
age

m
odel

internal
expected

financialdam
ages

none
M

ID
A

S
2007

scale
factor

internal
risk,S

LA
costs

&
(expected)revenue

none
M

ID
A

S
2007N

E
T

factor
internal

risk
&

provisioned
bandw

idth
2

m
em

ory
exhaustion

internal
localm

em
ory

usage
none

processorexhaustion
internal

localsystem
cpu

usage
none

average
goodput

m
ostly

internal
transfersize

&
transferduration

7
average

congestion
w

indow
depends

congestion
w

indow
size

&
M

S
S

4
packets

persecond
received

and
sent

internal
ethernetfram

es
/ip

packets
persecond

2,3
average

queue-grow
th

rate
internal

arrivalrate,queue
capacity,service

tim
e

2
arrivalrate

internal
IP

packetarrivalrate
3

response
tim

e
internal

fullreception
ofrequest&

startofreply
7

packetloss
depends

lostpackets
orbytes

(due
attack)

3,4
throughput(goodput/badput)

m
ostly

internal
transfered

bytes
/tim

e
unit

2,3
(good

/bad
7)

request/response
delay

external
duration

betw
een

requestand
com

plete
reception

7
transaction

duration
external

duration
betw

een
a

com
plete

transaction
7

allocation
ofresources

internal
m

easurem
entorresource

usage
various

percentage
offailed

transactions
(pft)

external
failed

transactions
perapplication

types
7

D
oS

-hist
external

histogram
ofpft

7
D

oS
-level

external
w

eighted
average

ofpft
7

Q
oS

-degrade
external

required
Q

oS
values

and
m

easured
values

7
percentage

ofrequestpackets
lost

internal
sentrequestpackets

and
dropped

ones
7

legitim
ate

packetsurvivalratio
internal

legitim
ate

delivered
and

sentpackets
7

percentage
offailed

transaction
external

failed
transaction

w
ith

R
S

T
sent

4
B

ottleneck
bandw

idth
utilization

internal
m

easured
bandw

idth
and

actualbandw
idth

2
average

serve
/requestrate

internal
num

berofserverreceives
&

clientrequests
7

26

3.1 Impact Metrics
Ta

bl
e

3.
1:

D
oS

im
pa

ct
m

et
ric

s
(c

on
tin

ue
d)

M
et

ric
fin

an
ci

al
ev

al
ua

tio
n

&
to

ol
s

re
fe

re
nc

es

fin
an

ci
al

da
m

ag
e

m
od

el
X

th
eo

re
tic

al
ca

lc
ul

at
io

n
[2

5]
M

ID
A

S
20

07
sc

al
e

fa
ct

or
X

th
eo

re
tic

al
ca

lc
ul

at
io

n
[7

4]
M

ID
A

S
20

07
N

E
T

fa
ct

or
7

ca
lc

ul
at

io
n

[7
4]

m
em

or
y

ex
ha

us
tio

n
7

pr
oc

fs
,f

re
e

[2
8]

pr
oc

es
so

re
xh

au
st

io
n

7
pr

oc
fs

,m
ps

ta
t

[2
8]

av
er

ag
e

go
od

pu
t

7
tra

ce
an

al
ys

is
[1

1]
av

er
ag

e
co

ng
es

tio
n

w
in

do
w

7
c
,e

[1
1]

pa
ck

et
s

pe
rs

ec
on

d
re

ce
iv

ed
an

d
se

nt
7

pr
oc

fs
,b

ip
ta

bl
es

(c
ou

nt
er

)
[1

1]
av

er
ag

e
qu

eu
e-

gr
ow

th
ra

te
7

th
eo

re
tic

al
ca

lc
ul

at
io

n
[3

9]
,[

26
]

ar
riv

al
ra

te
7

b
ip

ta
bl

es
(c

ou
nt

er
)

[3
9]

,[
33

]
re

sp
on

se
tim

e
7

a
(in

te
rn

al
)

[3
9]

pa
ck

et
lo

ss
7

pi
ng

(IC
M

P
),

g
Ip

er
f(

U
D

P
),

f
st

in
g

(T
C

P
)

[4
8]

th
ro

ug
hp

ut
(g

oo
dp

ut
/b

ad
pu

t)
7

Ip
er

f(
TC

P
)

[4
8]

re
qu

es
t/

re
sp

on
se

de
la

y
7

d
(e

xt
er

na
l)

[4
8]

tra
ns

ac
tio

n
du

ra
tio

n
7

tra
ce

an
al

ys
is

[4
8]

al
lo

ca
tio

n
of

re
so

ur
ce

s
7

va
rio

us
[4

8]
pe

rc
en

ta
ge

of
fa

ile
d

tra
ns

ac
tio

ns
(p

ft)
7

m
od

ifi
ed

cl
ie

nt
s

/t
ra

ce
an

al
ys

is
[4

8]
D

oS
-h

is
t

7
m

od
ifi

ed
cl

ie
nt

s
/t

ra
ce

an
al

ys
is

[4
8]

D
oS

-le
ve

l
7

m
od

ifi
ed

cl
ie

nt
s

/t
ra

ce
an

al
ys

is
[4

8]
Q

oS
-d

eg
ra

de
7

m
od

ifi
ed

cl
ie

nt
s

/t
ra

ce
an

al
ys

is
[4

8]
pe

rc
en

ta
ge

of
re

qu
es

tp
ac

ke
ts

lo
st

7
tra

ce
an

al
ys

is
[5

9]
le

gi
tim

at
e

pa
ck

et
su

rv
iv

al
ra

tio
7

tra
ce

an
al

ys
is

[5
9]

pe
rc

en
ta

ge
of

fa
ile

d
tra

ns
ac

tio
n

7
tra

ce
an

al
ys

is
[5

9]
B

ot
tle

ne
ck

ba
nd

w
id

th
ut

ili
za

tio
n

7
[5

9]
av

er
ag

e
se

rv
e

/r
eq

ue
st

ra
te

7
tra

ce
an

al
ys

is
[5

8]
a

ht
tp

://
si

le
nt

or
bi

t.c
om

/n
ot

es
/2

01
0/

01
/m

ea
su

rin
g-

de
la

y-
in

-w
eb

se
rv

er
-r

es
po

ns
e/

b
ht

tp
://

st
ac

ko
ve

rfl
ow

.c
om

/q
ue

st
io

ns
/3

49
57

6/
lin

ux
-r

et
rie

ve
-p

er
-in

te
rfa

ce
-s

en
t-r

ec
ei

ve
d-

pa
ck

et
-c

ou
nt

er
s-

et
he

rn
et

-ip
v4

-ip
v

c
ht

tp
://

lin
ux

ga
ze

tte
.n

et
/1

36
/p

fe
iff

er
.h

tm
l

d
ht

tp
://

w
w

w
.v

an
he

us
de

n.
co

m
/h

ttp
in

g/
e

ht
tp

://
lin

ux
ga

ze
tte

.n
et

/1
37

/p
fe

iff
er

.h
tm

l
f
ht

tp
://

cs
ew

eb
.u

cs
d.

ed
u/

sa
va

ge
/p

ap
er

s/
U

si
ts

99
.p

df
g

ht
tp

://
so

ur
ce

fo
rg

e.
ne

t/p
ro

je
ct

s/
ip

er
f/

h
ht

tp
://

ts
ta

t.t
lc

.p
ol

ito
.it

/in
de

x.
sh

tm
l

i h
ttp

://
w

w
w

.h
pi

ng
.o

rg
/

j h
ttp

://
ne

ts
ni

ff-
ng

.o
rg

/

27

3.1 Impact Metrics

28

Chapter 4

Methodology

This chapter presents the methodology applied in this master thesis. In a first part, the used
lab network setup is outlined and in a subsequent section the analyzed internal and external
metrics are presented including the tools used to measure them. The last part of the chapter
describes the post-processing of the captured data.

4.1 Lab Network Setup

Most of the experiments during the thesis have been performed in a lab environment that had
no access to the institute’s productive network or the Internet to prevent accidental damage
to the remaining network infrastructure and its systems. The set up lab network was chosen
to have a dumbbell topology as shown in figure 4.1, such that multiple TCP sessions share a
single bandwidth-limited bottleneck and thus have to compete for its bandwidth. The dumbbell
topology is often used when studying network traffic properties, as all intermediate links
except for the bottleneck link can usually be ignored [31, 10].

For our experiments the bottleneck link was chosen to represent the access link to the server
infrastructure. On the server side the attacked web server as well as an additional system,
which was used when simulating cross traffic that further utilized the bottleneck link, were
stationed. The other side of the bottleneck link represented the various Internet hosts, that
included multiple attacking hosts and clients. On one of the clients various measurement
parameters, that will be explained in section 4.2 in detail, have been collected while additional
hosts have been used to generate simulated TCP traffic.

To reduce the effects that additional bottleneck links would cause, all networking devices and
cables were gigabit capable, except for certain measurements where a few of the cables have
been replaced with different ones that had their wire pairs 1 and 4 disconnected such that
they would only allow a speed of 100 Mbit/s. To connect the network links, two unmanaged
desktop gigabit Ethernet switches have been used [54]. The use of a modified network cable
was necessary between the switches when requiring 100 Mbit/s links, whereas on the end
systems the network device configuration could also be changed on the software level e.g.
using the «ethtool» utility, as is shown in section 4.3.

29

4.1 Lab Network Setup

measurement
client

server under
considerationswitch 2

...

switch 1

additional client,
simulate traffic

simulate traffic

attackers

Figure 4.1: Lab network setup

The client and attacker hardware all consisted of similar desktop computer systems that
included an Intel Core i3-540 processor [35] and 4 GB of RAM. The used operating system
was the current LTS (Long Term Support) version of Ubuntu (an operating system based
on the Debian Linux distribution), which at the time of the thesis beginning was still version
10.04.4. The used Kernel version was still at 2.6 with the exact version being 2.6.32-24.

A first web server consisted of the same hardware while the second server had a more recent
Intel Core i7-2600K processor [36], 16 GB of RAM and a solid-state drive (SSD) installed.
Both server systems also used the Ubuntu flavor in its LTS version as their operating systems
but in its 64-bit server edition with the Kernel version 2.6.32-41.

As web server software Apache 2 [65] as well as lighttpd [40] have been used together with
PHP [69] and MySQL [51] as a database backend when dynamic content was served during
the measurements.

During the last steps of the thesis a few measurements could be performed in an actual
productive environment. The measurements employed the network infrastructure that was
shared with multiple users and the attacks targeted three systems that were in productive
use as well.

While one targeted system was running in a virtual machine, the remaining systems were
two virtual machine hosts running VMware’s ESXi virtualization hypervisor [75]. On the
virtual machine webn application was located, running on a Jetty web server [66]. The ESXi
servers, one running version 4 and the other version 5 of the virtualization product, both
provided access to a limited web interface with simple product information and links to the
product website. In the case of ESXi version 4, the web server also provided access to a
downloadable management software.

30

4.2 Metrics

The network layout was such that the attackers and the client were connected to a 100
Mbit/s switch that directed the network traffic through a firewall to a second switch where the
targeted servers were connected.

4.2 Metrics

An initial task of the master thesis consisted of selecting suitable metrics that could be used to
capture the current web server system state and thus also the impact caused by the (D)DoS
attacks.

As explained in chapter 3, in an ideal world one would have access to a holistic network-wide
view that allows to fully assess the impact of an attack. This is however not the case in
a real world scenario, where the monitoring is restricted to a few points and parameters
in the system. Also as a further restriction that was posed by the thesis’ task description,
was to take the view of an outsider without access or sophisticated knowledge about the
attacked network or system. As such although multiple internal metrics were included in the
measurements, especially during the first few ones where they have been used to determine
the required attack strength to cause a denial-of-service, they were avoided in the modeling
when possible.

The chosen metrics have been selected based on the literature presented in chapter 3, that
unfortunately, mostly contains internal metrics, such that additional internal and external
metrics have been included during the measurements.

To measure the defined metrics appropriate measurement tools and configurations have been
chosen. The summary of the selected internal as well as external metrics, along with their
definition and selected measurement tools, is given in tables 4.1 and 4.2. The measurement
tools and their configurations are described in detail in section 4.2.1.

4.2.1 Measurement Tools

The following section presents the used metric measurement tools in detail, including the
configuration options employed during the measurements.

mpstat [19, 30]

The mpstat utility, which is part of the «sysstat» package in Ubuntu, is used to report the
activity of the available processors or processor cores. The first output of the utility was
ignored, as has been recommended in [79], since the first report interval is defined since
the system startup and only afterwards the reporting interval is measured between two
subsequent outputs.

By default the tool reports the CPU utilization that is divided into several categories, including
the time spent at the user level (applications), at the system level (kernel), waiting for I/O,
servicing hardware or software interrupts or being idle.

31

4.2 Metrics

Table 4.1: Internal metrics

metric definition measurement tool

CPU utilization Reports the CPU utilization divided into multiple
categories as explained in the tool description.

mpstat

memory usage Measures the current memory usage either
overall or divided into several categories.

free, /proc/meminfo

IO utilization Reports the device utilization of the drives. iostat
IO avg wait Measures the average time for requests sent to

the device including the time spent in queues
and servicing.

iostat

received pkts / s Captures the number of received packets per
second by the network interface.

netstat

throughput The number of bits per second of traffic sent
over the bottleneck link.

netstat

goodput Defined as the number of bits per second of
legitimate traffic sent over the bottleneck, not
counting the retransmitted bits.

tcpdump, curl

No. of TCP conn. Counts the number of TCP connections that
are currently in the ESTABLISHED state.

netstat

served req. / s Assesses the number of requests per second
that are served by the web server.

web server log

Table 4.2: External metrics

metric definition tools

ICMP RTT Measures the round-trip time of packets using the
ICMP echo request and reply packets .

ping

ICMP packet loss The packet loss on a link is determined using the
rate of lost ICMP echo reply or request packets.

ping

ACK RTT Captured by the metric is the round-trip time of
TCP acknowledgment packets.

tcpdump, tshark

retr. segments The retransmitted TCP segments count assesses
the number of retransmissions that occur, incl.
packet loss or corrupt packets.

tcpdump, tshark

lost segments Quantified by the lost TCP segments metric is
the number of times the previously expected TCP
packet was not seen.

tcpdump, tshark

avg. TCP window Shows the calculated average TCP window size. tcpdump, tshark
throughput Measures the average rate of successful packet

deliveries between server and client.
curl

32

4.2 Metrics

The command is executed as mpstat -P ALL 5 24, where the -P ALL options reports
the stats for all processors individually and the arguments 5 and 24 define the interval in
seconds between two reports and the number of outputs before exiting.

free [17]

To determine the current memory consumption two different methods have been used. The
first method used the free utility which displays the total amount of free as well as used
memory in the system and it is also capable of showing the buffers in the kernel.

The command is executed using free -m -s 5, activating the output in megabytes using
the -m flag and continuously refreshing the output statistics every 5 seconds using the -s

switch.

/proc/meminfo [22]

As the second method, which can collect memory information in more detail the proc file
system was used. The proc file system is an interface to the kernel data structures that can
be accessed over a pseudo-file system that is commonly mounted at /proc.

The /proc/meminfo file reports the statistic about the current memory usage on the system.
The reported usage is divided into more than 30 different categories, including the amount of
free memory, cache memory or memory used by the Kernel but also the amount of memory
that would be necessary to never obtain an out of memory error with 99.99% probability.

The content of the pseudo file was copied every second during the measurements.

iostat [18, 30]

The iostat tool is similar to the mpstat command. While the mpstat is restricted to the CPU
statistics the iostat tool can also report system input and output device load. Using the «-x»
flag, extended statistics will be output that include average request and queue sizes, number
of blocks/s or MB/s written but also the device utilization as a percentage.

During the measurements the tool is executed using the command iostat -d -x -t 5

24 that displays extended statistics of the device utilization report that is enabled with the
-d flag. The -t switch enables the printing of the current timestamp, while the arguments 5
and 24 define the interval in seconds between two reports and the number of outputs before
exiting similar to the mpstat utility.

netstat [20]

The netstat utility provides access to various networking information. The information ranges
from networking connections and routing tables to interface statistics.

33

4.2 Metrics

The netstat utility was used for two different purposes during the thesis. Firstly the tool
was used to determine the number of current connections and their current states (e.g.
ESTABLISHED or LAST_ACK). This information was only collected on the server and was
mainly used to observe how many parallel connections the server could handle. The required
netstat command is netstat -W -n -e -e -t -u -w where the -W flag activates the
wide output, the -e flags active extended information and the -t , -u and -w flags enable
the output of TCP, UDP and raw socket information.

Secondly the statistics interface of the netstat tool provides multiple metrics that relate to TCP
connections and their performance. To enable the reporting of the statistics the netstat -s

command is used.

Similar to the /proc/meminfo interface, the output was collected once per second.

tcpdump [70]

tcpdump is a powerful command-line tool that captures network packets using the libpcap
library and also implements a packet analyzer that is commonly used to analyze network
behavior and performance as well as any application that generates or receives network
traffic. As tcpdump has been around since 1987 it has been ported to nearly all Unix like
operating systems and has become the most commonly used packet analyzer. A description
of the received and sent packet contents can be printed out directly to the console or the
partial / whole packets can be stored for later analysis e.g. using the tools that are explained
below.

To be able to handle the captured data, the data was recorded into multiple files using the -G

60 option that rotates the file every 60 seconds. The filename is defined by the -w %s.pcap

option and contains the current timestamp. To further reduce the captured data a filter option
was specified as host 192.168.74.16 such that only traffic destined to the host was
included, also the -s 96 option shortened the recorded packet data such that only the
headers of the packets remained.

The complete command used is tcpdump -i eth0 -n -w %s.pcap -G 60 -W 2 -s

96 host 192.168.74.16 where the only argument that has not yet been explained is the
-i eth0 option, that defines the network interface to listen on.

Wireshark [84]

Wireshark is a packet analyzer similar to tcpdump but has a graphical front-end as well as
various post-processing, sorting and filtering options that ease the analysis of the captured
packets. The post-processing features allow to take apart the captured data and decode the
various packets and its layers, thus the data can be scrutinized almost arbitrarily.

tshark [83]

tshark is a command line network protocol / packet analyzer and works similar to tcpdump.
It is part of the Wireshark tool suite and has the same advanced options as the graphical

34

4.2 Metrics

Figure 4.2: Wireshark

interface provides. While tshark is not as common as tcpdump it is at least as powerful and
as such allows statistical analysis of the captured data.

curl [63]

During the measurements when the throughput between web server and client was of interest,
the cURL program was used to transfer a file with a large file size between the two hosts since
the usually used iperf [68] throughput measurement tool cannot be used without privileged
access to the web server.

As the output of the cURL program can be formated arbitrarily using the --write-out

option, it was arranged such that it could be parsed easily. To prevent any discrepancies
caused by the receiving host and its hard-drive, no data was stored on the end host. The
cURL measurements have been run once per minute during the measurements using the
following command:

curl --output /dev/null --silent --show-error --write-out

"total=%{time_total} connect=%{time_connect}

pre=%{time_pretransfer} start=%{time_starttransfer}

size=%{size_download} speed=%{speed_download}

con=%{num_connects}\n" --max-time 59 192.168.74.10

ping

The ping utility sends ICMP echo request datagrams that elicit an echo response from the
host they are sent to. The packet stores a timestamp that enables the stateless calculation of
the packet round-trip time.

The used command was ping -n -c 5 -l 5 -W 2 that includes the option -n to show
numeric output only, thus never resolve any addresses, the sending of 5 requests without
waiting between them using options -c 5 and -l 5 and lastly the inclusion of a timeout of 2

35

4.3 Additional Tools

seconds with the -W 2 option. To end more than 3 concurrent requests super user privileges
are required.

4.3 Additional Tools

ethtool [16]

ethtool is a utility to display or change the settings of an Ethernet device. As previously
noted in section 4.1 some measurements have been performed using 100 Mbit/s links, as an
alternative to the modified network cables the ethtool also allows to change the speed mode
of a device. Using the ethtool the following command was used ethtool -s eth0 speed

100 duplex full autoneg off.

The used switches were also capable of sending PAUSE frames to reduce the sending
rate of the attached hosts, when a link was congested, to make sure the attackers would
not respect this information and reduce their transmission speed their Ethernet device has
been configured to ignore the received PAUSE frames. The required command is ethtool
--pause eth2 autoneg off rx off.

ntpdate [21]

When a coordination of the measurements was required a common NTP server was setup
and used by all systems. Using the ntpdate utility the date and time was then periodically
updated on each host (ntpdate 192.168.74.1).

4.4 Post-processing

After collecting the various output information that was produced by the different measurement
tools, the required metric values had to be extracted and further processed. Since the post-
processing also involved aggregation, computation of statistics as well as plotting of the
results, the processing was performed using MATLAB [67]. The MATLAB code developed
during the thesis can be found on the accompanied CD and an overview over the involved
MATLAB code with a short description of each file is also attached in appendix A.3.1.

The different steps of post-processing in MATLAB involved:

∙ Extraction of the metrics from the collected output.

∙ Aggregation of each individual metric and the calculation of its average for each
measurement interval.

∙ Plotting of the metrics including their 95% confidence intervals.

36

Chapter 5

(D)DoS Attacks

All (D)DoS attacks have the same purpose, to deny service to legitimate clients [9]. However
there is a huge range of attack types, each targeting different properties of applications,
systems or the network infrastructure. As broad as the range of attacks, so are also the
classifications of (D)DoS attacks [44]. A simple but common classification is to distinguish
between bandwidth depletion in the intermediate network links and resource depletion on the
network components or attacked end hosts.

5.1 Attack Taxonomy

The range of attacks is nearly infinite and figure 5.1, that is loosely based on [57], will not be
able to distinguish all existing attacks. However the figure should give an overview over the
selected attacks and allow the reader to put the attacks into context. The figure shows the
most common DoS attack taxonomy where one divides between bandwidth and resource
depletion attacks.

In a further subdivision of the bandwidth depletion attacks are the flooding attacks, where the
attacker or systems controlled by the attacker (e.g. clients in a botnet) send a large amount
of packets directly to the targeted system. Using spoofed source IP addresses in the sent
packets further allow the attacker to hide its network location. As an alternative to directly
attacking a system an amplification attack uses additional systems to increase the generated
traffic and also allow the attackers to stay in second row where they remain hidden. In a DNS
reflection attack, short queries with the target IP address as spoofed sender addresses are
sent to DNS servers that will respond with larger reply packets and thus amplify the attack
traffic.

Attacks that have become less prominent include the Smurf or Fraggle attack that use
spoofed source IP addresses and send ICMP ping requests respectively UDP traffic to
broadcast addresses to amplify the response packet count. Due to a change in the standard
how broadcast packets are handled over network segments, the attacks have become less
efficient.

37

5.2 Selected (D)DoS Attacks

On the resource depletion side of the diagram, the subdivision includes protocol exploit
attacks that abuse certain properties of Internet protocols. The most common attack there
being the TCP SYN attack, that abuses the threeway handshake in the TCP protocol to keep
the connection in its waiting state and thus prevent further connections.

Application attacks target specific applications e.g. the used web server or database software.
The targeted resources differ for the different attacks and include the number of used
connections or memory and CPU consumption.

Bandwidth

Flooding

UDP TCP ICMP

Resource

Protocol Exploit

TCP SYN Web Server

Application

GETPOST

(D)DoS Attacks

Amplification

ICMP
(Smurf)

Slow POST GET flooding

DatabaseUDP
(Fraggle)

DNS
reflection

Flash Crowd

Figure 5.1: (D)DoS attack taxonomy based on [57]

5.2 Selected (D)DoS Attacks

Since different attacks target a wide range of parameters related to either end-host or
networks, the (D)DoS attacks have been limited to a few specific cases that were selected in
accordance with the current situation of observed attacks and their supposed impact taken
from current reports and literature [2]. Where readily available attacks tools existed, some of
them have been evaluated, while in other cases tools were further prepared or modified for
the measurements, as will be shown later in this chapter.

5.2.1 UDP flooding

The typically observed UDP flooding attack is designed to consume large amounts of the
available bandwidth of the intermediate network and its bottleneck links, resulting in high
packet delays and packet loss rates on the impacted links. Additionally the attacked host will
respond with ICMP «Port Unreachable» packets. To perform the attack, the attacking hosts
send a constant stream of large UDP packets (e.g. 1500 bytes) where the source IP and
ports are usually spoofed to harden the detection of the attacking hosts.

If the purpose of the attack is not bandwidth depletion but rather CPU depletion on the
attacked system, a UDP flooding attack can also be used, however a very high rate of small
packets would be the preferred and more effective configuration in that case [45].

The attack strength of UDP attacks has been observed to be steadily increasing in the
Internet. Attacks of multiple gigabit per second have become common and in recent years
traffic of up to 100 gigabit per second has been observed during large attacks [2].

38

5.2 Selected (D)DoS Attacks

To generate such high packet rates an attacker usually requires very large bot-nets of multiple
thousands of hosts as most of those hosts will only have a very limited upload rate. A modern
host is however easily capable to generate traffic of multiple gigabits per second. A software
that allows the generation of such large amounts of traffic is the Linux packet generator
pktgen [50] that allows to generate the packets directly in the kernel mode instead of having
to use the user mode as most other UDP attacking tools do.

5.2.2 Slow POST

The Slow POST attack targets the end host system or more specifically the web server
running on it. The attacking hosts initiate multiple HTTP POST connections to the web server
and keep the connections alive by sending arbitrary POST data to the server over and over at
a very low rate. The web server spawns child processes to handle the simultaneous requests
until it reaches the maximum allowed number of child processes such that additional requests
will be placed into a queue and eventually time-out. Initial measurements using the Apache
2 web server showed that a single attacking host would be capable of establishing enough
connections to deny further connections by other hosts however during the measurements
multiple attacking hosts have been used to distribute the load. To perform the attack on a
web server a readily available tool with the name «Tor’s Hammer» exists [52].

A similar variant of the attack is used by the Slowloris tool which became popular during the
2009 Iranian presidential elections [81, 56]. The Slowloris tool establishes TCP connections
and keeps them open by creating HTTP requests that are kept incomplete by continuously
sending additional header fields.

There exist a few methods to mitigate slow attacks, either by using a different web server
software as not all are affected by the attack, by using additional software to limit the influence
(e.g. Apaches «mod_security» or «mod_reqtimeout» modules) or also on the network level
by using reverse proxies, load-balancers or by using firewalls that filter on the application
layer.

5.2.3 Flash-crowd attack

A flash-crowd attack is similar to the happening of a flash mob where a group of unfamiliar
people suddenly assemble in a place, often performing an unusual act, before they disperse
again [78]. The term flash-crowd has been taken from the 1973 story «Flash Crowd» by Larry
Niven where due to the invention of cheap teleportation an argument in a book shop, that is
covered by a news team, quickly becomes a riot as more and more additional people join the
scene.

A similar effect can be observed when a popular website publishes a link to a smaller website
that subsequently cannot handle the thereby generated amount of requests and traffic. The
effect is often called Slashdot-, which is a popular news site, or Twitter-, a microblogging
service, effect.

The flash-crowd attack emulates the legitimate behavior of individual clients such that the
malicious users cannot easily be distinguished from legitimate ones. The chosen attack

39

5.3 Attack Implementation

scenario, where the attackers try to continuously download large files, can also be seen as an
asymmetric resource utilization attack which results in a starvation for the legitimate clients.
As most broadband clients have a much faster download than upload connection the attack
will often require less hosts to generate a similar effect than are required with other flooding
attacks.

The flash-crowd attack scenario is also interesting to look at from the point of information
collection where a certain client tries to quickly collect a large amount of data from a web
server without drastically impacting the performance of other users, that otherwise may result
in undesired actions (e.g. blocking) being performed against that user.

5.2.4 GET flooding

GET flooding attacks target the web server by sending large amount of GET requests to the
server which effectively will get overloaded by the requests. Due to the amount of requests
and connections that the server has to handle it will not be able to further communicate
successfully with any legitimate clients.

The effects of GET flooding attacks heavily depend on the additional software that is used on
the server and is involved in the processing of the requests. As such the attack has been
divided into two cases. Once the data accessed by the server system was readily stored
on the hard-disk, while the second test case used an additional database back-end where
the accessed data was stored. Furthermore on each request the server would store logging
information containing the IP of the user and the current date in the database.

According to the World Wide Infrastructure Report, the HTTP GET flooding was the most
common attack observed in the Internet during the 12 month survey period [2].

5.3 Attack Implementation

5.3.1 UDP flooding

To perform the UDP flooding attack the Linux packet generator «pktgen», that is provided
as a Linux kernel module, has been used. The packet generator can be used to generate
arbitrary sized UDP packets that during the attack were sent directly to the attacked web
server. The attack strength ranged from 0 to 2000 Mbit/s in total, which was split between 5
hosts to distribute the load. The script that was used to configure the packet generator for the
attacks can be found in appendix A.2.2.

./pktgen_udp.sh <delay between pkt [ns]> <target IP address>

<next hop MAC> <pkt size [byte]>

Since the script takes the delay between two packets as its argument the conversion between
the attack traffic to generate and the delay between two packets has to be approximated
according to formula 5.1.

40

5.3 Attack Implementation

delay [s] =
1 − pkt_rate [1/s] * pkt_duration [s]

pkt_rate [1/s]
(5.1)

To compute the number of packets to be sent per second (pkt_rate [1/s]) and the duration to
send a single packet over the link (pkt_duration [s]) the formulas in 5.2 are used.

pkt_rate [1/s] =
attack_traffic [bit/s]

pkt_size [bit]
, pkt_duration [s] =

pkt_size [bit]
link_speed [bit/s]

(5.2)

During the initial attack a packet size of 1500 bytes was used which was supposed to saturate
the bottleneck link of the network with UDP packets. However the attack was only partially
successful as the co-existing TCP traffic during an attack was merely reduced by a third of
the usual throughput measured without an attack.

A second attack with a packet size of 60 bytes was more effective and created a DoS due to
the huge amount of received packets at the web server system.

5.3.2 Slow POST

The slow POST attack has been performed using the Tor’s Hammer [52] attack tool which is
written in Python. The name Tor’s Hammer is derived from the fact that the tool has an option
to be used through the Tor anonymizing network [71]. For the measurements performed
during this thesis the Tor option was however not used.

The strength of the attack is regulated by the number of parallel threads that the program
uses and is specified using the -r option. The number of parallel connections were increased
from 0 to 400 during the attacks. The audit framework presented in chapter 9 was responsible
to evenly distribute the load between 5 attacking hosts.

./torshammer.py -t <target IP address> -r <parallel threads>

5.3.3 Flash-crowd attack

To simulate a flash-crowd attack with up to 150 concurrent connections, multiple parallel
downloads have been executed using the curl tool, described in 4.2.1. Due to the limited
number of attacking hosts, the parallel downloads were distributed equally between 5 attack-
ing hosts. The various files that would be downloaded contained random data and had sizes
between 256kB and 150MB.

After each download an attacker would wait a random time period between 1 and 5 seconds
before starting the next download which is a behavior commonly found in web crawlers. In
[12] a delay of 10 seconds is used while in [24] the time between two requests is only one
second. To prevent slow downloads from stalling, a timeout depending on the size of the
download was used, after which a non completed download would be aborted.

41

5.4 (D)DoS Attack Strength

5.3.4 GET flooding

For the GET flooding attacks a set of different tools including netcat and ncat, that are
described in A.1.3 and A.1.4, have been used to repeatedly transmit a previously recorded
GET request. A script repeatedly called the program and piped the previously recorded
request from a file as its input. Creating a new instance of the program made sure that a
new connection was established for each GET request. Using 5 attacking hosts a maximum
rate of up to 7000 GET requests in total, sent per second was achieved when no database
access was involved and when a database back-end was used 2 attacking hosts with 40
GET requests per second were sufficient to deny further access due to the resulting memory
exhaustion at the web server.

On the Linux systems used during the attacks the number of connections that could be
established concurrently was initially limited to around 1000 due to the fact that a user is
restricted to having 1024 open files at a time (in Linux a socket is managed through a file
descriptor). To temporarily increase the soft and hard limit of open file descriptors to 65000,
the ulimit -SHn 65000 command has been used.

In addition the Twisted network engine as described in A.1.2 was used in a Python script
when dynamically generating GET requests with further arguments instead of using the static
but prerecorded GET request.

During the GET attack without MySQL back-end, the attackers and clients accessed a
dynamic website that presented various PHP and server related information (collected using
the phpinfo() command) to the user. The GET attack with database back-end always
involved access to the MySQL database such that each request and the passed arguments
would be logged into the database and the current number of requests with the same
arguments have been presented to the user in addition to the information presented without
database access.

5.4 (D)DoS Attack Strength

(D)DoS attacks and the used tools often provide multiple options that will influence the attack
and thus also their strength and impact e.g. by choosing the maximum number of parallel
connections that are established during the attack. However for most attacks and tools there
exist no easy method to determine the ideal options that would cause a DoS condition on
the web server or in the involved network. As such the options and parameter that had to be
given to the attack tools first had to be determined by extensive measurements involving trial
and error.

An attack strength measurement usually followed the following process:

1. Prepare and start several measurement tools on the web server and on a legitimate
client host.

2. Start the attack tool with a new set of parameters and options.

42

5.4 (D)DoS Attack Strength

3. Monitor the status on the the web server and the performance of the server measured
by the legitimate client.

4. If no influence, caused by the attack, is determined directly on the web server or in
terms of performance for the legitimate client, the current attack is stopped and the
process is started again.

The whole process was repeated until a set of parameter was found that would cause a
complete DoS condition for the measurement client or a limited DoS condition where the
goodput dropped to 2% or less of the usual goodput without an attacker. If no DoS or similar
condition could be obtained using a specific attack tool, the tool has been dropped or the
attack was further modified to cause additional impact.

The figures in 5.2 present the goodput and throughput plots for the executed attacks. As has
been shown in [59] and [46] the displayed metrics properly signal a DoS for Internet web
servers.

∙ The throughput metric is defined as the number of bits per second over the bottleneck
link and was divided into the traffic being sent (out) and received (in) on the server
side. Having both out and in metrics allows to see the attack traffic towards the targeted
server and the resulting impact on the sent traffic as shown in figure 5.2a. The metrics
were measured directly on the web server system since all traffic that leaves the network
interface is directed over the bottleneck link. To measure the metric the inoctet and
outoctet statistics, that are the number of received and sent bytes of the network
interface, have been used.

∙ The goodput of the web server is similarly defined and captures the number of bits
per second of legitimate traffic being sent over the bottleneck link. However in contrast
to the throughput metric, the goodput does not count the retransmitted bytes. As
previously described in chapter 3, the goodput metric indirectly captures not only the
network congestion but also the prolonged duration of legitimate transactions since both
parameters are connected to TCP-based traffic which responds to network congestion
by lowering its sending rate. The metric is computed by dividing the transfer size by the
transfer completion time.

The plots do not only show the average value of the metrics but also their 95% confidence
intervals. Since the total measurement duration was 80 minutes with 2 minutes per attack
strength, this resulted in 120 samples for the throughput metric that was collected once per
second and 6 samples for the goodput metric collected 3 times per minute.

The UDP flooding attack with large packets was subject to saturate the bottleneck link of
the involved network and thus prevent further access from legitimate clients, however the
measurements showed that this was not the case. The web server was still reachable and
the network congestion caused only minor issues. In figure 5.2a the attack strength of the
UDP flooding attack (traffic sent to server) is displayed against the network performance
(e.g. goodput). In the particular figure the difference between the measured goodput and the
throughput being sent is due to retransmissions as well as the resulting ICMP errors (e.g.
Port Unreachable) that have been sent by the web server as response to the attack.

43

5.4 (D)DoS Attack Strength

(a) UDP flooding (large packets) (b) UDP flooding (small packets)

(c) slow POST (d) Flash-crowd attack

(e) GET flooding (wo database) (f) GET flooding (wi database)

Figure 5.2: Throughput plots for the performed attacks

44

5.4 (D)DoS Attack Strength

In contrast the UDP attack which used small packets and that is shown in figure 5.2b was
successful in creating a DoS condition as the server stopped the transmitting of further
packets. The DoS condition was observed well before reaching the theoretically existing
bottleneck link limit.

Figure 5.2c shows the slow POST attack, where the sharp bend is due to the web servers
configuration, that limits the maximum number of parallel connections that can be established
concurrently to 150.

In figure 5.2d, which shows the flash-crowd attack, the goodput decreases gradually with
the attack strength while the total throughput remains nearly constant over the duration of
the attack. The previously defined limit of 2% goodput, that is interpreted as a partial DoS
condition, is reached after 69 concurrent connections.

Figure 5.2e, presents the throughput of a client, achieved during the GET flooding attack,
where no database back-end was being used, shows that the attack had quite an influence
at the beginning of the attack. However, the server remained reachable for the client with a
throughput of around 10% of the maximum, such that the previously established definition of
a DoS was not achieved.

In contrast, figure 5.2f shows a successful GET flooding attack where the database back-end
was in use. Clearly visible only a few connections are necessary before the DoS condition
occurs. Also captured in the figure is the fact, that the maximum goodput is well limited
through the database back-end. The throughput metrics are not included in this plot as due
to the enourmous CPU load (up to 100%) the metric was not reliably captured.

The final results, including all measurements, have been summarized in table 5.1 that shows
the attacks, the used tools and if a DoS condition has been achieved during the measurement.
The achievement of a DoS is defined as the access being denied for a legitimate client or
alternatively the average goodput at the client dropping to less than 2% of the goodput without
an attack being present. The condition column of the table shows the attack strength of the
DoS attack that was required to successfully cause a DoS.

Table 5.1: DoS attack strength

Attack Attack tool DoS conditiona

UDP flooding (large packets) pktgen 7 -
UDP flooding (small packets) pktgen X 875 Mbit/s
Slow POST Tor’s Hammer X 150 threads
Flash-crowd attack curl X 69 connections
GET flooding (wo database) ncat, nc, python-twisted 7 -
GET flooding (wi database) python-twisted X 15 connections
a required attack strength to cause DoS as defined

For the UDP flooding attack with large packets it is unlikely to achieve a DoS in the used
environment since the network performance stabilizes after reaching the bottleneck limit as
can be seen in figure 5.2a. It is assumed that the observed behavior is due to the used
networking hardware.

45

5.4 (D)DoS Attack Strength

In contrast the GET flooding attack in 5.2e could still result in a DoS as the performance is
still decreasing. To achieve a DoS the attack strength should be increased further. As such
additional attacking hosts may have to be utilized as the evaluated tools could not generate a
stronger GET flooding attack.

During the measurements in the productive environment, which was introduced in chapter 4,
a few additional observations were made that have not been experienced in the lab network
and thus are worth mentioning.

Firstly the implemented slow POST attack was found to be limited to the HTTP protocol
since the used attack tool does not support the HTTPS protocol. As such the web interface
of the virtual machine hosts could not be tested as they are only accessible over HTTPS.
The remaining Jetty [66] web server installation however proved to be vulnerable to the slow
POST attack with 260 threads using all available connections such that no further client could
connect.

A further observation was made during the GET flooding attack, where the virtual machine
hosts would not be impacted severely with the available attack strength. However the virtual
machine running the Jetty web server could be brought to a standstill and did not recover
until the system was rebooted. For the attack to be successful a constant rate of 10 requests
per second was sufficient.

The last attack that has been executed in the productive environment was the flash crowd
attack where the previously mentioned management software was repeatedly downloaded
from the ESXi version 4 virtual machine host. The attack showed to be very efficient such
that 22 parallel downloads with an aggregated bandwidth of only 28 Mbit/s resulted in a
complete DoS of the virtual machine host including the virtual machines running on the host.
The server did not recover after the attack completed and thus finally had to be manually
restarted. Unfortunately the attack could not be tested against the recent ESXi version 5
host, since its web interface does not provide a local download of the management software
anymore.

46

Chapter 6

Mathematical Methods

In this chapter the mathematical methods used during the modeling process are elaborated.
The chapter starts with Spearman’s rank correlation that has been used to determine the
correlation between the measured metrics and the DoS attack strength and is followed by
the non-linear least squares method used during the model fitting.

6.1 Spearman’s Rank Correlation

To measure the association between two variables, Spearman’s rank correlation coefficient,
which is also called Spearman’s rho, is computed. If two variables are associated with
each other, the knowledge of one value provides information about the likely value of the
associated variable. Since the Spearman’s rank correlation is a distribution-free measure it
does not depend on the assumption of an underlying distribution such as the bivariate Normal
distribution, as is the case with Pearson’s correlation [43]. Also in contrast to Pearson’s
correlation is the fact that no linear dependency is required between the two variables but
only a monotonic one.

The ranking algorithm used when calculating Spearman’s rank correlation produces variables
that fulfill the condition of correlation as their relationship becomes linear, such that Pearson’s
correlation can be computed between the ranked variables.

In practice to compute the ranks of a variable, declining positions are assigned to every value
of the variable, using the average of the positions when ties exist (e.g. a value exists multiple
times) [85]. To compute Spearman’s rank correlation Pearson’s correlation is then computed
between the ranked variables as shown in equation 6.1.

𝜌 =

∑︀
𝑖 (𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)√︀∑︀

𝑖 (𝑥𝑖 − �̄�)2
∑︀

𝑖 (𝑦𝑖 − 𝑦)2
=

𝐶𝑜𝑣(𝑥, 𝑦)

𝑠𝑥𝑠𝑦
,

where 𝑥𝑖, 𝑦𝑖 are the ranks, �̄�, 𝑦 the average thereof and 𝑠𝑥, 𝑠𝑦 the standard deviations.
(6.1)

47

6.2 Significance

If the Spearman correlation coefficient is positive this indicates that the 𝑦 variable increases
when 𝑥 increases, while a negative coefficient indicates that 𝑦 decreases. A perfect Spearman
correlation, that is a test score of either −1 or +1, occurs when one variable is a perfect
monotonic function of the other variable. As a rule of thumb Spearman’s correlation coefficient
can be interpreted according to table 6.1.

Table 6.1: Interpretation of the correlation

Size of correlation Interpretation

1 Perfect correlation
0.90 - 0.99 Very high correlation
0.70 - 0.90 High correlation
0.50 - 0.70 Moderate correlation
0.30 - 0.50 Low correlation
0.10 - 0.30 Very low correlation
0.01 - 0.10 Markedly low and negligible correlation
0 No correlation
Source: Bansal et al. [3]

6.2 Significance

The calculation of the significance was used to determine if the result is indeed significant
that means it has to be unlikely that the value could have occurred by chance. As significance
level during the calculations a value of 5% (𝛼 = 0.05), which is the most commonly used
significance level in statistics, was used.

Using MATLAB’s statistics toolbox to perform the calculations also provided the option to
directly calculate the p-values that denote the probability of obtaining a test statistic that is at
least as extreme as the observed one, under the assumption that the null hypothesis holds
[82]. With the null hypothesis for the Spearman’s rank correlation being that there exists no
association between the variables in the underlying population.

6.3 Non-linear Least Squares Method

During the modeling a regression analysis was performed and since the collected data was
mostly non-linear the non-linear least squares method is used to fit the non-linear model to
the data. Although most of the calculations are transparent to the user when MATLAB’s curve
fitting toolbox is used, a good understanding of the method is still recommended as there
exists no method to precisely estimate the coefficients of the model equation and thus often
needs manual improvement of various fitting options to obtain the best results. This is mostly
caused by the iterative approach that is required to estimate the coefficients as the non-linear
model is approximated by a linear one [80].

To obtain the coefficient estimates, the least-squares method minimizes the summed square
of residuals, where the residuals are the difference between the observed value (𝑦𝑖) and

48

6.4 Goodness of Fit

the fitted value (𝑦𝑖) of the data points. The residual of a data point is also called the error
associated with the data and its formula is shown in 6.2.

𝑟𝑖 = 𝑦𝑖 − 𝑦𝑖 (6.2)

The complete equation that has to be minimized is then the summed squares of all residuals
as shown in 6.3 where 𝑛 is the number of data points included in the fit.

𝑆 =

𝑛∑︁
𝑖=1

𝑟2𝑖 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 (6.3)

The minimum value of 𝑆 is obtained when the gradient equations are zero, as shown in
equation 6.4. Having 𝑚 parameters in the non-linear model results in 𝑚 gradient equations.

𝜕𝑆

𝜕𝐵𝑗
= 2

∑︁
𝑖

𝑟𝑖
𝜕𝑟𝑖
𝜕𝐵𝑗

= 0 (𝑗 = 1, . . . ,𝑚) (6.4)

To solve those equations an iterative approach is used that follows the following steps:

1. Start with an initial estimate for each coefficient.

2. Linearize the model equation using a first-order Taylor series expansion as shown in
equation 6.5.

3. Adjust the coefficients and determine whether the fit improves.

4. Iterate the process by returning to step 2 until the fit reaches a previously specified
convergence criteria.

𝑓(𝑥𝑖, 𝛽) ≈ 𝑓(𝑥𝑖, 𝛽
𝑘) +

∑︁
𝑗

𝐽𝑖𝑗∆𝛽𝑗 (6.5)

where 𝑓(𝑥𝑖, 𝛽) is the non-linear model in matrix form with 𝛽 being a vector of the coefficients
in the equation. 𝐽 is the Jacobian which is defined as a matrix of partial derivatives taken with
respect to the coefficients, ∆𝛽𝑗 is the coefficient shift vector and 𝑘 is the iteration step index.

6.4 Goodness of Fit

To determine the quality of the calculated curves, after curve fitting, the coefficient of determi-
nation (𝑅2) has been computed. 𝑅2 is a common measure used with statistical models that
have the purpose to predict future outcome, where 𝑅2 provides a measure of how well the
future outcome is likely to be predicted by the model [77].

The 𝑅2 coefficient is calculated as shown in equation 6.6.

𝑅2 =
𝑆𝑆𝑟𝑒𝑔

𝑆𝑆𝑡𝑜𝑡
= 1 − 𝑆𝑆𝑒𝑟𝑟

𝑆𝑆𝑡𝑜𝑡
(6.6)

49

6.4 Goodness of Fit

where 𝑆𝑆𝑡𝑜𝑡 =
∑︀

𝑖(𝑦𝑖𝑦)2 is the total sum of squares, 𝑆𝑆𝑟𝑒𝑔 =
∑︀

𝑖(𝑦𝑖𝑦)2 the regression sum
of squares and 𝑆𝑆𝑒𝑟𝑟 =

∑︀
𝑖(𝑦𝑖𝑦𝑖)

2 the sum of squares of residuals. 𝑦 is the mean of the
observed values and is calculated as 1

𝑛

∑︀𝑛
𝑖 𝑦𝑖 with 𝑛 being the number of observations.

6.4.1 Interpretation

The 𝑅2 coefficient of determination is a statistical measure of how well the regression curve
approximates the actual data points. Thus the coefficient gives some information about the
goodness of fit of the chosen model. If the 𝑅2 value is 1 this indicates that the regression
perfectly fits the actual data while a value of 0 shows that there is no correlation between the
regression and the data.

50

Chapter 7

Modeling

After the introduction to the mathematical methods in the previous chapter 6, this chapter
discusses the application of those methods during the modeling, that was heavily based on
the collected measurement data.

In the first section of the chapter the process of metric selection, including the requirements
of the metrics and the results obtained during the analysis are presented, while the second
part deals with the selection and fitting of the models.

7.1 Metric Selection

To determine the metrics that would be suitable for the further modeling process, the first
step involved the determination of a set of requirements that the metrics had to fulfill. The
criteria that have been established during that process are presented in the following list and
are further elaborated in due course.

1. The metric had to be externally measurable without privileged access to the server or
network.

2. The metric needed to be stable such that a measurement could be repeated multiple
times with the same results.

3. The metric had to exhibit a measurable influence that was caused by the performed
(D)DoS attack.

4. And the influence of the (D)DoS attack had to be related to the externally measured
metric.

The first criteria was given by the task description and implied that only the metrics that in the
previous sections have been classified as being external, should be used during the further
modeling process. This allows the usage of the audit framework, developed during the thesis,
on any Internet web server without requiring privileged access.

51

7.1 Metric Selection

For the remaining analysis Spearman’s rank correlation as explained in section 6.1 of chapter
6 was calculated with a significance level of 5% (𝛼 = 0.05). The correlation coefficient was
computed between the server-internal goodput metric and the externally measured metric
that was to be evaluated. For both metrics their average values for each used attack strength
have been employed during the correlation calculation. The goodput metric was used as
according to [59] and [46] it is a suitable metric to measure the impact of (D)DoS attacks for
Internet web servers and properly signals a DoS.

The Spearman rank correlation coefficients that are significant for all measurements are
included in table 7.1 and are given in ranges since the attacks have been repeated at least
three times, resulting in a correlation value for each metric and measurement. The correlation
results are finally interpreted according to table 6.1 that is taken from the work by Bansal et
al. [3].

The different behaviors between attack strength and measured metrics is also illustrated with
the help of figure 7.1, where the round-trip time of the acknowledgment packets is shown
versus the attack strength. As can be seen in the left figure, that shows the flash-crowd attack,
the round-trip time increases almost linearly with the attack strength, whereas in the right
figure the round-trip time remains constant up until the slow POST attack causes a DoS since
the maximum number of parallel connections, that the server allows to be established, have
been utilized.

This behavior was distinctly visible with the slow POST attack due to the fact, that the attack
uses almost no resources on both client and server sides before the attack eventually reaches
the maximum allowed number of parallel connections.

Because the maximum number of connections cannot be determined without actually reach-
ing it, the slow POST attack cannot be used in a predictive model and thus was excluded
from metric selection and the subsequent modeling.

(a) flash-crowd attack (b) slow POST

Figure 7.1: Attack impact on round-trip time

The UDP flooding with small packets as well as the GET flooding with database back-end
showed no correlation and the correlation for the ICMP loss rate in the UDP flooding attack

52

7.2 Model Fitting

Table 7.1: Metric correlation (Spearman’s rho)

UDP
(large)

UDP
(small)

Slow
POST

Flash-crowd
attack

GET wo.
database

GET w.
database

ICMP loss rate 0.366-0.678 - * - - -
ICMP RTT - - * 0.636-0.980 0.636-0.877 -
ACK RTT - - * 0.982-0.993 - -

retr. segments - - * - - -
lost segments - - * - - -
TCP window - - * - - -

* excluded from modeling, as explained in the text

with large packets was only low to moderate according to the interpretation based on table
6.1. For the flash-crowd attack and the GET flooding without database the correlation was
higher with values in the upper moderate to very high correlation range.

7.2 Model Fitting

After the metric selection process the metrics that have been determined as suitable for
modeling have been used to establish predictive models.

7.2.1 Approach

As has been suspected and also has been confirmed in the previous metric selection section,
the selected (D)DoS attacks had different attack points and thus also cause different impacts.
Therefore it was concluded that the best solutions would be obtained when for each attack a
separate model is established.

To find suitable models regression analysis was performed using the non-linear squares
method as described in chapter 6. Using MATLAB’s curve fitting tool allowed the rapid
comparison of multiple models that were deemed to be appropriate and reasonable. In the
following sections the individual attacks are looked at, and either the models that were found
to be most suitable are presented or an explanation is given why no appropriate model could
be established.

7.2.2 Flash-crowd attack

For the flash-crowd attack, the metric selection process has shown that the ICMP round-trip
time metric as well as the metric of the acknowledgment packets’ round-trip time can be used
in a predictive model.

In figure 7.2 two models that have been fitted to the measurements are presented. On the
left side of the figure a dual linear model is shown where the measured sample points have

53

7.2 Model Fitting

been divided into two regions and a linear approximation has been applied to both datasets.
Since the assumed reason for the duality in the model, that was expected to be due to a
configuration parameter, could not be hardened after additional modifications, the model was
eventually rejected.

On the right side of the figure a further model is presented that uses an exponential approxi-
mation. In both figures the relationship between the ICMP round-trip time metric, which was
measured using the ping utility, and the system state, that is approximated by the web server
goodput, are shown.

The generic form of the used exponential model equation is shown in equation 7.1, while the
actually used model equation had its parameter 𝑐 set to 0 due to the fact that under an ideal
attack the goodput would eventually reach towards 0.

𝑎 exp(𝑏𝑥) + 𝑐 (7.1)

(a) dual linear approximation (b) exponential approximation

Figure 7.2: Flash-crowd models

To further analyze the selected model, various TCP models have been studied that partially
explained the behavior between the measured parameters. Figure 7.3 includes a theoretical
TCP model developed by Padhye et al., that has been looked at. The model has been taken
from [53] and its there presented modeling equations have been implemented in a MATLAB
script.

At first sight the model looked quite well, but during further analysis showed to make as-
sumptions that did not hold in the lab network setup. One of those assumptions was that the
round-trip time delay is mainly caused by the used network whereas the measurements in
the lab network showed that the reason for the delays had to be in the web server since the
delays in the network remained nearly constant during the flash-crowd attacks. Therefore the
experimental model was preferred over a theoretical one for further measurements, during
the prediction and error calculations.

54

7.2 Model Fitting

Figure 7.3: Exponential approximation & Theoretical TCP model

7.2.3 Slow POST

As has been explained previously no model that would serve to perform a meaningful impact
prediction could be implemented for the slow POST attack. The reason is that a configuration
option set on the Internet web server determines the limit where the attack is successful and
as such an external attacker would have to probe the system until the attack causes a DoS
to determine the configured limit.

Nevertheless the attack is implemented in the audit framework and as such can be used to
determine if the web server is vulnerable to the slow POST attack. However the attack will
result in a short DoS if the server is vulnerable and its configured limit of parallel connections
is reached.

7.2.4 UDP flooding

The UDP flooding attack with large packets did not result in a DoS condition such that it was
not further used. For the UDP flooding attack with small attacks no suitable metrics could be
found during the metric selection process as has can be seen in table 7.1. As such no model
was established for the UDP flooding attack with small packets.

7.2.5 GET flooding

Having a model for the flash-crowd attack the only remaining attacks that have not been
looked at are the GET flooding attacks. According to the attack strength measurements in
chapter 5, the GET flooding attack without database did not result in a DoS condition. For
the GET flooding attack with database that showed to be successful in obtaining a DoS no
external measurable metrics could be found as is shown in table 7.1.

Since GET flooding attacks are the most observed attacks in the Internet an alternative
model that could also be based on internal metrics was looked for. The internal metric

55

7.2 Model Fitting

should be chosen such that there exists a chance to approximate the metric using external
measurements. Due to the correlation with the attack strength the number of served requests
per second, defined in table 4.1, was selected with a Spearman’s rank correlation of 0.700
to 0.988, which is a high to very high correlation according to table 6.1. The process of
approximating the served requests per second using additional external measurements is
however not further explored in this report.

(a) with database (b) without database

Figure 7.4: GET flooding

In figure 7.4 models using polynomials for the GET flooding attacks are displayed. Although
only a partial DoS was achieved during the GET flooding attack without database it is still
included in the figure.

56

Chapter 8

Evaluation

In this chapter the results of the evaluation are summarized. The first section introduces the
network and system setup variations that have been analyzed during the thesis, presenting
the adapted model and error plots. The prediction and its associated error calculations are
finally presented in the second part of the chapter.

8.1 Variations in the Setup

In parallel to the previously introduced modeling the evaluation of the models has been
prepared, where several network and web server system parameters have been varied. The
goal was to analyze the influence on the model caused by the network and system properties
presented in the following list.

∙ Network with low throughput

∙ Network with latency variations

∙ Network with additional utilization of the bottleneck link

∙ System with additional web server utilization

∙ System with low disk performance

∙ System with modified web server software

To simulate the influence of a network link with low throughput, the gigabit capable access
link of the client system was reduced to a 100 Mbit/s link using the ethtool tool, as has
been explained in the lab network setup in 4.1. The latency variations in the network were
introduced by redirecting the client measurement traffic through the productive network
and into a VPN tunnel that ended on the web server system. As such not only the latency
variations have been increased but also additional round-trip delay was added to the network
connections.

The utilization of the bottleneck link was increased with additional TCP network traffic (also
called cross traffic) that has been generated between two additional hosts, as shown in figure

57

8.1 Variations in the Setup

4.1, on either side of the bottleneck link. To generate the simulated TCP traffic the flow-level
traffic generator harpoon has been used which is explained in the appendix A.1.1.

To increase the utilization of the web server an additional system was prepared that acted
as a normal client using the web server. The client was automated using Selenium which is
an automated web application testing system [72]. Using Selenium’s IDE, tests can quickly
be recorded in the browser and played back at a later stage. The recorded test included the
visiting of multiple sub pages and the downloading of files from the web server. The test was
continuously repeated during the attack.

The low disk performance of the web server was simulated by using an external USB 2.0
drive instead of the internal hard-drive. The USB drive stored the contents accessible by the
web server as well as the complete database. To change between the disk and the USB
content a symbolic link was created between the web server content on the USB drive and
the content on the usually used disk drive. The database software showed to be picky as it
did not accept symbolic links in its data path such that finally the mount --bind command,
which remounts part of the file hierarchy somewhere else, had to be used for the database
data instead of a symbolic link.

To analyze the influence of the web server software the Apache 2 web server [65], that has
been used during all previous measurements, was replaced with the lighttpd web server [40],
keeping the same web server data.

In addition to the changes on the server system a second server system was taken into
consideration. Due to the fact that both systems used the same software and configuration
and since both servers used recent processors and plenty of memory those variations were
not expected to influence the measurements heavily. Also the influence of the used SSD
drive could only be little since the speed of the previously used disk drive was already near
the bottleneck link speed as is shown in the results below.

The models have been calculated using the complete measurement data, ranging from no
attack being present up to at least the point where the given attack strength caused a DoS
condition.

8.1.1 Results

The model plots are presented in figure 8.1 and table 8.1 summarizes the calculated 𝑅2 as
well as error values shown to the right of the model plots. The error is calculated between the
model and the actually measured data, as a percentage of the maximally observed goodput
during each measurement.

In the presented model plots various bottlenecks that have been introduced by the setup
variations can be identified when comparing each of the shown model plots to the original
model in figure 7.2b.

58

8.1 Variations in the Setup

(a) 100 Mbit/s link on client (b) 100 Mbit/s link on client (error)

(c) VPN tunnel (d) VPN tunnel (error)

(e) 200Mbit/s cross traffic (f) 200Mbit/s cross traffic (error)

Figure 8.1: Parameter variations during flash-crowd attacks

59

8.1 Variations in the Setup

(g) additional client traffic (h) additional client traffic (error)

(i) USB drive (j) USB drive (error)

(k) lighttpd (l) lighttpd (error)

Figure 8.1: parameter variations during flash-crowd attacks (continued)

60

8.1 Variations in the Setup

(m) second server (n) second server (error)

Figure 8.1: parameter variations during flash-crowd attacks (continued)

Table 8.1: Parameter variation errors

Variation 𝑅2 Error (%)
avg min max

100 Mbit/s link on client 0.8014 34.48 2.43 294.25
VPN tunnel 0.9839 3.06 0.04 8.69
200Mbit/s cross traffic 0.8270 4.19 0.38 37.88
additional client traffic 0.8552 8.54 0.27 22.60
USB drive 0.9264 5.41 0.11 47.42
lighttpd 0.9263 3.90 0.38 20.95
second server 0.9262 4.17 0.47 22.32

Starting with the bottleneck caused by the disk performance one notes that during the original
measurements the disk has not been observed as a major limiting factor. Indeed, verifying
the performance of the disk drive using hdparm -t /dev/sda to measure the sustained
speed of sequential data reads, shows that the disk drive is capable of reading data with a
constant rate of over 125 MB/s and thus near the throughput of the bottleneck link. In contrast
the USB drive as shown in figure 8.1i is a clear bottleneck and limits the maximally obtainable
goodput during the measurement.

The VPN tunnel modification in figure 8.1c introduces additional round-trip time delay as has
been expected and noted during the setup.

As can be seen in figure 8.1e the cross traffic variation narrows the available bottleneck link
capacity however there is no additional round-trip time introduced, whereas in figure 8.1g,
where additional client traffic was generated, also the round-trip time is heavily influenced
right from the start of the measurement. This also supports the previously made statement,
that the observed round-trip time delay is not due to the lab network but the web server
system.

61

8.2 Prediction & Error Calculations

The web server software modification in figure 8.1k shows little change compared to the
original mode that used Apache 2 as its server software.

As forecast, the second server measurement in figure 8.1m shows that the previously used
disk caused only a slight bottleneck, that is now finally lifted by the usage of the SSD drive with
a continuous data read speed of over 220 MB/s. The relevant bottleneck for the measurement
is thus the bottleneck link capacity that is just slightly higher than the previously used disk
drive.

The average error between the model and the measured data is below 10% for all setup
variations except for the case where the access network link speed of the client was reduced
to 100 Mbit/s. The high error rate that is observed is due to the fact that the throughput that
actually passes the bottleneck link, which clearly is the access link of the client, is reduced
much more than expected by a factor of over 200 instead of the assumed factor of around 10.
The reason for this discrepancy remains unknown.

Further considering the error plots, it is visible that the error for the client access link variation
as well as the error for the additional client traffic variation are not centered and clustered
around the zero line. This indicates that the influence caused by those variations will most
likely also increase the error rate of the prediction.

8.2 Prediction & Error Calculations

While the previously presented models have been computed using training data that was
captured with zero attack strength up to at least the attack strength that caused a DoS
condition, the actual predictions would only be based on testing data with limited attack
strength.

Thus for the calculations of the prediction accuracy or in other terms the error associated
with the strength of the attack, a further test data set, that contained repetitions of the training
measurements used to establish the models, was collected. Once again the attack strength
of the measurements had to last up to the point of the DoS condition such that the error can
be computed for the complete attack strength range.

The results obtained during those calculations thus serve to trade off the required attack
strength with the accuracy of the prediction. As such the influence on the web server under
consideration as well as any additionally involved systems and networks can be reduced by
reducing the accuracy of the prediction.

To calculate the prediction error for a particular attack strength, the test data was shortened
such that it only contained the measurements up to the examined attack strength. Using the
reduced data, the prediction model was established using the techniques previously presented
in chapters 6 and 7. The errors have then been calculated for all existing measurement
points comparing the values returned by the prediction model with the corresponding values
calculated using the verified model.

To allow the comparison between the different setup variations, the prediction error was
calculated as a percentage of the maximally recorded goodput during the measurement,

62

8.2 Prediction & Error Calculations

similar to the error calculations presented in the previous section 8.1 during the setup
variations.

8.2.1 Results

The results of the calculations are given in figure 8.2, where the plots illustrate the progression
of the average error, computed according to the previous description, with the increase of the
maximally used attack strength for the training data.

For most of the scenarios the error rate rapidly declines while the maximally used attack
strength increases, as has been wished for. After this period that according to the plots lasts
up to around a third of the maximally used attack strength, the error rate becomes constant
for most measurements. An exception is the VPN tunnel where the error rate starts again to
increase before finally becoming constant at an error rate level similar to the other variations
involving network components.

As has been suspected previously there are a few variations that incur higher error rates than
others. As such all measurements where network parameters were involved experience error
rates that are 3 times as high as the error rates of the variations that included only system
hardware and software changes.

As noted in the «Problem Statement» chapter 2, the goal was to achieve an error rate of less
than 10% while keeping the required attack strength within 25 to 50% of the strength required
to cause a DoS. According to the calculations this requirements have been fulfilled with an
attack strength of around 30% being suitable to achieve an error rate around 2-3% for the
software variations and 7-9% for the network variations.

63

8.2 Prediction & Error Calculations

(o) 100 Mbit/s link on client (p) VPN tunnel

(q) 200Mbit/s cross traffic (r) additional client traffic

(s) USB drive (t) lighttpd

Figure 8.2: Prediction errors during flash-crowd attacks

64

8.2 Prediction & Error Calculations

(u) second server

65

8.2 Prediction & Error Calculations

66

Chapter 9

Audit Framework

The developed auditing method has been implemented in a framework that allows the auditing
of any Internet web server using a predefined set of (D)DoS attacks.

9.1 Design

The audit tool (audit.py) is the central control program that interacts with the client mea-
surement host, which may be the current local machine or a remote one, and the attacking
hosts carrying out the selected (D)DoS attack. During the thesis additional measurements
have been performed on the web server system such that the framework is also capable
of controlling the web server host. The interaction between the different components is
illustrated in figure 9.1.

Le
g

e
n

d

control

server

client

attacker

measurement

(D)DoS attack

control

Figure 9.1: (D)DoS attack audit framework

The framework is written in Python and makes use of the «paramiko» [55] SSH2 protocol
library during the deployment and collection stage. In the deployment stage the used (D)DoS
attack tools are transfered to the attacking hosts and the measurement tools to the client
host. After the measurement completes, the measurement data is collected in the collection
stage and stored on the control host.

67

9.2 Requirements

9.2 Requirements

To use the auditing framework a client, to perform the measurement, and at least one attacking
host are required, both running a Linux operating system. The tool expects the IP addresses,
usernames and passwords for the different systems. As a constraint when multiple attacking
hosts are being used, they have to share the same username and password. Depending
on the performed attack, the user used to login on the attacking hosts requires super user
privileges. To prevent password prompts, when requesting the privileges using sudo, from
interfering with the attacks, the used systems in the lab environment were configured such
that no additional password check was required. To enable super user privileges without
password for the user «server» the line shown in 9.1 was added to the /etc/sudoers file
using sudo visudo.

server ALL=(ALL) NOPASSWD: ALL (9.1)

9.3 Configuration Assistant

When the audit tool is launched without parameters, a configuration assistant appears that
guides the user through the required steps to configure the framework. The workflow of the
configuration assistant is presented in figure 9.2. Since the auditing framework has also been
used to perform measurements during the thesis evaluation it allows further configuration
options such as the measurement of internal metrics on the web server or the execution of
additional scripts, e.g. to generate traffic on the bottleneck link.

Internal metrics

(D)DoS attack
selection

Attack identifier

Target IP

Client IP,
Username,
Password

Username,
Password

Yes

Attacker IP

Additional
attacker

Username,
Password

No

No

1

1

2

2

Additional
Scripts

Maximum Duration

Measurement type

Additional script
selection

Yes

Start
measurement /
(D)DoS attacks

No

Yes

Figure 9.2: Configuration assistant

68

9.4 Workflow

9.4 Workflow

After the configuration and setup, the initial measurement is run while no attack is present.
Afterwards the intermediate data is processed to determine the current server condition
before launching the attack. The attack strength is increased gradually until the time limit or
the previously set limit of performance deterioration on the web server is reached. When the
attack is finished the measurements are completed and the data collected. The collected
measurement data is processed and in a last step MATLAB code to further analyze the
gathered data is generated.

Yes

Configuration

Setup Hosts

Run Scripts (PRE)

Launch
Measurements &

Wait

1

Process Client
Measurement

1

Launch Attack &
Wait

Process Client
Measurement

2

2

Max Duration

Increase Attack
Strength

No

No

Yes

Complete
Measurements

Collect Data

Run Scripts (POST)

Process Data

Create MATLAB
Code

Figure 9.3: Audit framework workflow

9.5 Extensibility

The available (D)DoS attacks during the attack selection process can easily be extended
since the available attacks are directly loaded from the file structure. To add an additional
attack a new folder, where the name consists of an unused attack number, is added under the
directory tools/attacker. The folder should contain a description.txt file, containing
a short title or description on the first line, which is shown during the attack selection process.
On the subsequent lines of the file the full description of the attack can be given but will not
be shown.

If a file named attacker.tgz exists in the folder it will be transfered to the attacking
hosts before the attack. In addition each attack requires a prepare_attack.sh file, that
is also transferred and executed once before the attack. The script is responsible to install
the required software on the hosts, extract the uploaded archive, configure the system
for the attack and prepare the attack tools. Before the script is executed on the server

69

9.5 Extensibility

the first occurrences of <SERVER_IP>, <ATTACKER_ID>, <ATTACKER_MAX> as well as
<ATTACKER_DUR> and >STEP_DUR> are replaced with the target IP, the number of the
current attacker and the total number of attackers as well as the total duration of the attack
and the duration of the current step. After the script completes its execution, an executable
attack.sh file should be present in the users home folder, that launches the (D)DoS attack
when being executed.

To enable the generation of MATLAB code, the attack folder has to contain a template.m

file where the variables <ATTACK_DUR>, <STEP_DUR> and <ATTACK_ID> are replaced
with their actual values.

Similarly to the (D)DoS attacks, the available scripts that are executed before and after the
attack can be extended, by placing a script_pre.sh and / or script_post.sh in the
numbered subdirectories of tools/additional.

70

Chapter 10

Conclusion

10.1 Summary

We developed a new auditing method to externally assess and predict the impact of (D)DoS
attacks on web servers based on low strength (D)DoS attack measurements. The method
does not require the audited system and its networks to be completely flooded with attack
traffic and thus can also be used in a productive environment with critical infrastructure. Using
a pre-established model for a (D)DoS attack, its parameters are approximated with the data
collected during the assessment. The model can then be used to infer the impact of a similar
attack at a stronger attack strength.

To model the impact of (D)DoS attacks, we examined appropriate metrics that characterize the
performance of a web server and can be measured externally without privileged access to the
system and its network. Based on the results of the measurements selected (D)DoS attacks
have been employed to establish predictive impact models which have been evaluated using
extensive variations in software and hardware of the web server as well as the intermediate
network.

Calculating the error rate between prediction and actual measurements the accuracy of
the method has been verified resulting in an expected error rate of 10% at a limited attack
strength of 30% of the strength causing a DoS.

As a prototype an audit framework was developed, which implements the presented auditing
method. It allows anyone to assess the impact of a (D)DoS attack on any web server in the
Internet.

10.2 Conclusion

The impact of (D)DoS attacks is highly dependent on the attack type and the targeted property
of the system or network. We showed that different models are required to predict the impact
of the selected (D)DoS attacks, however not all (D)DoS attacks can be modeled due to
different constraints. For once there are attacks that impact the system only marginally or

71

10.3 Future Work

not at all, the reasons are divers, such as the used software on the targeted system or the
network layout and infrastructure. On the other hand are the attacks that provoke a sudden
(D)DoS condition that is not gradually achieved, mostly due to a configured limit. Also to use
a metric in the (D)DoS attack models, certain requirements have to be fulfilled.

We showed that the models are not only dependent on the analyzed (D)DoS attack, but also
on the bottlenecks of the employed system and network setup. While the attack defines the
general equation of the model, the bottlenecks influence the actual parameters in the model
equations.

The developed auditing method serves as an alternative to existing (D)DoS auditing methods
that cannot be used in productive environments with critical infrastructure due to the required
flooding and resulting outages that cannot be tolerated. Frequent and regular (D)DoS attack
auditing allows to improve the host and network stability and prepare for attack mitigation.
The preparation for attacks can thus reduce the down-time and resulting losses caused by
unexpected (D)DoS attacks.

We showed that is possible to predict the impact of selected (D)DoS attacks on Internet web
servers based on a few characteristic metrics which can be measured externally. The usage
of externally measurable metrics ensures that any Internet web server can be measured
without interfering with the setup of the audited system, e.g. requiring additional tools to be
deployed.

10.3 Future Work

10.3.1 Productive Environment

Due to the nature of the work, most of the conducted measurements during this thesis had to
be performed in an isolated lab network with limited access to the Internet. Although the effort
to simulate a productive network with influences caused by additional clients and network
conditions has been taken, it would be interesting to make further evaluations in additional
productive environments.

10.3.2 Additional Attacks

Multiple (D)DoS attacks have been modeled and analyzed, having additional attack models
would however give important insight into the differences between the attacks and the usage
of the presented method especially since multiple attacks showed to be less suitable to be
modeled by the presented method.

10.3.3 Additional Metrics

The quality and accuracy of the predictions is based on the (D)DoS attack models, that are
themselves based on the selected metrics and their quality. The usage and evaluation of
further metrics could thus improve the impact predictions.

72

10.3 Future Work

10.3.4 Internal Metrics

During the thesis an auditing method that can be performed externally without having access
to the targeted systems has been developed. If this restriction is lifted additional internal
metrics, that cannot be approximated externally, can be used that may result in improved
predictions.

73

10.3 Future Work

74

Chapter 11

Zusammenfasung

Im Rahmen der vorgestellten Masterarbeit wurde eine neue Methode der Auditierung ent-
wickelt welche die Auswirkungen von Denial of Service Angriffen auf Internet Web Server
anhand externen Messungen voraussagen kann. Bei der entwickelten Methode wird der
getestete Server sowie das Netzwerk nicht vollständig ausgelastet und die Methode kann
deshalb auch in einer produktiven Umgebung mit kritischer Infrastruktur eingesetzt werden.
Die Parameter der vordefinierten Modelle für die Denial of Service Angriffe werden anhand
von kurzen und abgeschwächten Messungen bestimmt um anschliessend mit Hilfe der
Modelle die Auswirkungen eines ähnlichen Denial of Service Angriffs bei grösserer Stärke
vorauszusagen.

Um die Auswirkungen von DoS Angriffen zu modellieren wurden geeignete Metriken die
den Zustand eines Web Servers erfassen und welche ohne privilegierten Zugriff auf das
System oder Netzwerk von extern messbar sind bestimmt. Basierend auf den ermittelten
Metriken wurden ausgewählte (D)DoS Angriffe modelliert und die resultierenden Modelle
wurden anhand umfangreicher Variationen auf Software- sowie Hardwareebene des Web
Servers und des Netzwerks evaluiert.

Indem die Fehlerrate zwischen der Voraussage und den tatsächlichen Messungen berechnet
wurde, wurde die Genauigkeit der entwickelten Methode verifiziert und es zeigte sich, dass
sich bei einer DoS Angriffsstärke von 30% des Wertes der zu einem DoS Zustand führt eine
Fehlerrate von weniger als 10% erreichen lässt.

Als Prototyp wurde ein Softwarepaket zusammengestellt und erweitert, welches die vorge-
schlagene Auditierungsmethode implementiert. Die Software erlaubt es einem beliebigen
Benutzer einen Web Server im Internet auf seine Anfälligkeit auf Denial of Service Angriffe
zu testen.

75

76

Appendix A

Appendix

A.1 Attack Tools

The following section presents some additional information to the used tool during the attacks.

A.1.1 harpoon

harpoon is a tool to generate simulated traffic according to a distribution which can be
produced by previously monitoring traffic [62]. The traffic is generated between two systems
and has been used to generate cross traffic on the bottleneck link.

./run_harpoon.sh [-v<level>] -w<interval> [-c] -f <configuration>

-v<verbosity level>

-w<interval duration>

-c Continuously cycle over list of active connections

-f <configuration file>

./run_harpoon.sh -v10 -w120 -c -f examples/tcp_server.xml

A shortened configuration for client and server can be found in the Configuration section
of appendix A.2.1. To determine the number of active connections required to generate a
specific amount of traffic harpoon comes with a configuration utility harpoon_reconf.py.

./harpoon_reconf.py -s tcp_server.xml -c tcp_client.xml -i 120

-r 200000000

A.1.2 Twisted

Twisted is an event driven networking engine written in Python that makes it easy to implement
custom network applications [73]. During the thesis Twisted has been used to program a

77

A.1 Attack Tools

GET flooding application. The core of an event loop within Twisted is the so called reactor.
By default Twisted uses a reactor that relies on the select(2) functionality for synchronous
I/O multiplexing [23]. In Ubuntu a user is limited to having 1024 concurrent open files which
can however be increased using the «ulimit» command [8]. More importantly though the
select functionality is also limited to 1024 concurrent open files itself. On certain operating
systems (e.g. FreeBSD) this setting can be overridden in each program by redefining the
FD_SETSIZE in the source code of a program. However this is apparently not possible in the
used Ubuntu operating system.

Subsequently as an alternative to the default Twisted reactor the pollreactor was used that
handles the concurrent connections using polling and as such was able to handle slightly
more parallel connections.

A.1.3 netcat (nc)

The netcat utility is a versatile tool when dealing with TCP or UDP and is commonly used as
shell-script based HTTP clients [29]. Using the netcat utility previously recorded requests
can be retransmitted at very high request rates especially when the returned output is of no
interest.

./nc 192.168.74.10 80 < requests/1.txt

A.1.4 ncat

ncat is part of the Nmap security scanner suite and serves as a replacement for netcat to
concatenate and redirect sockets [34]. By default the ncat tool returns the output of the
request, however using the -send-only option the output can be discarded.

./ncat 192.168.74.10 80 < requests/1.txt

./ncat --send-only 192.168.74.10 80 < requests/1.txt

78

A.2 Configurations

A.2 Configurations

In this part an excerpt of the used harpoon configuration as well as the configuration of the
pktgen tool are presented.

A.2.1 harpoon

harpoon client configuration
1 <harpoon_plugins>
2 <p lug in name=" TcpCl ien t " o b j f i l e = " t cp_p lug in . so " maxthreads=" 146 " p e r s o n a l i t y = "

c l i e n t ">
3 <ac t ive_sess ions> 146 < / ac t i ve_sess ions>
4 < in te rconnec t i on_ t imes >
5 3.993905
6 0.293601
7 2.127093
8 1.214513
9 0.409159

10 0.112100
11 . . .
12 0.402745
13 0.322681
14 0.227759
15 < / in te rconnec t i on_ t imes >
16 <address_pool name=" c l i en t_source_poo l ">
17 <address ipv4=" 0 . 0 . 0 . 0 " po r t = " 0 " / >
18 < / address_pool>
19 <address_pool name=" c l i e n t _ d e s t i n a t i o n _ p o o l ">
20 <address ipv4=" 192.168.74.27/32 " po r t = " 10000 " / >
21 < / address_pool>
22 < / p lug in >
23 < / harpoon_plugins>

harpoon server configuration
1 <harpoon_plugins>
2 <p lug in name=" TcpServer " o b j f i l e = " t cp_p lug in . so " maxthreads=" 160 " p e r s o n a l i t y = "

server ">
3 < f i l e _ s i z e s >
4 18643910
5 15150
6 807481
7 157679
8 23465
9 4930

10 . . .
11 39188
12 4418
13 68459
14 < / f i l e _ s i z e s >
15 <act ive_sess ions> 160 < / ac t i ve_sess ions>
16 <address_pool name=" server_pool ">
17 <address ipv4=" 0 . 0 . 0 . 0 " po r t = " 10000 " / >
18 < / address_pool>
19 < / p lug in >

79

A.2 Configurations

20 < / harpoon_plugins>

A.2.2 pktgen

pktgen configuration
1 # ! / b in / bash
2
3 function pgset () {
4 l o c a l r e s u l t
5
6 echo $1 > $PGDEV
7
8 r e s u l t = ‘ cat $PGDEV | fg rep " Resul t : OK: " ‘
9 i f [" $ r e s u l t " = " "] ; then

10 cat $PGDEV | fg rep Resul t :
11 f i
12 }
13
14 function pg () {
15 echo i n j e c t > $PGDEV
16 cat $PGDEV
17 }
18
19 # −−−−−−−−− Conf ig −−−−−−−−−
20 # thread con f i g
21 PGDEV=/ proc / net / pktgen / kpktgend_0
22 echo " Removing a l l devices "
23 pgset " rem_device_al l "
24 echo " Adding eth2 "
25 pgset " add_device eth2 "
26
27 # device con f i g
28 # set to 0 when DoS t e s t i n g
29 CLONE_SKB=" clone_skb 0 "
30 # NIC adds 4 bytes CRC
31 PKT_SIZE=" pk t_s ize 1500 "
32
33 # COUNT 0 means fo reve r
34 COUNT=" count 0 "
35 DELAY=" delay $ { 1 } "
36
37 PGDEV=/ proc / net / pktgen / eth2
38 echo " Conf igur ing $PGDEV"
39 pgset "$COUNT"
40 pgset "$CLONE_SKB"
41 pgset "$PKT_SIZE"
42 pgset "$DELAY"
43 pgset " ds t <SERVER_IP>"
44 pgset " dst_mac <MAC>"
45
46 pgset " udp_src_min 1025 "
47 pgset " udp_src_max 65000 "
48 pgset " udp_dst_min 80 "
49 pgset " udp_dst_max 80 "
50 pgset " src_min <SRC_IP>"
51 pgset " src_max <SRC_IP>"

80

A.2 Configurations

52
53 pgset " f l a g UDPSRC_RND"
54
55 # Time to run
56 PGDEV=/ proc / net / pktgen / p g c t r l
57
58 echo " Running . . . c t r l ^C to stop "
59 pgset " s t a r t "
60 echo "Done"
61
62 # Resul t can be vieved i n / proc / net / pktgen / eth2

81

A.3 Code

A.3 Code

A.3.1 MATLAB

Table A.1: Description of used MATLAB files

Scripts:
attack_common.m Script that handles the common processing and

plotting.
attack_common_2.m Script that handles the preprocesses «tcpdump»

data.

attacks/
attack_<id>_<description>.m Script that sets the attack parameters and set-

tings to be used when plotting.

models/
model_flash_crowd.m Calculate Flash-crowd model.
model_flash_crowd_error.m Calculate Flash-crowd error of prediction.
model_get_flood_wi_mysql.m Calculate GET flood with MySQL model.
model_get_flood_wo_mysql.m Calculate GET flood without MySQL model.
model_get_flood_wo_mysql_error.m Calculate GET flood without MySQL error of pre-

diction.
model_udp_flood.m Calculate UDP Flooding model.

tcp_bw.m MATLAB implementation of formulas in «Mod-
elling TCP throughput: A simple model and its
empirical validation» by J. Padhye, et al, SIG-
COMM 1998.

tcp_bw_mathis.m MATLAB implementation of formulas in «The
macroscopic behavior of the TCP congestion
avoidance algorithm» by Mathis, et al. CCR 27(3),
July 1997.

script_tcp_bw.m Calculate and plot the TCP bandwidth according
to the above formulas.

82

A.3 Code

Functions:
Data access & Preprocessing:

stats_<type>.m Process the saved measurement data. The
types are «access_log», «connections», «con-
nections_ss», «curl», «iostat», «iperf», «mem»,
«mem_free», «monitor», «mpstat», «netstat_s»
and «rtt».

read_curl_file.m Helper function to process the output of the «curl»
program.

new_netstat_format.m Helper function to identify «nestat» output layout.

Aggregation:
eval_<type>.m Aggregate the preprocessed data and prepare for

plotting. The types are «connections», «connec-
tions_ss», «cpu», «curl», «io», «iperf», «mem-
ory», «memory_free», «netstat_s» and «rtt».

Calculations & Plotting:
calc_attack_strength.m Extract the attack strength from the measure-

ment.
calc_stat.m Calculate various statistics on the preprocessed

measurement data.
calc_strength.m Process the output of the «pktgen» program to

calculate the actual attack strength.
calc_strength_curl.m Process the output of the «curl» program to cal-

culate the actual attack strength.
metric_analysis.m Perform the metric selection analysis.
percentage.m Calculate a percentage using the given values.
rsquare.m Calculate 𝑅2 using 𝑦 and 𝑦.
plot_stat.m Plot the calculated statistics.
jbfill.m Fill a region between two vectors with a color.

Misc:
figpref.m Set figure preferences.
print_figure.m Print figure to a file.
mat2unixtime.m Convert MATLAB date to Unixtime.
unixtime2mat.m Convert Unixtime to MATLAB date.
grep.m Unix-like grep implementation in MATLAB.
uniquify.m Ensures a given set of values is unique.
read_first_line.m Access the first line of a file.
read_last_line.m Access the last line of a file.
xml2struct.m Read an XML file into a MATLAB structure.

83

A.3 Code

A.3.2 Framework

Table A.1: Description of developed measurement framework

./
audit.py
DoS_attacker.py
DoS_client.py
DoS_config.py
DoS_server.py
paramiko_helper.py Helper functions for the paramiko SSH2 protocol

library.
post_process.py Data processing and MATLAB code generation.
validator.py Helper function to validate entered IP addresses.

./tools/
additional/

<id>/
description.txt Title and description of additional task to execute

before and/or after measurements.
script_pre.sh Script executed before measurement.
script_post.sh Script executed after measurement.

attacker/
<id>/

attacker.tgz Archive to be uploaded to the attackers.
attack.sh Script executed on the attacker to start the attack

(has to be contained in the attacker.tgz archive or
created by the prepare_attack.sh script).

description.txt Title and description of attack.
template.m MATLAB code template.
prepare_archive.sh Script to prepare attacker.tgz archive.
prepare_attack.sh Script executed on the attacker before the mea-

surement.
client/

client.tgz Archive to be uploaded / moved to the client.
measure_client.py Script executed on the client to start the measure-

ment (has to be contained in the client.tgz archive
or created by the prepare_client.sh script).

prepare_archive.sh Script to prepare client.tgz archive.
prepare_client.sh Script executed on the client before the measure-

ment.
server/

measure_server.py Script executed on the server to start the mea-
surement.

prepare_server.sh Script executed on the server before the measure-
ment.

84

Appendix B

Time Schedule

13.02.2012 study related work including impact metrics, (D)DoS attacks

week 2 additional related work, summarize impact metrics, prepare time schedule

week 3 determine suitable network, end-to-end and (D)DoS attack tools

week 4 implement required tools / prepare lab

week 5 lab measurements

week 6 evaluate correlation between metrics and attack parameters using statistics

week 7 implement required tools / lab measurements

week 8 preliminary model

week 9 discussion with supervisor (major aspects of ongoing work)

week 11

week 13 final model

week 15 evaluate finding in testbed scenario

week 16 preliminary report

week 17 discussion with supervisor (table of content / preliminary written report)

week 18 verify findings in real world scenario

week 23 final report

week 24 prepare final presentations

12.08.2012

85

86

Bibliography

[1] Dmitri Alperovitch. Revealed : Operation Shady RAT. pages 1–14. URL http://www.

mcafee.com/us/resources/white-papers/wp-operation-shady-rat.

pdf.

[2] Arbor Networks. Worldwide Infrastructure Security Report. Technical report, 2011.

[3] I.K. Bansal, K.K. Vasishtha, T.C. Gyanani, M. C. Sharma, Snehlata Shukla, and Sunaina
Kumar. Correlation - Its Interpretation and Importance. In Statistical Techniques of
Analysis. Indira Gandhi National Open University (IGNOU), 2008. URL http://www.

egyankosh.ac.in/handle/123456789/25740.

[4] J. G. Beerends and L. A. R. Yamamoto. Impact of network performance parameters on
the end-to-end perceived speech quality. Technical report, 1997.

[5] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu, and Mark
Claypool. The effects of loss and latency on user performance in unreal tournament
2003 R○. In Proceedings of ACM SIGCOMM 2004 workshops on NetGames ’04 Network
and system support for games - SIGCOMM 2004 Workshops, number May 2002, page
144, New York, New York, USA, 2004. ACM Press. ISBN 158113942X. doi: 10.
1145/1016540.1016556. URL http://portal.acm.org/citation.cfm?doid=

1016540.1016556.

[6] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. Quality is in the Eye of the Beholder :
Meeting Users ’ Requirements for Internet Quality of Service. Technical report, 2000.

[7] Tom Brewster. Dealing With The DDoS Dealers, 2012. URL http://www.

techweekeurope.co.uk/news/ddos-market-84390. (last visit: Aug. 2012).

[8] Canonical Ltd. limit - get and set user limits. URL http://manpages.ubuntu.com/

manpages/lucid/man3/ulimit.3.html. (last visit: Jul. 2012).

[9] Patrikakis Charalampos, Michalis Masikos, and Olga Zouraraki. Distributed Denial of
Service Attacks. The Internet Protocol Journal, 7(4):13–35, 2004.

[10] Neal Charbonneau, Rukaiya Dahodwala, Raza Kanjee, and Aditya Kashiappa.
Experimental and Analytical Analysis of TCP and UDP Protocols. pages 1–
10, 2009. URL http://www.ece.umassd.edu/faculty/lxing/Homepage/

ECE560-S11-Homepage/Project/SampleReports/ECE560-S09-Group1.

pdf.

87

http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf
http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf
http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf
http://www.egyankosh.ac.in/handle/123456789/25740
http://www.egyankosh.ac.in/handle/123456789/25740
http://portal.acm.org/citation.cfm?doid=1016540.1016556
http://portal.acm.org/citation.cfm?doid=1016540.1016556
http://www.techweekeurope.co.uk/news/ddos-market-84390
http://www.techweekeurope.co.uk/news/ddos-market-84390
http://manpages.ubuntu.com/manpages/lucid/man3/ulimit.3.html
http://manpages.ubuntu.com/manpages/lucid/man3/ulimit.3.html
http://www.ece.umassd.edu/faculty/lxing/Homepage/ECE560-S11-Homepage/Project/SampleReports/ECE560-S09-Group1.pdf
http://www.ece.umassd.edu/faculty/lxing/Homepage/ECE560-S11-Homepage/Project/SampleReports/ECE560-S09-Group1.pdf
http://www.ece.umassd.edu/faculty/lxing/Homepage/ECE560-S11-Homepage/Project/SampleReports/ECE560-S09-Group1.pdf

BIBLIOGRAPHY

[11] Roman Chertov, Sonia Fahmy, and Ness B. Shroff. Emulation versus Simula-
tion: A Case Study TCP-Targeted Denial of Service Attacks. 2nd International
Conference on Testbeds and Research Infrastructures for the Development of Net-
works and Communities, 2006. TRIDENTCOM 2006., pages 316–325, 2006. doi:
10.1109/TRIDNT.2006.1649164. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1649164.

[12] Junghoo Cho and Hector Garcia-Molina. Effective page refresh policies for Web
crawlers. ACM Transactions on Database Systems, 28(4):390–426, December 2003.
ISSN 03625915. doi: 10.1145/958942.958945. URL http://portal.acm.org/

citation.cfm?doid=958942.958945.

[13] CrySyS - Laboratory of Cryptography and Systems Security. Targeted attacks, 2012.
URL http://www.crysys.hu/targeted-attacks.html. (last visit: Jul. 2012).

[14] James Cullimore. Anonymous DDoS Mastercard Site In WikiLeaks Re-
venge Attack, 2010. URL http://www.itproportal.com/2010/12/08/

anonymous-ddos-mastercard-site-wikileaks-revenge-attack/. (last
visit: Jul. 2012).

[15] Dancho Danchev. DDoS for hire services offering to "take down your competitor’s web
sites" going mainstream, 2012. URL http://blog.webroot.com/2012/06/06/

ddos-for-hire/. (last visit: Jul. 2012).

[16] die.net. ethtool - Display or change ethernet card settings, . URL http://linux.die.
net/man/8/ethtool. (last visit: Jul. 2012).

[17] die.net. free - Display amount of free and used memory in the system, . URL http:

//linux.die.net/man/1/free. (last visit: Jul. 2012).

[18] die.net. iostat - Report Central Processing Unit (CPU) statistics and input/output statistics
for devices, partitions and network filesystems (NFS), . URL http://linux.die.

net/man/1/iostat. (last visit: Jul. 2012).

[19] die.net. mpstat - Report processors related statistics, . URL http://linux.die.

net/man/1/mpstat. (last visit: Jul. 2012).

[20] die.net. netstat - Print network connections, routing tables, interface statistics, masquer-
ade connections, and multicast memberships, . URL http://linux.die.net/man/

8/netstat. (last visit: Jul. 2012).

[21] die.net. ntpdate - set the date and time via NTP, . URL http://linux.die.net/

man/8/ntpdate. (last visit: Jul. 2012).

[22] die.net. proc - process information pseudo-file system, . URL http://linux.die.

net/man/5/proc. (last visit: Jul. 2012).

[23] die.net. select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO - synchronous I/O
multiplexing, . URL http://linux.die.net/man/2/select. (last visit: Jul. 2012).

[24] Stephen Dill, Ravi Kumar, Kevin S. Mccurley, Sridhar Rajagopalan, D. Sivakumar, and
Andrew Tomkins. Self-similarity in the web. ACM Transactions on Internet Technology,
2(3):205–223, August 2002. ISSN 15335399. doi: 10.1145/572326.572328. URL
http://portal.acm.org/citation.cfm?doid=572326.572328.

88

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1649164
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1649164
http://portal.acm.org/citation.cfm?doid=958942.958945
http://portal.acm.org/citation.cfm?doid=958942.958945
http://www.crysys.hu/targeted-attacks.html
http://www.itproportal.com/2010/12/08/anonymous-ddos-mastercard-site-wikileaks-revenge-attack/
http://www.itproportal.com/2010/12/08/anonymous-ddos-mastercard-site-wikileaks-revenge-attack/
http://blog.webroot.com/2012/06/06/ddos-for-hire/
http://blog.webroot.com/2012/06/06/ddos-for-hire/
http://linux.die.net/man/8/ethtool
http://linux.die.net/man/8/ethtool
http://linux.die.net/man/1/free
http://linux.die.net/man/1/free
http://linux.die.net/man/1/iostat
http://linux.die.net/man/1/iostat
http://linux.die.net/man/1/mpstat
http://linux.die.net/man/1/mpstat
http://linux.die.net/man/8/netstat
http://linux.die.net/man/8/netstat
http://linux.die.net/man/8/ntpdate
http://linux.die.net/man/8/ntpdate
http://linux.die.net/man/5/proc
http://linux.die.net/man/5/proc
http://linux.die.net/man/2/select
http://portal.acm.org/citation.cfm?doid=572326.572328

BIBLIOGRAPHY

[25] Thomas Dubendorfer, Arno Wagner, and Bernhard Plattner. An economic damage
model for large-scale Internet attacks. In 13th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pages 223–228. IEEE
Comput. Soc, 2004. ISBN 0-7695-2183-5. doi: 10.1109/ENABL.2004.11. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1376837http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1376837.

[26] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid-
ance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993. ISSN 10636692.
doi: 10.1109/90.251892. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=251892.

[27] Forrester Research Inc. DDoS : A Threat You Can’t Afford To Ignore. Technical report,
2009.

[28] Raja Sekhar Reddy Gade, Hari Vellalacheruvu, and Sanjeev Kumar. Performance of Win-
dows XP, Windows Vista and Apple’s Leopard Computers under a Denial of Service At-
tack. In 2010 Fourth International Conference on Digital Society, pages 188–191. IEEE,
February 2010. ISBN 978-1-4244-5805-9. doi: 10.1109/ICDS.2010.39. URL http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5432801.

[29] Giovanni Giacobbi. The GNU Netcat, 2006. URL http://netcat.sourceforge.

net/. (last visit: Jul. 2012).

[30] Sebastien Godard. SYSSTAT. URL http://sebastien.godard.

pagesperso-orange.fr/. (last visit: Jul. 2012).

[31] Joao Hespanha, Stephan Bohacek, Katia Obraczka, and Junsoo Lee. Hybrid Modeling of
TCP Congestion Control. pages 291–304, 2001. URL http://www.springerlink.

com/index/jvvn1jp1wug4vnw5.pdf.

[32] John D. Howard. An analysis of security incidents on the Internet 1989-1995. 1997.
URL http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=

html&identifier=ADA389085.

[33] Alefiya Hussain, John Heidemann, and Christos Papadopoulos. A framework for classi-
fying denial of service attacks. In Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications - SIGCOMM
’03, page 99, New York, New York, USA, 2003. ACM Press. ISBN 1581137354. doi:
10.1145/863955.863968. URL http://portal.acm.org/citation.cfm?doid=

863955.863968.

[34] Insecure.Com LLC. Ncat. URL http://nmap.org/ncat/. (last visit: Jul. 2012).

[35] Intel Corporation. Intel R○ CoreTM i3-540 Processor, 2010. URL http://ark.intel.

com/products/46473. (last visit: Jul. 2012).

[36] Intel Corporation. Intel R○ CoreTM i7-2600K Processor, 2011. URL http://ark.intel.
com/products/52214/. (last visit: Jul. 2012).

[37] Iranian National Computer Emergency Response Team. Identification of a New
Targeted Cyber-Attack, 2012. URL http://www.certcc.ir/index.php?name=

news&file=article&sid=1894. (last visit: Jul. 2012).

89

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1376837 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1376837
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1376837 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1376837
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1376837 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1376837
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=251892
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=251892
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5432801
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5432801
http://netcat.sourceforge.net/
http://netcat.sourceforge.net/
http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
http://www.springerlink.com/index/jvvn1jp1wug4vnw5.pdf
http://www.springerlink.com/index/jvvn1jp1wug4vnw5.pdf
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA389085
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA389085
http://portal.acm.org/citation.cfm?doid=863955.863968
http://portal.acm.org/citation.cfm?doid=863955.863968
http://nmap.org/ncat/
http://ark.intel.com/products/46473
http://ark.intel.com/products/46473
http://ark.intel.com/products/52214/
http://ark.intel.com/products/52214/
http://www.certcc.ir/index.php?name=news&file=article&sid=1894
http://www.certcc.ir/index.php?name=news&file=article&sid=1894

BIBLIOGRAPHY

[38] Kaspersky Lab. Kaspersky Lab and ITU Research Reveals New Advanced Cy-
ber Threat, 2012. URL http://www.kaspersky.com/about/news/virus/

2012/Kaspersky_Lab_and_ITU_Research_Reveals_New_Advanced_Cyber_

Threat. (last visit: Jul. 2012).

[39] Suraiya Khan and Issa Traore. Queue-based analysis of DoS attacks. In Information
Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC,
pages 266–273. IEEE, 2005. ISBN 0780392906. URL http://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=1495962.

[40] Jan Kneschke. lighttpd. URL http://www.lighttpd.net/. (last visit: Jul. 2012).

[41] Alex Lane. Anonymous DDoS forces Virgin Media offline in revenge
for Pirate Bay blockade, 2012. URL recombu.com/digital/news/

anonymous-ddos-forces-virgin-media-offline_M10406.html. (last
visit: Jul. 2012).

[42] Carolyn Duffy Marsan. Verisign expands cloud-based DDoS protection, 2011.
URL http://www.networkworld.com/news/2011/050911-verisign-ddos.

html. (last visit: Jul. 2012).

[43] Mathematics in Education and Industry. Spearman’s rank correlation. Technical report.
URL www.mei.org.uk/files/pdf/Spearmanrcc.pdf.

[44] Jelena Mirkovic and Peter Reiher. A taxonomy of DDoS attack and DDoS defense
mechanisms. ACM SIGCOMM Computer Communication, 2004. URL http://dl.

acm.org/citation.cfm?id=997150.997156.

[45] Jelena Mirkovic, Alefiya Hussain, Brett Wilson, Roshan Thomas, Stephen Schwab,
Sonia Fahmy, Roman Chertov, and Peter Reiher. DDoS Benchmarks and Exper-
imenter’s Workbench for the DETER Testbed. In In Proceedings of 3rd Interna-
tional IEEE/CreateNet Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities (TridentCom), 2007. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4444680.

[46] Jelena Mirkovic, Peter Reiher, Brett Wilson, Sonia Fahmy, Roshan Thomas, Wei-min Yao,
and Stephen Schwab. Towards User-Centric Metrics for Denial-Of-Service Measurement.
In Proceedings of the 2007 workshop on Experimental computer science, number
June, 2007. ISBN 9781595937513. doi: 10.1145/1281700.1281708. URL http:

//portal.acm.org/citation.cfm?id=1281708.

[47] Jelena Mirkovic, Sonia Fahmy, Peter Reiher, and Roshan K. Thomas. How to Test DoS
Defenses. 2009 Cybersecurity Applications & Technology Conference for Homeland
Security, pages 103–117, March 2009. doi: 10.1109/CATCH.2009.23. URL http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4804432.

[48] Jelena Mirkovic, Alefiya Hussain, Sonia Fahmy, Peter Reiher, and R.K. Thomas. Ac-
curately Measuring Denial of Service in Simulation and Testbed Experiments. IEEE
Transactions on Dependable and Secure Computing, 6(2):81–95, April 2009. ISSN
1545-5971. doi: 10.1109/TDSC.2008.73. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=4689468.

90

http://www.kaspersky.com/about/news/virus/2012/Kaspersky_Lab_and_ITU_Research_Reveals_New_Advanced_Cyber_Threat
http://www.kaspersky.com/about/news/virus/2012/Kaspersky_Lab_and_ITU_Research_Reveals_New_Advanced_Cyber_Threat
http://www.kaspersky.com/about/news/virus/2012/Kaspersky_Lab_and_ITU_Research_Reveals_New_Advanced_Cyber_Threat
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1495962
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1495962
http://www.lighttpd.net/
recombu.com/digital/news/anonymous-ddos-forces-virgin-media-offline_M10406.html
recombu.com/digital/news/anonymous-ddos-forces-virgin-media-offline_M10406.html
http://www.networkworld.com/news/2011/050911-verisign-ddos.html
http://www.networkworld.com/news/2011/050911-verisign-ddos.html
www.mei.org.uk/files/pdf/Spearmanrcc.pdf
http://dl.acm.org/citation.cfm?id=997150.997156
http://dl.acm.org/citation.cfm?id=997150.997156
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4444680
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4444680
http://portal.acm.org/citation.cfm?id=1281708
http://portal.acm.org/citation.cfm?id=1281708
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4804432
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4804432
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4689468
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4689468

BIBLIOGRAPHY

[49] Nortel Networks. QoS Performance requirements for UMTS. Technical Report May,
1999.

[50] Robert Olsson. pktgen the linux packet generator. Technical report, 2004.

[51] Oracle Corporation. MySQL: The world’s most popular open source database. URL
http://www.mysql.com/. (last visit: Jul. 2012).

[52] Packet Storm. Tor’s Hammer - Slow POST Denial Of Service Test-
ing Tool, 2011. URL http://packetstormsecurity.org/files/98831/

Tors-Hammer-Slow-POST-Denial-Of-Service-Testing-Tool.html. (last
visit: Mar. 2012).

[53] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP throughput.
ACM SIGCOMM Computer Communication Review, 28(4):303–314, October 1998.
ISSN 01464833. doi: 10.1145/285243.285291. URL http://portal.acm.org/

citation.cfm?doid=285243.285291.

[54] PLANET Technology Corporation. GSD-805. URL http://www.planet.com.tw/

en/product/product_ov.php?id=19375. (last visit: Jul. 2012).

[55] Robey Pointer. paramiko: SSH2 protocol for python. URL http://www.lag.net/

paramiko/. (last visit: Jul. 2012).

[56] RSnake and John Kinsella. Slowloris HTTP DoS. URL http://ha.ckers.org/

slowloris/. (last visit: Jul. 2012).

[57] Syed Balal Rumy. DDOS Attack Taxanomy. URL http://ccnpsecurity.blogspot.
com/2012/01/ddos-attack-taxanomy.html. (last visit: Mar. 2012).

[58] Monika Sachdeva, Krishan Kumar, Gurvinder Singh, and Kuldip Singh. Perfor-
mance Analysis of Web Service under DDoS Attacks. In 2009 IEEE International
Advance Computing Conference, number March, pages 1002–1007. IEEE, March
2009. ISBN 978-1-4244-2927-1. doi: 10.1109/IADCC.2009.4809152. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4809152http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4809152.

[59] Monika Sachdeva, Gurvinder Singh, and Krishan Kumar. An emulation based impact
analysis of DDoS attacks on web services during flash events. 2011 2nd International
Conference on Computer and Communication Technology (ICCCT-2011), pages 479–
484, September 2011. doi: 10.1109/ICCCT.2011.6075134. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6075134.

[60] David E. Sanger. Obama Order Sped Up Wave of Cyberattacks Against Iran,
2012. URL http://www.nytimes.com/2012/06/01/world/middleeast/

obama-ordered-wave-of-cyberattacks-against-iran.html?_r=

2&hp&pagewanted=all. (last visit: Jul. 2012).

[61] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel Agu. The effect
of latency on user performance in Warcraft III. In Proceedings of the 2nd workshop on
Network and system support for games - NETGAMES ’03, pages 3–14, New York, New
York, USA, 2003. ACM Press. ISBN 1581137346. doi: 10.1145/963900.963901. URL
http://portal.acm.org/citation.cfm?doid=963900.963901.

91

http://www.mysql.com/
http://packetstormsecurity.org/files/98831/Tors-Hammer-Slow-POST-Denial-Of-Service-Testing-Tool.html
http://packetstormsecurity.org/files/98831/Tors-Hammer-Slow-POST-Denial-Of-Service-Testing-Tool.html
http://portal.acm.org/citation.cfm?doid=285243.285291
http://portal.acm.org/citation.cfm?doid=285243.285291
http://www.planet.com.tw/en/product/product_ov.php?id=19375
http://www.planet.com.tw/en/product/product_ov.php?id=19375
http://www.lag.net/paramiko/
http://www.lag.net/paramiko/
http://ha.ckers.org/slowloris/
http://ha.ckers.org/slowloris/
http://ccnpsecurity.blogspot.com/2012/01/ddos-attack-taxanomy.html
http://ccnpsecurity.blogspot.com/2012/01/ddos-attack-taxanomy.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4809152 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4809152
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4809152 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4809152
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4809152 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4809152
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6075134
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6075134
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html?_r=2&hp&pagewanted=all
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html?_r=2&hp&pagewanted=all
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html?_r=2&hp&pagewanted=all
http://portal.acm.org/citation.cfm?doid=963900.963901

BIBLIOGRAPHY

[62] Joel E. Sommers. Harpoon: A Flow-level Traffic Generator, 2005. URL http://cs.

colgate.edu/~jsommers/harpoon/. (last visit: Jul. 2012).

[63] Daniel Stenberg. curl - transfer a URL. URL http://curl.haxx.se/docs/

manpage.html. (last visit: Jul. 2012).

[64] Tenable Network Security. Nessus. URL http://www.nessus.org/products/

nessus. (last visit: Jul. 2012).

[65] The Apache Software Foundation. Apache HTTP Server Project. URL http://httpd.
apache.org/. (last visit: Jul. 2012).

[66] The Eclipse Foundation. Jetty. URL http://www.eclipse.org/jetty/. (last visit:
Aug. 2012).

[67] The MathWorks Inc. MATLAB - The Language of Technical Computing. URL http:

//www.mathworks.com/products/matlab/index.html. (last visit: Jul. 2012).

[68] The National Laboratory for Advanced Network Research. Iperf. URL http://iperf.

sourceforge.net/. (last visit: Jul. 2012).

[69] The PHP Group. PHP. URL http://www.php.net/. (last visit: Jul. 2012).

[70] The Tcpdump Group. tcpdump. URL http://www.tcpdump.org/. (last visit: Jul.
2012).

[71] The Tor Project Inc. Tor Project: Anonymity Online. URL https://www.torproject.
org/. (last visit: Aug. 2012).

[72] ThoughtWorks Inc. Selenium HQ: Web application testing system. URL http://

seleniumhq.org/. (last visit: Aug. 2012).

[73] Twisted Matrix Labs. Twisted. URL http://twistedmatrix.com/trac/. (last visit:
Jul. 2012).

[74] Rangarajan Vasudevan, Z. Morley Mao, Oliver Spatscheck, and Jacobus Van der Merwe.
MIDAS: An Impact Scale for DDoS attacks. 2007 15th IEEE Workshop on Local
& Metropolitan Area Networks, pages 200–205, June 2007. doi: 10.1109/LANMAN.
2007.4295999. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4295999.

[75] VMware Inc. VMware vSphere Hypervisor. URL http://www.vmware.com/

products/vsphere-hypervisor/overview.html. (last visit: Aug. 2012).

[76] Wikipedia - The Free Encyclopedia. Hacktivism, . URL http://en.wikipedia.org/
wiki/Hacktivism. (last visit: Jul. 2012).

[77] Wikipedia - The Free Encyclopedia. Coefficient of determination, . URL http://en.

wikipedia.org/wiki/Coefficient_of_determination. (last visit: Jul. 2012).

[78] Wikipedia - The Free Encyclopedia. Flash mob, . URL http://en.wikipedia.org/
wiki/Flash_mob. (last visit: Jul. 2012).

[79] Wikipedia - The Free Encyclopedia. mpstat, . URL http://en.wikipedia.org/

wiki/Mpstat. (last visit: Jul. 2012).

92

http://cs.colgate.edu/~jsommers/harpoon/
http://cs.colgate.edu/~jsommers/harpoon/
http://curl.haxx.se/docs/manpage.html
http://curl.haxx.se/docs/manpage.html
http://www.nessus.org/products/nessus
http://www.nessus.org/products/nessus
http://httpd.apache.org/
http://httpd.apache.org/
http://www.eclipse.org/jetty/
http://www.mathworks.com/products/matlab/index.html
http://www.mathworks.com/products/matlab/index.html
http://iperf.sourceforge.net/
http://iperf.sourceforge.net/
http://www.php.net/
http://www.tcpdump.org/
https://www.torproject.org/
https://www.torproject.org/
http://seleniumhq.org/
http://seleniumhq.org/
http://twistedmatrix.com/trac/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4295999
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4295999
http://www.vmware.com/products/vsphere-hypervisor/overview.html
http://www.vmware.com/products/vsphere-hypervisor/overview.html
http://en.wikipedia.org/wiki/Hacktivism
http://en.wikipedia.org/wiki/Hacktivism
http://en.wikipedia.org/wiki/Coefficient_of_determination
http://en.wikipedia.org/wiki/Coefficient_of_determination
http://en.wikipedia.org/wiki/Flash_mob
http://en.wikipedia.org/wiki/Flash_mob
http://en.wikipedia.org/wiki/Mpstat
http://en.wikipedia.org/wiki/Mpstat

BIBLIOGRAPHY

[80] Wikipedia - The Free Encyclopedia. Non-linear least squares, . URL http://en.

wikipedia.org/wiki/Non-linear_least_squares. (last visit: Jul. 2012).

[81] Wikipedia - The Free Encyclopedia. Slowloris, . URL http://en.wikipedia.org/

wiki/Slowloris. (last visit: Jul. 2012).

[82] Wikipedia - The Free Encyclopedia. p-value, . URL http://en.wikipedia.org/

wiki/P_value. (last visit: Aug. 2012).

[83] Wireshark Foundation. tshark, . URL http://www.wireshark.org/docs/

man-pages/tshark.html. (last visit: Jul. 2012).

[84] Wireshark Foundation. Wireshark, . URL http://www.wireshark.org/. (last visit:
Jul. 2012).

[85] Wolfram Research Inc. Spearman Rank Correlation Coefficient. URL http:

//mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html.
(last visit: Jul. 2012).

[86] Paul Wood, Gerry Egan, Kevin Haley, Tuan-Khanh Tran, Orla Cox, Hon Lau, Can-
did Wueest, David McKinney, Tony Millington, Benjamin Nahorney, Joanne Mulcahy,
John Harrison, Thomas Parsons, Andrew Watson, Mathew Nisbet, Nicholas Johnston,
Bhaskar Krishnappa, Irfan Asrar, Sean Hittel, Eric Chien, Eric Park, Mathew Maniyara,
Olivier Thonnard, Pierre-Antoine Vervier, Martin Lee, Daren Lewis, and Scott Wallace.
Internet Security Threat Report. Technical Report April, Symantec Corporation, 2012.
URL http://www.symantec.com/threatreport/.

[87] Lenny Zeltser. An Ad for DDoS Services - Network, Phone, Competition, 2008. URL
https://isc.sans.edu/diary.html?storyid=5380. (last visit: Jul. 2012).

93

http://en.wikipedia.org/wiki/Non-linear_least_squares
http://en.wikipedia.org/wiki/Non-linear_least_squares
http://en.wikipedia.org/wiki/Slowloris
http://en.wikipedia.org/wiki/Slowloris
http://en.wikipedia.org/wiki/P_value
http://en.wikipedia.org/wiki/P_value
http://www.wireshark.org/docs/man-pages/tshark.html
http://www.wireshark.org/docs/man-pages/tshark.html
http://www.wireshark.org/
http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
http://www.symantec.com/threatreport/
https://isc.sans.edu/diary.html?storyid=5380

Eidgenössisches Departement für Verteidigung,

Bevölkerungsschutz und Sport VBS

armasuisse

Wissenschaft und Technologie W+T

Master Thesis Task Assignment for

Cyrill Bannwart (D-ITET)

PPrreeddiiccttiinngg tthhee IImmppaacctt ooff DDeenniiaall ooff SSeerrvviiccee AAttttaacckkss

 Main advisor: Dr. Vincent Lenders (armasuisse)
 Advisor ETH: David Gugelmann (ETH Zürich)
 Supervisor: Prof. Dr. B. Plattner (ETH Zürich)
 Start Date: February 13th, 2012
 End Date: August 12th, 2012

1 Introduction

Denial of service attacks are still representing a major threat in the Internet. The potential

damage that denial of service attacks may exert on critical infrastructures is however often

not a priori known because current impact analysis techniques require the target systems to

be flooded in order to observe their behaviour under massive load. Massive flooding of criti-

cal systems for testing purposes is however problematic in practice because one cannot tol-

erate the resulting outage of the system.

2 Thesis goals

The goal of this thesis is to develop a measurement-based prediction model to assess the

impact of denial of service attacks on Internet servers. The model should trade off accuracy

for probe traffic volume to make its application suitable in operational systems. The model

should further take the view of an outsider, i.e., the prediction should be achieved by regular

clients without any privileged administrator access to the servers or the networks under con-

sideration.

The required set of tools to apply the model in practice should be evaluated and/or imple-

mented by the student. The goal at the end is to have a simple and generic tool suite that

can be used by others to test any server (in the same spirit as the nessus tool suite to assess

software vulnerabilities of running servers).

The model and tools should finally be evaluated by predicting the vulnerability of real servers

in lab conditions (~10 server instances).

3 Tasks
The tasks of this thesis are the following:

 Review the literature on denial of service (DoS) and distributed denial of service
(DDoS) attacks and identify related work that aims at predicting the impact of DoS
and DDoS attacks on Internet servers.

 Familiarize yourself with existing network and end-to-end measurement tools.

 Develop a cross-layer model to externally predict the collateral damage of denial of

service attacks based on probe traffic sent from client nodes.

 Evaluate and implement appropriate tools to support your model.

2/2

 Test and evaluate your model/tools in a lab environment with your own deployment of

target servers.

4 Deliverables

 At the end of the second week, a detailed time schedule of the thesis must be given
to and discussed with the main advisors.

 At the end of the first month, the student has to propose a methodology and
preliminary model answering the second and third bullet, respectively.

 At the end of the second month, a short discussion of 15 minutes with the supervisor
and the advisors will take place. The student has to talk about the major aspects of
the ongoing work using slides.

 At the end of month four, another meeting with the supervisor will take place. At this
point, the student should already have a preliminary version of the written report or at
least a table of content to hand in to the supervisor. This preliminary version should
be brought along to the short discussion.

 At the end of the thesis, a presentation of 15 minutes must be given at armasuisse
and at ETH (in English) during a CSG group meeting. The presentations should give
an overview as well as the most important details of the work. If possible, a
demonstrator should be presented (offline after the talk).

 The final report should be written in English but may be written in German. It should
contain a summary written in both English and German, the assignment and the time
schedule. Its structure should include an introduction, an analysis of related work, and
a complete documentation of all used hardware/software tools. Additionally, the
report must contain the signed confirmation regarding plagiarism as last page.

 The final report and developed tools/software must be handed in electronically at the
end of the thesis. Additionally, four written copies of the final report should be
delivered to the main advisor along with a CD that includes developments undergone
during the thesis.

	Introduction
	Motivation
	Goals
	Tasks
	Outline

	Problem Statement
	Related Work
	Impact Metrics

	Methodology
	Lab Network Setup
	Metrics
	Measurement Tools

	Additional Tools
	Post-processing

	(D)DoS Attacks
	Attack Taxonomy
	Selected (D)DoS Attacks
	UDP flooding
	Slow POST
	Flash-crowd attack
	GET flooding

	Attack Implementation
	UDP flooding
	Slow POST
	Flash-crowd attack
	GET flooding

	(D)DoS Attack Strength

	Mathematical Methods
	Spearman's Rank Correlation
	Significance
	Non-linear Least Squares Method
	Goodness of Fit
	Interpretation

	Modeling
	Metric Selection
	Model Fitting
	Approach
	Flash-crowd attack
	Slow POST
	UDP flooding
	GET flooding

	Evaluation
	Variations in the Setup
	Results

	Prediction & Error Calculations
	Results

	Audit Framework
	Design
	Requirements
	Configuration Assistant
	Workflow
	Extensibility

	Conclusion
	Summary
	Conclusion
	Future Work
	Productive Environment
	Additional Attacks
	Additional Metrics
	Internal Metrics

	Zusammenfasung
	Appendix
	Attack Tools
	harpoon
	Twisted
	netcat (nc)
	ncat

	Configurations
	harpoon
	pktgen

	Code
	MATLAB
	Framework

	Time Schedule
	References

