
Institut für
Technische Informatik und
Kommunikationsnetze

The Edit History of the National Vulnerability

Database

and similar Vulnerability Databases

Mathias Karlsson

Master’s Thesis MA-2012-06
February until August 2012

Advisor: Dr. Stephan Neuhaus
Supervisor: Prof. Dr. Bernhard Plattner

Acknowledgements

First I want to thank my tutor Dr. Stephan Neuhaus for his expertise and
supportive advice as well as the large freedom and up front feedback he gave
me during this thesis. I also want to thank Prof. Dr. Bernhard Plattner for his
feedback in the intermediate reviews and presentations.

I also thank my mother enabling me to study all this time and providing the
help whenever it was needed. Lastly, a special thank goes to my wife Jagoda
Karlsson for her support and motivation during this thesis. I am honored to
dedicate this thesis to them.

Abstract

When working with software vulnerabilities one has to deal with information
of many different sources. These might relate to the same vulnerability but since
every institution and vendor have their own naming conventions it might not be
easy to connect them. This is where the Common Vulnerability Enumeration
comes in. The institution running it issues standardized names to discovered
vulnerabilities and also gives references to external resources associated with
them.

The National Vulnerability Database is the vulnerability database based on
the list of CVE entries. This database is often regarded as the ground truth
when it comes to software vulnerabilities. To fulfill this task, the data of the
published entries has to be stable, but it was discovered that some content
experiences changes over time.

Therefore the primary goal of this thesis is to answer the question whether
the National Vulnerability Database can be used as the ground truth despite
its edits. The secondary tasks are to collect the data of a second vulnerability
database for comparison, and develop the tools to build, analyze and compare
the edit history.

In total, over a year of data of the National Vulnerability Database and nearly
four months of data of the Open Source Vulnerability Database were analyzed.
The results exhibit very similar patterns of when and which entries are edited.
The majority of the changes are performed in data fields regarding vulnerable
applications and references. These changes are not very substantial since the
data concerning the vulnerability does not change. Additionally, the majority of
the edits, non-substantial and substantial, are performed within the first month
after the entry is released.

Concluding, the National Vulnerability Database can be used as the ground
truth for not very fresh entries and the Open Source Vulnerability Database is
a good source for additional information as well as a second opinion.

Contents

1 Introduction 9

2 Data Sources and Collection 11

2.1 Data Sources . 11

2.1.1 National Vulnerability Database 11

2.1.2 Open Source Vulnerability Database 12

2.2 Data Collection . 14

2.2.1 NVD Data Collection . 14

2.2.2 OSVDB Data Collection 14

3 Methods 17

3.1 History Building . 17

3.1.1 Differences between two XML Documents 17

3.1.2 Building the History of a versioned XML File 17

3.1.3 Building the History of a large OSVDB XML file 19

3.2 History Analysis . 19

3.2.1 Preliminary Analysis . 19

3.2.2 Targeted Analysis . 20

3.2.3 Visualization and Interpretation 21

3.3 History Comparison . 21

4 Results 23

4.1 History Building . 23

4.1.1 History Format . 23

4.1.2 Overview of the NVD History 24

4.1.3 Overview of the OSVDB History 24

4.1.4 The Impact of XML elements in the History 24

4.2 History Analysis . 27

4.2.1 NVD Analysis . 27

4.2.2 OSVDB Analysis . 48

4.3 History Comparison . 63

4.3.1 Comparing the Overview and Edits by Tags 63

4.3.2 Comparing the Edits by Tags and by Entries 64

4.3.3 Comparing the Edits by Days and by Month 64

4.3.4 Comparing the Time until first and last Edit 65

4.3.5 Comparing the new Entries 65

5

6 CONTENTS

4.3.6 Comparing the Time until Entries are updated 66

5 Conclusions and Future Work 69
5.1 Conclusions . 69

5.1.1 Answering the Assignment Questions 70
5.2 Future Work . 71

A ”How To” Descriptions 73
A.0.1 Shell Scripts . 73
A.0.2 Perl Scripts . 73
A.0.3 Java Archive . 73

A.1 Data Collection . 74
A.1.1 OSVDB Data Collection 74

A.2 History Creation . 79
A.2.1 NVD History Creation . 79
A.2.2 NVD incremental History Creation 81
A.2.3 OSVDB History Creation 82
A.2.4 OSVDB incremental History Creation 84

A.3 History Evaluation . 85
A.3.1 The Operations Tool . 85
A.3.2 Evaluation Scripts . 87

B Assignment Description and
Declaration of Originality 95

References 101

List of Figures

4.1 Tag edits in the NVD . 28
4.2 NVD edit statistics by CVE identifier 30
4.3 NVD edit statistics per day . 32
4.4 NVD count of the edit statistics per day 34
4.5 NVD edit statistics per month 35
4.6 NVD edit statistics per month for each year separately 37
4.7 NVD edit statistics within a month 38
4.8 NVD count of entries to the first and last edit 40
4.9 NVD count of entries to the first and last substantial edit 42
4.10 NVD new added entries . 43
4.11 NVD edits on entries related to Microsoft products 44
4.12 NVD edit statistics to CVSS related information 46
4.13 Tag edits in the OSVDB . 49
4.14 OSVDB edit statistics by OSVDB identifier 52
4.15 OSVDB edit statistics per day 53
4.16 OSVDB count of the edit statistics per day 54
4.17 OSVDB edit statistics per month 56
4.18 OSVDB edit statistics within a month 57
4.19 OSVDB count of entries to the first and last edit 59
4.20 OSVDB count of entries to the first and last substantial edit . . 61
4.21 OSVDB new added entries . 62
4.22 OSVDB self claimed entry completeness 63

7

Chapter 1

Introduction

Working with software vulnerabilities means dealing with many different data
sources, since there is no one database collecting all the information of each
discovered software vulnerability. Finding the necessary information is also not
very easy because every institution or vendor running a vulnerability database
has its own way of naming and categorizing the vulnerability. This is where the
Common Vulnerability and Exposure (CVE)1 comes in. It offers a standardized
name for software vulnerabilities and references to advisories in well-known
vulnerability databases. A CVE Numbering Authority2 can issue a new name
to a newly discovered vulnerability. These CVE identifiers are widely adapted
and greatly help finding information to a CVE registered vulnerability.

Even if the related information available can be retrieved much easier with
the CVE identifier, the information that can be found in different sources have
different formats or different names for the same information. This makes au-
tomatized processing very complicated. The National Vulnerability Database3,
which is based on the list of CVE identifiers, is an attempt to offer software
vulnerability information in a standardized way.

The National Vulnerability Database does not collect all the available infor-
mation from all available sources since many sources contain a lot of very specific
vendor information. A vendor advisory usually describes what the specific ef-
fects of the vulnerability on the products are and how it can be resolved. Each
National Vulnerability Database entry is, therefore, rather the least common
denominator of the sources in a standardized format. Beside the CVE descrip-
tion and references, it also holds a threat rating, a list of vulnerable software
and a Common Weakness Enumeration which categorizes the vulnerability.

Over the time this database turned into the de facto standard vulnerability
database. It is widely used by vendors for their products. But it is also used
by researchers to perform software vulnerability research and often regarded
the ground truth. Related research topics are for example predicting software
vulnerabilities [1, 2], relation of vulnerabilities to package dependencies [3],
identifying trends [4] or studying the vulnerabilities of a specific product [5].

1http://cve.mitre.org
2http://cve.mitre.org/cve/cna
3http://nvd.nist.gov

9

10 1 Introduction

To perform such research it is important that the data the research bases
on is stable and reliable which is necessary for the results to be reproducible.
Since the National Vulnerability Database is regarded the ground truth these
properties are associated with it. But during research it was observed that
changes can occur over time. The question is if these changes are so severe that
the database cannot be used as ground truth anymore.

The goal of this thesis is to determine whether the National Vulnerability
Database can be used as the ground truth despite its edits. Such an analysis
was never done before.

This is done in three steps. First, the data has to be collected and archived
frequently. Second, the edit history has to be created by extracting the dif-
ferences between the successive revisions. Third the edit history has to be
analyzed. In the Chapters 2 and 3 the data sources and techniques used as
well as the questions that have to be answered are described. The Chapter 4
shows the results which answer the question raised in Chapter 3 and Chapter
5 presents the conclusion whether the National Vulnerability Database can be
used as the ground truth for software vulnerabilities.

Chapter 2

Data Sources and Collection

In the first part of this chapter, we present the data sources we used and why
we chose them. In the second part, we also present the data collection process.

2.1 Data Sources

The analysis of the edit history of the National Vulnerability Database will
yield results. But without another reference it will be very hard to interpret
these results. Therefore a second, independent data source is needed that is
as similar as possible to the National Vulnerability Database to compare the
obtained results. Otherwise it is unclear if the observed edits are severe changes
or just necessary updates while maintaining such a database.

2.1.1 National Vulnerability Database

The National Vulnerability Database (NVD)1 is a software vulnerability database
that has been publicly available since 2005. The goal of the NVD is to pro-
vide a “repository of standards based vulnerability management data to enable
automation of vulnerability management, security measurement and compli-
ance”2. The NVD is often regarded as the ground truth for software vulner-
abilities and is widely used by researchers and corporations. It contains over
50’000 vulnerabilities and claims to grows by of 13 entries per day, on average.
The Computer Security Division of the National Institute of Standards and
Technology (NIST)3 maintains the NVD.

The data is based on the Common Vulnerabilities and Exposures (CVE)4 en-
tries published by MITRE5. Since 1999 MITRE catalogs software vulnerabilities
and assigns common names to make it easier to share data since most vendors
have their own naming systems which are not compatible. Such a CVE entry
therefore only contains a short description and external references (e.g., other
vulnerability databases, vendor advisories, etc.). A corresponding entry in the

1http://nvd.nist.gov
2http://nvd.nist.gov/about.cfm
3http://www.nist.gov
4http://cve.mitre.org
5http://www.mitre.org

11

12 2 Data Sources and Collection

NVD provides additional information such as impact rating, categorization of
the vulnerability and a list of vulnerable software. The NVD database only con-
tains entries associated with filled-out CVE entries; therefore a reserved CVE
entry will only appear in the NVD after the information was disclosed (e.g., by
the vendor when releasing the patch) and the CVE entry was updated. The
NVD can be searched online and is also published daily as database export in
XML format.

Until the beginning of 2012 no entry creation process was published. MITRE
now publishes the process they use to create a CVE entry which consists of
three stages6.

First is the processing stage where in the first phase data is collected and
converted into a standardized format. This is then matched to submission
groups. In the refinement phase a content team member analyzes the submission
group and decides whether a CVE entry should be created or not. If this is
the case he creates the entry which is then reviewed by the CVE editor in the
editing phase.

Second is the assignment stage where the CVE identifiers are assigned. This
can be done in one of three ways: 1. they are defined by the content team,
2. they are reserved previously by an organization or individual, 3. they are
created by the CVE editor to quickly create a CVE identifier.

The final stage is the publication which consists of a publication and a mod-
ification phase. In the publication phase the new CVE entry is added to the
CVE website. This is followed by the final modification phase where the en-
try can be edited in simple ways such as clarifying the description or adding
more references. Finally, it also mentions serious changes to the CVE list such
as splitting an entry into multiple entries, combining entries and even deleting
entries.

Both, MITRE and the Computer Security Devision of NIST, are sponsored
by the Departement of Homeland Security of the U.S. government.

2.1.2 Open Source Vulnerability Database

The second data source should be as similar as possible in the number of vul-
nerabilities, in the goal it wants to achieve and in the information available per
vulnerability. Many of the vendor based databases do not qualify in the goal
aspect. They are often very user-oriented and cover problems associated with
their own software and how it can be fixed. This even is true for security related
vendors such as Secunia. They for example do not focus on the vulnerability
rather than focusing on the vulnerable product, therefore it is possible that one
CVE identifier points to multiple Secunia advisories. Furthermore it is in gen-
eral very hard to gain access to vendor based repositories since they earn their
money with this information. Other public databases have a very different goal
(e.g., document exploits) or are simply not comparable in size.

6http://cve.mitre.org/cve/identifiers/build.html

2.1 Data Sources 13

The best match that could be found was the Open Source Vulnerability
Database (OSVDB)7 of the Open Security Foundation (OSF)8. The OSVDB
was founded in August 2002 and thus predates the NVD. The project was
started with the aim to provide “an independent and open source” vulnerabil-
ity database with the goal “to provide accurate, detailed, current and unbiased
technical information about all types of vulnerabilities.” The project also wants
to “promote greater, more open collaboration between companies and individu-
als, eliminate redundant works and reduce expenses inherent with development
and maintenance of in-house vulnerability databases”9.

The goals of both databases are very similar. Also the entry content is very
comparable as well as the size, with over 80’000 entries the OSVDB is even
larger than the NVD. When looking at the information given for each entry for
most fields in the NVD a matching field in the OSVDB entry can be found.

The following fields of the NVD can be matched directly to fields in the
OSVDB:

1. The vulnerable-software-list to the products.

2. The CVSS elements to the information in the CVSSv2 Score.

3. The references to the references.

4. The summary to the description.

No match can be found for:

1. The vulnerable configuration elements.

2. The published date since the OSVDB only states very roughly how long
ago the entry was added.

3. The last modified date since the OSVDB only states very roughly how
long ago the entry was edited.

4. The common weakness enumeration (CWE).

5. The OVAL scanner information.

On the other hand an OSVDB entry also can contain additional information
that is not present in the NVD:

1. A timeline is given for each vulnerability covering critical dates such as
the disclosure date, the exploit date or the patch availability date.

2. A classification gives a basic definition of the vulnerability by the parame-
ters location (attack vector), attack type, impact, available solution type,
exploit availability and by whom it was disclosed.

3. Further technical information regarding the vulnerability can be added.

7http://osvdb.org
8http://www.opensecurityfoundation.org
9http://www.osvdb.org/about

14 2 Data Sources and Collection

4. A solution to fix the vulnerability can be recommended.

5. A list of filters and tools that are able to scan for this vulnerability with
their respective filter IDs might be present.

6. Sometimes also some manual-testing-notes that can be used to manually
check whether a system is vulnerable or not, are published.

Regarding all this information, we are therefore confident that the OSVDB
is the best choice to compare the results of the NVD with.

2.2 Data Collection

The data collection is the process of getting the data from the data source
and archiving it in a version preserving manner. This section describes how
the data is collected of the different data sources and subsequently stored for
further processing.

2.2.1 NVD Data Collection

The data collection of the NVD was not part of this thesis since it was already
previously implemented by Stephan Neuhaus but is still described here for com-
pleteness. The NVD is published daily as XML files on the NVD website. The
entries are split into several files by the year, that is also part of the CVE iden-
tifier. The file of the year 2002 also contains the entries of the previous years.
These files are downloaded daily automatically. In a second step the XML el-
ements are sorted. This is performed to minimize syntactic changes without
actual content changes. This then reduces the changes committed to the SVN
repository which is done as a final step. The data is being collected since 12.
July 2011.

The used sorting tool actually achieves its goal only partially. The idea is,
that the elements at the same XML tree depth and the arguments within each
element are sorted. The sorting tool manages to sort the arguments within one
element. It does not manage to sort elements sharing the same XML tree depth
by their tag name. It is therefore not surprising that more complicated sorting,
such as the sorting of elements with the same tag name by argument values,
by information within sub-elements or by the text node, is also not performed.
This theoretically leaves a great potential for superficial changes that would be
checked in to the SVN repository. In reality the data export is usually done by
the same process every day, keeping the order the same as on the previous day
and therefore should not be of serious concern.

2.2.2 OSVDB Data Collection

The initial idea was to collect the data from the OSVDB entries in the same way
as it is done in the case of the NVD by simply downloading the available daily
database export. But as of February 2012 the data exports are not available
for download any more. This is because the whole website of the OSVDB is

2.2 Data Collection 15

undergoing a major reconstruction. The link to the SQL dumps shows an error
page whereas the link to the XML exports shows an empty page.

As of this moment the website that previously offered the exports is non-
existent. The new website on the other hand offers a beta version of an API that
allows registered users to request the details of one entry by its identifier and
receive the result in XML form. To fetch all the information through this API
would be relatively easy if there would not be an access limit of 100 entries per
day per registered user. We contacted the maintainers explaining our interests
and intentions and asked for alternative ways to access the information of the
database, like some kind of database export or removing the limitation of the
API. In both cases the maintainers’ answer was that they simply do not have
the resources to process such a request, and therefore might be only pursued
after a larger donation.

Since there is no equal alternative to the OSVDB the only option left was
to download the information directly from the website which delayed the data
collection significantly. To start with the data collection as fast as possible the
first version downloaded and stored the complete HTML information retrieved
for each entry. Due to the amount of data collected it was deemed necessary to
split the resulting file into smaller files. The idea was to do this according to the
NVD files, meaning that each entry would be stored in the file according the to
the year associated with it. To be as consistent as possible with the NVD, each
OSVDB entry was checked for a reference to a CVE identifier and if one was
found the whole entry was stored in the annual file associated with this CVE
identifier.

This seemed to be a good approach because it should have been relatively
easy to find and compare entries between the NVD and OSVDB. But this
caused entries without a reference to a CVE identifier to be dropped. At first
this did not seem to be a problem since the goal was to compare the OSVDB
to the NVD which only contains entries related to CVE identifiers. However
when the reference to a CVE identifier is added after the entry is published, it
causes problems because with this assumption the entry shows up the first time
when the reference was added and not when the entry was actually added. It
was therefore necessary to also store all the entries without a reference to CVE
identifiers. Additionally the discovery that it is possible for OSVDB entries to
also reference to multiple CVE identifiers proved that the assignment of OSVDB
entries to year files was very arbitrary. It would have been better to store all the
entries in one file or, if necessary, split into smaller files based on the OSVDB
identifiers. At the moment this problem was discovered, it was already clear
that the data of the OSVDB entries had to be preprocessed before creating the
edit history. The problem can be addressed during preprocessing in order to
not loose the already collected data.

Preprocessing is necessary because the downloaded and stored entry with
the complete HTML document consists mainly of HTML code and very little
useful information (e.g., vulnerability rating, description, etc.). Additionally,
the already developed tool to create the edit history for the NVD is based on
XML files. This tool could be used directly on the complete HTML version
of the entry if it were a correctly formatted XHTML document but it would

16 2 Data Sources and Collection

take much longer and produce a lot of undesired output (i.e., changes in the
HTML structure) since also the HTML code is compared. To prevent this from
happening the useful information has to be extracted from each downloaded
HTML OSVDB entry and stored in an XML file similar to the NVD export
XML files. This process requires multiple steps.

First some general data like the download date are written to the output
file. Then the data of the entries are processed. For each entry, initially all
the data of the entry is read from the file that contains the complete entry in
HTML form. In the next step unnecessary HTML elements such as java scripts
or elements with non-unique attributes are removed. Next some special charac-
ters that cause problems during the processing are replaced by non-hazardous
replacements. The interesting information can now be extracted. This is done
by using XPath because it allows direct access to a specific XML element. The
found information is written as XML elements to the output file. After the en-
try is processed for all specified information the data of the next entry is read.
This is repeated until all the entries are processed. During the data extraction
the information of all the entries is written to the same output file. This also
resolves the problems caused by storing the OSVDB entries to multiple files
based on the encountered CVE reference.

The download and the processing task turned out to be very time consuming.
This is because the download is limited by the download delay whereas the
information extraction is mainly limited by the processing performance. The
initial versions performed their tasks in sequence and it could take up to a day
to download and process the entries. The idea to resolve this was to download
the entries in chunks which allows to start the information extraction while
other downloads are still in progress.

Using the multi threading offered by Perl turned out to be very memory
consuming and the system started to thrash. An implementation relying on
separated scripts is much more reliable and works just as fine. With this the
runtime was shortened significantly. The final version runs multiple downloads
and extractions in parallel which reduces the time even more to just a few
hours. This tool fetches and processes all the entries of the OSVDB every day
and commits the resulting XML file to the SVN repository.

Chapter 3

Methods

In this chapter we present the ideas and tools used to create, analyze and
compare the history of the vulnerability databases.

3.1 History Building

In this section we describe the methods and tools developed and used to build
the history files. The goal of this task is to create an edit history of a file of
which multiple revisions are available. The history’s purpose is to document
for each entry what was edited and when.

3.1.1 Differences between two XML Documents

Determining the difference between two XML documents is no easy task. With-
out any prior knowledge of the specific structure of the document every element
has to be compared with any other element. In this case finding the differences
between the two documents is essentially finding the minimum edits required
to transform one document into the other one. Since the elements in a XML
document can also be interpreted as a tree and each element is labeled with a
tag, it is possible to reduce this problem to the the problem of the edit distance
on unordered labeled trees. This problem is actually NP-complete [6, 7].

For small XML documents which are only a few kilobytes big, this comparison
is performed fairly quickly since there are not that many elements to compare.
But in case of much larger documents with several hundred thousand element
this comparison can consume a significant amount of time.

3.1.2 Building the History of a versioned XML File

The edit history of a versioned file is basically the sum of the changes between
two consecutive revisions over all the revision. The subversion repository al-
ready works in a similar manner since it only stores the differences between
two versions of a file. It offers the function svn diff to display these differences
between two given revisions.

17

18 3 Methods

But like the diff tool, the svn diff function of subversion cannot fulfill the
requirements 1. These tools are line-based which means that the result will
tell us which lines are different in the “left” and the “right” file. This is simply
not enough information since we have no idea to which entry that line actually
belongs. Additionally, in an XML file the order of elements at the same depth
of the XML tree or attributes of an element does not matter, but for the diff
tools this order matters because they are not aware of the XML code and treat
the line as string.

The next step was to look for tools that are specifically designed to compare
XML files. The freely available tools do not seem to be designed for larger files
and tend to take very long. This is probably due to their generic design which
forces them to compare each element with every other element because they
cannot rely on a specific document structure. Such information could be given
to some tools with a Document Type Definition (DTD). But even without such
information at least the order of the elements with the same XML tree depth
will not affect the result. This is already much better but they still cannot
satisfy the requirements since neither the when nor the which entry question
are answered since the information is contained within certain attributes.

Due to these reasons it was decided that the best approach is to develop
our own tool that extracts the difference between two NVD XML files and
documents the edits according to the requirements. This tool cannot extract the
difference between any pair of XML files but is aware of the specific structure,
and therefore can extract the necessary information.

The basic idea is to compare each entry with the corresponding entry of the
other revision. Each sub-element of the entry that matches completely in both
revisions is removed from the document. After all the entries are processed all
the elements that can be only found in the newer revision were added, all the
elements that can be only found in the older revision were removed and finally
all the elements that can be uniquely identified in both revisions of the entry
but the text content does not match, are changed. This defines the edit type,
the when can be extracted of the date attribute in the root element, the where
is defined by the entry identifier and the tag by the currently processed element
and finally the what by the content of the element. A detailed description can
be found in Section 4.1.1.

With this information it is possible to create an edit entry that fulfills all
the given requirements. This comparison has to be performed between every
revision with its predecessor to create the complete history.

For the implementation a combination of a shell script, java and XML docu-
ment object model (DOM) were selected. This choice was made because bash,
java and DOM were already familiar to the author from previous projects and
were most likely to lead to success. The performance is not of utmost impor-
tance, and therefore the expected significant memory requirements of DOM
(eight to fifteen times the documents file size per document) does not matter.

The developed tool is able to build the complete history of all the NVD files

1Even though svn diff does not fulfill the necessary requirements it can still be used to get
an idea of the maximum size of the edit history.

3.2 History Analysis 19

over all the revision within one to two days. This is done by distributing the
workload on multiple machines. This is sufficient since it is not necessary to
update the history every day.

3.1.3 Building the History of a large OSVDB XML file

The building of the OSVDB history took significantly longer than the NVD even
with fewer revisions. This is mainly due to the fact that all the OSVDB entries
are contained in one large file. This problem can be resolved by distributing
the workload on multiple machines that each performs the comparisons of a set
of revisions. After all the machines are done the results can be combined to the
complete history. With this approach every time the history is built, it is built
from scratch.

This is actually not necessary since the history of the revisions processed by
the previous history build does not change. It is, therefore, only necessary to
process the revisions that the previous history build did not process and append
the result to the history of the previous run. With this approach it is possible to
build the history of the OSVDB with as few changes as possible to the general
history building process. As an added bonus, when the history building is done
on a daily basis in such an incremental way, it not only keeps the runtime at a
minimum but also offers always an up-to-date version.

3.2 History Analysis

After creating the histories one can start to analyze them. Initially it is im-
portant to get a good overview. In a second step topics of special interest are
selected and investigated deeper. Such topics can be for example looking for
special patterns or a certain behavior. In each step, first, questions have to be
defined which then have to be answered by analyzing the data.

Since the different data sources are in the end processed by the same tool
to create the history, each edit entry is written in the same unified format.
Therefore, it is largely possible to use to the same tools to analyze the histories
of the NVD and the OSVDB.

3.2.1 Preliminary Analysis

To create an overview the following questions were defined:

• How many edits are there per entry?

• On how many days was the entry edited?

• Are there any database entries with significantly more edits than others?

• How many edits are there per day, per month?

• How many entries were edited per day, per month?

• Are there any dates with significantly more edits than others?

20 3 Methods

• Which data (XML element) was edited?

• Are there certain days in the month with increased activity?

• How does it look when the largest edits are not present?

• When are new entries added?

To perform the different evaluations quickly another tool was developed. It
not only takes care of all the arguments for the different operations performed
on the history (one execution of the evaluation script is one operation) but also
allows a certain degree of preprocessing. The tool is split into three components
which are the operations script, the config file and the operations file.

In the config file the arguments for the script are defined which will be the
same for all the operations (e.g., directory of the history, grep pattern for the
history files, output directory, etc.).

The operations script reads the information of the config and operations file,
preprocesses the history and then runs the evaluation script.

The operations file holds one or many operations which will be executed by
the operations script one after another. Each operation is defined by a set
of argument required to once run the evaluation script (e.g., grep pattern for
history filtering, output file name, output format, etc.).

With this tool it is possible to easily create new operations or multiple vari-
ations of existing operations. Since all the operations can be defined in one
operations file all the history evaluation files can be updated at once. This con-
venience comes at the cost of time since all the operations are performed even
if only a few might be needed. This can be avoided by creating another oper-
ations file that only contains the wanted operations. After testing the edited
operations can be added to the default operations file.

3.2.2 Targeted Analysis

During the targeted analysis certain selected topics are investigated in more
detail. These can be specific patterns or a deeper analysis of a previously
discovered phenomena. The following questions fall into this category:

• After how many days was the entry last edited?

• Is it possible to see the Microsoft patch day?

• Can we detect edit wars?

• How often are severities reassessed?

• What happened to deleted entries?

• Are the number of unique entry edits corresponding with the number of
last modified date time edits?

3.3 History Comparison 21

These topics often require some very specific analysis which cannot be per-
formed by the default history evaluation script and adding the functionality to
it would only complicate it.

Depending on the problem the best approach is either to reduce the history
to the interesting data and then inspect it manually or by writing a script that
investigates the specific problem.

To allow the execution of these specific scripts by the operations tool de-
scribed previously, it had to be more generalized since it was initially only
designed to be used in junction with the default evaluation script.

The main change was that each operation also specifies the evaluation script
that will be called to perform the analysis and that in the configuration file the
directory path to all the evaluation scripts was added. With these changes it is
now possible to execute many different operations at once.

3.2.3 Visualization and Interpretation

The evaluations write the results to text files. Normally these hold multiple
numbers per line where each line stands either for a date or an identifier. These
files can be imported to MATLAB for further processing and visualization.

MATLAB was chosen for this task because it is very versatile offering a wide
range of tools and is familiar to the author which minimizes the required work.

The interpretation usually starts with finding patterns in the figure produced
by the MATLAB script of the evaluation results. This usually raises follow-up
questions which need more details. Relatively simple questions can be answered
by checking the human-readable version of the evaluation result with a text
editor since it contains additional information.

More complicated questions require manual inspection of the history or par-
tial history. This can also be done directly by using a text editor. But when a
specific type of edit or a specific entry has to be investigated, it is usually much
easier to use grep to get the desired information. The result can be written to
a file and inspected by the tool of choice or directly forwarded to another tool
(e.g., word count).

Very complex questions that require multiple steps of processing are best
solved by a specially designed script. This takes initially more time but subse-
quent evaluations are much faster.

3.3 History Comparison

The goal of the history comparison is to find out what the similarities and the
differences between the databases are. We do this primarily to check whether
the found patterns in the NVD are simply a byproduct of maintaining a vul-
nerability database. The differences might give some insight into how the data
is processed or into the working pattern.

Comparing the results of the two vulnerability databases is mostly straight-
forward since the same questions are answered. This is done by comparing
the general pattern as well as exceptional cases. During this process normally
additional questions came up relating to similarities or discrepancies. Simple

22 3 Methods

questions could be answered by looking up details in the human-readable eval-
uation results whereas more complex ones require a specific analysis or manual
inspection.

Another approach is to use a specific data set for which also information of
another source exists to compare the vulnerability databases. This is shown on
the example of a Mozilla patch day in Section 4.3.6. Mozilla is a good choice
because they publish vulnerability information of their own products. With this
additional information it is possible to compare the vulnerability databases to
a third reference.

Chapter 4

Results

In this chapter we present the results by the described methods. Each section
of Chapter 3 has a corresponding section in this chapter. The data used for the
results is the version available on 24th of July 21:50 on revision 9635.

4.1 History Building

First, we present some general information about the histories of the NVD
and the OSVDB to give a brief overview over the built histories. It is then
followed by a discussion regarding how the different types of edits within an
XML element can have a different impact on the history. This is important to
keep in mind for the interpretation of the results in the following sections.

4.1.1 History Format

Since all the histories are created by the same tool, they share the same for-
mat. The history consists of multiple entries, each logging an edit in one XML
element. A history entry has the following components:

1. The edit type describes the type of edit performed. The edit type add
means that the whole element was added whereas remove means that
the element was removed in the revision being compared. The edit type
change means that only the information in the text node contained within
the XML element was edited.

2. The id field specifies in which entry the edit took place.

3. The tag field specifies which XML element was edited. Since it is only
the tag name, it does not have to be unique.

4. The date field specifies on which date the edit took place. The information
is taken from the attribute of the XML root element that either holds the
publish date of the database export or the download date of the entries.

23

24 4 Results

5. The data field holds the complete XML element for the edit types add
and remove. In case of the edit type change the field data old holds
the information of the XML element in the older revision and the field
data new holds the information of the XML element of the newer revision
of the file.

Together these fields document how was in which entry, in which element, when,
what information edited.

4.1.2 Overview of the NVD History

The first time the database exports were downloaded was on the 12th of July
2011. Therefore, all the entries present at that date show up the first time in the
history which can be seen by the large number of adds of the type element. The
export file for the entries of the year 2012 was added on the 29th of February
2012 containing the export published on the 28th of February.

Since the 12th of July 2011 a total of 4573 new entries were added to the
database which is an average of 12.1 per day and 579770 of elements (the
reference as a whole is treated as one element) were edited which gives an
average of 1658.1 per day. When looking at the edit types 264302 elements
were added, 170868 were removed and 144600 were changed.

This means that in general information more information is added than re-
moved. This is gets even stronger when the attribute-edit effect is considered
which is discussed in Section 4.1.4.

4.1.3 Overview of the OSVDB History

The database was the first time crawled on the 5th of April 2012 but only the
entries with a reference to a CVE identifier. The entries without a reference
to a CVE identifier were downloaded the first time on the 16th of April 2012.
Therefore, all the entries present on the 5th of April 2012 with a CVE reference
will show up the first time as added on that date whereas the entries without a
CVE reference until 16th of April 2012 will show up the first time then.

Since the beginning of the download a total of 3151 new entries were added
which is an average of 28.9 new entries per day and 30412 of elements were
edited which gives an average of 279 edits per day. Regarding the edit types
the majority are adds with 25327 followed by removes with 2726 and changes
with 2359.

This means that information is mainly added to the OSVDB and rarely
deleted. The removes nearly vanish when the attribute-edit effect is consid-
ered which is discussed in the following.

4.1.4 The Impact of XML elements in the History

The impact of different edits within an XML element is discussed in this section.
This is necessary because the elements of the XML files given to the history
building tool of the NVD and OSVDB are different, therefore the impact of

4.1 History Building 25

the elements on the history is also different. The relevant XML elements are
discussed for each database separately at the end of this section.

• When an XML element is not present in the older revision but present in
the newer revision one history entry will be created stating that an edit
of type add occurred.

• When an XML element is present in the older revision but not present in
the newer revision one history entry will be created stating that an edit
of type remove occurred.

• When an XML element can be uniquely matched by its hierarchical po-
sition and attributes in the older and newer revision but the text node
within the XML element of the older revision does not match the text
node within the XML element the newer revision one history entry will
be created stating that an edit of type change occurred.

• When the attribute values of an XML element are edited it is not pos-
sible anymore to find a match because the hierarchical position, the tag
and the attributes are used to uniquely identify the XML element. These
requirements are necessary since some elements can exist multiple times
and only the value of one attribute is different. Therefore, whenever the
value of an attribute of an XML element is changed two history entries
will be created, one edit of type remove (the element found in the older
revision) and one edit of type add (the element found in the newer revi-
sion). In the following this effect will be referred to as the attribute-edit
effect.

The edit of an attribute value is problematic because it will create two entries
in the history instead of one. This is especially problematic when elements are
storing the data in an attribute value, which is more likely to change, instead
of using the text field. But there can be several reasons why one might decide
to do that. The elements of each vulnerability database for which this is the
case are now discussed in detail.

Critical XML elements of a NVD entry

Since the XML schema of the database exports is given, the only way to control
the resulting history is by changing the definition of edit types. Therefore, it had
to be accepted that edits in some elements can cause an attribute-edit effect.
The position of the element in the XML document tree is given in a XPath like
manner.

• The element cpe-lang:fact-ref at position //entry/vuln:vulnerability-confi-
guration/cpe-lang:logical-test/cpe-lang:fact-ref holds the name and ver-
sion of an application that is vulnerable. The same information can actu-
ally also be found one of the vuln:product elements at //entry/vuln:vulne-
rable-software-list/vuln:product, and is, therefore, redundant. When the
cpe-lang:fact-ref is edited also the matching vuln:product should be edited.

26 4 Results

Therefore, the attribute-edit effect can be negated by simply observing the
edits of the vuln:products.

• The element vuln:cwe at position //entry/vuln:cwe holds the common
weakness enumeration as an attribute. After a CWE number is assigned
to a vulnerability, it seems unlikely that it will be removed completely
again, so the edits of type remove of this element can actually be seen as
changes.

• The vuln:references elements at position //entry/vuln:references are spe-
cial cases. This is because there can be more than one reference with iden-
tical attributes since the details of the reference are stored within the sub-
elements. Only with its sub-elements the reference is actually uniquely
identifiable, and therefore it makes more sense to treat the vuln:references
elements with its sub-elements as one whole element and had to be treated
as an exception in the history building tool. It normally also does not
make sense to remove references except for the case when an entry is
deprecated when all the information of the entry is removed and one ref-
erence points to the new entry. The only other source for removes of
vuln:references are when the reference is edited.

Critical XML elements of an OSVDB entry

Since the data of the downloaded entry is extracted by a tool developed in this
thesis it was possible to avoid the attribute-edit effect to a certain degree but
not entirely. To avoid more exceptions in the history building tool such as the
NVD references it was important to avoid elements that can only be uniquely
identified with its sub-elements. A special case is the information contained
within the Manual Testing field where some code is presented to manually test
the system for the vulnerability. Since this is actual exploit code, the string can
contain characters that can be interpreted as XML code. When the string is
stored as an attribute value these characters will be encoded in a way that will
not break the XML structure. Several elements, therefore, contain information
within attributes that can trigger the attribute-edit effect.

• The element product at position //entry/products/product holds the in-
formation of one vulnerable application. The information on the website
is actually in three fields which are the name of the vendor, the name
of the product and the version. The attribute-edit effect should in gen-
eral not happen for this element since the names and version should not
change. These values should actually only be edited to fix errors.

• The element reference at position //entry/references/reference holds the
information of one reference. To contain the information of one reference
in one element, despite the fact that multiple parts (name, link, etc.)
building it up, the parts had to be stored within several attributes. As
in the NVD it normally does not make sense to remove references and
not working web links are normally flagged as unreachable. Therefore,

4.2 History Analysis 27

the main source for removes of this element will probably caused by the
attribute-edit effect.

• The element filter at position //entry/filters/filter references to a vulner-
ability scanner or filter. Similar to the reference multiple data fields build
up the filter element, and therefore it makes much more sense to store
the data of each field in one attribute. Also filter elements in general
should not be removed since the scanner seems to be able to scan for that
vulnerability and it can be expected that the majority of the removes of
this element is caused by the attribute-edit effect.

• The element credit at position //entry/credits/credit is either a simple
text field or a reference to the OSVDB internal credit list. This reference
to the credit list comprises different parts. To maintain one single element
the data parts are stored in attributes.

• As already mentioned before the manual testing field is a special case
because the string can contain special characters (e.g., null character),
characters that will be executed (e.g., carriage return) or XML reserved
characters (e.g “<”, “>”, etc.) which will be interpreted as XML code if
they are printed as text node. Some characters have to be replaced by
a description (e.g., null character) whereas others will be encoded when
stored as an attribute value.

4.2 History Analysis

In this section we present and discuss the results to the questions raised in
Sections 3.2.1 and 3.2.2. To visualize the results MATLAB was used for plot-
ting. The results are presented for each database separately in the following
subsections.

4.2.1 NVD Analysis

In Section 4.1.2 some very general information about the edits of the National
Vulnerability Database was given. In the following the NVD history will be
analyzed in more detail.

Which data (XML element) was edited?

This is a good question to start with to get an idea what is edited. Figure 4.1
shows the number of edits per tag. The y-axis uses a logarithmic scale.

Most edits can be found in the element cpe-lang:fact-ref closely followed
by vuln:product which both hold the product information of vulnerable ap-
plications. The amount of changes of both elements should be actually the
same but as mentioned cpe-lang:fact-ref is affected by the attribute-edit effect
which causes two edit entries in the history instead of one. Since the infor-
mation of these two elements in general matches, vuln:product will be used
as reference and cpe-lang:fact-ref is only consulted when necessary. It is not

28 4 Results

10
0

10
1

10
2

10
3

10
4

10
5

10
6

nu
m

be
r

of
 e

di
ts

cp
e−

lan
g:

fa
ct−

re
f

vu
ln:

pr
od

uc
t

vu
ln:

re
fe

re
nc

es

vu
ln:

las
t−

m
od

ifie
d−

da
te

tim
e
en

try

vu
ln:

vu
lne

ra
ble

−c
on

fig
ur

at
ion

vu
ln:

cw
e

vu
ln:

vu
lne

ra
ble

−s
of

tw
ar

e−
lis

t

vu
ln:

cv
ss

vu
ln:

as
se

ss
m

en
t_

ch
ec

k

cp
e−

lan
g:

log
ica

l−t
es

t

vu
ln:

sc
an

ne
r

cv
ss

:b
as

e_
m

et
ric

s

cv
ss

:sc
or

e

vu
ln:

su
m

m
ar

y

cv
ss

:a
cc

es
s−

co
m

ple
xit

y

cv
ss

:a
va

ila
bil

ity
−im

pa
ct

cv
ss

:in
te

gr
ity

−im
pa

ct

cv
ss

:co
nf

ide
nt

ial
ity

−im
pa

ct

vu
ln:

se
cu

rit
y−

pr
ot

ec
tio

n

cv
ss

:a
cc

es
s−

ve
cto

r

cv
ss

:a
ut

he
nt

ica
tio

n

vu
ln:

pu
bli

sh
ed

−d
at

et
im

e

cv
ss

:g
en

er
at

ed
−o

n−
da

te
tim

e

Figure 4.1: Tag edits in the NVD

surprising that these elements experience a lot of changes because more ap-
plications might be found to be vulnerable or that a certain version of an
application is actually not vulnerable, and therefore removed from the list.
There is also one special event that accounts for over 100’000 edits within the
vuln:product element. It was decided that the common product enumeration of
the Linux kernel should be changed from cpe:/o:linux:linux kernel:<version>
to cpe:/o:linux:kernel:<version> which required that every product in all the
entries the Linux kernel was listed as vulnerable had to be modified.

It is also not surprising that the vuln:references are very high in the list
because after a new entry is published other databases might pick it up, create
their own advisory and the references in the NVD will be updated. Sometimes
only the additional information of a reference is updated triggering an attribute-
edit effect.

In the history are also many entries of the element entry. This is because
every time a new entry is seen the first time is logged as such. The exceptions
are three entries that were removed but shortly after readded. It is, therefore,
safe to assume that these were export errors.

Whenever some data within an entry is edited the vuln:last-modified-datetime
should be updated as well. It is, therefore, not surprising to find this element
in the top five.

The elements cpe-lang:logical-test and vuln:configuration are super-elements
of cpe-lang:fact-ref whereas vuln:vulnerable-software-list is the super-element
of vuln:product. They can contain many elements that contain the information
of one vulnerable product. It seems fairly common to add the whole list of
vulnerable products short after the entry was first time published which caused
many edits in these elements.

4.2 History Analysis 29

The element vuln:cvss is the super-element of cvss:base metrics, cvss:score,
cvss:access-complexity, cvss:availability-impact, cvss:conficentiality-impact, cvss:-
integrity-impact, cvss:access-vector, cvss:authentication and cvss:generated-on-
datetime. Whenever the whole CVSS rating is added later, an add of vuln:cvss
appears in the history. This seems to be quite common whereas removes are
very rare and only happen when the entry is deprecated. The sub-elements are
never added or removed but sometimes modified.

The element vuln:scanner contains a reference to an open vulnerability and
assessment language (OVAL) entry published by MITRE. During 2011 and the
beginning of 2012 to about 800 entries this type of information were added but
since 27th of January 2012 no changes were observed anymore. This indicates
that the edits were updates to older entries and that current entries are directly
published with this information.

The element vuln:security-protection describes the possible access type gained.
It seems that this element is commonly used in older years reaching its max-
imum coverage in 2006 with over fifty percent. Since then it is declining and
basically negligible in 2011 and 2012 because it is present in less than one per-
cent of the entries.

There are also two edits in vuln:published-datetime which can be safely as-
sumed to be an error because this value should not be changed.

How many edits are there per entry?
On how many days was the entry edited?

Each entry will appear at least once when it shows up the first time. The edits in
the elements cpe-lang:fact-ref, cpe-lang:logical-test and vuln:configuration were
dropped for these questions since the information is redundantly present in
vuln:vulnerable-software-list and vuln:product. The only effect it would cause is
that an edit of a product would show up as two or three edits instead of one,
and therefore weigh more than it should.

The way the CVE identifiers are constructed allows them to be historically
sorted since the identifier is by the year the vulnerability was discovered and a
counter. Therefore, when plotted, the oldest entry will be on the left and the
newest one on the right.

When thinking about the number of edits that an entry experiences one
expects that older entries experience little to no edits whereas newer ones are
changed more often because references, vulnerable applications might have to
be added. The actual data is shown in Figure 4.2(a) with a logarithmic y-axis
scale. This general expectation is correct but even some older entries experience
many changes. The newer entries with many changes are often vulnerabilities
that affect many applications or applications with many version (e.g., Google
Chrome), and therefore adding a newly discovered vulnerable application causes
many edits. This effect becomes less pronounced when we plot the number of
days an entry was edited.

30 4 Results

10
0

10
1

10
2

10
3

10
4

10
5

entries sorted by CVE identifier

nu
m

be
r

of
 e

di
ts

(a) Number of edits by entry

10
0

10
1

10
2

10
3

entries sorted by CVE identifier

nu
m

be
r

of
 d

ay
s

(b) Number of days the entry was edited

Figure 4.2: NVD edit statistics by CVE identifier

4.2 History Analysis 31

Figure 4.2(b) shows how many days the entry was edited. In general older
entries are edited very seldom which also puts the observation of a large number
of edits into a slightly different perspective meaning that edits happen rarely
but if something is edited multiple elements might be changed.

A special case are the older entries that change up to several hundred times.
These are likely to be errors since in general not much is edited but this is
done very often. It can be for example that one day some products are added
and the following day removed again. Another example is that the element
vuln:last-modified-datetime is updated every day which leads to the conclusion
that either a bad script updates the field wrongly or that there is actual data
updated which is not published.

How many edits are there per day?
How many entries are edited per day?

The edits in the elements cpe-lang:fact-ref, cpe-lang:logical-test and vuln:configu-
ration were dropped for these questions since the information is redundantly
present in vuln:vulnerable-software-list and vuln:product. The only effect it
would cause is that an edit of a product would show up as two or three ed-
its instead of one, and therefore weigh more than it should.

Figure 4.3(a) shows the number of edits per day over the time the database
was downloaded. There are several days with zero edits. The reason for this can
either be that no export was published or that the download failed. Sometimes
there are even longer periods missing which indicates a more serious problem
that stopped the download. These were caused by changed SSH keys or that
the machine that should perform the download was down.

There are several days that stand out because they have many more edits than
others. On the day with the most edits the Common Product Enumeration of
the Linux kernel was changed. This caused that all the product information
related to the Linux kernel had to be updated. In the days with the second, third
and fifth most edits mainly Google Chrome is involved. Because it is released
so frequently there are a few thousand versions. In cases when a vulnerability
is published, to which Google Chrome is vulnerable, but not yet present in the
vulnerable software list, the entry has to be updated. Since there are so many
versions of Google Chrome this causes many edits. The fourth largest edit is
caused by an update of several entries where the Opera browser version one to
nine was added as vulnerable product.

These few days with a very large number of edits distort the results in further
analysis and hence were removed in the upcoming datasets.

After removing the days with the five largest number of edits, the dataset is
more even as can be seen in Figure 4.3(b). The number of edits of the majority
of the days range from 100 to 1’000. When comparing the number of edited
entries per day (Figure 4.3(c)) with Figure 4.3(b) the following can be deduced.
Many edited entries on a day mostly cause a large number of edits on the same
day. But many number of edits does not require that many entries were edited.
This is because there are sometimes single entries which experience a large
number of edited elements. Normally, these many edits is changed product

32 4 Results

10
0

10
1

10
2

10
3

10
4

10
5

10
6

nu
m

be
r

of
 e

di
ts

20
11

−0
7−

13

20
11

−0
7−

28

20
11

−0
8−

12

20
11

−0
8−

27

20
11

−0
9−

11

20
11

−0
9−

26

20
11

−1
0−

11

20
11

−1
0−

26

20
11

−1
1−

10

20
11

−1
1−

25

20
11

−1
2−

10

20
11

−1
2−

25

20
12

−0
1−

09

20
12

−0
1−

24

20
12

−0
2−

08

20
12

−0
2−

23

20
12

−0
3−

09

20
12

−0
3−

24

20
12

−0
4−

08

20
12

−0
4−

23

20
12

−0
5−

08

20
12

−0
5−

23

20
12

−0
6−

07

20
12

−0
6−

22

20
12

−0
7−

07

20
12

−0
7−

22

(a) Number of edits per day

10
0

10
1

10
2

10
3

10
4

nu
m

be
r

of
 e

di
ts

20
11

−0
7−

13

20
11

−0
7−

28

20
11

−0
8−

12

20
11

−0
8−

27

20
11

−0
9−

11

20
11

−0
9−

26

20
11

−1
0−

11

20
11

−1
0−

26

20
11

−1
1−

10

20
11

−1
1−

25

20
11

−1
2−

10

20
11

−1
2−

25

20
12

−0
1−

09

20
12

−0
1−

24

20
12

−0
2−

08

20
12

−0
2−

23

20
12

−0
3−

09

20
12

−0
3−

24

20
12

−0
4−

08

20
12

−0
4−

23

20
12

−0
5−

08

20
12

−0
5−

23

20
12

−0
6−

07

20
12

−0
6−

22

20
12

−0
7−

07

20
12

−0
7−

22

(b) Number of edits per day without the top five edit days

10
0

10
1

10
2

10
3

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

20
11

−0
7−

13

20
11

−0
7−

28

20
11

−0
8−

12

20
11

−0
8−

27

20
11

−0
9−

11

20
11

−0
9−

26

20
11

−1
0−

11

20
11

−1
0−

26

20
11

−1
1−

10

20
11

−1
1−

25

20
11

−1
2−

10

20
11

−1
2−

25

20
12

−0
1−

09

20
12

−0
1−

24

20
12

−0
2−

08

20
12

−0
2−

23

20
12

−0
3−

09

20
12

−0
3−

24

20
12

−0
4−

08

20
12

−0
4−

23

20
12

−0
5−

08

20
12

−0
5−

23

20
12

−0
6−

07

20
12

−0
6−

22

20
12

−0
7−

07

20
12

−0
7−

22

(c) Number of entries edited per day without the top five edit days

Figure 4.3: NVD edit statistics per day

4.2 History Analysis 33

information in the vulnerable software list. In Figure 4.3(c) a repeating pattern
can be found which consists of five days with a larger number of edited entries
followed by two smaller ones. This lets suspect that this might be a weekly
working pattern which is inspected further later in this Chapter.

Figure 4.4(a) shows the counts of the values of Figure 4.3(b) with a logarith-
mic x-axis. If there is a bar of height 3 at position 10 this means that 3 are
three days with 10 edits. This graph supports the previous statement that the
majority of the days have between 100 and 1000 edits and also days with 20 to
80 edits are also more likely to happen. But since the maximum of the y-axis
is 4 and most of the bars have a height of 1, the distribution is very flat.

The picture is slightly different when looking at the count of figure 4.3(c)
which can be seen in figure 4.4(b) with a logarithmic x-axis. If there is a bar
of height five at position seven on the x-axis it means that there are five days
where seven entries were edited. Here we find first a clear grouping around
eight modified entries and a second concentration between 20 and 60. This
shows that on most of the days the number of edited entries is either around
eight or thirty and rarely more than one hundred entries are edited on one day.

These two groupings observed in both figures are two different kind of work
days. The groups with less edits are mostly edits conducted on weekend days.
The second groups with more edits and more edited entries are changes per-
formed on work days.

How many edits are there per month?
How many entries are edited per month?

The edits in the elements cpe-lang:fact-ref, cpe-lang:logical-test and vuln:configu-
ration were dropped for these questions since the information is redundantly
present in vuln:vulnerable-software-list and vuln:product. The only effect it
would cause is that an edit of a product would show up as two or three ed-
its instead of one, and therefore weigh more than it should. Additionally the
days with the top five numbers of edits were removed to filter out extraordinary
situations.

Figure 4.5(a) shows the number of edits per month whereas Figure 4.5(b)
shows the number of edited entries over the time the database was downloaded.

Towards the end of the year the number of edits as well as the number of
edited entries increases again slightly. This is probably due to finishing work
towards the end of the year. This effect continues in January, reaching 1292
edited entries, which might be because vendors released information at the end
of the year. During the following months the number of edited entries declines
steadily reaching in April with 611 less than half of the peak in January and
continues to stay within a range of 550 to 800 edited entries per month.

When looking at the number of edits, March with its many edits seems to
be a special case since actually not that many entries were edited. But when
looking at both figures together it turns out that August, March and June
share the same characteristics, a large number of edits but fewer edited entries
as compared to other months with a similar number of edits. This is because

34 4 Results

10
0

10
1

10
2

10
30

0.5

1

1.5

2

2.5

3

3.5

4

number of edits on the day

nu
m

be
r

of
 d

ay
s

(a) Number of edits per day without the top five edit days

10
0

10
1

10
20

5

10

15

number of entries edited on the day

nu
m

be
r

of
 d

ay
s

(b) Number of entries edited per day without the top five edit days

Figure 4.4: NVD count of the edit statistics per day

4.2 History Analysis 35

0

2000

4000

6000

8000

10000

12000

nu
m

be
r

of
 e

di
ts

Ju
l 1

1

Aug
 1

1

Sep
 1

1

Oct
11

Nov
 1

1

Dec
 1

1

Ja
n

12

Feb
 1

2

M
ar

 1
2

Apr
 1

2

M
ay

 1
2

Ju
n

12

Ju
l 1

2

(a) Number of edits per month without the top five edit days

0

200

400

600

800

1000

1200

1400

1600

1800

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

Ju
l 1

1

Aug
 1

1

Sep
 1

1

Oct
11

Nov
 1

1

Dec
 1

1

Ja
n

12

Feb
 1

2

M
ar

 1
2

Apr
 1

2

M
ay

 1
2

Ju
n

12

Ju
l 1

2

(b) Number of entries edited per month without the top five edit days

Figure 4.5: NVD edit statistics per month

36 4 Results

very few, mostly older, entries have a large number of elements edited. This is
usually done in the software list. This can be seen more clearly in Figure 4.6.

It shows the number of edits and the number of edited entries split up by
the year contained within the CVE identifier. The years range from 1999 (dark
blue on the left) to 2012 (dark red on the right). The orange bars correspond
to edits in CVE identifiers issued in 2008. In Figure 4.6(a) the number of edits
is very large whereas in 4.6(b) the number of edited entries for 2008 is very
small. For the CVE entries of the year 2008 this actually is true for the whole
period of time and especially in May 2012. On a closer look it turns out that
the software list of very few entries is edited very frequently. This means that
several products are added and a few days later removed again and added again
and so on. Since this persists over a longer period of time it looks more like a
script or export error than a real edit.

When looking at Figure 4.6(b) the following observations can be made. Until
November 2011 still a lot of entries of older years were edited (colors blue to
orange), which looks like that there a backlog had to be processed. As of
November 2011 only very few older entries get edited and this is nearly always
a change in the software list or references plus an update of the last modified
date. Other elements are very rarely edited. This is also true for March and
April where again entries of older years are edited.

The number of edits in entries with the year 2011 in the identifier (dark red,
first from the right 2011 or second from the right since Feb 2012) increases
towards the end of the year and January 2012 and then drops sharply. This
supports the conclusion that at the end of the year the open work is finished.
Since probably also additional information is released by vendors this continues
until January.

In February 2012 this drops sharply whereas the number of edits of new en-
tries with the year 2012 increases. This might actually start already in January
but the download of the export file for the year 2012 was added on the 29th
of February, and therefore the edit history for these identifiers is missing until
then.

Are there certain days in the month with increased activity?
How many entries are edited per week day?

For these questions we only look at the edited entries because the number of
edits does not give additional information except that sometimes there are a
few entries where many edits are performed at once.

Figure 4.7(a) shows the number of edited entries per day of the month (1st
to 31st). Each day of the month represents the sum of the edited entries of
the corresponding days in the month across all the months. It peaks on the
5th, 7th, 19th, 26th and 27th. The peak on the 26th exists partially due to a
download error which caused the changes of several dates to be accumulated
on that date. The 5th, 7th and 19th exist primarily because there is one day
with edits in a vast number of entries. On the 27th also one such day exists
but there are also frequently days with larger edits. Keeping all this in mind
the monthly editing pattern is quite consistent with about 500 to 700 edited

4.2 History Analysis 37

0

1000

2000

3000

4000

5000

6000

7000

8000

nu
m

be
r

of
 e

di
ts

Ju
l 1

1

Aug
 1

1

Sep
 1

1

Oct
11

Nov
 1

1

Dec
 1

1

Ja
n

12

Feb
 1

2

M
ar

 1
2

Apr
 1

2

M
ay

 1
2

Ju
n

12

Ju
l 1

2

1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012

(a) Number of edits per month without the top five edit days

0

200

400

600

800

1000

1200

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

Ju
l 1

1

Aug
 1

1

Sep
 1

1

Oct
11

Nov
 1

1

Dec
 1

1

Ja
n

12

Feb
 1

2

M
ar

 1
2

Apr
 1

2

M
ay

 1
2

Ju
n

12

Ju
l 1

2

1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012

(b) Number of entries edited per month without the top five edit days

Figure 4.6: NVD edit statistics per month for each year separately

38 4 Results

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

(a) Number of edited entries per day of the month without the top five edit days

0

500

1000

1500

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

1s
t M

o

2n
d

M
o

3r
d

M
o

4t
h

M
o

5t
h

M
o

(b) Number of edited entries per week day of the month without the top five edit days

Figure 4.7: NVD edit statistics within a month

4.2 History Analysis 39

entries per day over the last year. There are less edits at the first few days of
the month, small concentrations around the 14th and 22nd, and there is also a
slight increase towards the end of the month.

Figure 4.7(b) shows the edits within a month by week days starting with the
first Monday on the left to the first Tuesday, first Wednesday and so on to the
fifth Sunday on the right. The first Monday does not have to be the first day
in the month since it can also start with any other week day and is, therefore,
simply the first Monday encountered per month. The 5th week consists of the
week days that fall on dates beyond the 28th of the month and for that reason
are less common.

There is a clear weekly working pattern with 5 days of increased activity
and two days of reduced activity. At first it looks like this reduced activity
happens on Sunday and Monday but since the data is exported very early in
the morning of the day this means that the edits are shifted by one day and the
Monday actually represents the changes of the Sunday. When looking at the
Mondays, representing the Sundays, the 4th Monday is the odd one out, which
would imply that on the 4th Sunday there is increased activity but the 26th of
September on which the accumulated data was checked in after the error falls
on the 4th Monday and accounts for the majority of the edited entries.

The extreme peaks on the 1st Wednesday, 3rd Tuesday and 4th Friday are
largely due to a large number of edits on one day. When cutting these out of
the picture an increase of edits towards the end of the month can be observed.
The edits made in the 5th week also partially represent edits made in the 4th
week depending on how the dates lie which supports the observation. Also when
looking at the 4th and 5th Sunday which together represent the 4th and 5th
Saturday in the month have increased activity.

After how many days was the entry first edited?
After how many days was the entry last edited?

These are very interesting questions since the answers tell us how reliable the
published information is regarding edits after a certain period of time. For
entries, for which the original add date is unknown, no precise duration can be
calculated, and therefore they are excluded from this analysis. This means edit
durations are only calculated for entries for which the entry add was observed.

These are very interesting questions since the answers tell us how reliable the
published information is regarding edits after a certain period of time. Entries
for which the original entry add date is unknown no precise duration can be
calculated and are, therefore, excluded. This means the edit durations are only
calculated for entries for which the entry add was observed.

In Figure 4.8(a) each bar represents the number of entries that were edited
the first time after the number of days equal to its position on the x-axis. The
second Figure 4.8(b) shows the same counts for the last time the entry was
edited. Their y-axis use a logarithmic scale. The entries that do not experience
a change at all are excluded of this analysis. They make up 17.8% of the entries
in data set and the remaining 82.2% experience an edit in the observed time.

A total of 89% of the edited entries have their first edit (Figure 4.8(a)) within

40 4 Results

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

number of days to the first edit

nu
m

be
r

of
 e

nt
rie

s

(a) Number of entries counted by the duration until the first edit

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

number of days to the last edit

nu
m

be
r

of
 e

nt
rie

s

(b) Number of entries counted by the duration until the last edit

Figure 4.8: NVD count of entries to the first and last edit

4.2 History Analysis 41

30 days and 96% within the first 150 days. Only 0.2% of the entries experience
the first edit later than 250 days after the entry was edited. For the most
recent edit the picture changes (Figure 4.8(b)), but still 52.8% of the entries
were edited only in the first 30 days and 85.1% within the first 150 days. Barely
1.8% of the edited entries were edited the last time after more than 250 days
after the entry was added.

Most of these edits are not really substantial because they are mostly re-
lated to either the software list or the references. When cpe-lang:fact-ref, cpe-
lang:logical-test, vuln:configuration, vuln:vulnerable-software-list, vuln:product,
vuln:scanner, vuln:references, vuln:last-modified-datetime, vuln:assessment check
and vuln:security-protection are excluded the results change slightly. Over
41.4% experience no substantial changes at all which means that nearly 58.6%
of the entries are edited.

The majority of the entries have their first substantial edit (4.9(a)) within 30
days after the entry was added. This group accounts for 99.3% percent of the
entries. In less than 1% of the entries these elements are edited the first time
later than 60 days after the entry as added.

The last substantial edit (4.9(b)) is for still over 98.4% conducted within the
first 30 days. In still less than 1% of the entries experience an edit in substantial
elements after more than 60 days.

Regarding substantial elements the entries are also much less likely to be
edited multiple times as can be seen in figure 4.9(c).

When are new entries added?

For this question only the newly added entries were considered. Figure 4.10(a)
shows the number of newly added entries per month. The number in January
2012 is probably too low whereas February is too high. This is because the new
file for the year 2012 was added on the 28th of February, which caused that all
new entries, with CVE identifiers issued previously in 2012, show up the first
time. In total 380 entries were added on that day. Some of these entries were
probably added in January. If January some of the new entries of February
are assigned to February, then there is a continuous groth of new entries per
month, and only September, October and April do not fit in.

Looking at Figure 4.10(b) the number of newly added entries over the month
does not paint a clear picture. It is important to note that the new files are
released in the early hours of the day (local time), and therefore reflect the
changes of the day before. So if many of changes show up on the 3rd or on a
Tuesday this means the edits happened on 2nd or on Monday.

At first the 28th seems to be very significant but is actually not because then
the 2012 file was initially added. This leaves the 26th, 19th, 9th, 3rd, 4th and
21st the most outstanding days in the month. The 30th and 31st can be merged
into one day because together they represent the last day of the month. On the
other hand the 1st, 7th, 16th and 24th have a very low publishing rate.

This gives us three main publishing periods in a month. First at the beginning
of the month which are probably new entries based on information released by
vendors at the end of the month. The easy to complete ones can be published

42 4 Results

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

number of days to the first edit

nu
m

be
r

of
 e

nt
rie

s

(a) Number of entries counted by the duration until the first edit

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

number of days to the last edit

nu
m

be
r

of
 e

nt
rie

s

(b) Number of entries counted by the duration until the last edit

1 2 3 4
10

0

10
1

10
2

10
3

10
4

number of times the entry was edited

nu
m

be
r

of
 e

nt
rie

s

(c) Count of the times the entry was edited

Figure 4.9: NVD count of entries to the first and last substantial edit

4.2 History Analysis 43

0

50

100

150

200

250

300

350

400

450

500

nu
m

be
r

of
 n

ew
 e

nt
rie

s

Ju
l 1

1

Aug
 1

1

Sep
 1

1

Oct
11

Nov
 1

1

Dec
 1

1

Ja
n

12

Feb
 1

2

M
ar

 1
2

Apr
 1

2

M
ay

 1
2

Ju
n

12

Ju
l 1

2

(a) New entries per month

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

ne
w

 e
nt

rie
s

(b) New entries per day in the month

0

50

100

150

200

250

300

350

400

450

500

ne
w

 e
nt

rie
s

1s
t M

o

2n
d

M
o

3r
d

M
o

4t
h

M
o

5t
h

M
o

(c) New entries per week day of the month

Figure 4.10: NVD new added entries

44 4 Results

10
0

10
1

10
2

10
3

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

1s
t M

o

2n
d

M
o

3r
d

M
o

4t
h

M
o

5t
h

M
o

Figure 4.11: NVD edits on entries related to Microsoft products

quickly whereas others might require more work and are published a bit later.
The second publishing date is around the 20th of the month which is probably
when the newly discovered vulnerabilities of the month are published. Towards
the end of the month the open work should be finished, and therefore more
entries are published.

Figure 4.10(c) shows how new entries are published over the week days of
the month. The largest bar on the 4th Tuesday in the month is also due to
the adding of the 2012 year file because the 28th of February was on the 4th
Tuesday in February. Also the 4th Monday in the month is not that significant
because the 26th of September falls on the 4th Monday of the month where the
accumulated data after a download problem was checked in but there are also
other significant days recognizable.

First The 2nd Wednesday which reflects the changes of the 2nd Tuesday in
the month which is the Microsoft patch day. Second the 4th and 5th Friday
together represent the 4th, 5th and rarely 3rd Thursday of the month which
means which also supports that towards the end of the month the open work
should be finished.

Is it possible to see the Microsoft patch day?

As already suggested in the previous section about newly added entries the
Microsoft patch day (second Tuesday of the month) is visible. The number of
edited entries which are related to Microsoft products can be seen in figure 4.11.
There is more activity after the 2nd Tuesday of the moth with continued work
in the following two weeks. The 2nd Thursday is very significant since it marks
the edits made on the 2nd Wednesday because it does not fit into the general
pattern of finishing work towards the end of the week and month. There are in

4.2 History Analysis 45

general no changes on weekends except for the 3rd, 4th and rarely 2nd Sunday
which are represented by the bars on the 3rd and 4th Monday.

How often are severities reassessed?

This question is particularly interesting because an edit in the CVSS part of
the entry means that some information concerning the vulnerability changed
and not some typo was corrected, more vulnerable software was found or that
there are new references.

Over the observed period 3221 edits that are some related to the CVSS in-
formation were documented and 2734 of entries were edited. In the CVSS
information the following three types of edits can happen.

• The whole CVSS section was previously missing and is now added. This
normally happens when a new entry is releases an the CVSS information
is added later. This is the by far the most common type of edit with a
total of 2594 edits.

• The whole CVSS section is removed. This only happens when the entry
is deprecated because all fields get deleted and is very rare and only four
were observed.

• The information of one of the parameters within the CVSS is edited (e.g.,
access vector, confidentiality impact, availability impact, etc.). A change
of any of these parameters also changes the CVSS score since it is derived
by a formula based on the values of the parameters. This type of edit is
uncommon with a total of 214 edits in the observed time.

The changes within the CVSS parameters are probably the most interesting.
These are normally only edited once except for two entries which were edited
twice. The second edit was the day directly after the first.

The next interesting question is after how many days was this information
changed. There was also information edited in entries for which we do not know
the initial publication date. These entries were excluded from the analysis since
we cannot calculate the precise edit duration and any approximation is prone to
large errors. This is because even if the CVE identifiers was issued in a certain
year, it does not mean that the NVD entry was published in that year since
entries to reserved identifiers might show up years later in the NVD. Figure
4.12(a) shows how many entries were edited the first time after how many days.
The figure has a logarithmic y-axis. Most of the changes happen within the first
month after the entry was published. Edits much later than a month happen
very seldom.

When a whole CVSS section is added later to the entry it is important to
know how much later this happens. If it happens very much later it raises
the question why the entry has been already published but if it is just a few
days after it should not be of major concern. Figure 4.12(b) shows the delay
distribution of entries, for which the CVSS section was added later. The figure
has a logarithmic y-axis. For the majority of the entries the missing CVSS
section is added the next day or within three days after the entry was added.

46 4 Results

0 50 100 150 200 250
10

0

10
1

10
2

nu
m

be
r

of
 e

nt
rie

s
ed

ite
d

(a) Number of days until the first CVSS data edit

1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

nu
m

be
r

of
 e

nt
rie

s
ed

ite
d

(b) Number of days until the CVSS data is added

0

50

100

150

200

250

300

350

400

450

500

Ju
l 1

1

Aug
 1

1

Sep
 1

1

Oct
11

Nov
 1

1

Dec
 1

1

Ja
n

12

Feb
 1

2

M
ar

 1
2

Apr
 1

2

M
ay

 1
2

Ju
n

12

Ju
l 1

2

 new entries
 cvss added
 cvss edited

(c) Comparison between new entries, delayed cvss data and edited cvss data

Figure 4.12: NVD edit statistics to CVSS related information

4.2 History Analysis 47

The remaining few are added within at most eight days. This means that the
missing data is added pretty quickly and one can expect that latest a week after
the entry was published in the NVD the CVSS information is present.

In the last part we wanted to know how many of the entries the CVSS section
was added or edited later on. The data is summarized for each month. As
reference date the date of the initial add of the entry was also used for the
CVSS add and the CVSS parameter edit. Therefore, the edits are also assigned
to the same month as the entry add. The result can be seen in figure 4.12(c).
The number of edited entries in relation to the total added entries is relatively
small with a range from less than 1% up to 8.5%. The number of entries for
which the CVSS section was published delayed is much larger ranging from 18%
to 98%.

Are there any edit wars?

Edit wars are characterized by editing the same information from one value to
another one and back multiple times. This means that the entry is edited on
many days with the same number of edits per day. On each day the same ele-
ments are edited and the performed changes in each element alternate between
edits. This analysis was performed manually. Possible candidates were selected
by the number of days the entry was edited. The following entries were checked:

• CVE-2003-0497 and CVE-2003-0498 were each edited on 264 days. This
was very likely an error because only the last modified date field was
updated until on 12th of May 2012 on each one reference was added.
Since then these entries were not edited anymore.

• CVE-2007-0527 was edited on 186 days. This is also very likely to be an
error since every few days several products are removed and a few days
later added again. The vulnerable configuration list which holds the same
information as the vulnerable software list is not edited.

• CVE-2007-6538 was edited on 160 days. This is probably an error. In
this entry three products are added, removed and added over and over
again. It is done in the software and the configuration list.

• CVE-2007-5131 was edited on 154 days. This is probably an error. In this
entry two products are added, removed and added over and over again.
It is done in the software and the configuration list.

• CVE-2007-3687 was edited on 153 days. This is probably an error. In
this entry one product is added and removed over and over again. It is
done in the software and the configuration list.

• CVE-2007-3063 was edited on 153 days. This is probably an error. In
this entry one product is added and removed over and over again. It is
done in the software and the configuration list.

48 4 Results

• CVE-2007-4984 was edited on 150 days. This is probably an error. In
this entry one product is added and removed over and over again. It is
done in the software and the configuration list.

Some edits theoretically could be edit wars because there is no information
that would contradict it. But the edits made to the entries are done very fre-
quently and the dates on which they are performed often match for multiple
entries. Also the normally very little elements are edited mostly in the vulner-
able configuration list and the vulnerable software list which contain normally
quite number of vulnerable product. It does not make much sense that one
would argue so persistently over a few versions of an application in the vulner-
able software list where as other versions of the same application stay in the
list. It is ,therefore, hard to imagine that these would be edit wars and far more
likely to be errors caused by scripts.

Does the sum of edited entries per day correspond to the number of
edits of vuln:last-modified-datetime?

This question rose because it was observed that sometimes just the vuln:last-
modified-datetime was edited as well as sometimes elements were edited and the
last modified date was not updated.

In total 17045 unique entry edits (i.e., one edit per entry per day) were
registered but only 14165 vuln:last-modified-datetime updates which means in
2880 cases the last modified date was not updated.

The majority of the edited elements are the vuln:product. Most of these edits
are caused by very few entries that frequently add and remove elements to the
software list. This is done over a longer period of time which suggests that
there is either a scripting or an export error.

The element with the second largest number of undated edits is vuln:scanner
with a total of 760 edits. All these elements were added to older entries which
was probably an update of older entries.

The remaining few edits fall on vuln:references (23 add and 23 removes),
vuln:summary (18 changes), entry(3 removes), one add of a vuln:vulnerable-
software-list and one change of a cvss:integrity-impact which also causes a
cvss:score update. These all either look like a fix of errors (e.g., references,
summary) or are errors themselves (e.g., the three removed entries).

The short answer to the question is no, the number of unique entry edits do
not correspond to the number of last modified date updates. The sources of
undated edits all seem to origin in some kind of error that either causes the edit
or the previously mistakes is corrected. Another explanation could be that the
edited information originates from a different database. Therefore, an update of
information would not trigger an update of the last modified date in the NVD.

4.2.2 OSVDB Analysis

In Section 4.1.3 some very general information about the edits of the open
source vulnerability database was given. In the following the OSVDB history
will be analyzed in more detail. These results are used to verify the results

4.2 History Analysis 49

10
0

10
1

10
2

10
3

10
4

10
5

nu
m

be
r

of
 e

di
ts

re
fe

re
nc

e

pr
od

uc
t
en

try

cla
ss

ific
at

ion
Det

ail

cr
ed

it

de
sc

rip
tio

n
tim

e

so
lut

ion

ke
yw

or
ds

te
ch

nic
al

m
an

ua
lT

es
tin

g
filt

er
da

te
ba

se

co
nf

ide
nt

ial
ity

int
eg

rit
y

av
ail

ab
ilty

au
th

en
tic

at
ion

ac
ce

ss
Vec

to
r

ac
ce

ss
Com

ple
xit

y

Figure 4.13: Tag edits in the OSVDB

obtained about the NVD, therefore the OSVDB will not be analyzed in the
same detail which limits the questions to more general ones.

Which data (XML element) was edited?

Figure 4.13 shows the number of edits per tag sorted in descending order. The
y-axis uses a logarithmic scale.

Most of the edits happen in the element reference which holds the reference
to an external source. This is not surprising since other vulnerability databases
also create an entry for the vulnerability and a reference is added. For entries
referencing to CVE entries the update of the references can be scripted to update
the references with the references associated with the CVE entry.

A lot of edits can also be found in the element product which holds the
product information of vulnerable applications. Since many applications can
be vulnerable to the same vulnerability and not all might be known when the
entry is published first, therefore it is not surprising to see many edits within
this element.

Many edits are found in the element entry which hold the information of on
whole entry. This is because every time an entry is seen for the first time it
is logged as such. It can also happen that an entry gets removed. During the
four months of observation this happened 14 times. A remove also happened to
another 131 entries but they were readded again. But this might also be caused
by a download problem which results in a missing entry that is present again
the following day. Interestingly enough to several entries this effect occurred
more than once. This effect appears less since the download tool retries the
download of every entry for which it failed.

The information within the tag classificationDetail contains information about
different fields in the classification section on the website. These try to classify

50 4 Results

the vulnerability in a similar way to the CVSS parameters in the NVD. In over
86 % of the edits new information is added, such as an impact description, who
disclosed it or that there are solutions available. The remaining edits fall mostly
to changes which update the given information.

The credit elements hold the information who claims the credit for the dis-
covery of the vulnerability. A credit can be just a name or an internal link to
the credit history of that person. In general it is not surprising to see changes
within this element since at first it might be not clear who discovered the vul-
nerability. This element is also suspect to the attribute-edit effect which causes
changes to appear as a remove of the old element and an add of the new ele-
ment. The changes are mostly about fixing typos in names or converting the
name to the internal link.

The description element holds the description of the vulnerability similar
to the vuln:summary in the NVD. The OSVDB seems to import data from
the CVE list where also reserved entries are published. After the detailed
information is released the description element has to be updated which causes
the edits.

The time element holds one specific time stamp of the timeline element. This
timeline can have different time stamps such as the disclosure date, vendor
informed date, vendor solution date or the exploit publish date. This list is
updated over time. In most cases these are minor corrections in the disclosure
date but also new fields are added. Therefore, changes have to be expected over
time.

The solution element describes the possible solutions to resolve the vulnerabil-
ity. This can either be that no solution is known to the OSVDB, the application
should be patched or upgraded or a workaround is described. Changes to this
element are also to be expected, especially if the entry is published early.

The keywords element holds a series of strings that summarize the vulnera-
bility in related keywords. These are identifiers for the vulnerability such as a
CVE identifier, the port used, the exploit string or a related product. The more
information about a vulnerability is gained the more keywords might have to
be updated.

The technical element holds the information of the non-mandatory field Tech-
nical of the website. It gives more technical details related to the vulnerability
which are not present in the description. These are details which are in general
added later.

The manualTesting element contains some exploit code or a description how
the system or an application can be tested for the vulnerability. This field is
not very common, and therefore the edits to this element are very rare, only 36
over four months.

The filter element contains a reference to a tool, vulnerability scanner or filter
which should be able to detect the vulnerability (e.g., snort, nessus). Edits
are very rarely to happen which is probably because either the information
is present when the entry is published or the information has to be obtained
manually.

The remaining elements date, base, confidentiality, integritiy, availabilty, au-
thentication, accessVector and accessComplexity are all part of the cvss element.

4.2 History Analysis 51

These elements describe the CVSS rating of the vulnerability. This information
is generally imported from the NVD and updated only in very few cases.

How many edits are there per entry?
On how many days was the entry edited?

Each entry will appear at least once when it shows up the first time.

The OSVDB identifiers are created continuously which means when the iden-
tifiers are sorted, then they are also sorted chronologically. Therefore, when
plotted, the oldest entry will be on the left side whereas the newest is on the
right side. Unlike the CVE identifiers the OSVDB identifiers do not give the
year in which they were issued.

The expectation that newer entries experience more edits than older ones
was fulfilled. This can be seen in figure 4.14(a) showing the number of edits per
entry on a y logarithmic scale. The few peaking entries which experience more
than 50 edits are all mainly due to edits in the products list. The majority of
the entries experience very few edits. Less than 0.2 % of the entries experienced
more than 20 edits in the last four months.

This effect is even more visible when the numbers of days the entry was edited
on are plotted (figure 4.14(b)). Old entries are rarely edited more than three
times whereas new entries are edited more often. There are also no entries
which are edited significantly more often than others.

How many edits are there per day?
How many entries are edited per day?

The figure 4.15(a) shows the number of edits per day over the time the database
was downloaded. There are a few times when there are no edits present. On
these occasions the download failed or had to be stopped. This was sometimes
necessary after a new version of the download scripts were rolled out or the
infrastructure was temporarily not available (e.g., emergency power shut down
test).

Normally the number of edits per day are in a range between 40 and 400
edits. There are very few days that stand out regarding the total number of
edits. Two of the dates follow a download gap (2012-06-29 and 2012-05-10)
and the number of edits is likely due to the fact that the edits of the missing
days were aggregated on these dates. On the 11th of June 1’058 credits were
updated causing the large number of edits. On the 24th of April in several
vulnerabilities Samba was added with many vulnerable versions as well as many
references causing the majority of the edits.

On the 15th of May a minimum of 36 edits is reached and the number of
edits continuously grows until the end of June and declines again a bit in July.

When looking at the number of edited entries per day (figure 4.15(b) using
a logarithmic y scale) it is very similar to the edits per day 4.15(a). This is
because most of the edits experience very few changes which caused bars to
scale in the same way.

52 4 Results

(a) Number of edits by entry

(b) Number of days the entry was edited

Figure 4.14: OSVDB edit statistics by OSVDB identifier

4.2 History Analysis 53

10
0

10
1

10
2

10
3

10
4

nu
m

be
r

of
 e

di
ts

20
12

−0
4−

06

20
12

−0
4−

21

20
12

−0
5−

06

20
12

−0
5−

21

20
12

−0
6−

05

20
12

−0
6−

20

20
12

−0
7−

05

20
12

−0
7−

20

(a) Number of edits per day

10
0

10
1

10
2

10
3

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

20
12

−0
4−

06

20
12

−0
4−

21

20
12

−0
5−

06

20
12

−0
5−

21

20
12

−0
6−

05

20
12

−0
6−

20

20
12

−0
7−

05

20
12

−0
7−

20

(b) Number of entries edited per day

Figure 4.15: OSVDB edit statistics per day

54 4 Results

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

number of edits on the day

nu
m

be
r

of
 d

ay
s

(a) Number of edits per day

10
0

10
1

10
20

0.5

1

1.5

2

2.5

3

number of entries edited on the day

nu
m

be
r

of
 d

ay
s

(b) Number of entries edited

Figure 4.16: OSVDB count of the edit statistics per day

4.2 History Analysis 55

Figure 4.16(a) shows the counts of the values of figure 4.15(a) with a loga-
rithmic x-axis. If there is a bar of height 3 at position 10 this means that there
are 3 days with 10 edits. This graph supports the previous statement that the
majority of the days have between 40 and 400 edits. But there is no significant
grouping of edits per day.

The picture is slightly different when looking at the count of figure 4.15(b)
which can be seen in figure 4.16(b) with a logarithmic x-axis. If there is a bar
of height five at position seven it means that there are five days where seven
entries were edited. Here a grouping between 50 and 300 edited entries per day
starts to be visible which might get stronger with more data.

How many edits are there per month?
How many entries are edited per month?

The figure 4.17(a) shows the number of edits per month over the time the
database was downloaded. The total number of edits ranges between 5500 and
8200 but in June jumps to nearly 14000 edits. When the data for July will
be complete, that monthwill actually have more edits but the sample stops on
the 24th of July. In June the number of edits is in general very high as can be
seen in figure 4.15(a). It seems like in June many entries were updated with
additional information because there are significantly more edits in references
and credits in May and July which cause this significant difference compared
to the other months.

As already mentioned when looking at the days, the number of edits per
entry is generally low. Therefore, the number of edits follows generally the
same curve as the number of edited entries with a certain factor. For these
months the factor ranges from 2.68 in June to 3.9 in April.

Are there certain days in the month with increased activity?
How many entries are edited per week day?

For these questions only the edited entries were considered because the number
of edits does not give any relevant additional information besides that, rarely
there are a few entries where many entries are edited at once.

Figure 4.18(a) shows the number of edited entries per day in the month (1st
to 31st). The month days from 1 to 5 and 23 to 31 are also represented less
since the data was collected starting 6th of April until 22nd of July.

There are peaks on the 5th, 10th, 11th and 29th. The increased number of
edits on the 10th and 29th can be explained by the missing downloads on the
preceding dates which caused the edits to be accumulated on the 10th of May
and the 29th of June.

It would be too early to say that on the 5th there is significantly increased
activity since it only happened twice in May and June but not in July. On these
dates references in many entries were updated. The edits on the 11th mainly
result from the credits update on the 11th of June when the credits in many
entries were updated.

56 4 Results

0

2000

4000

6000

8000

10000

12000

14000

nu
m

be
r

of
 e

di
ts

Apr
 1

2

M
ay

 1
2

Ju
n

12

Ju
l 1

2

(a) Number of edits per month

0

500

1000

1500

2000

2500

3000

3500

4000

4500

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

Apr
 1

2

M
ay

 1
2

Ju
n

12

Ju
l 1

2

(b) Number of entries edited per month

Figure 4.17: OSVDB edit statistics per month

4.2 History Analysis 57

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

(a) Number of edited entries per day of the month

0

100

200

300

400

500

600

700

800

900

nu
m

be
r

of
 e

di
te

d
en

tr
ie

s

1s
t M

o

2n
d

M
o

3r
d

M
o

4t
h

M
o

5t
h

M
o

(b) Number of edited entries per week day of the month

Figure 4.18: OSVDB edit statistics within a month

58 4 Results

When taking these peaks out of the picture, fewer entries are edited at the
beginning of the month which increases towards the 20th and then declines a
bit towards the end of the month. The increased activity around the 6th and
7th is due to larger changes conducted on the 6th and 7th of June when mainly
references and keywords were added but also a larger number of new entries
was added.

The second figure (4.18(b)) shows the edits within a month by week days
starting with the first Monday on the left to the first Tuesday, first Wednesday
and so on to the fifth Sunday on the right. The first Monday does not have to
be the first day in the month since it can also start with any other week day. It
is simply the first Monday encountered in each month. The 5th week consists
of the week days that fall on dates beyond the 28th of the month and for that
reason are less common.

No clear weekly working pattern can be seen except for the first and the fifth
week when not many entries are edited on Mondays and on Sundays.

The peak on the second Monday is because of the previously mentioned credit
update on the 11th of June. The 29th of June with the accumulated edits after
a download error falls on the fifth Friday of the month.

On the third Thursdays of the month there is frequently more activity. During
the first week of the month also more activity can be observed which even
increases towards the end of the week. At the end of the fourth and also
during the fifth week the number of edited entries increases. This is especially
significant for the 5th week because these days are not present every month.

After how many days was the entry first edited?
After how many days was the entry last edited?

These are very interesting questions since the answers tell us how reliable the
published information is regarding edits after a certain period of time. Entries
for which the original entry add date is unknown no precise duration can be
calculated and are, therefore, excluded. This means the edit durations are only
calculated for entries for which the entry add was observed.

In figure 4.19(a) each bar represents the number of entries that were edited
the first time after the number of days equal to its position on the x-axis. The
second figure 4.19(b) shows the same counts for the last time the entry was
edited. Their y-axis use a logarithmic scale. The last figure shows how often
the entry was edited. The entries that do not experience a change at all are
excluded of this analysis. They make up over 61.9% of the entries in data set
and only the remaining 38.1% actually experience an edit in the observed time.

The figures for the first edit (figure 4.19(a)) and the last edit (figure 4.19(b))
look very much alike. This is because many entries are only edited once as can
be seen in 4.19(c). Over 93.5% of the first and 81.4% of the last edits fall within
the first 30 days but 93.5% of the first and 99% of the last edits are conducted
within the first 60 days after the entry was added.

Most of these edits are not really substantial because they are mainly edits in
the products list or the references. When reference, product, credits, time, filter,
keywords and manualTesting are excluded, the results change slightly. Only

4.2 History Analysis 59

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

number of days to the first edit

nu
m

be
r

of
 e

nt
rie

s

(a) Number of entries counted by the duration until the first edit

0 10 20 30 40 50 60 70 80
10

0

10
1

10
2

10
3

number of days to the last edit

nu
m

be
r

of
 e

nt
rie

s

(b) Number of entries counted by the duration until the last edit

1 2 3 4 5 6 7 8 9 10 11 12 13
10

0

10
1

10
2

10
3

number of times the entry was edited

nu
m

be
r

of
 e

nt
rie

s

(c) Count of the times the entry was edited

Figure 4.19: OSVDB count of entries to the first and last edit

60 4 Results

14.8% of the entries experienced an edit in substantial elements and 85.2%
remained unchanged.

The majority of the entries their first substantial edit (4.20(a)) within the
first 30 days after the entry was added. This group accounts for 94.2% of the
entries.

For the most recent edit (4.20(b)) there is also a large group of entries edited
within the first 30 days after the entry was added which accounts for over 92.7%
of the edited entries.

It is important to note that most of this information is edited only once rarely
twice as can be seen in figure 4.20(c).

This picture might change when there is more data collected. With a longer
observation period a more distinctive distribution regarding all edits might
emerge as well as there are probably more substantial edits after a longer period
of time.

When are new entries added?

For this question only the newly added entries were considered. The figure
4.21(a) shows the number of newly added entries per month. The months April
and July might have a few more new entries if the whole month would be present
but there are clearly more new entries in May and June.

Figure 4.21(b) shows the distribution of newly added entries over the days of
the month. The peaks on the 29th and 10th are again due to the accumulated
edits because of the download errors on 10th of May and 29th of June. The
new entries on the 12th are mainly caused by one day on 12th of June. The
large number of new entries on 13th and 19th is not caused by just one date.
The sums of these days build up over several months, and therefore it seems
that on these dates there is increased activity for adding new entries.

When these larger edits are ignored the following pattern emerges. At the
beginning of the month entries are added which drops towards the 10th and
stays low until the 16th. On the 17th it increases again fast with a peak on
the 19th and then slowly decreases until the 26th. At the end of the month
the number of newly added entries might actually stay or increase but with the
limited data set it is hard to say.

How complete are the entries?

This question rose after noticing that each OSVDB entry offers a completeness
percentage. The value measures how many fields of the entry are filled out.
Figure 4.22 shows the distribution of the completeness values.

A large number of entries are only partially filled out. Over 53% of the entries
are actually less than 50% complete whereas 35% of the entries are 80% or more
complete. Only in 16% of all entries in the OSVDB all mandatory fields are
filled out.

Since not all field are mandatory it is actually possible for an entry to reach
100% even if some important data is missing. For some of the fields this makes

4.2 History Analysis 61

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

number of days to the first edit

nu
m

be
r

of
 e

nt
rie

s

(a) Number of entries counted by the duration until the first edit

0 10 20 30 40 50 60 70 80
10

0

10
1

10
2

10
3

number of days to the last edit

nu
m

be
r

of
 e

nt
rie

s

(b) Number of entries counted by the duration until the last edit

1 2
10

0

10
1

10
2

10
3

number of times the entry was edited

nu
m

be
r

of
 e

nt
rie

s

(c) Count of the times the entry was edited

Figure 4.20: OSVDB count of entries to the first and last substantial edit

62 4 Results

0

200

400

600

800

1000

1200

nu
m

be
r

of
 n

ew
 e

nt
rie

s

Apr
 1

2

M
ay

 1
2

Ju
n

12

Ju
l 1

2

(a) New entries per month

0 5 10 15 20 25 30
0

50

100

150

200

250

ne
w

 e
nt

rie
s

(b) New entries per day in the month

Figure 4.21: OSVDB new added entries

4.3 History Comparison 63

0 10 20 30 40 50 60 70 80 90 100
0

5000

10000

15000

percent completed

nu
m

be
r

of
 e

nt
rie

s

Figure 4.22: OSVDB self claimed entry completeness

sense because it is additional information such as the Solution, Technical, Tools
and Filters or Credit.

But also the CVSS section which contains a threat rating of the vulnerability
is also a non-mandatory field.

4.3 History Comparison

The optimal way to compare the results is to use data sets which are obtained
from the sources within the same time window. Currently there are nearly four
months of data available for the Open Source Vulnerability Database which
proves to be not enough because the results are easily distorted by a few extreme
edits. To minimize this problem all the available data in each data set is used.

This complicates the comparisons of raw numbers. The numbers can either
only be compared within a specific time window existing in both data sets or
have to be normalized. Another possibility is to compare the general observed
patterns.

4.3.1 Comparing the Overview and Edits by Tags

Both vulnerability databases show that there is more information added over
the time than removed. This effect is very extreme in the OSVDB where 83%
of all edits are newly added elements whereas the NVD reaches only 45%.
These values are actually an upper bound for the added elements because of
the attribute-edit effect mentioned in 4.1.4.

To create the lower bound for the added elements it has to be assumed that
all the removes and a corresponding number of adds come from this effect. For
the OSVDB the lower bound for adds is at 74% and for the NVD at 16%.

64 4 Results

In case of the lower bound of OSVDB the added elements still dominate the
number of edits whereas in the NVD the changes dominate.

When looking at the edit distribution by tags (Figures 4.1 and 4.13) both
databases exhibit very similar characteristics. The references and products are
the elements that get edited most often and information related to the threat
rating is changed rarely. The field in between is mainly filled by elements giving
additional information about the vulnerability such as the common weakness
enumeration or the timeline.

4.3.2 Comparing the Edits by Tags and by Entries

The general characteristic, that newer entries are more likely to experience
updates, is visible for both databases (figures 4.2 and 4.14). The number of
times the entries are edited are fairly equal whereas the number of performed
edits differs greatly. Entries in the OSVDB are unlikely to experience more than
100 edits but for entries in the NVD this is not that unusual. This is mainly
due to updates in the vulnerable software list which includes all the versions of
a vulnerable application. When an application with a large number of versions
is vulnerable (e.g., Google Chrome) this immediately causes a large number
of edits. In such a case the OSVDB usually only lists the highest vulnerable
version which significantly reduces the number of edits.

4.3.3 Comparing the Edits by Days and by Month

Regarding the daily number of edits the NVD and OSVDB are in a very similar
range (figures 4.4 and 4.16). This seems to contradict the numbers given in the
initial overview where the NVD shows nearly six time the average edits per day
as the OSVDB. But this is due to a very few days with an extreme amount of
edits like the Linux name change day which alone accounts already for 20.6%
of all observed edits in the NVD.

In the daily number of edited entries the NVD and OSVDB deviate. In the
NVD rarely more than 100 entries are edited per day whereas in the OSVDB
the majority of the days have between 50 and 300 edited entries.

Together these observations show that in the OSVDB generally more entries
are edited but with each edit less elements are changed.

Additionally the edits per day of the NVD show two distinct groups of work
days. The group with less edits and edited entries corresponds to weekend
days whereas the group with more edits and edited entries corresponds to work
performed during the week. This is also clearly supported by the number of
edited entries per week days in the month in figure 4.7(b). This indicates that
the work is performed by someone with regulated work times which suggests
an employee.For the OSVDB currently no such weekly working pattern can be
found. In figure 4.18(b) only the week days in the first and last week have
clearly more edited entries than the weekend days. This suggests that either
we have currently not enough data or there is no distinct working patter. In
case there really is no such weekly working pattern this might indicate that the

4.3 History Comparison 65

work is also performed off hours and/or on weekends which would be consistent
with an open source project.

When looking at the total edits per month the general pattern is basically
the same (figures 4.5 and 4.18). The total number of edits is also in a very
similar range, except for June when the OSVDB has many more edits which
is caused by adding a lot of credits and references. In the NVD the relatively
large number of edits compared to the edited entries in June can be explained
by updates in the vulnerable software list in several old entries.

The number of edited entries in the OSVDB is in general higher than in
the NVD which has several reasons. For one, more new entries are published
per month in the OSVDB than in the NVD (4.3.5). These entries can also be
published when they are only partially filled out and have to be completed over
time. And second, the OSVDB is currently under reconstruction and meanwhile
also the entries seem to get content updates like the credits.

4.3.4 Comparing the Time until first and last Edit

In the NVD over 82% of the newly added entries are edited whereas in the
OSVDB only 38% of the entries experience an edit. In both databases the
majority of the edited entries experience their edit within the first 30 days. In
the NVD also a larger number of edits experiences their edit between 50 and
150 days after the entry was added. In the OSVDB this is not the case (figures
4.8(a) and 4.8(b)). This is probably because we did not collect enough data for
the OSVDB yet.

When only looking at the substantial changes (figures 4.9 and 4.20) both
databases show that if the information is edited, it is done very shortly after
the entry was added. In the NVD over 58% of the newly added entries whereas
in the OSVDB only 14.8% of the new entries experience a substantial edit. This
is mainly because for the NVD it is quite common that the CVSS section is
added the day after the entry was published (figure 4.12(c)).

4.3.5 Comparing the new Entries

The newly added entries per month (figures 4.10(a) and 4.21(a)) show a very
similar patter in the corresponding months. Also the general pattern in the
days of the month (figures 4.10(b) and 4.21(b)) mostly matches since at the
beginning of the month more new entries are published as well as increased
publishing around the 20th as well as at the end of the month.

The total number of newly added entries are much higher in the OSVDB
than in the NVD. In the currently available data set the OSVDB added from
1.72 up to 2.47 times the new entries the NVD added. This is mainly because
the OSVDB has a wider range of vulnerabilities it tries to document and uses
many different of data sources. Therefore, a large number of the new entries
does have a reference to the NVD.

Among the sources is also the CVE list which contains reserved identifiers
that are also imported into the OSVDB. Such reserved entries are incomplete,
and therefore not published by NVD until all the information is disclosed. If an

66 4 Results

entry in the OSVDB was imported from the CVE list this is clearly visible in
the description field by the provided reference until it is edited. Currently over
43% of the present entries in the OSVDB are directly imported entries from the
CVE list. These seem to be mainly older entries because only 9% of the newly
added entries were imported from the CVE list which means that most of the
new entries are created from other sources.

4.3.6 Comparing the Time until Entries are updated

For this comparison several entries of Mozilla related vulnerabilities were chosen
because the Mozilla project also maintains their own security advisory database
for all the vulnerabilities related to their software.

The investigated entries were all officially reported on 24th of April 2012
which allows for enough time to pass to observe the edits. The involved identi-
fiers can be split into two groups.

• The OSVDB IDs 79872 to 79878 which correspond to CVE-2012-1126
until CVE-2012-1132 and 79880 to 79891 which correspond to CVE-2012-
1133 until CVE-2012-1144 as well as OSVDB ID 79879.

• The OSVDB IDs 81513 to 81524 which correspond to CVE-2012-0467
until CVE-2012-0479, 81525 corresponding to CVE-2011-3062 and 81526
corresponding to CVE-2011-1187.

All the entries in the NVD, except CVE-2011-3062 and CVE-2011-1187, are
released on the 25th of April and not edited since. This means that these entries
where created on the day when Mozilla released the information. The remaining
two entries with identifiers issued in 2011 are already existing entries in which
on the 26th of April (published on the 27th of April) the existing references are
changed from Bugzilla to the security advisories. All the updates are performed
and published within three days after Mozilla has published the advisories.

For the OSVDB this looks very different. The entries of the first group
appear for the first time before the data collection started as imports of reserved
identifiers from the CVE list. According to the information available in the
OSVDB entries these vulnerabilities were disclosed on the 23rd of February
2012 and a solution was available on 24th of February. This is basically correct
if the focus is on the component FreeType for which an update was released
on that date rather than on the Mozilla product Firefox Mobile. On the 27th
of April the updated summaries of the CVE list are imported to these entries
which state Firefox Mobile as possible vulnerable product but the products list
does not get updated. Later only references and credits are added.

The entries of the second group are all newly added on the 28th of April,
except for the entries with the IDs 81525 and 81526 which were added on the
30th of April. The description of these entries clearly show that they were
imported from the CVE list. On the 2nd to 5th of May the descriptions are
rewritten and the reference to the CVE import is removed. All the entries
state that the disclosure and vendor solution date is on the 24th of April which

4.3 History Comparison 67

corresponds to the information in the Mozilla security advisories. Later only
references and credits are added.

This allows us to create to following timeline:

1. On the 24th of April Mozilla releases the updates and the vulnerability
information.

2. On the 25th of April the CVE and NVD entries are updated. In the early
morning of the 26th of April the NVD is exported and published on the
website.

3. On the 26th of April the already existing entries in the OSVDB are up-
dated with the newly available information in the CVE list.

4. On the 27th of April the new entries are added to the OSVDB created
from information available in the CVE list.

5. Between the 2nd and 5th of May the newly added entries in the OSVDB
are manually updated.

6. References and credits are added to the entries in the OSVDB during May
and June.

Similar timelines can be found for many different vulnerabilities. If for the
corresponding OSVDB entry exists also a NVD entry then the NVD entry is
mostly updated within three days after the information is officially disclosed.
For the OSVDB it takes between 7 and 21 days until the information is updated.

68 4 Results

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The overall edit pattern in the NVD and the OSVDB are very similar. Newer
edits experience more edits than older ones, the number of edits by day of month
follows a similar pattern in the NVD as in the OSVDB, and similarly for the
monthly publishing cycle for new entries. Therefore, it is safe to assume that
the observed edits are maintenance effects.

Most of the edits in both databases are performed in the references and
vulnerable products. Also other elements such as the last modified date, credits,
timeline, solution, manualTesting, keywords and scanners and filters experience
quite a few edits. The impact of edits within all these elements is not that
serious because they refer to internal or external resources, make information
finding easier or give additional information about how to test or resolve the
vulnerability.

When the observation of edited elements is limited to more substantial ele-
ments like the summary, the description, the CWE and the CVSS information
then nearly all the edits occur within the first 30 days after the entry was
added. This shows that 30 days after the entry was added the information of
these elements can be regarded as stable.

Many of the later edits in substantial elements in the NVD are caused by
CVSS elements. Most of the edits in these elements also happen very closely to
the publish date of the entry but it sometimes happens that new information
about the vulnerability is discovered which requires that the CVSS threat rating
has to be adjusted.

Therefore, we conclude that it is possible to use National Vulnerability Data-
base as ground truth for not very fresh entries.

In the OSVDB there are several fields that are not mandatory. These fields
are manual testing notes, keywords, technical, solution, tools & filters and
CVSSv2. In the entries where a CVSS rating is given it is actually imported
from the NVD. But in case the rating is changed in the NVD, it does not get
updated in the OSVDB. Even if these fields are not filled the entry can reach a
completeness rating of 100%.

It is possible to publish incomplete entries in the OSVDB which should be

69

70 5 Conclusions and Future Work

completed over time. This causes that the majority of the entries are currently
incomplete. This theoretically allows that new entries can get published faster
and the community can help to complete the missing information. In reality
it takes longer until information is updated in the OSVDB than in the NVD.
These problems are likely caused by is lacking resources and support of its users.

The upside of the OSVDB is that since it seems to use more data sources,
amongst which also the CVE list and the NVD are, it is possible to find in-
formation to vulnerabilities which are not present or not yet published in the
NVD.

The Open Source Vulnerability Database is, therefore, a good source to find
additional information to NVD entries or vulnerabilities which are not (yet)
present in the NVD. In case the information was not only imported from the
CVE list then an the OSVDB entry can be used as second opinion to the related
NVD entry.

5.1.1 Answering the Assignment Questions

Most of the questions of the assignment are answered in the results chapter
(4.2.1) and are, therefore, not discussed again. These questions are:

• What changed?

• How did it change?

• When did it change?

• Are there any periodic changes?

• Are there times of large changes?

• When entries are newly added to the NVD?

• Are there times of large (bulk) changes?

Does the published-datetime field reflect the actual date when the
entry was first time visible?

The date given in the element vuln:published-datetime in the NVD reflects the
date on which the entry was added. In the history the entry is the first time
visible the day after because the database is exported and published the next
day in the early morning.

Are there any edit wars?
Are there things that much-changed entries have in common?

Entries that are changed very often do not exhibit signs of an edit war as
can be seen in 4.2.1. The entries that were investigated for edit wares share
that they are changed very frequently. These changes have in common that
a set of elements is edited over and over again. Mostly these are elements in
the vulnerable products list and/or the vulnerable configuration list which are

5.2 Future Work 71

added, removed and added again. This is not done for all the entries on the
same day and also not every day but happens every two to five days.

How does the churn develop over time?

This question is answered indirectly in the NVD results 4.2.1. There are results
per day and per month. No clear pattern was is visible but is was possible to
locate a backlog that was processed in late 2011.

Are there periodic phenomena?

Yes as can be seen in the NVD results 4.2.1. There is a weekly working pattern,
monthly edit pattern, monthly new entry pattern but also the Microsoft patch
day is visible.

Are there entries that appear first in one database then in the other?
How can these entries be characterized?
Is one consistently ahead of the other?

For this only entries that are shared can be compared which means only entries
with a CVE identifier. The NVD is based on the CVE list and the OSVDB
imports the CVE list. The major difference is that the NVD only releases
vulnerability information to CVE entries which are disclosed, therefore reserved
CVE identifiers do not show up in the NVD. The OSVDB imports all the entries
of the CVE list.

In general the NVD releases information faster than the OSVDB. The NVD
publishes newly available, previously unreserved vulnerability information faster
than the OSVDB. Regarding reserved CVE identifiers the NVD waits until the
information is officially disclosed. Since the reserved CVE identifiers are also
imported into the OSVDB it is possible that the entry gets updated, with
information from other sources than CVE or NVD, before the information is
officially disclosed. This can be seen in the Mozilla example in 4.3.6.

Are the changes consistent?

It seems that after the entry was manually updated in the OVSDB the data is
not imported from the NVD anymore. If the CVSS information is changed in
the NVD after it was imported into the OSVDB then the CVSS information in
the OSVDB does not get updated. In this case the changes are not consistent.
A more throughout analysis could be not performed due to time constraints.

5.2 Future Work

In this section possible future work based on this thesis is proposed.

In the performed analysis it was rarely necessary to compare the content ed-
its of the edit type change which are stored in the parameters data old and

72 5 Conclusions and Future Work

data new. Analyzing the content might give better results for example by sep-
arating the fixing of a typo from a relevant edit in certain elements, or allow
deeper analysis such as the distribution of the edited CVSS ratings.

With more data available for the OSVDB a more systematic inter-database
comparison could be performed.

During the XML comparison, whenever an edit in the text node of an uniquely
identifiable XML element occurs, the history entry only states the tag name (in
the parameter tag) in which the text was changed from data old to data new.
This is not enough because multiple tags with the same tag name can exist
in the same entry but they are uniquely identifiable by their tag name and
attributes (e.g., element time in the OSVDB). This can be resolved by either
writing the tag name and attributes to the tag parameter or by giving the whole
old and new XML element in data old and data new.

Tools using multiple scripts sometimes share variables such as work or SVN
repository directories. Currently these are defined in each script separately at
the beginning or handed over as arguments. This has a high chance for errors
which might cause that the tool is not running or checking in information in the
wrong directory. This can be improved by a shared properties or configuration
file.

The way and amount of data stored of the OSVDB can be optimized. More
data fields that might be of interest could be added (e.g., self claimed complete-
ness). Currently the XML element tag names do not use a namespace like in
the NVD which might cause them to clash with other variables. This is cur-
rently the case with the CVSSv2 date, stating the CVSS creation date, which
clashes with the edit history entry date, stating the edit date, in the default
evaluation script. With the increasing number of entries it might be necessary
to split the XML file into smaller files to reduce the required system resources
and processing time.

Appendix A

”How To” Descriptions

This chapter holds the ”how to” descriptions for the developed scripts in this
thesis. There are three different types of executables used which are shell scripts,
Perl scripts and a java archive (JAR). The usage of the different typed will
be described in the following subsections. The other sections of this chapter
combine the executables into functional groups that performs a larger task (e.g
history creation). The subsections focus on a specific task such as creating the
history of the NVD and will specify the necessary details how to use them.

A.0.1 Shell Scripts

The shell scripts are primarily used to perform system operation (e.g create and
remove directories, checkout svn directories, etc.). Therefore, they often contain
many variables at the beginning of the script defining SVN sources, working
directories, grep patterns etc. These should be checked out and if necessary
adjusted before the scripts are run, especially when multiple scripts have to
work together to perform a task, because often the scripts share variables that
have to match.

A.0.2 Perl Scripts

The Perl scripts are used to perform string based operations such as extracting
the useful information of one OSVDB website entry. These scripts normally do
not perform system operations and assume that the working environment (e.g.,
working and output directories) are properly set up by the shell script that
called them. The required information (input files, output directory, etc.) are
then given as argument to the Perl script. Still it is recommended to short check
the variables of the Perl scripts before first execution. It is possible to directly
call a Perl script given that the environment is prepared and the necessary
arguments are given to the script.

A.0.3 Java Archive

The only jar file is used for the comparison of the XMLfiles. It is built under
similar assumptions as for the Perl scripts regarding the run environment, which

73

74 A ”How To” Descriptions

has to be prepared by other means, such as a shell script. It is also possible to
run the jar file directly given that the environment is prepared and the necessary
arguments are given to the executable.

A.1 Data Collection

This section documents the scripts involved in the data collection. Since the
data collection of the NVD was not part of this thesis it will not be covered
here.

A.1.1 OSVDB Data Collection

This subsection describes the OSVDB data collection. This task is achieved in
two steps. First the information is fetched in HTML form. In a second step the
useful information is extracted omitting the not needed HTML code. This can
be done either in two separate steps (legacy full HTML download and legacy
XML processing) or directly in one step (download and direct XML processing).
It is recommended to use the download and direct XML procession version. The
separate steps are also documented here for completeness and because they still
might be useful but they are regarded legacy.

Legacy Full HTML Download

The task of these scripts is to download and archive the complete HTML data
of all the OSVDB entries. They are stored in different files based on the year
of the first encountered CVE id. When the download is completed the data
is committed to the repository. All the necessary scripts can be found on the
SVN repository in the directory svn//scripts/osvdb-html/. Their specific tasks
are the following:

• runOsvdbUpdate.sh checks out the log directory and runs updateOsvd-
bCveData.sh forwarding the output to a log file which is committed to
the repository after completion.

• updateOsvdbCveData.sh checks out the data and script directory, pre-
pares the work directory, copies the scripts to the work directory and
runs getOSVDB.pl. When the download is completed the data files are
copied to the SVN working directories and committed to the repository.

• getOVSDB.pl fetches one OSVDB entry after another which are saved in
file matching the year of the first CVE ID found in the entry. Entries
without a CVE ID are stored into a separate file. The script will stop
running when the number of consecutive empty entries reaches the value
specified in $maxEmptyRow.

A.1 Data Collection 75

Default usage

1. Check the SVN repository for the directory where the data will be stored
and that it contains a log directory.

2. Check that runOsvdbUpdate.sh and updateOsvdbCveData.sh are locally
available.

3. Check the variables in updateOsvdbCveData.sh and runOsvdbUpdate.sh
to match the SVN repsitory paths, local working directories and script
paths.

4. Check the variables in getOSVDB.pl. Pay special attention to $BaseC-
ounter that defines the first id checked and $maxEmptyRow that deter-
mines after how many consecutive empty OSVDB entries the script will
stop.

5. Check that that the changes of getOSVDB.pl are committed.

6. Run runOsvdbUpdate.sh. It is recommended to forward the output to a
file and run the script in the background since it can take from several
hours.

It is possible to run the scripts on their own but in general it is recommended to
use runOsvdbUpdate.sh since it will also commit the log to the SVN repository.
No Arguments are passed along to any of these scripts.

Legacy XML Processing

The task of these scripts is to extract the useful information of previously down-
loaded full HTML entries and store it in one XML file which is committed to
the repository. The historic order of the full HTML revisions will be preserved.
This process is implemented in a server-worker architecture to distribute the
significant workload.

The server creates a list of tasks that it has to complete. Each task is stored
in a task file that contains the following information: 1. the revision number
associated with the task, 2. the revision number of the preceding task that has
to be finished first, 3. the list of files that have to be processed to complete
this task. 4. the time the task was created. Furthermore the task file is also
used as the sentinel file to the corresponding revision to signal that the revision
has been processed and committed to the repository. Therefore, the task file is
committed to the repository in the sentinel directory.

Based on these tasks jobs are created which are a simple mapping of one
file and one revision. These jobs are then sent to the workers. Such a job
file contains the following information: 1. the URL to the repository directory
where the file can be found that has to be processed, 2. the file name of the file
that has to be processed, 3. the revision number, 4. the server identifier for ssh
to send the result, 5. the directory the result is expected to be sent to, 6. the
file name of the result, 7. the worker the job was sent to, 8. the time the job
was sent to the worker, 9. the time the result was present on the server. The

76 A ”How To” Descriptions

jobs then are processed by the workers and the result is sent back to the server
that checks which tasks are completed and commits the processed data to the
SVN repository. The requirements and restrictions are the following:

• An existing directory on the SVN repository with full HTML entry data
of the OSVDB as data source is needed.

• An existing directory on the SVN repository with a sub-directory for
sentinel files, to store the output and sentinel files of already processed
revisions.

• It starts processing with the first revision in the HTML source for which
no sentinel file is present. Caution is advised when working on a SVN
repository directory that already contains data. If a revision of the data
source is unwanted it has to be excluded of processing in the script (e.g.,
$F REVISION BROKEN in legacyOsvdbPreprocessInitTasks.sh) or by a
sentinel file.

• It will continue until the last revision present at the moment of initializa-
tion.

• The server cannot be a worker.

• The legacyOsvdbPreprocessUpdateTasks.sh hast to be run frequently (i.e.,
cronjob every 30 min) to ensure continuous processing.

• If a worker fails to deliver a result the server might still send out new jobs
to be processed. But because it cannot complete the corresponding task,
it will not commit revisions beyond the failed task. This can be resolved
by manually moving the job from working to todo after deleting some of
the information (please consult another job file in todo) or wait for all the
jobs currently being processed and then re-run legacyOsvdbPreprocessInit-
Tasks.sh. Doing this will preserve previously committed revisions due to
the sentinel files but also already processed jobs for which the task was
not completed yet in the previous run, as long as the receive directory is
not cleaned up.

All the necessary scripts can be found on the SVN repository in the directory
svn//scripts/osvdb-xml/ with the prefix legacyOsvdbPreprocess. Their specific
tasks are the following:

• legacyOsvdbPreprocessInitTasks.sh is run on the server and initializes it.
The script creates a list of worker machines to send jobs to, the task files,
the jobs files of the jobs that have to be processed by the workers.

• legacyOsvdbPreprocessUpdateTasks.sh is run on the server and checks for
received results and completed tasks. If a task is completed (the previous
revision is committed and all the jobs of the task are processed) combines
the results and commits it to the SVN repository. It also sends new jobs
to the workers that are working on less than $MAX JOB jobs.

A.1 Data Collection 77

• legacyOsvdbPreprocessHtml.sh is stared on the worker by the server over
SSH. It exports the given file and revision and runs legacyOsvdbPrepro-
cessHtml.pl. Upon completion the result is sent back to the server to the
given receive directory.

• legacyOsvdbPreprocessHtml.pl is run on the worker. It processes the given
file and outputs the result to the given output path. If in this script any
changes are made that change the output in any way, the same changes
have to be implemented in osvdbPreprocessHtml.pl to ensure consistency.

Default usage

1. Check the SVN repository for the directory where the XML files will be
stored and make sure that it contains a sentinel directory (i.e., done-
revisions).

2. Check that legacyOsvdbPreprocessInitTasks.sh and legacyOsvdbPreproces-
sUpdateTasks.sh are locally available to the server.

3. check that legacyOsvdbPreprocessHtml.sh and legacyOsvdbPreprocess-
Html.pl are locally available to the workers.

4. Check the variables in legacyOsvdbPreprocessInitTasks.sh and legacyOsvdb-
PreprocessHtml.sh to match the SVN repository, the work directories to
suit the server as well as the limiting variables (i.e., $MAX JOBS,
$F REVISION BROKEN, etc.).

5. check the variables in legacyOsvdbPreprocessHtml.sh to suit the workers.

6. Run legacyOsvdbPreprocessInitTasks.sh on the server.

7. Run legacyOsvdbPreprocessUpdateTasks.sh on the server periodically. The
time has to be chosen carefully since a smaller time increases the perfor-
mance but it can lead to concurrent running instances of the script because
the svn commit can take some time. It is recommended to forward the
output to a file or /dev/null and run the script in the background since
it can take from several hours to several days.

It is not possible to run legacyOsvdbPreprocessUpdateTasks.sh prior to lega-
cyOsvdbPreprocessInitTasks.sh since no tasks and jobs are present. It is pos-
sible to run legacyOsvdbPreprocessHtml.sh and legacyOsvdbPreprocessHtml.pl
manually. The required arguments are explained in the respective scripts.

Download and direct XML Processing

These scripts combine the tasks into one, and therefore download and extract
the useful information of the OSVDB. This is done in parallel to increase the
performance. The results are then combined and committed as a combined
XML file to the SVN repository. This greatly reduces the time required but
because up to 2*$MAX JOBS of extraction tasks are running simultaneously,
it might consume quite some system resources. It is not possible to process

78 A ”How To” Descriptions

legacy full HTML downloads. For this please refer to Legacy XML Processing.
All the necessary scripts can be found on the SVN repository in the directory
svn//scripts/osvdb-xml/ without the prefix legacy. Their specific tasks are the
following:

• runOsvdbGetAndProcess.sh checks out the log directory and runs osvd-
bGetAndProcess.sh forwarding the output to a log file. Upon completion
the log file is commited to the repository.

• osvdbGetAndProcess.sh checks out the data directory and prepares the
work directories. It then starts the number of download tasks (osvd-
bGet.pl) specified by $MAX JOBS to download a specified amount of
entries and sleeps for $SLEEP seconds. After each wakeup it checks if
the downloads are done and if so, starts for each done download a prepro-
cessing task (osvdbPreprocessHtml.pl) and a new download. This is done
until the all the entries are downloaded and processed. The results are
then combined and committed to the repository.

• osvdbFrame.pl creates the head and tail for the combined XML file. This
is a convenience file to simplify the combination process.

• osvdbGet.pl downloads the complete HTML data for a range of OSVDB
entries to a temporary location.

• osvdbPreprocessHtml.pl extracts the useful information from the HTML
entries downloaded by osvdbGet.pl. After the processing is completed,
the sentinel file is deleted to signal that the processing is done. If in
this script any changes are made that change the output in any way, the
same changes have to be implemented in legacyOsvdbPreprocessHtml.pl
to ensure consistency.

Default usage

1. Check the SVN repository for the directory where the resulting XML file
will be stored and make sure that it contains a log directory.

2. Check that runOsvdbGetAndProcess.sh and osvdbGetAndProcess.sh are
locally available.

3. Check the variables in unOsvdbGetAndProcess.sh and osvdbGetAndPro-
cess.sh to match the SVN repository, the work directories and for correct
runtime variables.

4. Check the variables in osvdbFrame.pl to match the ones in osvdbGetAnd-
Process.sh.

5. Check that the changes of osvdbFrame.pl, osvdbGet.pl and osvdbPrepro-
cessHtml.pl are commited.

6. Run runOsvdbGetAndProcess.sh. It is recommended to forward the out-
put to a file and run the script in the background since it can take from
several hours.

A.2 History Creation 79

It is possible to run osvdbGetAndProcess.sh directly but in general it is recom-
mended to use runOsvdbGetAndProcess.sh since it will also commit the log to
the SVN repository. Directly running osvdbGet.pl or osvdbPreprocessHtml.pl is
possible if the required arguments are provided. The arguments are described
in the respective scripts.

A.2 History Creation

This section documents the scripts involved in the history creation. The scripts
produce a history of the given data source by comparing the content of a revision
with its previous revision. The resulting history documents each difference
as a change, add or remove. The resulting format is the same for all data
sources since every history creation script bundle uses the same executable
(runCompareVdbXml.jar) to create the history.

A.2.1 NVD History Creation

The task of these scripts is to create the edit history of a specific NVD XML file
which is defined by its year. It first creates the revision list of the file given by
the year. Then it compares each revision with the previous revision to create
the complete edit history. The result is committed to the repository. Caution,
do not mix history files created by these scripts with a history created by NVD
incremental history creation (A.2.2) because this method does not create the
sentinel files required by the incremental version. Since the source data is
split into several files defined by its year the resulting history file will also only
contain the history of the processed source file. Since the separate files are much
smaller, the processing requires less resources. Additionally, processes can be
started on different machines (two or more processes on the same machine will
not work since they will use the same working directory) to process the files in
parallel. In case it is necessary to create one large history, one can combine the
files and sort by date or create an according history evaluation operation (see
Section A.3). All the necessary scripts can be found on the SVN repository in
the directory svn//scripts/history-generate/, most of them contain nvd in their
name. Their specific tasks are the following:

• runNvdCreateHistory.sh checks out the log directory and runs nvdCreate-
History.sh with the given year as argument. Upon completion the log is
committed to the repository.

• nvdCreateHistory.sh checks out the script directory, the input data di-
rectory and history directory. It then sets up the work directory where
the scripts are copied to and creates the revision list of the input file de-
fined by the given year. For each revision it runs nvdXmlCompareWrap-
perEmpty.sh or svn diff with nvdXmlCompareWrapper.sh which writes
the differences to the history file. When all revisions are processed the
history file is committed to the repository.

80 A ”How To” Descriptions

• nvdXmlCompareWrapper.sh is a wrapper script for svn diff to correctly
run runCompareVdbXml.jar with the necessary arguments. It also speci-
fies the memory available to the java runtime environment.

• nvdXmlCompareWrapperEmpty.sh is a similar wrapper script that is only
called when the first revision is processed. This is necessary because for
the first revision exists no previous revision, and therefore uses nvdcve-
2.0-empty.xml instead. It also specifies the memory available to the java
runtime environment.

• runCompareVdbXml.jar detects the changes on the XML element level
between the two given input files and writes the result to the specified
output file. The vuln:references are an exception to the XML element
level comparison because the element can only be uniquely identified with
their sub-elements. Therefore, the references are compared as a whole.

Default usage

1. Check the SVN repository for the directory where the history file(s) will
be stored and make sure that it contains a log directory.

2. Check that runNvdCreateHistory.sh and nvdCreateHistory.sh are locally
available.

3. Check the variables in runNvdCreateHistory.sh and nvdCreateHistory.sh
to match the SVN repository, the work directories and for correct runtime
variables.

4. Check the variables in nvdXmlCompareWrapper.sh and nvdXmlCompare-
WrapperEmpty.sh to match the used data file type (nvd) as well as that
the called jar file will have enough memory (at least 20 times the size
of the largest file that will be compared). Allocating too little memory
will cause the comparison to fail while too much could cause swapping or
failure due to not enough available memory.

5. Check that the changes of nvdXmlCompareWrapper.sh, nvdXmlCompare-
WrapperEmpty.sh and runCompareVdbXml.jar are committed.

6. Run runNvdCreateHistory.sh <year> where year is the year in the file
name that will be processed. It is recommended to forward the output to
a file and run the script in the background since it can take from several
hours to several days.

It is possible to run nvdCreateHistory.sh directly but in general it is recom-
mended to use runNvdCreateHistory.sh since it will also commit the log to the
repository. To only get the difference between two files one can either run
runCompareVdbXml.jar directly or use nvdXmlCompareWrapper.sh with the
required arguments. The necessary arguments are described in nvdXmlCom-
pareWrapper.sh or in the java source code of the jar file.

A.2 History Creation 81

A.2.2 NVD incremental History Creation

The task of these scripts is to update the already present edit history of a specific
NVD XML. At first it creates the revision list of the file and then creates a job
for each revision that was not previously processed (i.e., for which no sentinel file
exists). The result is appended to the existing history file and committed to the
repository. Caution, do not mix history files created by these scripts with the
history created by NVD history creation (A.2.1). Because the non-incremental
version does not create the required sentinel files. Running the incremental
version without the correct sentinel files present causes the history to contain
duplicates. This is because the incremental scripts process every revision for
which no sentinel file exists and appends the results to the existing history file.
All the necessary scripts can be found on the SVN repository in the directory
svn//scripts/history-generate/, most of them contain nvd and incremental in
their name. Their specific tasks are the following:

• runNvdCreateHistoryIncrementalAll.sh starts the runNvdCreateHistory-
Incremental.sh on different machines with different years as argument.
This is used to all the NVD history files as simple as possible.

• runNvdCreateHistoryIncremental.sh checks out the log directory and runs
nvdCreateHistoryIncremental.sh. Upon completion the log is committed
to the repository.

• nvdCreateHistoryIncremental.sh checks out the script directory, the in-
put data directory and the history directory. It then sets up the work
directory where the scripts are copied to and creates a job file for each
not previously processed revision. For each job it runs osvdbXmlCom-
pareWrapperEmpty.sh or osvdbXmlCompareWrapper.sh which writes the
differences to the a temporary history file. After the revision is processed
the additional history is appended to the existing history. The updated
history and the respective sentinel file are committed to the repository.
This is repeated until all jobs are processed.

• The descriptions of osvdbXmlCompareWrapperEmpty.sh, osvdbXmlCom-
pareWrapper.sh and runCompareVdbXml.jar can be found in section A.2.1.

Default usage

1. Check the SVN repository for the directory where the history file will be
stored and make sure that it contains a sub directory for the sentinel files
and another sub directory for the log files.

2. Check that runNvdCreateHistoryIncrementalAll.sh will start all the nec-
essary tasks on the assigned machine. Do not start more than one task
on one machine.

3. Check that runNvdCreateHistoryIncremental.sh and nvdCreateHistoryIn-
cremental.sh are locally available.

82 A ”How To” Descriptions

4. Check the variables in runNvdCreateHistoryIncremental.sh and nvdCre-
ateHistoryIncremental.sh to match the SVN repository, the work directo-
ries and for correct runtime variables.

5. Check the variables of nvdXmlCompareWrapper.sh and nvdXmlCompare-
WrapperEmpty.sh to match the used data file type (nvd) as well as that
the called jar file will have enough memory (at least 20 times the size
of the largest file that will be processed). Allocating too little memory
will cause the comparison to fail while too much could cause swapping or
failure due to not enough available memory.

6. Check that the changes of nvdXmlCompareWrapper.sh, nvdXmlCompare-
WrapperEmpty.sh and runCompareVdbXml.jar are committed.

7. Run runNvdCreateHistoryIncrementalAll.sh.

It is possible to run runNvdCreateHistoryIncremental or nvdCreateHistoryIn-
cremental.sh directly with the year as argument to just update one file. In case
this is done it is recommended to use runNvdCreateHistoryIncremental.sh since
it will also commit the log to the repository. To only get the difference between
two files one can either run runCompareVdbXml.jar directly or use nvdXml-
CompareWrapper.sh with the required arguments. The necessary arguments
are describes in nvdXmlCompareWrapper.sh or in the source code of the jar
file.

A.2.3 OSVDB History Creation

The task of these scripts is to create the edit history of the combined OSVDB
XML file. At first, the revision list of the file is created and then each revision
is compared with the previous revision to create the edit history. The result is
committed to the repository. Caution, do not mix history files created by these
scripts with a history created by OSVDB incremental history creation (A.2.4)
because the non-incremental version does not create the sentinel files required by
the incremental version. Running the incremental version without the correct
sentinel files present causes the history to contain duplicates. This is because
the incremental scripts process every revision for which no sentinel file exists
and appends the results to the existing history file. All the necessary scripts can
be found on the SVN repository in the directory svn//scripts/history-generate/,
most of them contain osvdb in their name. Their specific tasks are the following:

• runOsvdbCreateHistory.sh checks out the log directory and runs osvdbCre-
ateHistory.sh. Upon completion the log is committed to the repository.

• osvdbCreateHistory.sh checks out the script directory, the input data di-
rectory and the history directory. It then sets up the work directory where
the scripts are copied to and creates revisions list of the input file. For
each revision it runs osvdbXmlCompareWrapperEmpty.sh or osvdbXml-
CompareWrapper.sh which writes the differences to the history file. When
all revisions are processed the history file is committed to the repository.

A.2 History Creation 83

• osvdbXmlCompareWrapper.sh is a wrapper script for svn diff to correctly
run runCompareVdbXml.jar with the necessary arguments. It also speci-
fies the memory available to the java runtime environment.

• osvdbXmlCompareWrapperEmpty.sh is a similar wrapper script that is
only called when the first revision is processed. This is necessary because
for the first revision exists no previous revision, and therefore uses osvdb-
preprocessed-empty.xml instead. It also specifies the memory available to
the java runtime environment.

• runCompareVdbXml.jar detects the changes on the XML element level
between two given input files and writes the result to the specified output
file.

Default usage

1. Check the SVN repository for the directory where the history file will be
stored and make sure that it contains a log directory.

2. Check that runOsvdbCreateHistory.sh and osvdbCreateHistory.sh are lo-
cally available.

3. Check the variables in runOsvdbCreateHistory.sh and osvdbCreateHis-
tory.sh to match the SVN repository, the work directories and for correct
runtime variables.

4. Check the variables of osvdbXmlCompareWrapper.sh and osvdbXmlCom-
pareWrapperEmpty.sh to match the used data file type (osvdb) as well as
that the called jar file will have enough memory (at least 20 times the size
of the file that will be processed). Allocating too little memory will cause
the comparison to fail while too much could cause swapping or failure due
to not enough available memory.

5. Check that the changes of osvdbXmlCompareWrapper.sh, osvdbXmlCom-
pareWrapperEmpty.sh and runCompareVdbXml.jar are committed.

6. Run runOsvdbCreateHistory.sh. It is recommended to forward the output
to a file and run the script in the background since it can take from several
hours to several days.

It is possible to run osvdbCreateHistory.sh directly but in general it is recom-
mended to use runOsvdbCreateHistory.sh since it will also commit the log to the
repository. To get the difference between two files one can either run runCom-
pareVdbXml.jar directly or use osvdbXmlCompareWrapper.sh with the required
arguments. The necessary arguments are describes in osvdbXmlCompareWrap-
per.sh or in the java source code of the jar file.

84 A ”How To” Descriptions

A.2.4 OSVDB incremental History Creation

The task of these scripts is to update the already present edit history of the
combined OSVDB XML file. At first it creates the revision list of the file and
then creates a job for each revision that was not previously processed (i.e., for
which no sentinel file exists). The result is appended to the existing history
file and committed to the repository. Caution, do not mix history files created
by these scripts with the history created by OSVDB history creation (A.2.3).
Because the non-incremental version does not create the required sentinel files.
Running the incremental version without the correct sentinel files present causes
the history to contain duplicates. This is because the incremental scripts process
every revision for which no sentinel file is existing and appends the results to
the existing history file. All the necessary scripts can be found on the SVN
repository in the directory svn//scripts/history-generate/, most of them contain
osvdb and incremental in their name. Their specific tasks are the following:

• runOsvdbCreateHistoryIncremental.sh checks out the log directory and
runs osvdbCreateHistoryIncremental.sh. Upon completion the log is com-
mitted to the repository.

• osvdbCreateHistoryIncremental.sh checks out the script directory, the in-
put data directory and the history directory. It then sets up the work
directory where the scripts are copied to and creates a job file for each
not previously processed revision. For each job it runs osvdbXmlCom-
pareWrapperEmpty.sh or osvdbXmlCompareWrapper.sh which writes the
differences to the a temporary history file. After the revision is processed
the additional history is appended to the existing history. The updated
history and the respective sentinel file are committed to the repository.
This is repeated until all jobs are processed.

• The descriptions of osvdbXmlCompareWrapperEmpty.sh, osvdbXmlCom-
pareWrapper.sh and runCompareVdbXml.jar can be found in section A.2.3.

Default usage

1. Check the SVN repository for the directory where the history file will be
stored and make sure that it contains a sub directory for the sentinel files
and another sub directory for the log files.

2. Check that runOsvdbCreateHistoryIncremental.sh and osvdbCreateHisto-
ryIncremental.sh are locally available.

3. Check the variables in runOsvdbCreateHistoryIncremental.sh and osvd-
bCreateHistoryIncremental.sh to match the SVN repository, the work di-
rectories and for correct runtime variables.

4. Check the variables of osvdbXmlCompareWrapper.sh and osvdbXmlCom-
pareWrapperEmpty.sh to match the used data file type (osvdb) as well as
that the called jar file will have enough memory (at least 20 times the size
of the file that will be processed). Allocating too little memory will cause

A.3 History Evaluation 85

the comparison to fail while too much could cause swapping or failure due
to not enough memory.

5. Check that the changes of osvdbXmlCompareWrapper.sh, osvdbXmlCom-
pareWrapperEmpty.sh and runCompareVdbXml.jar are committed.

6. Run runOsvdbCreateHistoryIncremental.sh. It is recommended to forward
the output to a file and run the script in the background since it can take
from several hours to several days.

It is possible to run osvdbCreateHistoryIncremental.sh directly but in general it
is recommended to use runOsvdbCreateHistoryIncremental.sh since it will also
commit the log to the repository. To get the difference between two files one
can either run runCompareVdbXml.jar directly or use osvdbXmlCompareWrap-
per.sh with the required arguments. The necessary arguments are describes in
osvdbXmlCompareWrapper.sh or in the source code of the jar file.

A.3 History Evaluation

The history is evaluated by scripts which perform different tasks depending
on their arguments. To perform many different evaluations in sequence the
operations tool was developed. First, the operations tool is described, followed
by the individual evaluation scripts that perform the evaluations.

A.3.1 The Operations Tool

This tool was initially developed to perform many executions of the default
evaluation script. It greatly simplifies the update of the evaluations when a
newer version of the history is available. Later, the operations tool was improved
to perform some preprocessing and adapted to also execute other evaluation
scripts. All the necessary files can be found on the SVN repository in the
directory svn//scripts/history-evaluate/.

• The nvd-evaluate.sh and osvdb-evaluate.sh scripts are the operation script
files. The operation script reads the operations configuration file, performs
the preprocessing and executes the operations defined in the operations
file. Each database has its own script because some parameters are dif-
ferent. It is much more convenient to define these parameters once per
source and later just run the script than giving them every time as argu-
ments. First, the script reads the parameters given in the configurations
file. Then it creates the work and output directories if necessary and if the
work directory was already present it will be cleaned. If specified in the
operations configuration file, bad new lines in the history are fixed. These
can happen when new lines within the content are not escaped. It checks
if all the lines start either with add, remove or change; and if it is not
the case the line will be added to the previous line. Last, the parameters
of one operation are read, the selection performed, the filter performed
and the evaluation script started. This is repeated until all operations are
executed.

86 A ”How To” Descriptions

• The nvd.config and osvdb.config are the operations configuration files that
contain parameters which are needed for all the operations such as the
history source directory, the work directory or the output directory. Each
parameter is expected in a specific line. The detailed definition of the pa-
rameters is in the read me file. It is possible to create other configuration
files than the given ones if it is needed.

• The nvd.ops and osvdb.ops are the operations files which contain the pa-
rameters for each operation executed by the operation script. The oper-
ation was originally specified for the default evaluation script. The order
of the parameters, therefore, might look a bit chaotic when used for other
evaluation scripts. The detailed definition of the parameters can be found
in the read me file. For each operation all the parameters must be cor-
rectly specified (currently thirteen) otherwise the result is wrong or the
script will not run. It is possible to create other operation files if it is
necessary. This can be handy if only a few operations have be performed
and not all of them.

• The read me file holds the definitions of the parameters of the configura-
tion and operations file. It also lists the arguments an evaluation script
will be handed

Default Usage

1. Check that the parameters in the operations script point to the correct
configuration and operations file.

2. Check that the parameters in the configurations file are correct.

3. Check that the operations in the operations file are correct.

Create a new operation

1. Choose the appropriate evaluation script and choose the parameters that
will be given to the evaluation script.

2. Choose the file name of the output file.

3. Choose if only a specific set of history entries should be evaluated (select
parameters).

4. Choose if a specific set of history entries should be excluded (filter param-
eters).

5. Fill the operation according to the specification in the read me file. Every
parameter has to have a value. In case a parameter is not used it is
recommended to use ”-” as default value.

A.3 History Evaluation 87

A.3.2 Evaluation Scripts

These scripts perform the actual evaluation of the history. Some of the scripts
are designed to be used in junction with the operations tool. If that is the case
it is noted in the comment at the beginning of the script. The other scripts
cannot be run by the operations tool because they either are just a helper
script (e.g., script-getID.pl) or they perform a very specific check which does
not have to be run every time. In such a case it is much easier to write a
stand alone script because otherwise the requirements of he operations tool
have to be fulfilled which demands quite some extra code. All the scripts
described in this section can be found on the SVN repository in the directory
svn//scripts/history-evaluate/.

Creating a new evaluation script

All the history evaluation scripts can be executed directly but if the operations
tool has to be able to run them, they have to fulfill the following requirements.

• The script must handle a specific set of arguments. The up to date version
can be found in the read me file. Currently the script will be handed the
following arguments

1. The directory where the history files can be found.

2. A text file where each line contains the file name of one history files
that has to be processed.

3. The output file path which is build by concatenating the output
directory of the configurations file with output file name of the op-
eration (operation parameter number two).

4. The operation parameter number three.

5. The operation parameter number four.

6. The operation parameter number five.

7. The operation parameter number ten.

8. The operation parameter number eleven.

• The script has to be in the directory specified in the configuration file.

The default evaluation script (script-eval-count.pl)

This script is the main script used to analyze the history. Initially, it was only
designed to count the amount of changes for each date but over time it was
extended to perform many different counts. The format the result is returned,
can be greatly influenced by the arguments. With the different arguments and
the select and filter options of the operations tool it is possible to create a
multitude of different counts to answer questions like “How many new entries
were added per month?” or “On how many days were the entries modified?”.
Since there are many possible combinations giving an example for each would
be too much, therefore each argument is explained in detail:

88 A ”How To” Descriptions

• The 1st argument (argument 0 in Perl) is the directory of the history files.

• The 2nd argument (argument 1 in Perl) is a text file where each line
contains the file name of one history file.

• The 3rd argument (argument 2 in Perl) is the path to the output file.

• The 4th argument (argument 3 in Perl) is the primary counter. It can
have the values id or date. This determines according to which history
element the output will be created. If id is chosen the counts are written
to the output file per identifier (i.e., NVD or OSVDB identifier). This can
be used to answer questions like ”How many times was the entry edited?”.
If date is chosen the counts are written to the output file per date. This
can be used to answer questions like ”How many edits happened during
each day?”.

• The 5th argument (argument 4 in Perl) is the secondary counter. It has
the value not chosen in the primary counter. The possible values are date
or id.

• The 6th argument (argument 5 in Perl) is a date type. The value of
this argument is only used if the value of the primary counter is date.
Depending on this value the results can be aggregated over to specific
time windows.

– The value date leaves the date in the complete format (e.g., 2011-
12-21).

– The value year aggregates the results per year by reducing the date
to the year (e.g., 2011).

– The value month aggregates the results per month by removing the
day from the date (e.g., 2011-12).

– The value day aggregates the results per day in the month by reduc-
ing the date to the day (e.g., 21). Therefore, it can have values from
1 to 31.

– weekday aggregates the results per week day. The weekday is deter-
mined as returned as number from 1 to 7 where 1 is Monday an 7 is
Sunday.

– weekdayMonth aggregates the results per week day in the month by
determining the week number and the week day (e.g., week-2-day-
3). The example means that the day is the second Wednesday in
the month. This can be used to detect certain weekly work patterns
within a month (e.g., first Monday in the month or last Friday).

– total aggregates the results over the whole time by setting the date
of all counts to total. With this counts over the whole observation
period can be created.

A.3 History Evaluation 89

• The 7th argument (argument 6 in Perl) is a value that specifies how
many of the counts with the largest number of edits are removed. This
is sometimes necessary because otherwise a few days with an extreme
amount of edits (e.g., NVD Linux kernel renaming) distort the results.
The counts of these days are removed before the dates are aggregated.

• The 8th argument (argument 7 in Perl) specifies the output format. If the
value is human the output is more comprehensible for a human reader an
it also adds more information per count. For any other value than human
the output will be written in one line. It is recommended to use the value
nonHuman in the operations file to keep it better readable. The human
output is thought to be read by a human and not for further processing
since the results are written in multiple lines. The nonHuman output it
thought to be used in further processing such as sorting or MATLAB.

The resulting output greatly depends on the arguments, and therefore can vary.
But the general format is the following:

1. the value of primary counter which is either the identifier of the entry or
the date,

2. the number of edits for this primary counter (counter in human readable
format),

3. the number of adds for this primary counter,

4. the number of changes forprimary counter and

5. the number of removes for this primary counter.

If the parameter human is given to argument eight additionally all the involved
secondary counter and edited XML tags are given.

Default Usage

1. Choose whether id or date is the appropriate primary counter and assign
the other to the secondary counter.

2. In case date is the primary counter choose the appropriate time window.
The possible values are defined in the read me file.

3. Choose how many of the largest edit counts have to be removed. Three
means that the entries of the three largest edit counts are removed. Use
zero in case none should be removed.

4. Choose the output format human or nonHuman.

5. Choose an output file name.

90 A ”How To” Descriptions

Dump script (script-dump-all-results.sh)

This script simply dumps the content of the given history files to a temporary
file. The temporary file is sorted and the result is written to the output file.
This script can be used to create one large history file of partial history files like
the NVD history. It can also be used to create partial history files of entries that
are of special interest by using the select and filter options of the operations
tool. Such a partial history can then be analyzed manually or by a script later.
The entries are sorted by the following paramters: 1. the date of the edit, 2. the
identifier of the entry which was edited, 3. edit type, 4. the tag of the edited
XML element.

Default Usage

1. Choose an output file name.

2. In junction with the operations tool set the not required arguments to a
default value.

3. Write the parameters to the operation or run the script.

It is possible to run this script without the operations tool but in general it
is recommended to use it since it can perform preprocessing. The necessary
arguments are described in the script file.

Dump script with result sorted by ID
(script-dump-all-results-sortby-ID.sh)

This script is a minor variation of the dump script script-dump-all-results.sh.
The resulting history dump is primarily sorted by the identifier and then by
the date. This can be helpful when the history of a set of previously selected
identifiers has to be analyzed because the history of each identifier is together
in one segment.

Duration after the entry is added until edits occur
(script-editDuration.sh)

This script is very similar to script-nvd-cvss.sh. It calculates the days after
the entry was added until the first and the last edit occurs. Multiple history
files are combine into one. Finally, edit durations are calculated by script-
editDuration.pl.

Default Usage

1. Check that the paths to the Perl helper scripts are correct.

2. Check that the patterns defined in the script satisfy the task.

3. Choose a file name to which the script-editDuration.pl helper script will
write the results to. In the operation this is the third parameter.

A.3 History Evaluation 91

4. Choose the select parameters for the operation.

5. Choose the filter paramters for the operation.

6. In junction with the operations tool set the not required arguments to a
default value.

7. Write the parameters to the operation or run script-editDuration.sh with
the necessary arguments.

The script is designed to be used in with the operations tool but it can be run
on its own, as long as the required arguments are given correctly as specified in
the script.

Helper script to calculate the edit durations (script-editDuration.pl)

This script is a helper script for script-editDuration.sh. It pareses the given
history and calculates the number of days between the date the entry was
added and the first as well as the last edit. The result is written to the specified
output file.

NVD CVSS count and dump (script-nvd-cvss.sh)

This script dumps all the history entries related to CVSS edits and calculates
the days between the changes by giving the dump to script-nvd-cvss.pl. First, a
temporary dump is created of all the history entries related to CVSS edits. In
a second step an identifier list is created by using script-getID.pl. Finally, the
durations between the edits are calculated by script-nvd-cvss.pl

Default Usage

1. Check that the paths to the Perl helper scripts are correct.

2. Check that the patterns defined in the script satisfy the task.

3. Choose a file name for the dump. In the operation this is the third
parameter.

4. Choose a file name to which the script-nvd-cvss.pl helper script will write
the results to. In the operation this is the fourth parameter.

5. In junction with the operations tool check that no select or filtering re-
garding CVSS data is specified since this is done by the script.

6. In junction with the operations tool set the not required arguments to a
default value.

7. Write the parameters to the operation or run script-nvd-cvss.sh with the
necessary arguments.

The script is designed to be used in with the operations tool but it can be run
on its own, as long as the required arguments are given correctly as specified in
the script.

92 A ”How To” Descriptions

Helper script to calculate the CVSS edit time (script-nvd-cvss.pl)

This script is a helper script for script-nvd-cvss.sh. It parses the given CVSS
history dump and calculates the number of days between the date the entry
was added and the CVSS information was added, the number of days until the
CVSS information edited the first time and the number of days until the CVSS
information was edited last.

Helper script to get the identifiers (script-getID.pl)

This script can be used to get a unique list of all the identifiers contained in
the given history file. This unique list is written in lexicographical order to the
output file. It is possible to run the script on its own as long as the required
arguments are given as described in the script.

Stand alone script (script-nvd-check-lastmodifieddate.sh)

This script can be used to check if the sum of edited entries over all the days
matches the sum of vuln:last-modified-datetime. It creates several result files
for manual investigation. In a first step these sums are calculated. To do this
a result file of a previously performed history analysis file is evaluated. In a
second step all the history entries without a corresponding edit in the vuln:last-
modified-datetime are dumped for manual investigation. In the last step several
count evaluations are performed on the dump file.

Default usage

1. Create the required history result as described below and check that the
file path is correct in the script.

2. Create the required history dump only including edits in the vuln:last-
modified-datetime element as described below and check that the file path
is correct in the script.

3. Create the required complete history dump as described below and check
that the file path is correct in the script.

4. Check that the file path variable to the default evaluation script is correct.

5. Check if the set output directory variable in the scrip is correct.

6. Check if the set output files name variables in the script are correct.

7. Run script-nvd-check-lastmodifieddate.sh.

To create the required history result, which excludes added entries, the op-
erations tool has to run an operation with the following parameters: 1. script-
eval-count.pl, 2. output file name, 3. date, 4. id, 5. date, 6. noSelect, 7. - 8. filter,
9. ^add.*tag=’entry’ 10. 0, 11. human.

A.3 History Evaluation 93

To create the required history dump, which only including of the vuln:last-
modified-datetime element, the operations tool has to run an operation with the
following parameters: 1. script-dump-all-results.sh, 2. output file name, 3. - 4. -
5. - 6. select 7. ^change.*tag=’vuln:last-modified-datetime’, 8. noFilter, 9. -,
10. -, 11. -.

To create the required complete history dump, the operations tool has to
run an operation with the following parameters: 1. script-dump-all-results.sh,
2. output file name, 3. - 4. - 5. - 6. noSelect 7. -, 8. noFilter, 9. -, 10. -, 11. -.

Stand alone script (script-osvdb-addRemoveAdd.sh)

This script can be used to check which OSVDB entries are added removed and
added again. To create the identifier list the script uses script-getID.pl as a
helper script. The result written to the output fill states for every removed
entry how many times it was added and how many times it was removed.

Default usage

1. Check if the variables in the script are correct.

2. Run script-osvdb-addRemoveAdd.sh.

94 A ”How To” Descriptions

Appendix B

Assignment Description and
Declaration of Originality

Declaration of Originality

The declaration of originality contains a blue stripe on the left side which was
caused by the scanner. Even after repetitive scans the problem remained.

95

Institut für
Technische Informatik und
Kommunikationsnetze

Master Thesis

Edit History of the NVD
and Similar Vulnerability Databases

Mathias Karlsson

Advisor: Dr. Stephan Neuhaus, stephan.neuhaus@tik.ee.ethz.ch
Professor: Prof. Dr. Bernhard Plattner, plattner@tik.ee.ethz.ch

16 February 2012 – 15 August 2012
SVN Revision 9351 of 2012-02-17 17:24:52 +0100

1 Introduction

This master thesis is an empirical work providing the tools for the analysis of the structure and processes
behind the National Vulnerability Database (NVD)1 and similar vulnerability databases such as the
Open-Source Vulnerability Database (OSVDB)2. Ideally, the thesis will also yield first insights into these
structures and processes.

The Common Vulnerabilities and Exposures database (CVE)3 is the largest clearing house for software-
related vulnerabilities, and the NVD is a publicly available view of that database. This database is often
used as ground truth for empirical work on software vulnerabilities, but since it is a human effort, it is
clear that the data must necessarily be noisy. However, since the process of NVD entry creation and
maintenance is not public, assessing just how noisy the data actually is and therefore how much one can
trust information in the NVD, is unclear. This master thesis will shed some light on this.

The main vehicle to do that is by looking at the database’s edit history. Naively, one would assume
that an entry, once made, will remain unchanged; however, some entries do in fact change. Sometimes
it is the product enumeration (CPE4) that is changing, but sometimes, the severity assessment (CVSS5)
changes too, and even for very old entries! Sometimes it seems as if edits are made, then undone, and
then redone again. If there were evidence of edit wars in the NVD, this would severely undermine its
use as a research tool, since it cannot be relied upon for ground truth.

Of course, it would be easiest if one could simply ask MITRE or NIST for information on how NVD
entries get created, but these organisations are quite tight-lipped about their processes. In fact, some
entries in the NVD change only their “last changed” date, suggesting that there are hidden fields in the
NVD that people at MITRE or NIST can see, but that are hidden from the public. Therefore, we will
have to treat the NVD itself as an object of study and see what we can learn.

1http://www.nist.gov
2http://osvdb.org
3http://cve.mitre.org
4http://nvd.nist.gov/cpe.cfm
5http://nvd.nist.gov/cvss.cfm

1

96
B Assignment Description and

Declaration of Originality

2 Assignment

2.1 Objectives

This thesis will provide tools to analyse the edit history of the NVD and at least one other large
vulnerability database (such as the OSVDB). These tools will enable the analysis of changes in these
databases in time, in the large and in the small:

• Analysis of the evolution of an individual entry: what changed, how did it change, and when? Are
there periodic changes? Are there times of large changes? When entries are newly added to the
NVD, does the published-datetime field reflect the actual date when the entry was first visible?

• Finding of entries with particularly many edits: are there edit wars (and how would they be
characterised)? Are there things that much-changed entries have in common?

• Analysis if changes in the large: how does the churn develop over time? Are there periodic
phenomena? Are there times of large (bulk) changes?

• When comparing the NVD with the OSVDB, are there entries that appear first in one database
and then in the other? How can these entries be characterised?

At the moment, there already exist daily downloads of the NVD in an SVN repository for about
seven months, and very simple scripts to enable a very crude analysis of these downloads. These scripts
may be used as a starting point.

2.2 Tasks

There are some common tasks that are orthogonal to the other, more technical tasks outlined below:

Validation. All programs and tools that are written a part of this thesis must be run against the NVD
or OSVDB and must perform their assigned tasks. Some of these tools are later to be run unassisted
as cron jobs, so they need sufficient error detection and handling so as not to overwrite important
information or to yield incorrect results.

Evaluation. Both the NVD and the OSVDB are large databases, and looking at the edit history of
these databases will produce more data still. All programs or scripts should therefore perform their
tasks reasonably fast, and algorithms should be selected that have good running times.

Documentation. All programs and scripts will be used long after the thesis is finished, and perhaps
even once all people immediately connected with it have left ETH. Therefore, they need to be
documented so that people unconnected with their development can use them.

2.2.1 Familiarisation With the NVD History as Stored in the SVN

As mentioned above, there is already a large dataset of daily changes, in an SVN, going back to July
2011. This dataset needs to be processed so as to enable the analyses outlined in Section 2.1. Therefore,
familiarisation is important:

• Can changes be extracted reliably by line-oriented tools such as diff?

• At the moment, NVD feeds are preprocessed by a crude sorting program before being committed
to the SVN. Is that sorting sufficient to remove superficial but not substantial changes in the NVD
XML feed stemming from NIST’s XML export?

2.2.2 Extraction of Changes Between Successive Days

We need mthods to extract changes between two successive versions of the NVD and the OSVDB, and
these changes must be displayable in the same format. Such changes must allow the identification of the
entity that is changed, what has changed, and from what to what.

2

97

2.2.3 Characterisation of Changes

We als need methods to assess changes, both qualitatively as quantitatively, and both for the NVD and
the OSVDB. For example: are there edit wars? How often are severities reassessed? Are there trends?
Are there periodic activities (workdays versus weekends, year-ends, holidays)? Are there entries that get
changed more often than average?

2.2.4 Storage of a Versioned OSVDB

In order to look at changes between successive versions of the OSVDB, and to compare the changes in
the OSVDB with those in the NVD, we need historical data for the OSVDB. The OSVDB is distributed
in mySQL dumps, which is not really good for computing differences, so a way has to be found to
transform the mySQL dumps into something more suitable for analysis (perhaps via the roundabout
way of importing the dump into a mySQL database first).

2.2.5 Characterisation of Inter-Database Differences

We need tools to compare the differences between the databases, for example, to ask questions like: Is
one consistently ahead of the other? Are there categories where one is ahead, and other categories where
the other is ahead with a change? (E.g., it could be that open-source vulnerabilities are reported faster
in OSVDB, but closed-source may be faster in NVD.) Are changes consistent?

2.2.6 Writeup of the thesis

If the results are good enough, i.e., if there emerge interesting patterns and a compelling interpretation,
an academic paper is also planned.

3 Milestones

• Provide and maintain a project plan which identifies the milestones.

• Two intermediate presentations: Give a presentation of 10 minutes to the professor and the advisors.
In this presentation, the student presents major aspects of the ongoing work including results,
obstacles, and remaining work.

• Final presentation of 15 minutes in the CSG group meeting, or, alternatively, via teleconference.
The presentation should carefully introduce the setting and fundamental assumptions of the project.
The main part should focus on the major results and conclusions from the work.

• Any software that is produced in the context of this thesis and its documentation needs to be
delivered before conclusion of the thesis. This includes all source code and documentation. The
source files for the final report and all data, scripts and tools developed to generate the figures of
the report must be included. Preferred format for delivery is a CD-R.

• Final report. The final report must contain a summary, the assignment, the time schedule and
the Declaration of Originality. Its structure should include the following sections: Introduction,
Background/Related Work, Design/Methodology, Validation/Evaluation, Conclusion, and Future
work. Related work must be referenced appropriately.

4 Organization

• Student and advisor hold a weekly meeting to discuss progress of work and next steps (Wednesdays,
1000). The student should not hesitate to contact the advisor at any time. The common goal of
the advisor and the student is to maximize the outcome of the project.

• The student is encouraged to write all reports in English; German is accepted as well.

• The core source code will be published under the GNU general public license.

3

98
B Assignment Description and

Declaration of Originality

100
B Assignment Description and

Declaration of Originality

References

[1] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vulner-
able software components,” in Proceedings of the 14th ACM conference on
Computer and communications security, CCS ’07, (New York, NY, USA),
pp. 529–540, ACM, 2007.

[2] S. Zhang, D. Caragea, and X. Ou, “An empirical study on using the national
vulnerability database to predict software vulnerabilities,” in Database and
Expert Systems Applications (A. Hameurlain, S. Liddle, K.-D. Schewe, and
X. Zhou, eds.), vol. 6860 of Lecture Notes in Computer Science, pp. 217–231,
Springer Berlin / Heidelberg, 2011.

[3] S. Neuhaus and T. Zimmermann, “The beauty and the beast: vulnerabilities
in red hat’s packages,” in Proceedings of the 2009 conference on USENIX
Annual technical conference, USENIX’09, (Berkeley, CA, USA), pp. 30–30,
USENIX Association, 2009.

[4] S. Neuhaus and T. Zimmermann, “Security trend analysis with cve topic
models,” in Proceedings of the 2010 IEEE 21st International Symposium
on Software Reliability Engineering, ISSRE ’10, (Washington, DC, USA),
pp. 111–120, IEEE Computer Society, 2010.

[5] F. Massacci, S. Neuhaus, and V. H. Nguyen, “After-life vulnerabilities: a
study on firefox evolution, its vulnerabilities, and fixes,” in Proceedings of the
Third international conference on Engineering secure software and systems,
ESSoS’11, (Berlin, Heidelberg), pp. 195–208, Springer-Verlag, 2011.

[6] K. Zhang, R. Statman, and D. Shasha, “On the editing distance between
unordered labeled trees,” Inf. Process. Lett., vol. 42, pp. 133–139, May 1992.

[7] K. Zhang, “Computing the editing distance between unordered labeled trees
is np-complete,” in Proceedings of the third international conference on
Young computer scientists, ICYCS’93, (Beijing, China, China), pp. 641–
644, Tsinghua University Press, 1993.

101

