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Abstract

Recent research efforts in the field of Software-Defined-Networks (SDN)
led to development of the OpenFlow Protocol [1], which decouples the
network data plane from the control plane, pushing the latter to an ex-
ternal controller. A hypervisor called FlowVisor [2] has been developed,
which intercepts the control channel between controller and the switches.
It allows multiple controllers to share the network resources in a specified
way.

The header values of a packet can be viewed as a point in the header
space which is spanned by the header field dimensions [3]. FlowVisor
allows the network administrator to define volumes in this space and as-
sociate these with a controller. A controller is allowed to handle packets
which fall into one of the volumes associated with it. Yet it is not guaran-
teed that all such packets are handled by the corresponding controller, as
the volumes of different controllers can overlap and FlowVisor forwards
related messages only to one of these controllers.

Related to this, the Master Thesis at hand covers two linked yet separate
research topics:

(i) The support point of the first part is the necessary-but-not-sufficient
nature of FlowVisor, as described in the forgoing paragraph. The
transition of the paradigm towards a necessary-and-sufficient nature
is proposed and evaluated. As a result researchers may use produc-
tion traffic in real-time for their work without interfering with the
functionality of the network. An implementation called V is given
and found to prove the claims made.

(ii) The modifications proposed in V are results of the modification pro-
posals made in the second part. If the necessary-but-not-sufficient
approach is kept, conflicts between controllers can arise. How to
use information that can be obtained about the state of the network
to find such conflicts is discussed in this part. As a side-product
a network debugger has been developed that allows researchers to
simulate the path a given packet would take through the network at
any given time.
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Chapter 1

Introduction

1.1 OpenFlow

OpenFlow is a realization of a Software Defined Networking protocol
(SDN) that separates the control and data plane of network switches. The
advantages of moving the control plane to an external controller is, that
this controller can be implemented in software. Hence allowing greater
flexibility, evolvability, extensibility, etc. in controller development. The
data plane remains on the switch, which allows fast, line-rate packet-
processing. The controller can modify the behavior of the data plane
by modifying the switch’s flow table, which consists of the following six
parts [4]:

(i) the match field which describes the flowspace for which the entry is
valid,

(ii) the priority field that determines the ordering/prioritization of the
flow table entries,

(iii) the counter fields that keep record of the number of packets and
bytes the flow table entry applied to in the past,

(iv) the instructions which define the actions that need to be applied
onto packets that match the flow table entry,

(v) the timeout fields which defines how long the entry is to remain in
the table and

(vi) a cookie chosen by the controller.
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Packet-Processing When a new packet arrives at a physical port of an
OpenFlow-enabled switch the packet’s header fields are matched against
the internal flow table of the switch.

(i) If a matching entry is found, the associated actions are applied.

(ii) If no matching entry is found, the packet is either dropped or for-
warded to the controller. Which of these actions is executed depends
on the configuration1.

If the packet is forwarded to the controller, it is encapsulated into an
OFPT_PACKET_IN message that gives the controller context information
such as the in-port through which the packet entered the switch. Upon
reception of an OFPT_PACKET_IN message by the controller, the packet
can be processed in software, with all advantages and disadvantages as-
sociated with this practices. The controller would normally install a new
flow table entry in the switch’s controller and/or send the packet back to
the switch together with an associated action to be applied to it.

Proactive Rule Installation A controller can at any time (independent
from receiving an OFPT_PACKET_IN message), install forwarding rules
into the flow table of a switch and thereby modify the behavior of the
data plane. Further the controller can request information from a switch
by sending OFPT_STATS_REQUEST2 messages that, depending on the
message type, return information about configuration settings or rules
that are installed in the switch’s flow table. This source of information
can be leveraged to develop dynamic controllers that implement load-
dependent policies (e.g. load balancing applications).

1.2 FlowVisor

FlowVisor is a piece of software that resides between controllers (North
Bound Interface) and networks switches (South Bound Interface) and
intercepts the control channel messages exchanged between them over
OpenFlow. It can be seen as a special kind of controller. It offers the
normal controller interface for the network switches, while it emulates a

1 This describes OpenFlow 1.0 behavior. OpenFlow 1.x allow for greater flexibility.
2 This describes OpenFlow 1.0 behavior. OpenFlow 1.x uses other control messages.
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switch interface on its northern side towards the controllers. This trans-
parent architecture allows it to share the resources of a switch among
multiple controllers in a safe way without introducing the need to mod-
ify controllers or switches.

FlowVisor interprets the header values of a packet as a point in the header
space which is spanned by the header field dimensions [3]. It allows
the network administrator to define volumes in this space and associate
a controller with them. The controller is then allowed to handle pack-
ets whose header fields describe a point in a volume associated with it.
FlowVisor guarantees that the controller does not handle the traffic out-
side its slice3 by limiting the validity of its rules to the volumes that are
associated with the controller.

However the controller is not guaranteed to handle all packets that fall
within its slice. This is because FlowVisor allows the volumes of different
controllers to overlap. As a result control messages arriving on its South
Bound Interface related to a packet whose point in the header space is
associated with multiple controllers will only be forwarded to one con-
troller. If multiple controllers are associated with the header-space-point
in question, their volume-dependent priority determines which controller
receives the OFPT_PACKET_IN message.

1.3 Glossary

This section describes the key terms used in the thesis at hand. It is based
on the glossary of the OpenFlow Specifications 1.3 [5].

• Byte: an 8-bit octet.

• Packet: an Ethernet frame, including header and payload.

• Physical Port: where packets enter and exit the OpenFlow pipeline.

• Flow Table: a switch’s internal database table that defines packet
patterns and associated actions. Refer to [4, 6, 7, 5].

• Flow Entry: an element of a flow table used to match and process
packets. It contains a set of match fields for matching packets, a

3 The controller’s slice is the set of volumes that have been associated with it by the
network administrator.
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priority for matching precedence, a set of counters to track packets,
a set of instructions to apply and a controller-chosen cookie.

• Match Field: a field against which a packet is matched, including
packet headers, the ingress port, and in OpenFlow 1.x the meta-data
value. A match field may be wildcarded (match any value) and in
some cases bitmasked.

• Slice: Collection of header-space volumes that are associated with
a specific controller. In the context of FlowVisor the slice describes
the sphere of influence of a controller. In the context of V it de-
scribes which part of the incoming traffic is being seen by a specific
controller.

• V : Implementation of the first algorithm proposed in this thesis.

• Controller Rule: a logical flow entry as defined by the controller.

• Switch Rule: a physical flow entry in the switch’s flow table.

• Sliced Rule: a rule that has been processed by the Slicer unit of V.
It describes an intermediate, internal state between controller and
switch rule.

• Sacramento: Implementation of the second algorithm proposed in
this thesis.

1.4 Mathematical Glossary

• φi: controller rule.

• χi: sliced rule.

• ψi: switch rule.

• νi: number of controller rules installed by controller i.

• kfsi : number of switch rules whose flowspace overlaps with fsi.

• pi: a network packet.

• qi: a physical port.

• H: the header space spanned by the 12 header fields of a network
packet against which OpenFlow 1.0 matches.
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1.5 OpenFlow Control Messages

In the OpenFlow Specifications 1.0 [4], the following control messages are
defined4 :

• OFPT_HELLO: a message to initiate the connection between switch
and controller.

• OFPT_ERROR: message sent by the switch to inform the controller
about an error.

• OFPT_ECHO_REQUEST: message used to implement a keep-alive
of the connection5.

• OFPT_ECHO_REPLY: response to an OFPT_ECHO_REQUEST
message.

• OFPT_VENDOR: a vendor dependent message that can be used to
prototype new functions into OpenFlow.

• OFPT_FEATURES_REQUEST: a message generated by the con-
troller to request the features of a datapath.

• OFPT_FEATURES_REPLY: reply to the OFPT_FEATURES _RE-
QUEST which contains a list of the switch’s features.

• OFPT_GET_CONFIG_REQUEST: a message sent by the controller
to query the current configuration of a datapath.

• OFPT_GET_CONFIG_REPLY: a message generated by the datap-
ath in response of an OFPT_GET_CONFIG_REQUEST query con-
taining the value of the queried configuration parameter.

• OFPT_SET_CONFIG: a message sent by the controller to modify
the settings of a datapath.

• OFPT_PACKET_IN: a message generated by the datapath on for-
warding a packet to the controller.

• OFPT_FLOW_REMOVED: a message sent by the switch to inform
the controller about a message that timed out.

4 Be aware that OpenFlow 1.x define a different set of control messages, that allow
greater flexibility.

5 For a good discussion on Keep-Alive messages refer to [8].
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• OFPT_PORT_STATUS: a message generated by the switch to in-
form the controller about a change in state of a physical port.

• OFPT_PACKET_OUT: a message that allows the controller to inject
a packet into the data plane of a switch.

• OFPT_FLOW_MOD: a message generated by the controller to mod-
ify the flow tables of a switch.

• OFPT_PORT_MOD: a message that allows the controller to modify
the behavior of a physical port of a switch.

• OFPT_STATS_REQUEST: a message generated by the controller to
query the contents of one of the datapaths flow tables.

• OFPT_STATS_REPLY: a message that is generated in response to
an OFPT_STATS_REQUEST message containing the requested in-
formation about the flows in the switch’s flow table.

• OFPT_BARRIER_REQUEST: a message generated by the controller
to ensure ordering of a sequence of control messages. This is neces-
sary because the switch is allowed to reorder control messages. All
messages received by the controller before reception of this message
need to be processed before the OFPT_BARRIER_REPLY is sent.

• OFPT_BARRIER_REPLY: the switch’s reply generated in response
to an OFPT_BARRIER_REQUEST.

• OFPT_QUEUE_GET_CONFIG_REQUEST: a message that is gen-
erated by the controller to query the switch’s configuration.

• OFPT_QUEUE_GET_CONFIG_REPLY: a message that is gen-
erated by the switch after receiving the controller-generated
OFPT_QUEUE_GET_CONFIG_REQUEST.

10



Chapter 2

Production Traffic as a Service

2.1 Motivation

Flow-Rule Priorities If controller slices overlap, OFPT_PACKET_IN
messages from the overlapping flowspace are delivered to only one con-
troller. However multiple controllers are allowed to install rules valid for
that flowspace. Since a controller can install a rule at any time, the rule
active on the switch does not necessarily originate from the controller
that would have received the respective OFPT_PACKET_IN messages. If
this controller installs an overlapping rule, it chooses a priority that is not
being coordinated with the first controller. Hence the latter rule will have
a higher, equal or lower priority than the the already installed one1.

The OpenFlow Specifications [4] specify:

« Packets are matched against flow entries based on prioriti-
zation. An entry that specifies an exact match (i.e., it has no
wildcards) is always the highest priority. All wildcard entries
have a priority associated with them. Higher priority entries
must match before lower priority ones. If multiple entries have
the same priority, the switch is free to choose any ordering.
Higher numbers have higher priorities. »

1 The following passage describes the FlowVisor 0.83 behavior. The FlowVisor com-
munity is aware of the issue, but at the time of writing (September 8th, 2012)
the according ticket is still open: https://openflow.stanford.edu/bugs/browse/
FLOWVISOR-72.

11

https://openflow.stanford.edu/bugs/browse/FLOWVISOR-72
https://openflow.stanford.edu/bugs/browse/FLOWVISOR-72


Always only one rule being chosen, hence the highest priority rule starves
lower priority rules. In the case of rules with equal priorities, the net-
work’s behavior becomes indeterministic. Because the priorities of con-
troller rules are not being coordinated, a controller that installs rules in
a proactive manner with higher priorities has a better chance of the net-
work reflecting its policies than a controller which installs rules only as
reaction to an OFPT_PACKET_IN message with lower priorities. Traffic
Sharing – if traffic is seen as a network resource – is therefore neither fair
nor deterministic.

Constraints on Controller Capabilities In FlowVisor a controller has an
associated slice, which is a collection of volumes in the header space for
which the controller is responsible. The slice can be switch dependent,
but it is being defined by the network administrator at configuration time
and stays constant during runtime. This goes against the nature of Open-
Flow because it offers a set of features that allow the controller to modify
the header fields of packets, thereby pushing the packet to a different
point in the header space. If FlowVisor would allow a controller to mod-
ify a packet in such a way, that the resulting packet-header would not lie
in its slice, the packet would leak, into an uncontrolled part of the header
space or potentially even into the slice of another controller. This has been
described by Kazemian et al. [3].

Assume for example that the network administrator defined a network-
wide slice {VLAN_id : u} for a specific controller. This controller would
not be aware of the limitation of its realm. Hence installation of a rule that
modified the VLAN id of certain packets and set it to v 6= u would seem
to be valid. Packets onto which this rule applied would leak the slice
and would not be observed by the controller on the next switch. If the
network administrator associated another controller with the flowspace {
VLAN_id : v}, the packet would be handled by that controller. If the net-
work administrator did not associate any controller with the flowspace,
the packet would be dropped because no controller was able to install a
corresponding rule.

If a controller is aware of the network topology it would observe the
leakage of its own packets into slices of other controllers as well as the
leakage of foreign packets into its own. It would observe packets being
discarded / generated on the network link. From the controllers point-
of-view the network would be ill-behaving.
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FlowVisor solves this by rejecting rewrite actions, that would push pack-
ets out of the controller’s slice. This changes the behavior of the network
as observed by the controller and limits the controller’s capabilities. It
breaks the aspiration of providing a multi-controller framework in which
all controllers that work correctly in single-controller networks can be run
without modifications.

Traffic as a Service Evaluating a hypothesis in the field of Computer
Networks frequently requires analysis of production traffic. Today this
can be done by replaying/reproducing packet traces/statistics that were
collected beforehand. The traces would normally be obtained my sam-
pling and aggregation of traffic on the switches and the resulting statistics
would be pushed to a collector [9, 10]. This procedure does not involve
communication with the measurement application. Hence parts of the
traffic that would be important might be missed, whereas unnecessarily
unnecessarily collected traffic might cause an overhead.

Conclusion FlowVisor’s impact on the network’s behavior makes it
hard for controller-developers to reason on the network’s behavior in the
context of shared flowspaces. This is especially true because the con-
troller is not aware of the limitations of its realm2. Thus I propose a
different approach, called “V” that simulates a virtual network for each con-
troller. These controller-specific virtual networks are fully isolated from
each other and cannot interact in any way. The virtual networks can be
simulated efficiently, as the controllers and switches only communicate
via control messages. It is sufficient to generate the expected control mes-
sages to trick the controller into assuming a different network state. In
this approach the controller’s slice determines which part of the incoming
traffic is being observed by the controller, removing the requirement for
packets to stay within a slice.

The approach also allows the definition of so called development con-
trollers that obtain the same network view as they would have in a
single-controller-network. However they are not allowed to deliver pack-
ets to end-hosts. This is exclusively done by primary controllers, whose
slices cannot overlap. Hence development controllers can be used as data
sources for the evaluation of research hypotheses, while the end to end
behavior of the network is not changed by their presence.

2 Refer to [11] for a short description on how a controller can probe its realm.
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2.2 Related Work

2.2.1 Mirror VNETs

Wundsam et al. provide a context in which the same network can be
run with different configuration settings at the same time. They propose
mirroring VLANs by duplicating packets with a specific VLAN id to a
different virtual network. Packets belonging to the “cloned” virtual net-
work are dropped at the border switches before they leave the network.
This in [12] Wundersam et al. state:

« We propose Mirror VNets, which replicate networks and
traffic in a safe fashion. Thus, the new Mirror VNet and the
production VNet can operate in parallel and the user traffic is
duplicated either completely or in part to both networks. »

This approach is different from the approach that I propose, as in my
concept a packet is only replicated if multiple controllers specify differ-
ing paths for it. Mirror VNets (one per controller) generate a traffic over-
head of 100% per additional VLAN. The overhead that is introduced by
my approach, reaches 100% if and only if the additional controller and
the original controller specify different paths for every single flow in the
network. Reducing the traffic overhead is covered in their paper, but the
proposed methods have clear drawbacks:

(i) Stripping the payload off the packets leads to OFPT_PACKET_IN mes-
sages with incorrect payload. Controllers that use the payload to
determine what to do with the packet, will not function correctly
with this approach3.

(ii) By collecting packet statistics and generating corresponding traffic in the
mirrored network, the advantage of working with real traffic is lost.

(iii) By mirroring only on sampled packets, small flows might be missed.
This is especially problematic if the configuration-in-use observes
problems with establishing certain TCP connections, because these
connections-trials do not generate a lot of traffic and sampling from
them is therefore unlikely.

3 For example, controllers that aim to detect file sharing traffic sometimes rely on
payload inspection.
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Wundsam et al’s approach allows to determine online which controller
is allowed to deliver the packets to the end-host. This is currently not
supported by my approach, yet by applying the work of Reitblatt et al.
[13] this should be possible.

2.2.2 FlowVisor

FlowVisor [2] as described in the Introduction (Section 1.2) is similar to
the presented approach in many ways. In fact my implementation is
based on the openly available code of FlowVisor. Just as V, FlowVisor is
a hypervisor that provides safe resource sharing of the switches among
controllers:

« We demonstrate that FlowVisor slices our own production
network, with legacy protocols running in their own protected
slice, alongside experiments created by researchers. »

Yet in this context “resource sharing” indicates physical resources as the
network topology, the switch’s flow tables etc. In FlowVisor’s approach
traffic is not interpreted as a resource that needs to be shared among
controllers. In the concept of FlowVisor, a controller that sees4 a packet
is responsible for its delivery. This implies that a researcher needs to
generate his/her own traffic if the production network shall stay unaf-
fected by the testing of his/her controller. With the concept proposed in
this Master Thesis the researcher can think of the production traffic as
a freely available resource, which he/she can use for his/her purposes
without any obligation of delivering the packet to the correct destina-
tion. The distinction between primary and development controllers is not
existent in FlowVisor, in which all controllers are automatically primary
controllers and need to deliver the packets they observe. Seen that way
V is a generalization of FlowVisor.

4 A controller sees a packet if the packet is either being handled by a flow rule in-
stalled by the controller, or the packet is being forwarded to the controller via an
OFTP_PACKET_IN message. In the latter case it observes the packet directly in the
earlier case it observes it indirectly via an increase in the packet counter associated
with the given rule.

15



2.2.3 Splendid

In the paper “Splendid isolation: a slice abstraction for software-defined
networks” [14] which, at the time of writing, was about to be pub-
lished Gutz et al. describe a different approach towards slice abstrac-
tion. They advocate the compilation of the controller’s slice at compila-
tion time.

« Unlike a hypervisor, which must intercept and analyze ev-
ery event and control message at run-time, the compiler only
needs to be executed once – before the program is deployed in
the network – which streamlines the control plane and reduces
latency. Finally, obtaining isolation through language abstrac-
tions provides opportunities for obtaining assurance using for-
mal verification tools. »

This approach seems very promising, and could arguably replace a static
hypervisor, if compilation of the controllers is done in a coordinated and
safe way. A related implementation of slice compilation at controller com-
pilation time can be found in Frenetic [15].

2.3 Concept

2.3.1 Controller Classes

V’s main modification to FlowVisor’s approach is the introduction of dif-
ferent controller classes. While in FlowVisor all controllers are treated
the same way, V accounts for the special needs of different use-cases and
provides suitable controller classes. Each controller truly sees its own
virtualized network. Primary controllers have the right to deliver the
packets of the production traffic to end hosts. Development controllers
on the other side do not have this privilege.
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Primary Controllers

V’s treatment of primary controllers is very similar to the way FlowVisor
treats it’s controllers. While receiving the OFPT_PACKET_IN messages
triggered by packets that fall into their slice5, a controller of this class
is allowed to install rules on the switch that handle the traffic of the as-
sociated slice. FlowVisor as well as V limit the validity scope of such
rules to the intersection of the rule’s flowspace and the controller’s slice.
While FlowVisor allows the slices of its controllers to overlap, V only
accepts non-overlapping slices for primary controllers6. This is done to
ensure that for each packet entering the network there is at most one
path defined that delivers the packet to an end-host. It is the primary
controller’s responsibility to ensure correct packet handling of all packets
in it’s slice.

Development Controllers

The slices of development controllers can overlap any way the researchers
choose and are unrestrained by the slices of primary controllers. A con-
troller of this class receives the same network feedback (discussed later
on in this section) as it would, was it the only controller responsible for
the specific flowspace. This view of the network is controller-specific, be-
cause multiple primary and development controllers might be active in
the flowspace.

Packets seen by development controllers are already been taken care of
by a primary controller7. This liberates them of the obligation to deliver
packets to the correct destination or execute any other desired action cor-
rectly. Essentially they receive the production-traffic-as-a-service and are
able to push packets they observe through the network in any desired
way, without breaking the network’s functionality 8.

5 FlowVisor only sends the packet to the controller with the highest priority should
the packet fall into the slices of multiple controllers.

6 Actually the controller slices can overlap in the same way as they do in FlowVisor,
however the priority of the flowspaces is taken into account also when determining
the validity space of a rule that is being installed on the switch.

7 The network administrator can choose not to define a primary controller for a spe-
cific flowspace, but then the respective packets would not be delivered to end hosts.

8 The online modification of the controller’s class (development -> primary or pri-
mary -> development) is part of the future work.
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2.3.2 Further Controller Classes

Further controller classes can be defined with a different set of features.
They are listed under “Further Controller Classes”, because they were
not implemented in the development prototype. Nevertheless they can
be very useful.

Measurement Controllers

The measurement controller class is designed to allow convenient use
of measurement controllers, which aim to leverage the OpenFlow packet
and byte counters associated with every flow table entry to measure some
part of the primary traffic. Primary traffic in this context is traffic which
is being sent through the network by a primary controller. A measure-
ment controller does not aim to install any forwarding rules, but it rather
aims to measure the traffic of the primary controllers. Therefore con-
trollers of this class are freed from the responsibility to install forwarding
rules.

Still they obtain a copy of all OFPT_PACKET_IN messages which fall in
their slice and are forwarded to a primary controller9.

By installing a rule, the measurement controller asks V to collect the
packet and byte counters for primary traffic in the specified flowspace. In
essence a development controller thereby defines which entries it expects
in the OFPT_STATS_REPLY. The actions associated are ignored.

This class is especially helpful for controllers that want to measure traffic
aggregates in the network. It allows simple implementation of measure-
ment controllers as proposed in my semester thesis [11] or in the work of
Jose et al. [16] – developed at around the same time. The controllers do
not need to be aware of the forwarding policies in the network and can
focus on measuring traffic of other controllers.

9 A measurement controller probably needs to be associated with one or more pri-
mary controllers, because the forwarding of OFPT_PACKET_IN messages relies on
a dynamic controller-specific method and specifying a static slice for a development
controller conflicts with the dynamic nature of the approach.
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Debug Controller Class

The debug-controller class is meant for controllers that check the imple-
mentation of my proposal. They receive all OFPT_PACKET_IN messages
that are generated by the network (directed towards primary and de-
velopment controllers) and the unsliced network statistics. Rules that
they install are handled in the same way as the ones of measurement-
controllers.

2.3.3 Hypervisor

V sits between the controllers and switches of an OpenFlow network and
acts as hypervisor which ensures that:

(i) packets are delivered to end-hosts through the path installed by the
primary controller in whose slice the packet falls,

(ii) sufficient information is gathered from the network to allow simula-
tion of individual virtual network view to every registered controller
and

(iii) every controller observers the network view as it would in a single-
controller network.

As man-in-the-middle, V receives the control messages from both the
controllers and switches and can either (i) drop this control message,
(ii) modify and forward it, (iii) forward it without modification. Further
it injects a newly generated control message to either sides at any given
time.

Assuming that the OpenFlow communication channel is the only way
through which controllers and switches exchange information10, the con-
troller’s internal picture of the network state can be influenced, by send-
ing control messages that present the desired state. It is therefore V’s
task to calculate the control messages that a controller would observe in
a single-controller network from the information gathered in the physical
network.

10 It is fairly possible that a controller obtains further information of the network’s
state, e.g. through sFlow samples or SNMP.
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A full list of control messages as defined by the OpenFlow 1.0 Standard
[4] is given in Section 1.5. For most control messages V relies on FlowVi-
sor’s standard behavior. This translates to forwarding messages gener-
ated by switches to the “correct” owner of the message. Ownership herein
is defined by the controller’s slice. Messages originating from a con-
troller are modified by FlowVisor so that the controller does not exceed
its authority. To support the development-controller class, V’s handling
of OFPT_PACKET_IN-, OFPT_FLOW_MOD- and OFPT_STATS_REPLY-
messages is different from FlowVisor’s.

OFPT_PACKET_IN

This message is sent to the controller, if the switch receives a packet, that:
(i) does not match against any entry in its flow table or (ii) the match-
ing entry specifically requires the packets forwarding to the controller.
Standard FlowVisor behavior specifies that a OFPT_PACKET_IN message
only be forwarded to the controller whose priority for the specific flows-
pace is highest. In V’s implementation the OFPT_PACKET_IN message is
forwarded to all controllers in whose slice the packet falls. This can be at
most one primary controller (as the slices of primary controllers cannot
overlap) and an infinite number of development controllers. Therefore
OFPT_PACKET_IN messages received by V might be duplicated and for-
warded to multiple controllers.

OFPT_FLOW_MOD

With an OFPT_FLOW_MOD message a controller specifies modifications
of a switch’s flow table. Such a message may: (i) add an entry to the flow
table, (ii) modify one or more existing entries or (iii) delete one or more
entries from it. As the controller slices in FlowVisor can overlap, multiple
controllers have the privilege to install rules that would apply to the same
packet. Which rule is being executed depends on multiple factors, that
are partially indeterministic11. This introduction of uncertainty into a
otherwise straight forward concept, breaks my perception of aesthetics.
In contrast V translates the OFPT_FLOW_MODmessages it receives from

11 The rule’s priority chosen by the individual controllers as well as the switch’s im-
plementation can determine which rule is being executed. If multiple rules with
equal priority in the flow table would apply to a given packet, the switch is free to
choose either.
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the controllers (hereafter controller rules) via a straight-forward process
into a set of switch rules that are then being installed on the switches. This
is illustrated in Figure 2.1. Translation is done so that, for every possible
packet, at most one valid rule is installed on the switch. Be aware that
rules with different priorities can overlap. However the controller rules
have been translated into a set of switch rules which ensure deterministic
behavior of the network. In consequence switch rules whose flowspace
overlaps have different priorities.

OFPT_STATS_REPLY

An OFPT_STATS_REPLY message is generated by the switch in response
to an OFPT_STATS_REQUEST message and contains information about
the switch and its state. This message comes in the following types:

• OFPST_DESC contains information about the switch, such as its
serial number or manufacturer description.

• OFPST_FLOW contains information about a specific entry of the
switch’s flow table. This includes the duration for which the rule
has been active when the OFPT_STATS_REPLY message was gener-
ated, as well as byte and packet counters.

• OFPST_AGGREGATE contains aggregated information about flow
entries in the switch’s flow table.

• OFPST_TABLE contains the flow entry information of all entries in
a specific flow table of the queried switch.

• OFPST_PORT contains information about a physical port of a
switch.

• OFPST_QUEUE contains information about a specific queue.

controller
V

V switch

controller
rules

switch
rules

Figure 2.1: Controller and Switch Rules.
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As the switch rules in V can represent a combination of rules that might
stem from different controllers, these messages (except for OFPST_DESC)
have to be modified before they are forwarded to the controller that re-
quested the statistics. This is done, so that the response contains all flows
that the controller installed but no flows that foreign controllers installed.
The packet and byte counter values are set to the values they would carry
in a single-controller network with equal traffic.

2.3.4 Dynamic Slices - Reservations

In FlowVisor every controller is associated with a slice. This slice specifies
for which part of the traffic a controller is responsible, thereby determin-
ing: (i) which OFPT_PACKET_IN the controller receives and (ii) how the
flowspace of OFPT_FLOW_MOD messages need to modified before the
rule is installed on the switch12. The slices in FlowVisor are defined at
configuration time and stay constant unless changed by the network ad-
ministrator. This implies a limitation on the capabilities of the controller,
as the packets need to stay within the given slice as they progress through
the network. Actions that rewrite header fields and push the packet out
of the controller’s slice are thus being rejected by FlowVisor.

V overcomes this limitation by introducing a dynamic datapath-
dependent slicing13. At configuration time the network administrator
defines which part of the incoming traffic shall be handled by which con-
troller. This statically defined slice is valid for border ports only. Border
ports be defined as physical ports that connect the administration domain
to other networks. For internal ports the slices are dynamically generated
by V. To guarantee a correctly functioning network V needs to ensure
that all legs of the path14 that a packet transverses, have been installed
by the same controller15. V ensures this by maintaining reservations, as
explained below.

12 The rule might overlap with different flowspaces in the controller’s slice.
Sometimes the resulting validity space cannot be expressed in a single
OFPT_FLOW_MOD message and multiple messages need to be generated.

13 FlowVisor also supports datapath dependent slices, yet they are static in nature as
they are determined by the network administrator at configuration time and not by
the controllers at runtime.

14 It might better be called “the list of applied actions”, as it also includes packet
header rewrites, but the path seems to be a clearer expression.

15 There could be cases in which one controller might want to hand over responsibility
of a packet to another controller. Yet it is outside the scope of this thesis.
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Assume that a controller installs a rule φi:

φi = (fs
φ
i , act

φ
i (·)) (2.1)

that is valid for the flowspace fs
φ
i ∈ H, where H is the header space

spanned by the header dimensions, and action function act
φ
i (·) that is

defined for every packet pj ∈ fs
φ
j .

Upon reception of such a controller rule V calculates16:

âct
φ
i (fs

φ
i )), (2.2)

that does not take a packet as input value, but a flowspace instead. The

mapping function âct
φ
i (·) is chosen so that17:

∀pi ∈ fs
φ
i : âct

φ
i (pi) = act

φ
i (pi). (2.3)

By doing so, V evaluates how the switch maps the ingress flowspace
to an egress flowspace and how it “forwards” it to the next hop18. V
uses this to install reservations for the egress flowspace on the next hop,
thereby building dynamic slices. The next hop in this context refers to the
switch’s physical input port that is connected to the port through which
the flowspace is “forwarded.”

The dynamic reservations determine which part of the traffic a controller
is allowed to handle on internal ports. If the controller installs a rule that
is valid for an internal port without having a reservation of at least part
of the requested flowspace, no rule is pushed to the switch. It is only
when an according reservation is made, that the rule is being activated19.
This activation leads to a reservation on the next hop and possibly to
subsequent activations.

16 Be aware that this is an engineering solution and would lead to some dispute with
the maths department (if presented).

17 This works because the exact header of a specific packet forms a degenerated flows-
pace, i.e. a point in the 12-dimensional header space.

18 For a more profound treatment of transfer functions for flowspaces refer to [3].
19 This implies that physical paths are always established from ingress to egress, even

if the controller installed the rules in reverse order.
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As V allows multiple controllers to share the same flowspace in a dy-
namic way, it needs to ensure that the traffic belonging to different con-
trollers is not merged at any time. Was a switch to forward overlap-
ping flows from different in-ports belonging to different controllers to
the same destination port, the next-hop-switch would not be able to tell
these flows apart, because the discriminating factor in-port would have
been lost. This Y-Merge is illustrated in Figure 2.2. Be aware that no
Merge is performed, if the in-ports of the flows are equal.

In consequence reservations made by controllers must not overlap, as
they would otherwise perform a Y-Merge. This can be ensured by check-
ing for colliding reservations before a new reservation is made. If such a
conflict is found, V checks whether the reservation has been made by a
different controller and whether the in-ports for which the rules that trig-
ger the reservations differ. If controller and port are different, a Y-Merge
would occur.

This can be overcome by finding a flowspace-volume of equal size that is
currently unused and reserving this flowspace instead. On the sending
switch the header field values are modified so that the packets fall into the
substitution-flowspace. Before the packet leave the network the packet
header is set to the original value. This can be done on the border switch
just before the packets leave the network. The flows are then still being
merged, but the merge occurs on the border of the network domain.

Depending on the OpenFlow version, temporary mapping of the packets
into a different flowspace-volume can be realized in different ways.

OpenFlow 1.0

OpenFlow 1.0 [4] only supports packet header rewrites and does not al-
low for the addition of extra IEEE 802.1Q headers. By setting a specific
header field to a defined value, the previously defined information is lost.
That is a reversible process if V can deduce the overridden information,
because the original values can be set again on the receiving switch (be-
fore the packet is forwarded by the receiving switch). Thankfully in most
practical cases V can obtain such information.
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In OpenFlow 1.0, specification of a rule’s flowspace is done by fixing
one or more dimensions to a specific value, the only exception being the
IP source and IP destination dimensions which support CIDR wildcard-
ing20. The set of fixed dimensions in the flowspace fs

χ
i of the rule χi are

potential rewrite candidates, because they provide such information. V
varies the values in these dimension to find a flowspace-volume for which
no Y-Merge conflict occurs. By only varying these dimensions and not fix-
ing any further or relaxing the restrictions, V ensures that the specified
volume of the flowspace is mapped to another volume of equal size. It
would be desirable to use as few header field rewrites as possible21.

If such a volume cannot be found or the rule does not fix any dimensions
to a specific value, V falls back to discovering the traffic characteristics
and pushing packets to a volume for which the controllers might have
specified actions, but which is not being used, because the traffic source
does not generate such packets. One example for this case is a situation
in which the controller installed a rule which is valid for all VLAN ids,
but the network only uses a subset of these. This procedure is discussed
further in Section 2.3.4.

If such a volume has been found, V installs a reservation for the original
volume on the receiving switch and indicates which header fields have
been rewritten. It also installs a “block reservation” for the remapped
volume. It does so, because this volume is now being supplied with
traffic and its usage by other flows would merge data streams that need
to be kept apart.

Suppose a controller made a reservation that had to be mapped to a dif-
ferent flowspace-volume. If this controllers now installs a rule for that
flowspace, the resulting flowspace of the sliced rule is calculated in two
steps. First the intersection of the controller rule’s flowspace with the
reservation rule’s is calculated. Then the mapping function which was
used when finding a substitution flowspace is applied to this result. The
action list of the sliced rule is generated by pushing the rewrite rules,
which set the original values of the header fields, to the left of the con-
troller rule’s action list22.

20 Special caution needs do payed to the Ethernet type field, as it influences the
switches interpretation of the packet headers.

21 Implementing such an algorithm is left as an exercise to the gentle reader.
22 If the controller rule specifies a rewrite on a header field, the according remapping-

rewrite action can be omitted.
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OpenFlow 1.0: Exploiting Traffic-Source-Characteristics

If installation of a rule would lead to a Y-Merge conflict and no avail-
able volume in the flowspace can be found, the characteristics of the traf-
fic source can be exploited to find a space which is currently not being
used.

Let Φ be the set of switch rules that are installed on a specific switch23.
The set Ωi ⊂ Φ of switch rules which overlap with the new rule χi and
forward traffic to the same physical port, but belong to a different con-
trollers, contains all potential conflicting rules.

If the set is non-empty, packets belonging to χi need to be tunneled to
the receiving switch to avoid Y-Merges. This can be done by mapping
the VLAN ids24 that are being used by the traffic source feeding χi to
VLAN ids, that currently are not being used by any traffic sources related
to flows in Ωi

25.

I propose a dynamic tunneling method, that chooses a VLAN id at ran-
dom, establishes the tunnel from the sending to the receiving switch and
can change the used VLAN id, if as traffic source starts using this VLAN
id.

Tunnel-Init Rule Upon reception of a controller rule χi, that fulfills the
foregoing conditions, V installs a rule (tunnel-init rule) on the sending
switch that is valid for the flowspace of χi and forwards the packets to V.
That way V can determine which VLAN ids are used by χi and set up a
tunnel for each of these VLAN ids.

tunnel-init (sending switch) : {
fs 26 : fsω

k ∩{VLAN_id : v}
act 27 : “forward to V”
prio 28 : pinit}

(2.4)

23 To ease notation, the switch specific index is omitted.
24 The VLAN id is just one of 12 dimensions that can be used to tunnel traffic.
25 Note that the rules in Ωi, for which the set of used VLAN ids is unknown, cannot

overlap. If they would, the following algorithm would have been executed at instal-
lation time of the rule that causes the overlap. Thereby the used VLAN ids would
have been determined.
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Tunnel-Conflict Rule Triggered by a packet with VLAN id v
orig
i orig-

inating from the tunnel-init rule, V chooses a random VLAN id vtunneli
and establishes a tunnel. The first step in doing so, is setting up a tunnel-
conflict rule that forwards packets to V, should an already existing rule
use this VLAN id. If such a packet arrives at V, the tunnel is moved to a
different VLAN.

tunnel-conflictk (sending switch) : {
fs : fsω

k ∩{VLAN_id : vtunnel}
act : “forward to V”
prio : pcon f lict > pinit}

(2.5)

Tunnel-End Rule A tunnel-end rule is installed on the receiving switch,
that forwards the traffic of the corresponding flowspace to V. The VLAN
ids of OFPT_PACKET_IN messages generated that way have to be “un-
mapped” by V before they are delivered to the controller. The rules that
are installed by the controller in return have to be modified so that they
are only valid for the chosen VLAN ids and they have to be expanded
when new VLAN tunnels are installed for χi.

tunnel-endk (receiving switch) : {
fs : fsω

k ∩{VLAN_id : vtunnel}
act : “forward to V”
prio : pcon f lict > pinit}

(2.6)

Tunnel-Start Rule The rule (tunnel-start) that is installed on the sending
switch has to match against the flow space of ψ and the original VLAN
id vorig, it modifies the VLAN id to vtunnel and forwards the packet to the
receiving switch.

tunnel-startk (sending switch){
fs : fs

χ
i ∩{VLAN_id : vorig}

act : “set VLAN id: vtunnel”, “deliver”}
(2.7)

26 Flowspace of the newly resulting rule.
27 Action List of the resulting rule.
28 Priority of the resulting rule.
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Tunnel-Established Message As there is no guarantee that the ran-
domly chosen VLAN id vtunnel is not already in use, packets might ap-
ply to the tunnel-end rule, that are not caused by the tunnel-start rule.
Forwarding these packets to the controller which installed the rule χi,
would be incorrect. Therefore V injects a packet (tunnel-established) with
a specific payload into the tunnel after installing the tunnel-start rule.
OFPT_PACKET_IN messages that are triggered by the tunnel-end rule
prior to observation of the tunnel-established message, are dropped.29

OFPT_PACKET_IN messages arriving after that packet are delivered to
the controller.

Relocation of the Tunnel Upon observation of a tunnel-conflict packet,
the tunnel is moved to another VLAN id. After choosing a new random
VLAN id v′, a corresponding tunnel-conflict rule is installed on the send-
ing switch. On the receiving switch a tunnel-end rule is installed for the
new VLAN id v′ and a tunnel-established message is injected. A tunnel-
mod rule is installed on the receiving switch, which temporarily drops
packets belonging to the old tunnel. Thereafter existing controller rules
that treat packets originating from the old tunnel, are modified so that
they now apply to VLAN v′. The tunnel-mod as well as the old tunnel-
conflict rules can be removed after the update procedure is terminated
and the tunnel-established message is received.

OpenFlow 1.1, 1.2 and 1.3

OpenFlow 1.1-1.3 [6, 7, 5] allow the controller to add extra VLAN headers
(VLAN encapsulation through tag pushing). This feature might be used
to perform more efficient tunneling. Yet the problem of scanning the traf-
fic for unused VLAN ids prevails. The addition of VLAN headers does
not replace the remapping to unused space described in Section 2.3.4, be-
cause if the sending switch adds a VLAN header, the flow table matching
algorithm on the receiving switch does not match against any of the inner
VLAN id headers. Said in other words, this feature does not introduce
another independent dimension that can be used to discriminate flows,
because the information about the original VLAN id is being hidden. As
this might potentially be changed in an upcoming version of OpenFlow,
evaluation has to be postponed.

29 One might be able to deliver these messages with some extra care. How this is to
be realized is part of future work.
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Y-Merge

Figure 2.2: Two controllers install rules on a switch for an overlapping flowspace
and different inports. A Y-Merge occurs because the receiving switch
is not able to tell which packet belonged to which controller.

2.4 Architecture

To implement the described concept I used the architecture of FlowVisor
as a basis. While using large parts of its code, the internal structure had to
be changed completely. This is mainly due to the fact that the controller’s
slice is constant in FlowVisor, but dynamic and datapath dependent in V.
The resulting architecture is depicted in Figure 2.3.

2.4.1 Topology Discovery

It is critical to know the correct topology of the network, because transla-
tion from controller rules to switch rules depends on whether the physi-
cal port associated with a rule, is an internal or external port. Moreover
generating the correct reservations requires the translation of “forward to
out-port x” to “forward to in-port y of datapath z”, which again requires
knowledge of the network’s topology.

This can be realized, as is done as an optional feature in FlowVisor, by
sending LLDP [17] messages through all physical ports (OpenFlow mes-
sage OFPT_PACKET_OUT) of all switches that register at V. On reception
of a corresponding OFPT_PACKET_IN, the sending datapath id and the
sending physical port can be extracted from the message’s payload.
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Development
Controller

Primary
Controller

N-Bound Interface (cA) N-Bound Interface (cB)

Slicer(cA) Slicer(cB)

Merger (s1) Classifier (s1)

S-Bound Interface (s1)

Figure 2.3: Architecture of V. The individual controllers are connected via a
North Bound Interface to the Slicer, which limits the scope of the
rules to at most the controller’s slice (on border ports) or the con-
troller’s reservations (on non-border ports). This can result in multi-
ple rules, which are called “sliced rules”. These are forwarded to the
Merger unit which ensures that the sliced rules of the individual con-
trollers are merged in a specific way and informs the Classifier about
the reservations made. The Classifier forwards OFPT_PACKET_IN
messages received from the switches to controllers which own ac-
cording slices/reservations, possibly duplicating the message if mul-
tiple controllers are responsible for it.
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2.4.2 North Bound Interface

The North Bound Interface opens up a TCP connection to the controller.
It translates received OpenFlow messages into internal objects and vice
versa. One thread per controller is used so that multiple requests, sent by
different controllers can be processed in parallel (subject to the Operating
System’s multithread handling).

2.4.3 Slicer

The Slicer receives the controller rule and translates it into a set of sliced
rules. Depending on the state of the physical port for which the rule
is valid (connected to an internal datapath / connected to an external
datapath) the rule is treated differently. A rule can either be valid for
a specific port or it can be valid for all ports of a switch. In the latter
case one rule that handles the internal ports (assuming that a datapath
always has more internal ports than external ports) and one rule for every
external port of the datapath needs to be installed. Even though this
seems to be a huge overhead, today’s switch implementations (e.g. NEC
IP8800/S3640-24T2XW) do not fully support wildcarded in-ports. They
explode such rules internally by expanding a rule for every physical port
of the switch. If the expansion (installing one rule per port) is done in V
and not in the switch, the control traffic increases, but the number of flow
table entries stays the same.

External Port On reception of a controller rule which is valid for an
external physical port, the Slicer calculates the intersection of the rule’s
flowspace with the controller’s slice, thereby obtaining a new set of rules
(hereafter called sliced rules), just as FlowVisor would do. This ensures
that the controller does not treat traffic which might belong to other con-
trollers. The slice of a controller is statically defined by the network ad-
ministrator and in the case of V defines which part of the incoming traffic
a controller is allowed to handle.

Internal Port Handling of controller rules which are valid for internal
physical ports is very similar. The only difference is, that instead of the
controller’s static slice, dynamic reservations are used to calculate the set
of sliced rules.
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2.4.4 Merger

The Merger combines the sliced rules of the individual controllers in a
way that ensures isolation of the controllers. For a specific packet pi (a
point in the 12-dimensional flowspace) at port qi on datapath di, a set of
controllers Cpi are privileged to specify an action. Calculation of this set
Cpi depends on whether qi is an internal or an external port.

If qi is an external port, the set of controllers Cpi is equal to the set of
controllers in whose slice pi is contained.

if qi external: Cpi = {cj|cj ∈ C, pi ∈ slice(cj)} (2.8)

where C is the set of all controllers and slice(cj) represents the slice (set
of flowspaces) that are associated with controller cj.

If qi is an internal port (connected to another OpenFlow switch in the
administration domain) the set of controllers which are allowed to specify
an action is determined by the set of reservations: a controller cj is only
allowed to specify actions for a packet that was in its slice when it entered
the network and was forwarded by it to port qi of datapath di.

if qi internal: Cpi = {cj|cj ∈ C, pi ∈ reservation(cj, di, qi)} (2.9)

where reservation(cj, di, qi) is the set of reservations made by controller cj
for port qi on datapath di.

Calculation of the Action List To guarantee that the requests of all con-
trollers are fulfilled, the Merger needs to ensure that the switch executes
all actions defined by the controllers Cpi for packet pi. The correspond-
ing action list is calculated by merging the action lists specified by the
controllers Cpi . If the action list of a controller does not modify a packet
header, the elements of action(pi , cj) are pushed to the left of action(pi)
– the overall action set of pi – if they do not already exist in the list. If
header fields are modified, the elements are appended to the action list
action(pi).

32



This concept does have one limitation: modification is done in sequence
and therefore the second rewrite operates on an already modified packet.
Hence V currently does not support header rewrites on different header
fields by different controllers. To overcome this limitation the packet
would need to be duplicated before it is modified. The OpenFlow Spec-
ifications 1.2 and 1.3 [7, 5] seem to allow this by introducing loop-back
devices30.

Unresponsive Controllers Be aware that if a controller did not explic-
itly specify an action by installing a rule whose flowspace contains pi it
assumes the switch to execute the default action for a packet miss in the
flow table. What that is, depends on the switch’s configuration and can
either mean that the packet is to be dropped or to be forwarded to the
controller31 32.

Generalization The forgoing explanation of the Merger’s functionality
relied on one packet, meaning one point in the flowspace. Yet a controller
sends an OFPT_FLOW_MOD message it specifies a list of actions valid
for a whole flowspace33. As the header space is discrete the flowspace
can be interpreted as a set of points. An algorithm that realizes the goals
given, therefore installs a set of rules (switch rules) on the switch which
ensure that for every point in the flowspace the forgoing developed action
list is being executed. With the OpenFlow Specifications 1.0 [4] this is a
painful task, yet the Specifications 1.1, 1.2 and 1.3 possibly allow a very
simple implementation.

30 One will have to wait for a first implementation to further validate the performance
issues connected to such an approach.

31 This assumes that the controller in question will eventually install a rule to
treat the packet. If it does not, V and the controller would be flooded with
OFPT_PACKET_IN messages. V is therefore falling back on FlowVisor default
behavior for the case that a controller does not respond on OFPT_PACKET_IN
messages, by assuming a temporary drop action for the packets.

32 This describes OpenFlow 1.0 behavior. Later versions allow for greater flexibility.
33 I am calling it flowspace to be consistent with the terminology used in other papers,

yet I’d prefer calling it a flowvolume, because minimal and maximal values are
defined for every dimension.
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OpenFlow 1.0

In OpenFlow 1.0 [4] the controllers can only access one logical flow table
of the switch, which is composed of different smaller flow tables. Yet no
access to these flow tables is given. As a result, the different flow tables
defined by the controllers need to be projected to a single one. There-
fore overlapping rules with differing action lists, installed by different
controllers need to be handled specially. By imposing an order on the
OFPT_FLOW_MOD messages34 the problem reduces into developing a
streaming algorithm. Upon reception of an OFPT_FLOW_MOD message
it modifies the current set of switch rules, so that after the transition
period the new set of switch rules satisfy the requirements described in
Section 2.4.4; assuming that the set of switch rules before the transition
did so.

To realize this the Merger maps the sliced rules Ψ = {χi} to a set
of switch rules Φ = {ψi}.

Merger : Ψ → Φ (2.10)

Assume that Φ only contains rules that were generated by this algorithm.
At the startup of a switch, no rules are installed and the empty set Φ = ∅

clearly satisfies this condition.

Installation of rule χi = (fsχ
i , prio

χ
i , act

χ
i ) by controller contr

χ
i with

flowspace fs
χ
i , priority prio

χ
i and action list act

χ
i can only lead to conflicts

with rules whose flowspace overlap with fs
χ
i . A rule does not apply to

packets outside its flowspace and thus rules whose flowspace do not
overlap with the one of χi are not influenced by the installation of the rule.

The new rule might therefore interfere with any rules in Ω:

Ω = {ωk|ωk ∩ χi 6= ,ωk ∈ Φ}. (2.11)

34 If V is running on a multi-interface, multi-core computer, two OFPT_FLOW_MOD
messages from different controllers can be accepted at the same time. Yet the
Merger unit is switch specific and can only treat one message per switch at the
time.
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Sorting this set by descending priority and controller id35 using the sort-
ing functions σk(Ω) yields:

Θ = (σ1(Ω), σ2(Ω), . . . σn(Ω)). (2.12)

This list is split into two parts:

(i) rules Θh with higher or equal priority and

(ii) rules Θl with lower priority than prio(χi).

These lists have to be treated differently, because higher priority rules can
starve the newly installed rule, whereas rules with lower priority could
be starved by it.

(i) Higher or Equal Priority Rules Θ
h A higher priority rule that was

installed by a different controller and overlaps with the newly installed
rule, handles packets, that would be handled by χi in a single controller
network. Therefore V has to install a rule that executes both actions for
the overlapping flowspace.

For equal-priority rules the OpenFlow Specifications leave the selection
of the rule-to-be-used to the switch. Because only one rule is executed,
equal priority rules for overlapping flowspaces necessarily starve each
other and the same algorithm has to be used as is for higher priority
rules.

The proposed algorithm goes through the elements θj ∈ Θh in reverse
order and handles the following cases:

(i.i) θj ∈ Ψ is a controller rule, installed by the same controller as χi.
Starvation of χi by θj is expected by the controller and no modification is
necessary.

35 The controller that installed χi comes last.
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(i.ii) θj ∈ Ψ is a controller rule, installed by a different controller as χi.
In this case, starvation is not expected by the controller and V needs to
install a intersection-rule ωk that is valid for the overlapping flowspace and
executes both action sets. The priority has to be chosen to be higher than
the priority of θj, but lower than the one the next higher-priority rule with
whose flowspace it overlaps. The possible priority range can therefore be
determined on the fly.





fsω
k = fsθ

j ∩ fs
χ
i
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i

prioθ
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k < prioθ
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min
l>j

(
fsω

k ∩ fsθ
l 6= ∅

)
(2.13)

(i.iii) θj /∈ Ψ is a intersection-rule, unrelated to contr
χ
i . The intersection-

rule θj originates from multiple rules that were installed by other con-
trollers and would therefore illegitimately starve rule χi. Thus the con-
clusions of (i.ii) apply.

(i.iv) θj /∈ Ψ is a intersection-rule, related to contr
χ
i . Suppose that θj

originates from the intersection of the rule χ̂k with a set of other rules,
where χ̂k was installed by the same controller as χi. The newly installed
rule is legitimately starved if the priority of χ̂k is larger than or equal to
the one of χi. If that is the case no additional action has to be taken.

If the priority of χ̂k is lower another intersection-rule has to be installed,
because otherwise the rule would be starved by a lower priority rule of
the own controller. This rule has to be valid for the overlapping flows-
pace. The action set is generated by replacing the actions of χ̂k with the
actions of χi. The priority limitations are the same as in (i.ii).
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(2.14)
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(ii) Lower Priority Rules Θl Installation of rule χi can lead to illegal
starvation of lower priority rules that were installed by other controllers.
To guarantee execution of all actions, V iterates through the elements of
θj ∈ Θl and possibly encounters the following cases:

(ii.i) θj ∈ Ψ is a controller rule, installed by the same controller as
χi. In this case, starvation of the rule is expected by the controller and
nothing has to be done.

(ii.ii) θj ∈ Ψ is a controller rule, installed by a different controller as
χi. Starvation of the lower priority rule of the other controller is not

legitimate. Therefore V needs to install a rule for the flowspace fs
χ
i ∩ fsθ

j

with the action set act
χ
i ∪ actθj . The priority has to be chosen so that it

is higher than the priority of χi, but lower than any higher-priority rule
with whose flowspace it would overlap.
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(ii.iii) θj /∈ Ψ is a intersection-rule, which does not contain actions de-

fined by contr
χ
i . There is no difference regarding the treatment of this

case and (ii.ii). Therefore the same actions apply.

(ii.iv) θj /∈ Ψ is a intersection-rule, which does contain actions defined

by contr
χ
i . In this case it is legal to starve the own rule, but not the

foreign rules. Therefore FlowVisor installs a rule for the overlapping

flowspace fs
χ
i ∩ fsθ

j with a modified action set. The action set that the
specific controller defined previously is replace by the action set of the
new rule. 
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(2.16)

37



OpenFlow 1.1, 1.2 and 1.3

The OpenFlow Specifications 1.1 introduce the concept of pipelining,
thereby granting access to the various flow tables of a switch that were
logically merged in OpenFlow 1.0. It allows controllers to install rules
into specific flow tables and to specify the action “go through flow table
x” in the action list of every flow table entry. This provides a convenient
solution of the problem the Merger unit is facing. The extra dimension
that is introduced by adding multiple controllers to OpenFlow 1.0 – which
was arguably designed for one controller only – can than be accounted
for with the flow table dimension.

Herein the available flow tables are split among the controllers that share
a specific flow space on a switch. This reduced number of flow tables
is reported to the controllers36. The pipelines that the controllers install
are joined by V into a single pipeline. A packet that arrives at the switch
would therefore pass through all controller-defined-pipelines. Hence all
desired actions would be executed.

2.4.5 Classifier

The Classifier of V works in a very similar way as the Classifier of
FlowVisor does. It takes an internal object representing either an
OFPT_PACKET_IN or an OFPT_STATS_REPLY message as input value,
potentially modifies it and forwards it to the “desired” controller. The
only different between the Classifier of V and FlowVisor is, that in V
the database that determines what happens with the object changes at
runtime. For FlowVisor that is not the case, because the slices for both
internal and external ports are defined by the network administrator at
configuration time.

36 The number of controllers that share a specific flowspace is dynamic. Therefore
the number of available flow tables does change and this change would need to
be reported to the controller. Yet the number of flow tables of a physical switch is
constant in nature and no change is expected. This is an open point, which either
needs some lobbying for the next Specifications or some creative idea once someone
implemented any of the current implementation proposals.
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OFPT_PACKET_IN

Depending on whether the port from which the OFPT_PACKET_IN mes-
sages stems is an internal or external port, the Classifier either uses the
dynamically defined reservations or the static controller slices to calculate
the set of controllers which can potentially handle the message. Associ-
ated with each reservation and slice entry are the set of controller rules
which a controller installed for the flowspace-in-question. If a controller
already installed a rule that would handle the packet, it does not expect
to see the OFPT_PACKET_IN message and therefore these controllers are
removed from the set. In consequence a controller obtains a packet if it is
allowed to see it and has not already defined an action for it.

IfV installed a rule that explicitly generates OFPT_PACKET_IN messages
because one of the controllers did not define an action for the specific
flowspace, the reason-flag in the OFPT_PACKET_IN message needs to be
changed.

OFPT_STATS_REPLY

A switch replies with an OFPT_STATS_REPLY message of a controller re-
quested statistical information. The reply does not state which controller
sent this request and V therefore keeps track of the requests that were
sent. This is being done by the Slicer while the information is shared
with the Classifier. Upon reception of such an OFPT_STATS_REPLY mes-
sage, the Classifier checks for open requests and calculates the controller
specific statistics which are then being sent to the controller(s).

2.4.6 South Bound Interface

The South Bound interface consists of a Socket Acceptor Thread that lis-
tens to a predefined port and generates a thread for every switch that
connects to it. After the link has been established, the switch-specific
thread creates a new Classifier instance which in turn connects to all
North Bound Interfaces of the associated controllers.
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2.5 Implementation

Most parts of what is described in the sections above has been imple-
mented and tested using a research prototype of V. Be aware that V cur-
rently is not a ready-to-use piece of software and should definitely not be
run in an production environment. It requires a special start sequence
and does not clean up after itself. Also changes in the configuration have
to be made directly in the configuration file and V needs to be restarted
after every change in the configuration37. That said, the implementation
runs smoothly and no bugs that would interfere with V’s functionality
are known.

2.5.1 External Sources Used

V heavily relies on the Java implementation of FlowVisor 0.83 which is
publicly available via hg-git mercurial [18] on https://bitbuket.org/

onlab/flowvisor and comes with the license agreement shown in Fig-
ure ??. Refer to [19] for its documentation.

Even though the source code of FlowVisor was a very good starting point,
because a lot of functionality could be reused, the internal structure had
to be changed fundamentally. In FlowVisor Slicer and Classifier both
operate on their own static copy of the controller’s slice. In V this slice
is being dynamically defined by the Slicer. The Classifier needs access
to this information to calculate the set of controllers to which a specific
message shall be forwarded. Thus Slicer and Classifier need to share the
database38.

Moreover the Merger unit which ensures that the rules of different con-
trollers do not starve each other is not present in FlowVisor and had to
be implemented from scratch. It implements a slight variation39 of the
algorithm described in Section 2.4.4.

37 Featuring online modification of the configuration would require further imple-
mentation work without providing further insight or proof.

38 They could also communicate in order to build up two separate databases with
equal contents. This would allow for a decrease in the average time consumed by
database blocks, but comes at the cost of increased complexity.

39 The implementation is able to modify existing flow tables entries, whereas the de-
scribed algorithm, would always install new rules; even if the flowspace of the new
rule and the rule-to-be-starved are equal.
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Copyright (c) 2008 The Board of Trustees of The Leland Stan-
ford Junior University
We are making the FlowVisor specification, code, and asso-
ciated documentation (Software) available for public use and
benefit with the expectation that others will use, modify and
enhance the Software and contribute those enhancements back
to the community. However, since we would like to make the
Software available for broadest use, with as few restrictions as
possible permission is hereby granted, free of charge, to any
person obtaining a copy of this Software to deal in the Soft-
ware under the copyrights without restriction, including with-
out limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so,
subject to the following conditions: The above copyright no-
tice and this permission notice shall be included in all copies
or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY,WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
The name and trademarks of copyright holder(s) may NOT be
used in advertising or publicity pertaining to the Software or
any derivatives without specific, written prior permission.

Figure 2.4: License Agreement of FlowVisor.
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2.5.2 Starting Sequence

V currently is a research prototype and not all eventualities have been
accounted for. This imposes a requirement for specific order on some
actions. The most important of which is the starting sequence:

1. Power up the network, if not already running. If you are running
mininet [20] to simulate your network make sure that the switches
are connecting to V and not directly to the controllers.

2. During the start-up period the switches exchange a lot of messages,
that would only confuse V. So wait for 2-3 seconds until the transi-
tion period is over and the initial message-exchange phase has been
completed40.

3. Start all controllers defined in the configuration. They need to be
available when V is being started. If any of the controllers is not
reachable V generates a lot of status-querying messages that con-
sume a lot of resources.

4. Start V and be patient. When a switch connects to V, topology dis-
covery is started and the connection to the controllers is only made,
once the topology has been discovered (safety timeout 5 seconds).

5. Now your all set and ready to go. Have fun!

40 IfV receives a packet while the Classifier Thread creates the Slicer and North Bound
Interface Threads, it only forwards the message to the controllers whose Threads
are already running, but not to all controllers which should receive the packet. In
a production implementation the Classifier should not accept any messages during
the bootstrap period.
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2.6 Proof of principle

The implementation of V has been tested with two different topologies,
that target different functionalities of V. Validation of the implementation
has two parts: (i) validating, whether the implementation is a correct
representation of the algorithm described in this thesis and (ii) validating,
whether the algorithm is correct and provides the properties it aims to
fulfill.

To evaluate this, two different network topologies with different prop-
erties were simulated in mininet [20]. In these simulations the switches
build up a connection to V which in turn connects to the two controllers.
One of these controllers is configured to be a primary controller and the
other to be a development controller. Their slices cover the full flows-
pace, which means that both controllers are able to define a path for very
packet that enters the network.

2.6.1 Validating the Implementation

To validate whether the implementation correctly represents the algo-
rithm described, the communication between the controllers and V as
well as the communication between V has been captured. This is de-
picted in Figure 2.5. With full knowledge of the input and output values,
as well as the initial internal state, V could be treated as black-box whose
inner structure was to be discovered41. Discovery of the internal structure
of the system has one big advantage over manual message-per-message
validation: reverse-engineering yields a structure that can be compared to
the structure of the algorithm which is to be implemented. This compar-
ison can be done in mathematical terms, whereas message-per-message
comparison requires a manual interpretation of the algorithm and man-
ual validation of its implementation. Such validation might therefore be
subject to aberration.

41 A rather complex system of Hidden Markov Chains might be one such approach.
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2.6.2 Validation of the Algorithm

The algorithm claims to:

(i) forward exactly one OFPT_PACKET_IN to a specific controller, for
each packet that arrives on an external port if and only if the packet
falls in the slice of the controller and the controller has not installed
a controller rule which handles the packet,

(ii) forward exactly one OFPT_PACKET_IN to a specific controller, for
each packet that arrives on an internal port if and only if the packet
has been forwarded by the controller to that port and

(iii) deliver a packet to an end host if and only if its path was installed
by a primary controller.

Claim (i)

To fully validate whether “exactly one OFPT_PACKET_IN is forwarded to a
specific controller, for each packet that arrives on an external port, if and only
if the packet falls in the slice of the controller and the controllers has not in-
stalled a controller rule which handles the packet”, one would need to cap-
ture the stream of OFPT_PACKET_IN messages that are generated by the
switches and pair these messages with the OFPT_PACKET_IN messages
that are forwarded to the controllers. For every controller one would then
need to specify the point in time for which a controller rule handling the
specific packet became active42. A validation algorithm would need to
check whether V forwarded the OFPT_PACKET_IN messages before and
stopped doing so after that point in time.

controller
V

V switch

Capturing
controller
messages

Capturing
switch
messages

Figure 2.5: Control traffic is captured. V is treated as a black-box whose inner
structure is to be recovered from observed input and output values.

42 For V controller rule becomes valid as soon as it registered the rule in its reservation
database.
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Out of time considerations I decided only to perform a proof of princi-
ple using a simplified scenario. If the rate at which OFPT_PACKET_IN
messages are generated is low enough, all queried controllers will
have responded by installing an corresponding rule43 before the next
OFPT_PACKET_IN messages is generated. Further the flowspaces of the
rules installed by the controllers in this testing scenario fully overlapped
as did their slices. Under these conditions, every OFPT_PACKET_INmes-
sage is forwarded to every controller exactly once. This reduces valida-
tion of the claim to checking whether the number of OFPT_PACKET_IN
messages generated by V (for external ports) is N times the number
of OFPT_PACKET_IN that is received, where N is the number of con-
trollers.

Claim (ii)

Similar to validation of claim (i), one would need a complex validation
algorithm to check whether “exactly one OFPT_PACKET_IN is forwarded
to a specific controller, for each packet that arrives on an internal port, if and
only if that packet has been forwarded by the controller to that port”. To do
so a stateful validation-system would be needed that identifies the time
interval in which a controller is allowed to receive OFPT_PACKET_IN
messages from a specific internal port of a datapath. This time interval
starts when the controllers installs a rule that generates traffic on the port
and ends when the controller installs a rule which treats that traffic.

Under the assumption that the traffic rate is sufficiently low, the con-
troller will install a rule before another OFPT_PACKET_IN is generated
and therefore exactly one OFPT_PACKET_IN message is being gener-
ated for every internal port that is used during establishment of the path.
Thereby validation of this point reduces to comparison of the number
of OFPT_PACKET_IN messages originating from internal ports to the
number of internal ports that are transversed during establishment of the
paths. Ports that are used by u paths need to be counted u times.

43 This assumes that the controllers do install rules in a reactive manner.
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Claim (iii)

Validation of whether “a packet is delivered if and only if its path was in-
stalled by a primary controller” is not trivial, as it requires information of
data plane, which cannot be accessed directly via OpenFlow. Proving this
claim would require capturing all packets on all ports as they transverse
the network and calculating the path that each packet took through the
network. Assuming that a complete list of packets (header fields and pay-
load) could be obtained for every port in the network and the state of the
flow tables would be known at every point of time, the associations be-
tween the lists could be made and the path that each packet took through
the network could be evaluated44.

Also one could use Sacramento – the tool developed in Chapter 3 – to
capture the state of the network at every point in time and simulate the
path of every packet that entered the network. This would only require
capturing of the packets as they enter the network.

Even though this seems to be feasible straight-forward solution, I decided
to limit validation to TCP traffic and check

(i) whether the number of packets that entered the network and the
number of packets that left the network were equal and

(ii) whether the TCP sequence numbers of packets received by the end
hosts were unique.

44 This is not trivial though. TCP messages can be traced by they sequence number,
but it a data source generates identical UDP packets this becomes a tricky task.
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2.6.3 Validation Topology I

The first topology is illustrated in Figure 2.6. It consists of five switches
and two hosts that are interconnected as illustrated. The primary con-
troller, symbolized by the lock, aims to install the longer path transvers-
ing switch 3, while the development controller seeks to install the shorter
path that omits switch 3. The dotted lines depict the paths for packets
originating from host 1 (bottom right). Be aware that in this scenario,
the controllers install rules which forward a packet to the destination de-
pending on the source of the packet. This only works with two hosts in
the network, that do not send traffic to themselves. It is a very academic
example designed to illustrate nearly all features of V with the simplest
topology possible. The claims made above were evaluated using the de-
scribed methods and were found to be true.

V

sw1
sw3

c

sw2

sw4

sw5

3

1

3

1

2

1

2

2

2

1

21

c

c

c

c

Figure 2.6: Validation Topology 1 – The switches sw1 to sw5 are connected to V

which in turn is connected to the two controllers. The lock symbol-
izes a primary controller and the helmet symbolizes a development
controller. The dotted orange path depicts what the primary con-
troller aims to install for the packets originating from host 1. The
dotted purple path is the respective path that the development con-
troller seeks to install.

47



2.6.4 Validation Topology II

In Validation Topology 2, illustrated in Figure 2.7, the controllers and
hosts are connected in a tree like manner. The primary controller is a
naive implementation of a learning switch – the one developed in the
OpenFlow Tutorial. Upon reception of an OFPT_PACKET_IN message,
the controller installs a rule, which sends messages directed to the Mac
Source of the packet to the in-port of the message. It then floods the
packet which triggered the OFPT_PACKET_IN message on the remaining
physical ports.

Again the given claims evaluated using the described methods and were
found to be true.

sw1

sw2

sw3

h1

h2

h3

h4

Figure 2.7: Validation Topology 2 – The switches and hosts are connected in a
tree like manner. Whereas the primary controller is a naive imple-
mentation of a learning switch, the development controller aims to
forward all traffic to host h1.
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2.7 Scaling Considerations

The implementation strongly supports the functionality of the algorithm.
Yet evaluation has only been performed with a small number of switches
/ controllers and rules. This section evaluates the scaling behavior of the
algorithm in the context of time, memory and control traffic.

Time An algorithm that does not scale well in the time dimension will
ultimately fail to implement the desired functionality. Hence scaling in
time needs to be evaluated.

Control Traffic The control traffic qualifies as limited resource for two
reasons: (i) processing of a control message either by the controller or
the datapath requires resources that are limited (indirect limitation) and
(ii) V is connected to the controllers and datapaths via a socket whose
bandwidth is also limited. Sending a sufficiently large number of control
messages would therefore either flood the controller/datapath or over-
load the socket. The internal structure of V and the scaling of the control
traffic is illustrated in Figure 2.8.

Memory Memory space is a limited resource on (i) the controller, (ii) V
and (iii) the datapath. As the presence of V does not have any influence
on the amount of control messages that are being send to the controller,
the amount of memory used by the controller does not change45. As it
is assumed that V is running on a modern server architecture, it can also
be assumed that the memory used by V can be neglected. Studying the
memory usage therefore reduces to studying the amount of used flow
table entries on the switches.

45 It might even decrease as the size of the control messages is reduced.
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2.7.1 Database Operations

As basis for its internal database, V uses the Federated Flow Map [21]
of FlowVisor. It contains all the information that V handles (in different
tables). The database is the only part of V that changes at runtime.

This database structure supports various operations such as: (i) addition
of an entry, (ii) search for an exact match, (iii) deletion of an entry and
(iv) search for entries whose flowspace overlap with the query’s.

Addition of an Entry Addition of an entry requires updating a constant
number of hash tables (indices). In time it therefore scales with O(1),
whereas the size of the database as well its indices grows with the number
of entries N. The memory requirements are limited to the storage of the
database entry and indices. The memory requirements hence scale with
O(N).

Search for Exact Match Search for an exact match is implemented by
evaluating the indices and calculating the intersection of the resulting
sets. As discussed in [21] this scales in time with O(1).

Deletion of an Entry Deletion of an Entry of the tables requires up-
dating the indices. This also scales in time with O(1) as the indices are
implemented as hash tables [22].

Search for Overlapping Entries Querying the database for all flow-
entries whose flowspace overlap with a given one, involves (i) calculating
the set-or function of sets returned by the indices and (ii) obtaining the
resulting entries from the database. As described in [21] this can be done
with O(k) for k being the number of matching entries found.
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Nomenclature On the following pages ki indicates the number of the
matching entries for request i. K describes the overall size of the table.
The superscript indicates the table which is being used:

• µ: slice table

• ν: reservation table

• φ: controller rule table

• χ: sliced rule table

• ψ: switch rule table

Moreover N indicates the number of registered controllers.

For a definition of the Landau symbols used, refer to [23].

2.7.2 North Bound Interface

The Northbound Interface is a stateless unit that translates the controller
messages into objects for internal use and vice versa. The unit therefore
scales in time with Θ(1). Its stateless character makes it scale in memory
with Θ(1). There is one internal object generated per control message
received. Thus it also scales in control messages with Θ(1).

2.7.3 Slicer

The Slicer unit takes a controller rule as input and translates it to a set
of sliced rules. Depending on whether the port(s) for which the rule is
valid, is an internal or an external port, the Slicer uses the reservations or
the controller’s slice to calculate the sliced rules.

Internal Port The Slicer needs to find the reservations with which the
given rule overlaps. As seen above such a database query scales with
the number of matching entries kν

i , which in turn scale with the table’s
size Kν. The size of the reservation table is determined by the number
of sliced rules that forward traffic to that specific port, as each of these
generates exactly one entry in the reservation table. Thus the Slicer unit
scales in time with O(kν

i ), where ki ∈ [0,Kν] is the number of reservations
with whose flowspaces the new rule overlaps.
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As the Slicer unit itself does not store any information it scales in memory
with Θ(1).

When processing a controller rule, the Slicer generates a sliced rule for
every reservation. In the control traffic dimension it therefore scales with
O(kν

i ).

External Port If the port is connected to an external device, the con-
trollers slice is used instead of the reservations. These slices are constant
at runtime and the algorithm therefore scales in time with Θ(1).

Processing a controller rule for an external port generates k
µ
i rules, where

k
µ
i is the number of slice entries with which the rule overlaps. In contrast
to an internal port, this number stays constant at runtime. Hence control
traffic scales with O(k

µ
i ).

2.7.4 Merger

The Merger has two different tasks, it generates the reservations so that
they do not conflict with the reservations of other controllers and merges
the rules of the different controllers.

Making Reservations Every sliced rule which is generated by the Slicer
triggers generation of a reservation. Checking for a conflict requires
checking whether there is a entry in the reservation database which over-
laps with the flowspace that needs to be reserved. With the algorithm
used by FlowVisor [21] this can be done in O(1) time46. If a conflict
occurs another conflict-free volume of equal size in the headerspace H
needs to be found. The prototype implementation assumes that the data
source was using a constant VLAN id. It can easily find a volume of
equal size by choosing an unused VLAN id. A more general algorithm is
outside the scope of this thesis.

For every sliced rule exactly one reservation is generated, therefore the
memory requirements scale with O(Kν), Kν being the number of installed
reservations.

46 The database is queried for rules whose flowspace overlap with the given one. In-
stead of fetching the resulting entries from the database it is only evaluated whether
the result is non-empty.
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Merging Merging the sliced rules of different controller requires calcu-
lation of the crossproduct of the rules’ flowspaces. In OpenFlow 1.0 only
one flow table of the datapath can be accessed47. Therefore calculation of
the crossproduct has to be done in software and cannot be pushed to the
switch. Thus the N controller-specific flow tables need to be mapped to a
single one-dimensional flow table. The algorithm proposed in my thesis,
fetches the switch rules from the database whose flowspace overlap with

the flowspace of the controller rule. This can be done in O(k
ψ
i ). Here k

ψ
i

is the number of controller rules which match the query. V then iterates
through these rules and installs at most one new controller rule per en-
try, before it finally installs the controller rule corresponding to the sliced

rule. The overall merge therefore scales with O(k
ψ
i ) in the dimensions of:

time, flow tables entry number and control traffic.

Be aware that k
ψ
i itself scales with the number of switch rules that are cur-

rently installed on the switch. As they are the result of the crossproduct
of controller rules, the number is limited by

N∏

l=1

K
χ
l , (2.17)

where K
χ
l is the number of controller rules that were installed by con-

troller i. Installation of a rule that is valid for the whole flowspace leads
to this worst case scenario. Hence the Merger unit’s worst case execution
time grows with

WCET ∈ O

(
N∏

l=1

K
χ
l

)
. (2.18)

Hence the algorithm does not scale polynomially. However, as described
in Section 2.4.4 OpenFlow 1.x [6, 7, 5] might allow implementation for
algorithms that scale better.

47 Depending on the implementation this might be a logical representation of multiple
internal flow tables.
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2.7.5 Classifier

The Classifier takes an OFPT_PACKET_IN or an OFPT_STATS_REPLY as
input value and uses the controller slices or the reservation rules to deter-
mine which controller is to receive a modified copy of the message.

OFPT_PACKET_IN

The Classifier needs to check whether a specific controller is allowed to
receive the OFPT_PACKET_IN message. Checking whether a table con-
tains an entry whose flowspace matches the packet and was installed by
a specific controller, can be done in Θ(1). Because V needs to validate
this for all N controllers, it scales in time with Θ(N).

OFPT_STATS_REPLY

A OFPT_STATS_REPLY is generated by the switch as reply to a corre-
sponding request. The reply needs to be forwarded to all controllers that
sent an OFPT_STATS_REQUEST message to the datapath and have not
received an OFPT_STATS_REPLY yet. Keeping a simple list of controllers
for every datapath, allows a lookup time that scales with Θ(1).

Yet the controllers need to obtain individualized OFPT_STATS_REPLY
messages. This requires re-translation of the switch rules into controller
rules. Let w be the number of entries in the OFPT_STATS_REPLY mes-
sage. For every such entry, V searches the corresponding switch rule in
its Switch Rule Table. Since an exact match is required the procedure to
obtain the switch rule from the database scales with O(1).

Every switch rule ψi is the result of hi sliced rules. In turn every sliced rule
is associated with exactly one controller rule. Hence finding the controller
rules that are associated with switch rule psii scales with O(hi).

It holds hi < N for N being the number of controllers, because every
switch rule is associated with at most one sliced rule of every controller.
Herefrom follows the runtime-stable scaling attribute of O(N).

Once the associated controller rule is found, the entry in the controller-
specific OFPT_STATS_REPLY is generated in constant time. Thus the
overall procedure scales in time with O(wN).

54



2.7.6 South Bound Interface

The South Bound Interface solely translates internal objects into control
messages and vice versa. It is fully stateless and therefore scales with
Θ(1) in time, memory and control traffic.

Development
Controller

Primary
Controller

N-Bound Interface (cA) N-Bound Interface (cB)

Slicer(cA) Slicer(cB)

Merger (s1) Classifier (s1)

S-Bound Interface (s1)
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Figure 2.8: Scaling characteristics of V in the control traffic dimension. For an
OFPT_FLOW_MOD, the Slicer generates kν

1 messages that are sent to

the Merger, which in turns generates at most
∏N

l=2 K
χ
l messages.
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2.8 Conclusions

In the thesis at hand I describe how multiple controllers can share the
same flowspace without interfering with each other. From the controller’s
perspective full isolation is guaranteed. The approach supportes isolated
virutalized control planes, which correspond to controller-specific virtu-
alized networks.

This allows researchers to develop controllers, that observe the full net-
work traffic without influencing packet delivery. Therefore I allow de-
velopment of controllers that do not need to reason about any other
controller operating on the same flowspace. Today this is not possible,
because topology-aware controllers observe the influence that other con-
trollers have on packets of the overlapping flowspace. The given imple-
mentation proves in-principle-feasibility of the approach. However the
scalability discussion shows that with today’s version 1.0 of the Open-
Flow protocol, the approach is not suitable for large or even medium
sized networks. Newer versions like 1.1, 1.2, 1.3 and 1.4 promise features
that potentially allow for an implementation with better scaling charac-
teristics. Which of these versions (or any future version) will find wide
acceptance under switch implementers, is not clear today.

In addition I came to believe that the hypervisor that ensures resource
sharing of the network should run a different protocol on north and
south bound interfaces. The OpenFlow protocol is arguably not designed
to support flowspace sharing among multiple controllers. Yet the north
bound protocol of a hypervisor could benefit from features that are not
available in the OpenFlow protoco. Frenetic’s [15] approach seems very
promising. Therein coordination between the controllers is ensured at
compile time instead of being artificially enforced afterwards. Imple-
menting the idea of different controller classes on the basis of Frenetic
might also solve the scaling problem, because the controllers can be coor-
dinated before problems occur.
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If I were to continue this work in an academic setting, I would however
evaluate yet another approach. It seems tempting to develop a network
programming language, that displays the standard OpenFlow Interface
to higher level programming languages, while it uses an extended proto-
col to communicate with the hypervisor. The network applications would
have to be compiled specifically for the hypervisor, but they could reside
on a different physical host. This means combining the idea of Frenetic
with the architecture of FlowVisor. The controller-specific part of Frenetic
could be located on a physical host different from the centralized hyper-
visor. This would allow a higher controller flexibility. A measurement
controller could easily be added to the the network and (depending on
the runtime) even reside at a different location.
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Chapter 3

Debugging OpenFlow
Networks

3.1 Motivation

Foster et al. define a language in their paper “Frenetic: A Network Pro-
gramming Language” [15] that allows programmers to define multiple
modules within their network controller that register for specific event
streams. A module that implements an HTTP load balancer for exam-
ple would want to obtain an event stream in which an event corresponds
to the first packet of a new conversation with a specific destination IP
address and TCP Port 80. The modules are compiled in a way they do
not interfere with each other and are not affected by the asynchronous
nature of the OpenFlow control channel. This dramatically reduces the
complexity that the developer needs to deal with when writing network
control applications.

If resource sharing is realized via a separate application that uses the
OpenFlow Protocol on both North and South Bound Interface (such as V
and FlowVisor), there is no specific way for the controllers to register for
a specific event stream. To the hypervisor a controller is a Mealy machine
whose internal state, and transition functions are unknown. As the con-
troller might use external data (e.g. the current electricity price in order to
do economical routing) only a subset of the input values is known to the
hypervisor. To make things even more complex the controller might treat
requests in individual threads and therefore the response stream might
be ordered differently from the input stream.
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Trying to guess the internal structure of the controller (e.g. with Hidden
Markov Chains) could therefore only give a mere idea of the controllers
inner structure. This lack of information makes it impossible for the hy-
pervisor to ensure that network applications which share a flowspace do
not interfere. If the system administrator sets a faulty configuration, or
controller / hypervisor / switch implementation is buggy, this interfer-
ence between controllers can generate undesired effects.

Consider the following academic case of a loop generation. A loop is
always “closed” by installation of a flow rule which forwards a packet to
a datapath that is has already visited while preserving the relevant packet
headers. One might try to find such loops using an analytic method at
installation time. The main problem here is the complexity of the network
and its dynamic nature, which is introduced by the black-box-nature of
the controllers. To check whether installation of a rule would introduce
a loop one would have to calculate the path of every possible packet that
could be generated by that rule until it leaves the network. In the worst
case, this would mean that > 2223,1 paths would have to be evaluated2.
Such an analysis would consume a vast amount of resources and slowing
down the control path of the network is undesirable.

A Debugger that uses the abundance of available data about the state of
a functioning network in a opportunistic fashion to validate in near real-
time whether the intended network policies are being enforced, would be
of great use for developers of all stages. The design and implementation
of such a debugger, that helps OpenFlow network administrators to pin-
point problems like routing anomalies is the main goal of this part of the
thesis.

1 The OpenFlow allows to define rules that match against 223+ p bits. In this context
p is the implementation-specific number of bits used to represent the in-port of a
packet. Hence the maximum number of rules that could be installed on every
switch is 2223+p. If the in-port is not used in the matching process, the maximum
number of paths that would need to be evaluated is 2223. In this case, one path
for every distinguishable packet would be installed in the network. Usage of the
in-port increases complexity, as the ingress switch/port through which the packet
entered the network has an effect of the packet’s path. If a network has q ingress
ports, the number of paths that would need to be evaluated is q · 2223. In reality the
switches’ flow tables are limited in size, hence the 2223+p table entries will hardly
be reached and the number of paths to evaluate reduces accordingly.

2 The average case looks way better though.

59



3.2 Related Work

Besides the work reference in Section 2.2, the recently published paper
“VeriFlow: verifying network-wide invariants in real time” [24] is worth
being referred to. It takes a very similar approach as proposed by me.
The main difference is that it assumes that the controller to installs rules
whose validity flowspace is limited. If that assumption is made, the im-
pact which every rule installation has on behavior of the network is lim-
ited. Hence analytic methods can be used. Yet installation of a rule, which
is valid for the whole header space would make analytic validation very
time consuming.

Yet another approach is take by Canini et al. [25]: “NICE applies model
checking to explore the state space of the entire system – the controller,
the switches, and the hosts.” [25]. Unlike the approach-at-hand, NICE is
proactive and does not analyze the network state in real-time.

3.3 Data Sources

A debugging tool benefits from each of the information sources that it
can leverage. The available data sources that can be used in the context
of an OpenFlow network are discussed in this section.

3.3.1 OpenFlow

Upon reception of a packet that does not match against any entry in the
switch’s flow table, this packet is forwarded to the controller3. Ideally the
controller installs a new flow entry and/or sends the packet back to the
switch together with an associated action.

By monitoring the control channel OFPT_PACKET_IN messages as well
as the controller’s response can be captured. However associating the
OFPT_PACKET_IN events with the installed rules and generated actions
is not trivial. There is no specific transaction id defined for events gen-
erated by the switches4 and the rules that a controller installs might not

3 The application developer can set a differing configuration.
4 A buffer id is associated with every OFPT_PACKET_IN message, but this id is used

to tell the switch to apply a rule to a buffered packet. It is valid for the controller
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always match against the the packet that triggered its installation. For
example a controller which implements a learning switch and receives a
packet with source MAC address xi on port qi will install a rule that for-
wards traffic directed to destination MAC address xi through port qi. In
a second step it will request the switch to flood the packet that triggered
the controller on the remaining ports.

Besides passively listening to the traffic of the control channel, active in-
jection of messages is possible: e.g. actively polling the packet and byte
counter values of the flow table entries.

3.3.2 FlowVisor

FlowVisor injects LLDP packets [17] into the data plane of OpenFlow
switches that are connected to FlowVisor and floods these packets on all
ports. An OpenFlow switch that receives such a packet forwards it to
FlowVisor, which can then tell from the payload how the switches are
connected. This is an additional feature, that does needs to be activated.
The API of FlowVisor can be used to obtain the topology.

3.3.3 sFlow

If sFlow [9] is enabled on a switch, it samples packets on its network in-
terfaces and forwards the sampled packets to a collector. The collector
hence obtains a “good representation”5 of the current traffic in the net-
work. This can be used to build up statistics and / or to trigger analyses
that require specified packet samples. Furthermore sFlow reports inter-
face counters (byte counters) of the interfaces in periodic time intervals.
These can be good indicators for the traffic volume that is transversing a
specific link6.

to install further rules as a response to the OFPT_PACKET_IN messages.
5 The quality of the representation depends on the type of traffic observed and the

applied sampling strategy.
6 The quality of the indicators depends on the temporal granularity of the reports.
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3.3.4 SNMP

SNMP [26] allows polling of a vast amount of data from the switch. Yet
the information most relevant for debugging purposes would be the in-
terface counters which can also be obtained via sFlow. In our experiments
SNMP seems to be slow and the ability of polling the interface counters
over having them pushed periodically by sFlow does not provide much
of an advantage.

3.4 Concept

Assuming that the controllers satisfy fundamental requirements – such as
generating control messages at a bounded rate – it is possible to compare
the controller’s behavior in a multi-controller network with its behavior
in a single-controller network. This comparison can be made at runtime
with a single instance of the controller application.

To do so I wrote a python script, which simulates a clone of the real net-
work with its switches and links for every individual controller. A small
piece of software called Sacramento7 is eavesdropping the communica-
tion between the controllers and FlowVisor. It keeps record of the for-
warding rules currently active on the switches. This data fully describes
how the physical network is supposed8 to handle incoming traffic. Every
such rule is associated with the controller that installed it (this informa-
tion is being lost once the rule is installed on the switch). Only polling
the forwarding table without listening to the conversation between the
controllers and switches would therefore not be sufficient.

Furthermore the border switches are configured to use sFlow sampling
on their incoming ports so that the collector receives a good picture of
the traffic that enters the network. For each of these packets the collector

7 The Sacramento – San Joaquin River Delta is one of the world’s few estuaries (“in-
verse deltas”). It has a number of springs and one connection towards the open sea.
This neatly represents the origin-estimation feature of Sacramento. A packet that
is being sampled at any point in the network can stem from a number of locations,
while its destination is well-defined.

8 Be aware that implementation-behavior of the network is to be validated. A differ-
ence between the simulation and the physical network necessarily originates from
a bug in either implementation; or a faulty theory.
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simulates what the physical network is expected to do and what each of
the N controllers expects to happen in a single-controller network.

While the data obtained from eavesdropping the communication between
the controllers and switches is sufficient to simulate what the physical
network does9, more information needs to be gathered to evaluate how
the controllers would behave in a single-controller network. If controllers
are installing overlapping flow rules in the forwarding tables of the same
switch, rules that have higher priority or were installed earlier will “con-
sume” the packet. Rules with lower priority are not being used by packets
that matched earlier rules; these rules are being starved.

Therefore OFPT_PACKET_IN messages that would have been generated
by the datapaths, was there not interference between the controllers, are
being “lost”. These OFPT_PACKET_IN messages need to be generated
and injected into the control channel to evaluate how the controller would
handle such a message. That needs to be done so that neither the con-
troller’s nor the network’s state is modified10.

Controller 1 . . . Controller n

Listener 1 . . . Listener n

FlowVisor

. . .

Figure 3.1: Eavesdropping the conversation between the controllers and the
switches is done by intercepting the control channel between the con-
troller and FlowVisor.

9 Assuming that the network’s and the simulation’s implementation are bug-free.
10 The controller’s state actually can be changed, as far as this change in its state does

not have an influence on the network’s state.
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3.4.1 Controller-Specific Network Views

As illustrated in Figure 3.1 a small piece of software is used that eaves-
drops the conversation between the controllers and FlowVisor. It keeps
track of the flow rules that are currently active. If the flow modification
message, sent by the controller, indicates that the controller does not wish
to be informed upon removal of the flow from the flow table of the switch,
this parameter is modified and the corresponding flow removal message
is filtered out11 by V. In this way information about the rules and their
validity period can be obtained. The obtained picture is not perfect, be-
cause the time at which the control message is observed is not the time at
which the flow rule becomes active/inactive. This point in time can only
be estimated.

The rules that are installed on the network’s switches represent the phys-
ical network view. It is the result of multiple controllers interacting with
the network and potentially interfering with each other. The individual
controller might however have created another set of rules, had it been
operating in a single-controller-network. Determining which set of rules
the controllers would install in such a case is not fully straight forward.
This information however is needed to pinpoint (unwanted) interference
between multiple controllers.

Single-Controller-Volumes In volumes of the headerspace [3] H in
which only one controller has writing privileges, the physical network is
obviously representing the network view of the controller that is respon-
sible for that flowspace. Building the controller-specific network views
for these areas is simple: all installed flow table entries for this region are
associated with the according controller and the other N − 1 controllers
perceive this part of the network as rule- and traffic-less.

Multi-Controller-Volumes As depicted by the crosshatched area in Fig-
ure 3.2 association with a specific controller the case of overlapping con-
troller slices is more complicated. In the physical network the path of
a specific flow might vary drastically from the paths that the individual
controllers would have chosen in isolated networks. Even though FlowVi-
sor forwards an OFPT_PACKET_IN to only one of the controllers asso-
ciated with a point in the headerspace any of the associated controllers

11 This part has not been implemented in the prototype.
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can install rules for it. Whichever controller installs the highest-priority
rule, starves the rules that were installed by other controllers. The paths
whose establishment would have been triggered by rules that now are
being starved, are not being explored in the physical network. These
paths can be evaluated by injecting OFPT_PACKET_IN messages into the
control channel between FlowVisor and the controller and observing the
controller’s response.

(i) send an OFPT_TABLE_MOD message and install a new rule,

(ii) send an OFPT_PACKET_OUT message and forward the packet to
the next hop or

(iii) ignore the request.

All actions can be interpreted as the controller’s intended handling of that
specific packet. This allows to draw the path any given packet would take
through the specific single-controller-networks.

The soft timeout associated with the rules is interpreted as hard timeout
and the controller is queried for the flowspace again after the associated
rule timed out. This is done because the simulated path is not being cho-
sen in the real network and no incorrect view of the network is presented
to the controller by letting these rules time out. Were the rules actually
installed on the network, they might actually be applied, as traffic from
other sources, that is not present in the simulation, might match against
them. This effect is not expected by the controller and therefore removing
them after the soft timeout is presenting a consistent way of the network
to the controller12.

To obtain a reasonable picture of the traffic in the network, the border
switches are configured to take sFlow samples on their egress interfaces.
These samples trigger the simulation which evaluates their paths through
the network. The rules that were generated by the controller in response
to the simulation are stored in the database, but not installed on the
switches.

12 Letting rules time out, has not been implemented in the prototype.
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Figure 3.2: Suppose for a specific switch, Controller c1 has write privileges for
the MAC address range 2-5 and Controller c2 has write privileges
for the IP address range 2-5. Then for the shaded areas the picture
that they have of the network is identical with what is happening in
the real network. Where they overlap, the flow rules installed in the
physical network are a mixture of these two worlds. In these flow
volumes active querying of the controllers is necessary to investigate
the controller’s expectation of the network’s behavior.

3.4.2 Network-Neutral Controller Probing

Replies to the fake OFPT_PACKET_IN messages have to be dropped as
their delivery to the switch would change the state of the network. Yet
associating the response with the OFPT_PACKET_IN message that trig-
gered the reply is not trivial, because there are no transaction ids for
events originating from the switches. Even though there is a buffer id as-
sociated with every packet that is forwarded from the switch to the con-
troller, the programmer might be sloppy and omit the buffer id or fully
legitimately install rules, against which the packet does not match.

The following three approaches13 can be used to ensure that the state of
the network is not changed by Sacramento.

13 This list does not claim coverage of all possible approaches.
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Stalling Execution

One way of associating OFPT_PACKET_IN replies with the message that
triggered them, is stalling forwarding of control messages for the time
that the fake message is being processed by the controller. When a fake
OFPT_PACKET_IN message is generated, original OFPT_PACKET_IN
messages are queued. The fake message is injected into the control chan-
nel only after no OFPT_PACKET_IN replies have been observed from
the controller for a predefined time. After its injection the controller’s
response is captured, and associated with the fake message. After an-
other timeout normal processing of legal OFPT_PACKET_IN messages is
continued.

Faking Datapaths

If the OpenFlow channel is the only source through with a controller
obtains information about the network state, the whole network topology
can be virtually duplicated. Every datapath that registers at Sacramento,
triggers registration of two datapaths at the controller. Of these datapaths
one will represent the true datapath with its true datapath id, whereas
the second is registered with a datapath id, that is not being used by any
datapath in the network14.

As the state of the duplicated network needs to be the same as the origi-
nal one, OFPT_PACKET_IN events are duplicated as well. The advantage
of this approach is, that there is no need to associate the replies with the
OFPT_PACKET_IN events, as control messages destined to fake datap-
aths can silently be dropped.

Framing OFPT_PACKET_IN messages

For controllers whose output stream represents the ordering of their in-
put stream, i.e. controllers that do not use threads, markers can be used
to define the beginning and end of the controllers response to a specific
request. The fake OFPT_PACKET_IN-to-be-injected is being framed by

14 The datapath id is 64 bit long. It is seems valid to assume that in today’s network
there will be less then 263 network switches associated with one installation of
FlowVisor.
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two OFPT_PACKET_IN messages with a fake datapath id. As the order-
ing is preserved, the first occurrence of responses with the fake datapath
id marks the beginning to the reply associated with the fake message,
while the second occurrence marks the end of the reply.

3.4.3 Comparing the Controller-Specific Views

As illustrated in Figure 3.4 different controllers might want to implement
different paths for the same physical packet. The resulting physical path
can vary from the paths that the controllers in a single-controller network
would have implemented by the: (i) datapaths visited / links used in the
OpenFlow network, (ii) egress datapath / egress port through which the
packet leaves the network, (iii) delivery (a controller can decide to drop
the whole flow) and (iv) the header field values when exiting the network.
If the packet header fields differ while the packet is in the network but
are equal when the packet leaves the network, no external impact is made
and hence the case can be ignored.

There seems to be no general way of defining a measure for the level of
violation. Even if the physical network is not behaving the way a con-
troller would expect, it is not necessarily a problem, because the network
administrator might want different controllers to interact in this specific
way.

Therefore a simple policy syntax is defined that allows network adminis-
trators to define what variations between the controllers’ expectations and
the actual network’s behavior are tolerable. If the path that is calculated
for a specific controller differs from the path in the physical network, the
policy chain is evaluated and the associated action is executed.
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Integers n
Inequality neq
ControllerId contr
DatapathId dpid
PolicyChain chain ::= 〈contr, {pol1 , . . . , polk}〉, k ≥ 0
Policy pol ::= 〈pat, cond〉
Patterns pat ::= {h1 : n1, . . . hk : nk}, k ≥ 0
Headers h ::= in_port |VLAN | dl_src | dl_dst | dl_type |

nw_src | nw_dst | nw_proto | tp_src | tp_dst
Conditions cond ::= 〈(attr, loc, val, act)〉 | cond AND cond
Location In Path loc ::= −pathlength · · · − 1, 1, pathlength | any
Attribute attr ::= h | dpid
Value val ::= n | neq
Action act ::= accept | in f o |warning | error

Figure 3.3: Policy syntax.

3.4.4 Small Flows

The analysis is triggered by sFlow which samples packets with a pre-
defined sampling rate R. Therewith the minimum size m a flow has to
have so that it is sampled with a probability larger than p̂ can be calcu-
lated.

Suppose that in a time interval T, m out of the total N packets belong
to the flow. Sampling with rate R essentially means drawing n = R · N
samples without replacement. The probability of k successes is described
by the hypergeometric distribution:

P(X = k) =
(mk )(

N−m
n−k )

(Nn )
(3.1)

therefore the probability that least one packet of the flow is sampled be-
comes:

p =
min(m,n)∑

k=1

P(X = k)

=
min(m,n)∑

k=1

(mk )(
N−m
n−k )

(Nn )

(3.2)

The problem with this formula is that the probability of detecting the flow
of size m depends on the traffic load. If the flow-to-be-detected would be
the only flow in the network, every sample taken would be from this flow.
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Figure 3.4: Suppose there are two controllers c1 and c2 connected to FlowVi-
sor and the packet that arrives at d1 falls within the slice of both
controllers. If the controllers were acting in a isolated network, the
packet would take the path that is indicated. The path that the packet
actually takes might be one that differs from what the controllers ex-
pect.
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Figure 3.5: Probability of sampling from a flow of size m (in a time interval T)
while sampling with rate R therefore taking R × T samples. Simu-
lated with 1.000.000 packets.

If it is a marginal flow15 it is harder to detect. Figure 3.5 illustrates the
probability of detecting a flow with size m (in a given time interval) and
sampling rate R while assuming that the network is processing 1.000.000
packets in the same time. With a low sampling rate it is therefore unlikely
to find small flows. This is especially a problem for TCP connections that
are not established because there was a problem in the network. They
will only generate very few packets but would be interesting to sample
from. Problems that could cause this are: (i) a controller installs a drop
rule (ii) no controller responds to the OFPT_PACKET_IN event (iii) loops
are introduces into the network and (iv) the packet is delivered to an
incorrect destination.

The main limitation of the forgoing approach is, that the flows have to
have a specific size in order to obtain a sample of each flow with a suf-
ficiently high probability. Small flows are not likely to be detected and
a different approach has to be used to obtain samples from these small
flows. By observing the change in counter values of the flow statistics16,
these small flows can be found.

15 Amarginal flow in this context is a flow that, relative to the total number of packets
per time unit, generates sufficiently few packets.

16 Here the counter values that are provided by the switch via the OpenFlow protocol
are used.
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3.5 Implementation

Sacramento was implemented as Python script and tested with mininet
[20] networks. Even though not described in the forgoing sections, the
implementation allows the user to inject any packet at any point in the
simulated network, thereby allowing to evaluate what the network and
the individual controllers would do with the packet, without injecting it
into the physical network. Sacramento is furthermore able to estimate
the source of a given packet that was sampled on an internal datapath,
by leveraging packet statistics.

A sample output is given in Figure 3.6.

IN DPID: 20:1, FLOWSPACE: {'dl_type': '0x800L', 'nw_dst': 167772176L, 'dl_sr': '0x1L', 'nw_proto': 1L, 'nw_tos': 0L,

# 'tp_dst': 0L, 'tp_sr': 8L, 'dl_dst': '0x10L', 'nw_sr': 167772161L}

# - CONTROLLER - 491

# - CONTROLLER - 492

|

+=[X℄ OUT DPID: 20:3, FLOWSPACE: {'dl_type': '0x800L', 'nw_dst': 167772176L, 'dl_sr': '0x1L', 'nw_proto': 1L,

# 'nw_tos': 0L, 'tp_dst': 0L, 'tp_sr': 8L, 'dl_dst': '0x10L', 'nw_sr': 167772161L}

# - CONTROLLER - 492

# - CONTROLLER - 491

|

+=[X℄ IN DPID: 19:1, FLOWSPACE: {'dl_type': '0x800L', 'nw_dst': 167772176L, 'dl_sr': '0x1L', 'nw_proto': 1L,

#'nw_tos': 0L, 'tp_dst': 0L, 'tp_sr': 8L, 'dl_dst': '0x10L', 'nw_sr': 167772161L}

# - CONTROLLER - 492

# - CONTROLLER - 491

|

+=[X℄ OUT DPID: 19:3, FLOWSPACE: {'dl_type': '0x800L', 'nw_dst': 167772176L, 'dl_sr': '0x1L', 'nw_proto': 1L,

# 'nw_tos': 0L, 'tp_dst': 0L, 'tp_sr': 8L, 'dl_dst': '0x10L', 'nw_sr': 167772161L}

# - CONTROLLER - 492

# - CONTROLLER - 491

|

+=[X℄ IN DPID: 18:1, FLOWSPACE: {'dl_type': '0x800L', 'nw_dst': 167772176L, 'dl_sr': '0x1L', 'nw_proto': 1L,

# 'nw_tos': 0L, 'tp_dst': 0L, 'tp_sr': 8L, 'dl_dst': '0x10L', 'nw_sr': 167772161L}

# - CONTROLLER - 492

# - CONTROLLER - 491

|

+=[X℄ OUT DPID: 18:3, FLOWSPACE: {'dl_type': '0x800L', 'nw_dst': 167772176L, 'dl_sr': '0x1L',

# 'nw_proto': 1L, 'nw_tos': 0L, 'tp_dst': 0L, 'tp_sr': 8L, 'dl_dst': '0x10L', 'nw_sr': 167772161L}

# - CONTROLLER - 492

# - CONTROLLER - 491

|

+=[X℄ LEAVES OPENFLOW NETWORK - KNOWN DESTINATION (ma:0:0:0:0:0:16, ip=10.0.0.16)

# - CONTROLLER - 492

# - CONTROLLER - 491

Figure 3.6: Sample output of Sacramento. The packet 〈Ethernet-Type: 0x800,
MAC Source: 00::01, MAC destination 00::16, IP Source 10.0.0.0.1
(167772161L), IP Destination 10.0.0.16 (167772176L), Network Protocol:
ICMP (id 1), TOS-bits: 0, ICMP-Type: Echo Request (8)〉 enters the net-
work through port 1 of datapath 20 and leaves it through port 3 of
datapath 18. The destination host (MAC address 00::16, IP address
10.0.0.16) is known to Sacramento and connected to the physical des-
tination port. Both controllers (ids 491 and 492) specify the same
path.
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Chapter 4

Conclusions

If the slices of different controllers overlap, conflicts can occur. Find-
ing these conflicts is possible by sampling from the network traffic while
taking special care of small flows and simulating the paths that the indi-
vidual controllers would implement for the given packet. The network
administrator is being informed about variations of the resulting flows.
As some of these differences might be tolerated, a syntax is defined that
allows the administrator to specify such cases.

Sacramento can also be used to inject a given packet into the simula-
tion and evaluate which path a specific controller would implement for
it. The concept has been implemented as Python script and tested. Out
of personal experience the ability to analyze the path of a specific packet
proves very useful in developing network controllers. The ability to de-
tect conflicts that occur between different controllers however looses it’s
attractiveness if V or any other hypervisor that ensures that such conflicts
cannot occur, is used.
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Chapter 5

Appendix

5.1 Task Description

OpenFlow enabled switches offer enhanced flexibility for networks over
alternative contemporary and legacy control environments. This in-
creased flexibility comes at a cost, however - new control structures chal-
lenge network designers and administrators to adapt to new unknowns
and trust very immature control software. They would therefore greatly
benefit from an independent system for validating that the implemented
network is functioning as designed.

Legacy approaches to network policy validation have focused on systems
with static flow tables and fixed protocol implementations and are much
less useful in OpenFlow environments. The surgical control that an Open-
Flow controller can exert over the forwarding of individual packet flows
create an environment where previous approaches to policy validation
are insufficient.

The goal of this Master Thesis is to use the abundance of available data
about the state of a functioning network to validate in near real time
whether the intended network policies are being enforced at the proper
locations and times. This would allow a user to verify the implementation
of controller applications, the controllers and the datapaths. Therefore it
would deliver an incredible value to both network operators and soft-
ware/firmware implementers.

A successful implementation could also integrate with FlowVisor to po-
lice intended network policy on a per-slice basis, independent of the up-
stream controllers used.
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5.2 Declaration of Originality

The Declaration of Originality may be found on the following page.
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