
WLAN-OPP Privacy

Semester Thesis

Steven Meliopoulos
Suhel Sheikh

March 3, 2012

Advisors: Bernhard Distl
Sacha Trifunovic

Supervisor: Prof. Dr. Bernhard Plattner

Computer Engineering and Networks Laboratory, ETH Zurich





Abstract

Opportunistic networks are networks which are formed by participating users’
devices without the need for a fixed network infrastructure, such as a stationary
wireless access point. Due to the mobile nature of these networks devices are
rapidly changing their communication partners without the user being aware of
whom he is connected with. Various privacy concerns arise because users are
not aware of whom they are sharing their data with and also whether the person
they are consuming data from is a regular user or an adversary.

In our thesis we first implemented an Android application that establishes
opportunistic networks (Wifi-Opp). Because most Android devices do not sup-
port ad-hoc wireless mode at this time we used the built-in wireless access point
feature in order to communicate between devices without the availability of a
fixed hotspot.

We then implemented a privacy protection method on top of the Wifi-Opp
stack which enables the user to define friendship relations with other users. Our
privacy protection implementation does not rely on devices having any fixed
identification. This is important because it protects the user’s movement from
being tracked by allowing the device’s identification to change randomly from
time to time as it moves through different networks. Finally we evaluated the
performance of our implementation and determined possibilities for improve-
ments and future work.





Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Design 3
2.1 Wifi-Opp Application . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Wifi-Opp service . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Configuration Interface . . . . . . . . . . . . . . . . . . . 4

2.2 Privacy-Opp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Demo Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Implementation 7
3.1 Service Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Starting and stopping the Service . . . . . . . . . . . . . . . . . . 7
3.3 Neighbor List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Wifi-Opp Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Friendship Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Documentation 11
4.1 Using the Configuration Interface . . . . . . . . . . . . . . . . . . 11

4.1.1 Regular Mode . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.2 Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Writing New Strategies . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 The execute Method . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Automatically Updated Variables . . . . . . . . . . . . . . 13

4.3 Using Wifi-Opp as a Client Application . . . . . . . . . . . . . . 14
4.3.1 Starting the Service and Registering as a Client . . . . . . 14
4.3.2 Marking the Current Connection as Used . . . . . . . . . 14
4.3.3 Obtaining the Neighbor List . . . . . . . . . . . . . . . . . 15

5 Evaluation 17
5.1 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Conclusion 21
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A Diagrams 23
A.1 Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



Bibliography 23



Chapter 1

Introduction

Wireless networks are broadly used today and are available not only at people’s
homes but they are also offered at many public places for a fee or for free. These
networks rely on a fixed infrastructure, usually a wireless access point connected
to a wired network, which serves all the wireless users. Opportunistic networks
do not rely on such a fixed infrastructure. They use a decentralized communica-
tion model, completely eliminating the dependency on a single device, enabling
devices to communicate among each other everywhere at any time.

While the traditional network model theoretically offers connectivity be-
tween any two devices that have internet access, opportunistic networks still
offer a number of advantages. Due to their decentralized nature they are re-
silient to censorship and can still operate when infrastructure fails, for example
due to natural disasters. While the range of an opportunistic network at any
given moment is limited by the reach of the wireless signal, information can still
travel over large distances as an effect of the users’ mobility.

With this decentralized approach used in opportunistic networks we no
longer consume data from well-known web services, which we know and trust,
but from neighbors in the network. Let’s look at an example to give a possible
use case of such networks: Alice and Bob are avid fans of the weekly podcasts
recorded by Charlie and they are both subscribed to his podcast feed. They
ride the same train every morning, but they do not know each other. Bob meets
Charlie for dinner from time to time and during their conversations their smart-
phones automatically form an opportunistic network. The podcast application
on Bob’s device then recognizes that Charlie’s device offers a new item in a feed
Bob is subscribed to and downloads it right away. On Bob’s commute home
his and Alice’s devices will form yet another opportunistic network giving Alice
access to the latest episodes of the podcast.

Due to the fact that opportunistic networks are formed at random between
devices of people who might not know each other there are privacy considera-
tions to be made, some of which will be outlined in this paper.

We developed an application for mobile devices running the Android oper-
ating system that establishes opportunistic networks (Wifi-Opp). It continually
tries to build networks with other participating devices in its vicinity and pro-
vides a list of available neighbors to other applications on the same device which
can then initiate direct contact with neighbors as required.

On top of the opportunistic network module we implemented a privacy pro-

1



tection scheme (Privacy-Opp), which improves privacy on the opportunistic net-
work in three ways. Firstly, it enables applications to define friendships (trusted
devices) and thus making it possible for them to only exchange sensitive data
with friends. At the same time Privacy-Opp allows the underlying Wifi-Opp
service to change the device’s identity frequently to avoid device tracking by
adversaries. Finally, our implementation never sends raw friendship informa-
tion over the network, thus protecting the user’s social relationships.

In the following chapters we will present our implementation in more detail.

1.1 Related Work

Our work largely builds on related work done by the Podnet group at ETH
Zurich. In particular we built our implementation based on the paper on Ad-
hoc-less Opportunistic Networking [1], which outlines a general implementation
of opportunistic networks, and the paper about Privacy in Opportunistic Net-
works with Reputation [2].

2



Chapter 2

Design

There are two major components called Wifi-Opp and Privacy-Opp, which are
implemented as two completely separate Android applications. Additionally
there are two smaller applications, which make use of the Wifi-Opp API for
both testing and demonstration purposes.

2.1 Wifi-Opp Application

The Wifi-Opp application can be divided into two main parts. One is an An-
droid service that runs continually and provides all the functionality necessary
for creating an opportunistic network. The second part is a graphical user inter-
face that shows status information and allows for configuration of the service’s
parameters and manual operation.

2.1.1 Wifi-Opp service

In a truly decentralized network, direct peer to peer connections would be made
between devices that are within each other’s reach. However since at this time
Android does not offer wireless ad-hoc networking, we build our opportunistic
networks by having devices connect to a wireless access point, then detecting
other participating devices on the same network and relying on the access point
to forward the traffic between two devices.

Android devices have the capability to act as a wireless hotspot which is
originally intended to share their cellular internet connection with other de-
vices such as laptops when no other connections are available. This feature can
however also be utilized for our purposes. The Wifi-Opp service activates the
device’s wireless hotspot function after randomized intervals, which allows for
the formation of an opportunistic network as soon as at least one more par-
ticipating device is within reach. The downside of this approach is that the
device’s cellular internet connection is automatically shared with connected de-
vices. To avoid this, the Wifi-Opp service ensures that the device’s cellular
data connection is disabled and restores its previous state when the service is
terminated.

However, especially in urban areas, there are also many publicly available
wireless hotspots. Even though many of them do not offer Internet connectivity

3



for free, they still allow any device to connect to their network so that one
can then authenticate as a registered user or make a payment through a web
interface to gain access to the Internet. And some of these hotspots forward
local traffic between connected devices even for unauthenticated devices. Our
application leverages this fact by connecting to these networks as well with
a certain probability. This has the advantage that in this case none of the
participants of the opportunistic network need to take on the role of the access
point which would cause an increased power consumption that is significant for
mobile devices.

The Wifi-Opp service continually observes the available WiFi networks,
which might be provided either by infrastructure access points or other par-
ticipating devices. It then either selects one network to connect to or it decides
to set the own device into access point mode so that others can connect to it.
This decision is delegated to a component called the strategy, which will be
covered in more detail in the following chapter.

Once the device is part of a network the service keeps track of all available
communication partners on the same network. This is done by continuously
sending out beacons containing the own device ID in short intervals. When a
beacon is received, the neighbor with the contained ID is added to the list of
neighbors. It is removed if no beacon from this neighbor is seen for a certain
duration. The Wifi-Opp service shares this list with other applications running
on the devices, such that they can then initiate direct communication with
neighboring devices.

Applications which want to use the Wifi-Opp service can start it using an
Android intent. The service will register all applications which called it and
automatically terminate when all applications unregistered. Optionally, appli-
cations can also inform the Wifi-Opp service about their desire to keep the
current connection alive, such that the service can defer changes to the current
Wi-Fi connection, allowing the application to finish its current communication.

2.1.2 Configuration Interface

The entry point of the configuration interface is the MonitorActivity. It is the
intended interface for an end user of the Wifi-Opp application. It allows the
user to start and stop the Wifi-Opp service and displays status information such
as whether Wi-Fi or the mobile hotspot is enabled, network information, the
currently active strategy and a list of current neighbor devices.

The other part of the configuration interface is the DebugActivity, which of-
fers a wide variety of configuration options and is useful for testing and further
development of the application. In addition to all the functionality in the Moni-
torActivity it allows the user to manually enable or disable Wi-Fi and the access
point mode, select a network to connect to, select and configure the available
strategies and access the service’s log file.

2.2 Privacy-Opp

The second major component of our project is the Privacy-Opp application. Its
purpose is to provide the user with increased privacy as outlined in the intro-
duction. We use parts of the method presented in ”Privacy in Opportunistic

4



Figure 2.1: DebugActivity

Networks with Reputation” [2] to improve privacy in the opportunistic network.
The general idea is to have a list of trusted neighbors with whom we want to
exchange sensitive data. A simple approach would be to give every device a
fixed identification and keep a list on each device that holds all the IDs of
trusted devices. We did not choose this approach because it comes with a big
implication on privacy caused by forcing the device to use a persistent ID: The
fixed identification enables adversaries to track devices without any difficulty.
An adversary could install observing devices at key locations (e.g. at the train
station, work and home) and thereby track a user’s behavior throughout the
day.

Our implementation does not rely on any fixed device identification, making
tracking much more difficult. This is achieved by storing information about
friendships instead of device IDs. A friendship consists of a friendship identifi-
cation number and a symmetric encryption key. In order to decide whether a
neighbor is a friend or not, devices will send out a bloom filter containing all
friendship identification numbers known to them. The bloom filter only sup-
ports querying for specific elements but not listing all of its contents. Therefore
the user’s social relationships are still kept private. The recipient can only check
if any entries of his own friendship list produce a hit. Trying all possible IDs
is impractical if the space of possible friendship IDs is chosen large enough (for
a more detailed analysis see [2]). If any of the recipient’s local entries pro-
duces a hit in the bloom filter they will enter a second phase to determine if
the matched friendship is indeed present on both devices, because bloom filters
produce false positives at a certain rate. This is done by sending a challenge
encrypted with the friendship’s private encryption key. If the message can be
successfully decrypted, they will determine that they are friends.

5



2.3 Demo Applications

There are two demonstration applications included in the Wifi-Opp project.
Ping-Opp is an application that demonstrates how applications consume the
provided neighbor list in order to create a connection to a neighboring device.
The application repeatedly pings all current neighbor devices and shows the
number of neighbors, number of received pings and a log of all received pings.
This application is also very useful to test different Wifi-Opp strategies because
it demonstrates for how long devices are actually able to communicate. The
second application is a very simple demo, which shows how applications can
inform the Wifi-Opp service about their desire to keep the current wireless
connection alive.

6



Chapter 3

Implementation

This chapter will describe some of our implementation decisions.

3.1 Service Properties

The creation of opportunistic networks is handled completely by the Wifi-Opp
service. It is therefore important, that it runs continuously and reliably. Be-
ing an operating system for mobile devices, which typically have limited re-
sources, Android kills processes when more memory is needed for other tasks
with higher priority. To prevent our service from being killed, we declared it
to be a foreground service. This has the additional benefit that a notification
icon is displayed in the status bar. The constant use of wireless communica-
tion by our application causes considerable power consumption and randomly
activating the mobile hotspot function as well as deactivating the cellular data
connection might interfere with the user’s activities. It is therefore desirable
that the user is informed at all times about whether the service is running.

In addition, we assigned the service its own process so that the rest of the
application (i.e. the configuration interface) can be terminated independently.

3.2 Starting and stopping the Service

As mentioned previously, the Wifi-Opp service has a strong influence on the
device’s state. Therefore the Wifi-Opp service should only be running when it
is needed. In addition, the user should not have to activate and deactivate it
manually through the configuration interface but client applications should be
able to start it when they require its services. Clients should however not be
able to shut the service down at will as this might interfere with other clients’
needs. The service should rather terminate once none of the clients requires
it anymore. Only the application’s own configuration interface should give the
user the possibility to stop the service prematurely so that he does not need to
track down and end every single client application individually.

Android services can be started and stopped by sending Intents via the
startService and stopService methods. Using these methods, keeping track of
active clients would be tricky and unreliable. The sender of an Intent can not

7



be determined and sloppily implemented clients that fail to send the stop signal
could keep the service running indefinitely, draining the battery for no reason.

Luckily, Android also provides the bindService method, which starts a ser-
vice if it is not already running and creates a connection to it. This connection
could be used for function calls between processes but this is not needed in our
case. The service automatically terminates once all clients have unbound. Even
if a client crashes before he can unbind properly this is still detected due to loss
of the connection. This is exactly the functionality we are looking for, except
that this would not allow for premature termination of the service by the user.

To achieve the desired result we combined both approaches. The Wifi-Opp
service is only controlled by startService and stopService calls from within
the application. Additionally there is a second dummy service that accepts
bindService calls from external clients, forwards a startService call to the
WifiOpp service each time it is bound, and terminates it when it is killed itself.

3.3 Neighbor List

Wifi-Opp allows access to the current neighbor list by implementing an Android
ContentProvider. This is the standard way of providing content to a different
process on Android and it is also used by Android itself to give applications
access to things such as the user’s phone book. Applications implement a Con-
tentResolver which is linked to the Wifi-Opp ContentProvider URI. They can
then query the list or register a ContentObserver, which will get triggered ev-
ery time the neighbor list’s content changes. A sample implementation of a
ContentObserver can be found in the Ping-Opp application.

Apart from querying, ContentProviders in Android usually provide methods
for inserting, updating, and deleting entries that are available to every appli-
cation that has access via a ContentResolver. In our case the list should of
course not be modifiable by other applications. Therefore our implementation
throws an UnsupportedOperationException when one of them is called. To insert
the neighbor information we added additional private methods instead that are
only accessible from within our application.

3.4 Wifi-Opp Strategies

As explained in the design section, strategies are responsible for telling our
service when and how to establish Wi-Fi connections or whether the device’s
wireless hotspot feature should be enabled or disabled. Therefore the strategy
largely determines the stability of the opportunistic networks. The optimal
strategy varies strongly between different scenarios. Possible goals could be
to encounter as many different devices as possible, to stay connected to them
as long as possible once we found them, to use as little power as possible, or
combinations thereof. And even once the aim is clearly defined, optimizing the
parameters requires a great amount of experimentation. For these reasons our
main focus was not on implementing the perfect strategy but to make strategies
easy to create, interchange, and configure. We did however provide a fairly
exhaustive example strategy with our project, showing how strategies can be
implemented and how they can take advantage of parameter variables.

8



Creating a new strategy only requires extending the Strategy base class,
implementing the decision logic in the execute method, and adding it to the list
of available strategies. Other than that, no code in the rest of the application
needs to be touched. Common tasks such as keeping an updated neighbor and
Wi-Fi network list are taken care of in the Wifi-Opp service or the Strategy
base class.

To make strategies easily configurable we provide a small framework for man-
aging parameters. The StrategyPreference class represents a single parameter of
a strategy such as a probability threshold or a time interval. StrategyPreference
objects have a default value, a range of valid values, and they store their current
value persistently. We provided implementations for integer and floating point
numeric parameters, which should cover most needs but further types can be
added easily. A strategy simply needs to publicly list all its parameters and
then use them internally to retrieve their current values. Each preference also
generates a ViewGroup comprised of interface components for changing the cur-
rent value according to its type and its valid range. This allows for the dynamic
creation of a complete configuration interface for any strategy.

Figure 3.1: Dynamically generated strategy configuration interface

Due to this loose coupling it is possible to change the currently employed
strategy and all of its parameters at runtime. This makes experimentation in
the field extremely easy and fast as no computer is needed for recompilation.

3.5 Friendship Pairing

Many different approaches to pairing two devices through an insecure network
connection exist. A much used technique is to establish a shared private key us-
ing Diffie Hellman key exchange, which is known as a secure method to establish

9



keys in an open network. However Diffie Hellman and similar key exchange al-
gorithms are not inherently immune against man-in-the-middle attacks. There
exist techniques to protect against man-in-the-middle attacks, for example by
showing a hash of the established secret key on both devices. If the shown
hashes dont match the users know they have established a connection to a dif-
ferent device and can try again. We chose to implement a different approach,
which does not rely on using the insecure network channel for key establishment
at all. Instead our Privacy-Opp application displays a QR code containing the
device’s current identification number and a private key that is created ran-
domly. Two devices can now be paired very simply by one of them scanning the
QR code shown on the other device. For scanning QR codes we use the ZXing
barcode scanner [3] and we generate QR codes using the Google Chart API [4].

Figure 3.2: QR code used for establishing friendships

Using the camera as a side channel for key establishment comes with the
big advantage that adversaries have no possibility to perform eavesdropping or
man-in-the-middle attacks. The ZXing barcode scanner needs to be installed
on both devices in order to create and read the QR code. Alternatively, if one
device has an active internet connection, that device does not need to have the
ZXing application installed as it will automatically use the Google Chart API
to create a QR code.

10



Chapter 4

Documentation

4.1 Using the Configuration Interface

The configuration interface allows the user to interact with the Wifi-Opp service.
There is a regular mode and a debug mode which gives the user even more
possibilities to access and change Wifi-Opp settings.

4.1.1 Regular Mode

The following elements are available on the simple screen which is shown first
when the application is launched:

Wi-Fi Shows whether Wi-Fi is enabled, the connectivity status and the current
network’s SSID as well as the device’s IP address.

Wi-Fi Hotspot Shows whether the device’s Wi-Fi hotspot feature is enabled.

Wifi-Opp Service Displays the currently selected Strategy. The user can
manually start and stop the service from here.

Current Strategy Displays the strategy that the service is currently set to
use (can be changed in debug mode).

Neighbors Displays the currently available number of neighbors. Clicking it
opens a new activity that lists all the neighbors’ device IDs and IP ad-
dresses.

4.1.2 Debug Mode

The debug interface contains all the elements of the regular mode and adds
some additional functionality.

Wi-Fi Same as in regular mode. Additionally allows enabling and disabling
Wi-Fi.

Wi-Fi Hotspot Same as in regular mode. Additionally allows enabling and
disabling the device’s Wi-Fi hotspot feature. Turning on the hotspot
automatically disables Wi-FI and vice versa.

11



Wi-Fi Networks Opens a new activity showing currently available networks
which are either open (unencrypted) or already configured on the device.
The signal strength in dBm is shown next to the SSID. Clicking an entry
will cause the Wifi-Opp service to change its current connection to the
selected network. Encrypted networks cannot be connected to from within
this activity. Use Android’s networking settings for this.

Mobile Data Displays and allows manual toggling of the cellular data connec-
tion’s state.

Wifi-Opp Service Same as in regular mode.

Strategy Displays the currently selected Strategy. Clicking on this option will
display a list of all available strategies to choose from.

Configure Strategies Opens a new activity showing all strategies defining
parameter variables. Clicking one of the listed strategies will open an au-
tomatically generated settings activity where all parameter variable values
can be manually set within the limits the strategy defined for them.

Neighbors Same as in regular mode.

Log Opens a new activity where logging can be enabled. When logging is en-
abled the activity shows all log messages with their corresponding times-
tamps. There are options to enable and disable the log’s auto-scrolling
feature and to clear the log. The log contains all messages added through
Wifi-Opps sendToLog method, such as sent/received beacons, connection
changes, strategy decisions and more. The log is written to a file on the
device’s external storage (e.g. an SD card) and can also be retrieved by
connecting the device to a computer.

4.2 Writing New Strategies

Adding new strategies is very simple. We have provided a fairly exhaustive
sample strategy in the project (DefaultStrategy.java) which demonstrates how
we suggest strategies should be written. This is however just a guideline and
different approaches could be valid as well. The process of creating a new
strategy is outlined in the following:

1. Create a new class in the package ch.ethz.csg.burundi.strategies and
make it extend the Strategy class (Strategy.java).

2. Add the default constructor and call super(WifiOppService) in it.

3. Implement the mandatory execute() method in order for the code to com-
pile. This is the basic outline of a minimal strategy implementation:

package ch.ethz.csg.burundi.strategies;

public class NewStrategy extends Strategy

{

public NewStrategy (WifiOppService

wifiOppService)

12



{

super(wifiOppService);

}

@Override

protected int execute ()

{

// your decision logic here

return timeout; // timeout specifies

when the strategy should be called

again

}

}

4. The final step is making the new strategy available by adding its class
attribute to the STRATEGIES list in WifiOppService.java inside the ch.ethz

.csg.burundi package.

After completing all the above steps and compiling the application the newly
added strategy will be visible in the debug activity’s strategy picker dialog.

4.2.1 The execute Method

The strategy’s complete functionality is contained in the execute method. Its
execution consists of three stages:

1. Determining which actions to take based on any information that is avail-
able and appropriate.

2. Making the according changes to the connectivity, e.g. selecting a net-
work to connect to or enable the device’s mobile hotspot. The strategy
base class already implements all the methods needed for changing the
connectivity. It should be consulted before writing a new strategy.

3. Returning the waiting time in milliseconds before the next execution.

4.2.2 Automatically Updated Variables

For convenience the following three often used variables are automatically up-
dated by the strategy base class and are available to all subclasses:

wifiOppNetworks A list containing all available hotspots created by other
devices running the Wifi-Opp service. The items of this list can be passed
to the connectToWifi method.

publicNetworks A list containing all available open (unencrypted) and also all
available encrypted networks which are already configured on the current
device. The items of this list can be passed to the connectToWifi method.

neighbors A list containing all available neighbors on the network the device
is currently connected to. Use neighbors.size() to check whether other
Wifi-Opp users are present on the current network.

13



4.3 Using Wifi-Opp as a Client Application

4.3.1 Starting the Service and Registering as a Client

If a client application requires the Wifi-Opp service to be running it can use the
following code to create a binding:

private ServiceConnection connection = null;

private void bindWifiOppService ()

{

connection = new ServiceConnection ()

{

@Override

public void onServiceDisconnected(

ComponentName arg0 )

{

connection = null;

}

@Override

public void onServiceConnected(

ComponentName arg0 , IBinder arg1 )

{

// do nothing

}

};

bindService( new Intent( "ch.ethz.csg.burundi.

BIND_SERVICE" ), connection , Context.

BIND_AUTO_CREATE );

}

private void unbindWifiOppService ()

{

if (connection != null)

{

unbindService( connection );

connection = null;

}

}

Between the calls to bindWifiOppService and unbindWifiOppService the ser-
vice is guaranteed to run except if it is manually terminated by the user through
the configuration interface. The service must be unbound before the client ap-
plication terminates or else the connection is leaked.

4.3.2 Marking the Current Connection as Used

If a client application is using the current network connection, for example
because a file transfer with a neighbor is in progress, it can communicate to
the Wifi-Opp service that it would prefer the connection to be maintained.
This is done by sending a broadcast intent with the action string "ch.ethz.

csg.wifiopp.announceConnectionUsed". The connection will be marked as used
for the next five seconds. Note however that it depends entirely on the active
strategy whether this information is considered!

14



4.3.3 Obtaining the Neighbor List

Wifi-Opp provides access to the current neighbor list through Android’s Con-
tentProvider [5]. To access the neighbor list a ContentResolver pointing to the
URI of the neighbor list is needed. A sample implementation can be found in
the Ping-Opp demo application. The following code snippet can be used to
register a listener which will get notified whenever the neighbor list changes.

neighborObserver = new ContentObserver(new Handler ())

{

@Override

public void onChange(boolean selfChange)

{

super.onChange(selfChange);

// Do stuff here ...

}

};

getContentResolver ().registerContentObserver(Uri.parse("

content ://ch.ethz.csg.burundi.NeighborProvider/dictionary

"), false , neighborObserver);

To obtain a cursor, call the ContentResolver’s query method using the
same URI as in the above example. The available columns are defined in
NeighborProvider.java. They are:

id A unique row ID (e.g. for use in a CursorAdapter)

device id The neighbor’s current device identification number

ip The neighbor’s current IP address

15



16



Chapter 5

Evaluation

5.1 Power Consumption

We measured our application’s power consumption while running different strate-
gies using the Power Tutor application that was developed at the University of
Michigan [6]. The results in table 5.1 present the average of two measurements
per strategy over 40 minutes. During the tests five devices were present in total.

Wifi-Opp [J/min] System [J/min]

WifiOnly 0.288 0.453
APOnly 0.349 0.169
Default 0.382 0.663

Table 5.1: Power consumption measurements

The results suggest that from a power saving perspective, activating the
hotspot is undesirable. The strikingly low value for the system’s power usage
using the APOnly strategy stems from the fact that the power used for the
wireless antenna cannot be measured when the hotspot is activated.

5.2 Connectivity

The second experiment we conducted aimed at evaluating the effectiveness of
our default strategy in terms of finding and staying connected to other devices.
Before every round, the strategy selects a network to connect to, prioritizing
those created by other participating devices over public hotspots as they guar-
antee the presence of at least one neighbor. If neither is available the device will
activate its own access point feature for one round and only with a small prob-
ability because of the increased power consumption. If the device is currently
connected to a network on which neighbors are present, the strategy will leave
the connection unchanged with high probability. Using the default settings,
round lengths vary between 10 and 60 seconds and are randomized in order to
prevent the synchronization of devices.

The setup consisted of five devices that were left stationary once for 70
minutes and once for 20 minutes, each running the Wifi-Opp application using

17



the default strategy. There was one public infrastructure Wi-Fi network present
in addition to the ones that the devices would create themselves.

Figure 5.2 illustrates the average fraction of the total time during which a
certain number of neighbors was visible to the devices.

Figure 5.1: Results of connectivity experiment

During roughly one third of the total time the devices see no neighbors at
all. This consists of the time spent being connected to a network on which
no other devices are present and the time needed to change the connection,
which on average occurred every 82 seconds. The rest of the time appears to be
distributed along a bell curve, as it is to be expected, however more data points
would be needed to confirm this. The first neighbor was discovered after 64
seconds on average and the average time until every other device had been seen
once was 108 seconds. The amount of time during which there are neighbors
visible and the time until discovery present a trade-off that depends on the
strategy’s parameters.

5.3 Pairing

The three most time-consuming operations during pairing (see appendix A.1)
are the creation of challenges, solving of challenges and data transmission.
Depending on the Bloom Filter’s false positive probability the relative time-
consumption is shifted either towards data transmission (for low false positive
rates) or towards generation and solving of challenges (for high false positive
rates). In order to achieve a good overall performance we measured pairing
times using different false positive rates. The results are shown in figure 5.3.
There are three local minima at 20%, 60% and 90%. We noticed that error rates
over 50% caused pairing to fail in some cases, which is why we determined that
20% is the optimal false positive rate for our purposes. We later noticed that
pairing in those cases in fact does not fail but takes an absurd amount of time.
Unfortunately we could not determine the cause for this behavior.

A very important property of our pairing application is how many friendships
it can handle while still providing acceptable performance. To check whether
our pairing implementation can handle a high number of friendships we created

18



Figure 5.2: Pairing time as a function of the bloom filter’s false positive rate
averaged over ten measurements

random friendship data on both devices and measured the total pairing time for
different numbers of friendships. Our measurements (see figure 5.3) suggest that
our implementation’s time-consumption is linear with respect to the number
of neighbors, which was expected given that all three most time-consuming
operations we mentioned before have linear time-dependencies with respect to
the number of neighbors.

Figure 5.3: Pairing time as a function of the number of friendships averaged
over 30 measurements

Our implementation provides reasonable performance for up to 1000 friend-
ships and good performance for up to 100 friendships. A possible way to im-
prove performance would be to change the algorithm to work asymmetrically
with only one device sending challenges and the other participant using the
correct solution to inform the former about their friendship.

19



20



Chapter 6

Conclusion

The application suite we developed serves as proof that opportunistic wireless
networking is possible using only functionality that is available on standard
versions of Android supporting API level 7 and upwards, which covers 98.4% of
currently active Android devices.

The absence of ad-hoc networking capabilities in standard Android devices
was handled by continuously creating and joining new infrastructure networks,
detecting possible communication partners by sending beacons and having mes-
sages to them relayed by the access point. All required permissions to change
the state of the device’s WiFi module and preventing the sharing of the cel-
lular data connection have been shown to be available to regular applications.
ContentProviders are used to share the current neighborhood information with
multiple other applications running in different processes simultaneously and
in real time. Simple client applications were created as examples to verify this
functionality.

The Privacy-Opp application demonstrates that the proposed privacy pro-
tection scheme relying on the comparison of friendship IDs is viable. Friendship
establishment and checking is done within a few seconds. The friendship cre-
ation mechanism we implemented based on QR codes has the advantages that
it uses a separate channel and the scanning of a code by the camera, which is
a standard feature in current devices, is quicker, more reliable and more conve-
nient than having the user enter a code manually.

6.1 Future Work

The Wifi-Opp application itself, which provides the basic networking function-
ality runs stable. There is however room for improvement regarding certain
qualities. Power consumption could possibly be reuced by sending beacons
more sporadically or in a dynamic manner depending on the current state of
connectivity and available neighbors.

The strategies that govern the decisions on creating and joining networks
could be further developed in various ways. We included a default strategy
which is a best effort for achieving an all purpose solution, given our available
time and resources. Our strategy bases its decisions on input values such as
the type of available networks, the current number of neighbors and whether

21



a client application is utilizing the current connection. Various other kinds of
available information could however also be included. Power intensive tasks
could be reduced when the battery level is low or the strategy could choose to
only operate while the device’s screen is turned off so as not to interfere with
the user’s other activities. Optimizing for example the amount of time during
which neighbors are visible or the number of neighbors that are detected in the
course of a day would require extensive measurements and experiments that
model the users’ mobility in a realistic manner.

Evaluating the effective usefulness of the basic Wifi-Opp service as well as
the friendship detection application would require the creation of more elaborate
client applications such as a podcasting or file sharing system and running tests
with a large user base.

It is conceivable that in the future Android will support ad-hoc Wi-Fi net-
working or a new wireless networking technology which would allow direct peer-
to-peer connections between devices. In this case the underlying Wifi-Opp ser-
vice would have to be reimplemented, potentially yielding even better results.

22



Appendix A

Diagrams

A.1 Pairing

Device A  Device B 
   

  Generate Key 

  Generate QR Code from {Device B, Key} 

Scan QR Code  Display QR Code 

Extract {Device B, Key} from QR Code   

Generate random Friendship ID   

Send MSG_PAIRING  
 

 

Send m = Encrypt(Key, Device A + Friendship ID) Receive m 

  Decrypt(Key, m) 

  Extract {Device A, Friendship ID} 

 
 

 If (Device A != Sender) 

 Stop Pairing 

 

  Add Friendship {Friendship ID, Key} 

  
 

Send MSG_PAIRING_OK 

Receive m Send m = Encrypt(Key, Device B + Friendship ID) 

Decrypt(Key, m)   

Extract {Device B, Friendship ID}   

 If (Device B != Sender) 

 Stop Pairing 

 
 

 

Add Friendship {Friendship ID, Key}   

Send MSG_HELLO  Set STATUS_READY 

Set STATUS_READY  Send MSG_ACK 

Send MSG_BLOOM  
 

 

Bloom_A = BloomFilter({ Friendship IDs of A }) Receive Bloom_A 

Set STATUS_BLOOM_SENT   

  
 

Send MSG_BLOOM 

Receive Bloom_B Send Bloom_B = BloomFilter({ Friendship IDs of B }) 

  Set STATUS_BLOOM_SENT 

Candidates = { Friendship IDs of A } ∩ Bloom_B  Candidates = { Friendship IDs of A } ∩ Bloom_A 

 If Candidates is empty: 

 Send MSG_NO_FRIENDSHIP 

 Set STATUS_NO_FRIEND 

 Stop Hello Protocol 

  
 

 

 

 

Set STATUS_NO_FRIEND 

Stop Hello Protocol 

 

 

  

Set STATUS_NO_FRIEND 

Stop Hello Protocol 

  
 

 If Candidates is empty: 

 Send MSG_NO_FRIENDSHIP 

 Set STATUS_NO_FRIEND 

 Stop Hello Protocol  

 

For each candidate (Friendship ID, Key) do: 

 Send c = Encrypt(Key, Friendship ID) 

 
 

For each candidate (Friendship ID, Key) do: 

 d = Decrypt(Key, Challenge) 

 
 

 If (d == Friendship ID) 

 Set STATUS_FRIEND 

 

Set STATUS_CHALLENGE_SENT 
 

 If ∀  (d != Friendship ID) 

 Set STATUS_NO_FRIEND 

 

For each candidate (Friendship ID, Key) do: 

d = Decrypt(Key, Challenge) 

 
 

For each candidate (Friendship ID, Key) do: 

 Send c = Encrypt(Key, Friendship ID) 

 

 

If (d == Friendship ID) 

 Set STATUS_FRIEND 

  

 
Set STATUS_CHALLENGE_SENT 

 If ∀  (d != Friendship ID) 

 Set STATUS_NO_FRIEND 

 
 

 

 

If a message is received while the receiving device is not in the expected state according to above diagram, the message is dropped. 

23



24



Bibliography

[1] Sacha Trifunovic, Bernhard Distl, Dominik Schatzmann, and Franck Leg-
endre. Wifi-opp: ad-hoc-less opportunistic networking. In Proceedings of
the 6th ACM workshop on Challenged networks, CHANTS ’11, pages 37–42,
New York, NY, USA, 2011. ACM.

[2] Bernhard Distl, Franck Legendre, and Bernhard Plattner. Privacy in oppor-
tunistic networks with reputation.

[3] Zxing - Multi-format 1D/2D barcode image processing library with clients
for Android, Java. http://code.google.com/p/zxing/.

[4] Google Chart QR Code API. http://code.google.com/intl/de-DE/

apis/chart/infographics/docs/qr_codes.html.

[5] Android ContentProvider. http://developer.android.com/guide/

topics/providers/content-providers.html.

[6] Power Tutor. http://powertutor.org.

25


