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Summary

In the present work it is investigated how a transformation which aims at making
mel-frequency cepstral less speaker-dependent for better phoneme recognition can
be implemented using arti�cial neural networks. While traditional approaches try to
achieve speaker-independence by adapting the computation of the speech features,
this study introduces the use of coordinate transformations and investigates how
arti�cial neural networks can be trained to learn these transformations.

The results of the conducted research show that the proposed neural network
setup is indeed capable of learning a transformation with the desired properties.
Evaluations using the Fisher distance con�rm that the phoneme discriminability
is increased signi�cantly when the obtained transformation is applied to speech
features from speakers not present in the training set.
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1 Introduction

Speech recognition, and phoneme recognition in particular, aims at detecting what a
speaker is saying by computing speech features from the audio signal and analyzing
them. Unfortunately, speech features (for example the very popular mel-frequency
cepstral coe�cients) do not only capture what is actually said, but are also in�uenced
by who is speaking and how the utterances are spoken. This introduces undesired
variance into the speech features and deteriorates the recognition rate achievable
with speech recognizers. To make things worse, the vocal characteristics mentioned
above do not only vary among di�erent speakers (these variations are caused by the
gender, age, speaking habits etc. of each speaker), but also for the same speaker
(due to the state of health, emotional status, etc.).

Hence, it is clearly desirable to have speech features which abstract from the
undesired speaker characteristics and focus on the desired phoneme characteristics.
So far, the research e�orts focussed on adapting the computation of the speech
features by computing more accurate estimates of the signal spectrum, applying
di�erent kinds of �lterbanks and so on.

In contrast, this works investigates how coordinate transformations can be ap-
plied to make speech features more robust against the in�uence of undesired speaker
characteristics. More speci�cally, a close look is taken at how an arti�cial neural
network can be con�gured and trained to learn such a transformation. The Fisher
distance is used to evaluate the phoneme discriminability of the conventional and
the newly obtained speech features.

This report is organized as follows. Section 2 starts with a description of the task
and explains what steps need to be taken. Section 3 looks at how mel-frequency
cepstral coe�cients are computed, introduces the arti�cial neural network setup
used in this work and deals with how discriminability can actually be measured. In
Section 4, the conducted experiments are presented along with the analysis of the
obtained results. The conclusion of this work is formulated in section 5, including
some possibilities for future work.
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2 Problem Statement

The goal of speech recognition is to recognize which phonemes occur in a speech sig-
nal. To do so, a feature extractor computes a spectrum from a windowed segment of
the signal and calculates certain features which capture the spectral characteristics.
The extracted features are then passed to a speech recognizer which analyses them
and determines by which phoneme they have most likely been produced.

However, in addition to the desired information about the phonemes themselves,
the signal (and hence the features) also contains undesired information about the
voice of the speaker. This is due to the fact that the way a person speaks is a�ected
by various factors as the speaker's gender, state of health, emotional status, dialect,
speaking habits and so on. Unfortunately, these characteristics do not only vary
among di�erent speakers (gender, age, etc.) but also for the same individual (state
of health, emotional status, etc.), which makes it particularly di�cult to train a
reliable speech recognizer.

Since speech recognition only takes interest in what is said and not in who says it
or how it is said, it is desirable to have speech features with a strong dependence on
the phoneme information and a weak dependence (or ideally no dependence at all)
on the speaker. In other words, one would like to eliminate all variance within the
features which is not due to the phonemes themselves such that only the relevant
information is still contained in the feature vectors.

Basically, there are two di�erent ways to achieve this: one could either come up
with a completely new set of features which have the desired property or develop
a transformation for existing features which yields transformed features with the
desired property.

Obviously, the �rst approach is rather unfavourable because one can not utilize
experience gained previously from working with established speech features. More-
over, the actual e�ect of the speaker characteristics on the features is not known in
detail, which makes it almost impossible to counteract them.

However, a transformation can for example be found by training an arti�cial neu-
ral network. This comes with some advantages. To start with, one can base one's
work on well-understood speech features which are already optimised to a certain
degree. Furthermore, one does not have to know the actual e�ect of the speaker on
the features in detail because the arti�cial neural network itself can eliminate it in
the learning process (given that enough training data is available).

This work investigates the transformation approach. The features to be trans-
formed are mel-frequency cepstral coe�cients (MFCC) which are widely used in
the �eld of speech recognition. It shall be investigated whether and how an arti-
�cial neural network (ANN) can be trained to learn a feature transformation with
the desired properties and to what extent the discriminability of phonemes can be
improved.
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The following tasks are to be completed (confer to appendix A for the handout
of the task description).

First of all, a framework which allows to evaluate and compare the quality of
speech features is to be developed. The investigation is restricted to phonemes of
the English language. However, all phonemes are to be taken into consideration for
the evaluation. Speci�cally, recordings from the TIMIT database are to be used for
this task.

Secondly, the computation of the MFCCs needs to be optimised prior to trans-
formation. Using the evaluation framework developed in the �rst phase, it shall be
investigated to what extent modi�cations in the computation of the MFCCs alone
can reduce the speaker-dependence and increase the phoneme discriminability.

Furthermore, an ANN setup capable of learning the desired feature transfor-
mation needs to be developed. Design decisions include number of layers, number
of neurons per layer, connectivity and so on. To implement the ANNs, the NICO
toolkit shall be used.

Moreover, the training of ANNs requires suitable training-, validation- and test-
data. As in the previous steps, these data can be taken from the TIMIT database.
After de�ning the required datasets, the training of the ANNs can be carried out
with NICO.

Finally, it has to be investigated whether and how much the found transformation
improves the phoneme discriminability using the developed evaluation framework.
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3 Approach

3.1 Mel-Frequency Cepstral Coe�cients (MFCC)

In the following, it is brie�y presented how MFCC are actually computed (for a
more in-depth discussion, confer to [16]). Options for optimisations are discussed in
section 4.

Computation The process of feature computation aims at extracting information
from the signal spectrum in a reduced form more suitable for classi�cation. Feature
extraction often mimics the way how the ear processes incoming sound because hu-
man hearing obviously works very well (hence, one can possibly pro�t from imitating
its functionality).

For example, psychoacoustic investigations have shown that the intensities of
signals in narrow frequency bands are combined into one overall intensity for the
respective band and that the perceived pitch is logarithmic with frequency.

Therefore, it makes sense to introduce a nonlinear frequency scale which at-
tributes to these characteristics for feature computation: the mel-scale. If we de-
note the frequency in Hertz by f and the perceived pitch in mel by h, the following
equation holds

h(f) = 2595 · log10
(

1 +
f

700 Hz

)
(1)

However, one does not normally use this relation to obtain the mel-spectrum.
Rather, frequency-domain �ltering is performed on the spectrum obtained from
discrete Fourier transformation (DFT) with a mel-�lterbank (as depicted in �gure
1), which consists of non-uniformly spaced triangular �lters of di�erent bandwidth.
If we denote the triangular �lters by Hj (1 6 i 6 J) and the DFT-spectrum of the
signal by X(k) (0 6 k 6 N − 1), the mel-spectrum Sj (1 6 j 6 J) is given by

Sj =
N−1∑
k=0

X(k) ·Hj(k) (1 6 j 6 J) (2)

Triangular Mel−Filterbank
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Figure 1: Mel-�lterbank with J �lters (usually J = 24)
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The cepstral coe�cients c(m) (0 6 m 6 D) are then obtained from the mel-
spectrum by computing the discrete cosine transform of the mel-cepstrum by

c(m) =
1

J

J∑
j=1

log (Sj) cos

(
m

(
j − 1

2

)
π

J

)
(0 6 m 6 D) (3)

where D is the number of cepstral coe�cients (usually D = 13).

3.2 Arti�cial Neural Networks (ANN)

To improve the quality of speech features (given as feature vectors x) one may try
to �nd a transformation Ψ : x 7→ y = Ψ(x) that minimizes the dependency on the
speaker information and maximizes the dependency on the phoneme information.

The key idea of this work is to estimate the transformation Ψ by training an
arti�cial neural network (ANN) such that it learns an approximation Ψ̃ of this
transformation. If a su�ciently high number of input/output-pairs (x,y) of the
transformation Ψ is available, an ANN can easily be trained to learn Ψ̃.

Unfortunately, output vectors y of the transformation Ψ are not available. As the
portion of the features only due to the undesired speaker information is unknown,
it can not be eliminated and hence no �cleansed� feature vectors can be produced.

However, it is in principle still possible to perform a training with a slightly
di�erent setup. A shown in �gure 2a, the transformation net NNT can be integrated
into a larger system of nets NNS. The system contains two identical instances of the
transformation net NNT , which perform the coordinate transformation on the input
vectors x1, x2 to obtain y1, y2. The subsequent stage NND computes the distance
D between the transformed vectors y1 and y2. The overall system can be taught
to output a small distance d0 if the input vectors x1, x2 stem from speech signal
segments of the same phoneme and a large distance d1 if the input vectors x1,x2
stem from speech signal segments of di�erent phonemes.

To train NNS, one simply has to de�ne a su�ciently large number of input/output
pairs consisting of speech feature samples x1,x2 from many di�erent speakers and
the corresponding output value d0 or d1. If the overall systems manages to learn this
discrimination with su�cient adequacy, it is reasonable to assume that the subnets
in turn have learned the desired coordinate transformation.

This work uses the NICO toolkit (project homepage under [18]) to de�ne and
train the arti�cial neural networks. The problem with the setup as it is shown in
�gure 2a is that the weights of the two instances of NNT have to be the same at any
time during and after the training (otherwise the two subnets would not perform
the same transformation). As the NICO toolkit does not provide the ways and
means to support such a con�guration, a slightly di�erent con�guration as in �gure
2b is proposed. Here, the overall system only contains one single instance of the
transformation net, thus the need to provide two identical instances is eliminated.
As there is now only space for one single input vector at a time, the vectors x1, x2
which the system seeks to discriminate are fed in during two subsequent cycles. By
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inserting delay units between NNT and ND (delay 0 and 1 cycles), it is guaranteed
that NND has the vectors available at the same time.

3.3 Measuring Feature Quality

The goal of this work is to reduce the undesired variance within the MFCC speech
features in order to make the di�erent phoneme classes more easily distinguishable.
Hence, a quality measure is needed to quantitatively evaluate the discriminability
of the data. Some such measures are presented in the following.

Self- and Cross-Distance Let us assume that data of di�erent classes are given
as vector samples in Rn where n ∈ N is an arbitrary dimensionality. By trend, data
points belonging to the same class will be grouped rather close together, thereby
forming clusters (�clouds�) in space. However, there may be some regions where
di�erent clusters touch or even overlap depending on how strongly the data are
scattered (scattering may for instance be due to measurement inaccuracies, noise
and other distortions).

Intuitively, one would say that the di�erent classes are well-distinguishable if the
data of each single cluster do not scatter too much and if all clusters are spaced
su�ciently far apart in space. Quantitatively, this can be expressed with the idea of
self-distances dself and cross-distances dcross. A self-distance is computed from two
feature vectors from the same class, whereas a cross-distance is computed from two
feature vectors from di�erent classes. For two classes CA, CB we have

dself (CA) = ||xA,1 − xA,2||2 where xA,1,xA,2 ∈ CA and xA,1 6= xA,2 (4)

dcross (CA, CB) = ||xA − xB||2 where xA ∈ CA, xB ∈ CB (5)

Note that ||xA − xB||2 computes the Euclidean distance xA and xB.

Usually, the mean of (4) and (5) is computed over all pairs xA,1,xA,2 and xA,xB

to get an average value for the cross- and self-distances

µ (dself (CA)) =
1(
NA

2

) ∑
xA,1 6=xA,2

||xA,1 − xA,2||2 (6)

µ (dcross (CA, CB)) =
1

NA ·NB

∑
xA,xB

||xA − xB||2 (7)

where NA, NB are the total numbers of vectors contained in the classes CA, CB.
Note that

(
NA

2

)
is the total number of feature vector pairs within the same class CA

(each pair gives one self-distance). Similarly, NA ·NB is the total number of feature
vector pairs from di�erent classes CA and CB.

The mean self- and cross-distances as computed in (6) and (7) give a rough
idea of how the data are distributed. However, it is not so easy to deduce from
them how well the di�erent classes can be distinguished from each other, so a more
sophisticated measure for discriminability would be nice.
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Figure 2: Systems for training an ANN to learn the transformation Ψ
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Fisher Distance The Fisher distance is a better measure for discriminability
based on the mean and variance of self- and cross-distances

F =
(µ (dself )− µ (dcross))

2

σ2 (dself ) + σ2 (dcross)
(8)

Note that a larger Fisher distance means better discriminability.

To obtain a large Fisher distance, the mean of the self-distances should be
much smaller than the mean of the cross-distances, and the variances of self- and
cross-distances should be generally small. Obviously, this corresponds exactly to
what was discussed further above in the intuitive description of discriminability.
µ(dself ) � µ(dcross) means the classes are spaced far apart in feature space and
small σ2(dself ), σ2(dcross) imply that there is not much scattering.

The Fisher distance can be used to evaluate the discriminability for just two
classes (�pairwise� Fisher distance) or for all classes as a whole (�overall� or �global�
Fisher distance). In the �rst case, the computation of mean and variance only
includes the self- and cross-distances of the corresponding pair of classes (as shown
in equation (6) and (7)), whereas in the second case, the self- and cross-distances of
all class pairs have to be taken into account.
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4 Experiments and Results

4.1 Optimisation of Pre-Transformation Features

Although we seek to �nd a transformation which improves the discriminability of
phonemes by minimizing the variance in the MFCC caused by speaker characteris-
tics, it makes sense to perform some optimization (if possible) already prior to the
transformation. Intuitively, it should be easier for an ANN to learn a transformation
if the data it operates on are already somewhat optimised with regard to phoneme
discriminability.

Potential for Optimisation Looking at the computation of the MFCC as pre-
sented in section 3.1, one can see that there are a lot of parameters that could in
principle be varied to improve the MFCC. Basically, the following choices are free

(1) the windowing function used for signal segmentation

(2) the length of the signal segment for spectrum computation

(3) the way the spectrum is obtained

(4) the number of �lters J in the mel-�lterbank

(5) the shape of the �lters in the mel-�lterbank

(6) the number D of cepstral coe�cients

Given so many degrees of freedom, some restrictions clearly need to be made.

On one hand, there are certain �standards� for the above choices in the speech
processing community. For instance, the windowing function (1) is usually hamming-
shaped, the mel-spaced �lterbank (4) normally consists of J = 24 �lters (confer to
[16]) and commonly D = 13 cepstral coe�cients are used (also confer to [16]). It
makes sense to adhere to these standards as they are very popular in the speech
processing community and hence proven to give good results.

On the other hand, much of the above choices still are the topic of ongoing re-
search. For example, researchers have explored new robust ways of computing a
spectrum for (3) and experimented with di�erent �lter shapes for the �lterbank (5).
Moreover, various lengths for the segmentation window (2) are in use (depending on
the speci�c task). It clearly makes sense to look at these parameters more closely
in order to determine their e�ect on the phoneme discriminability.

In the following, the investigations regarding the length of the segmentation
window, the shape of the �lters in the �lterbank and the spectrum computation are
presented. This includes a brief discussion of the ongoing research as well as the
experiments conducted in this work.
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Length of the Segmentation Window The spectrum required for the compu-
tation of the MFCC is computed on a window/frame of the speech signal. Various
di�erent window-lengths have been applied for this purpose. According to the per-
formed literature research, the most commonly used lengths are rather short ones
of roughly 15-20 ms duration (confer to [2], [5] and [3]) and longer ones of approxi-
mately 25-32 ms duration (confer to [13], [11], [1], [20], [19], [8], [4] and [17]).

What factors must be taken into account when choosing a suitable window-
length? On one hand, the signal segment should be long enough to provide su�-
cient spectral resolution. On the other hand, it should not be too long either because
temporal resolution is of course also important (in other words, the signal segment
should contain one single and not several di�erent phonemes). According to [15], a
frame-length of 25-30 ms is a reasonable choice for speech recognition.

When working with the phonemes of the TIMIT database (more details about
the TIMIT database follow in section 4.4), one �nds that many phoneme occurrences
are rather short and could not make up a whole frame. There are two ways to deal
with this. One could, as the authors of [6] who also work on the TIMIT database,
�ll up the �empty space� of frames taken from short phonemes with samples of the
preceding or succeeding phoneme. However, this also somewhat dangerous as it
distorts the characteristics of the phoneme actually under investigation. Therefore,
the more �purist� alternative is to simply discard any instance of a phoneme which
is shorter than the frame-length to ensure that feature computation only captures
the characteristics of one single phoneme.

In this work, the more conservative approach is used. To �nd out what phonemes
actually limit the choice of the window-length, the average length of each phoneme
class was computed. The results are shown in table 1 (for an explanation of the
phoneme labels please confer to section 4.4).

Obviously, the phonemes b, d, dx and g with average durations of 17, 25, 28 and
29 ms are the most critical. The extremely short average duration of 17 ms of b
seems to speak in favour of using a shorter window of less than 20 ms. However, it
was found during this work that even with a window of 25 ms duration su�ciently
many occurrences of b can be provided to conduct useful experiments. Hence, a
window-length of 25 ms is chosen (which is in accordance with the optimum stated
in [15]).

Shape of the Mel-Spaced Filter Bank The purpose of the mel-�lterbank is to
model the logarithmic relationship between perceived pitch and frequency and to
account for the fact that the energy contributions of signals within certain bands
are combined into one value. The choice of implementing such a �lterbank with
triangular �lters (as described in section 3.1) is however not at all sacrosanct and
unalterable. In fact, the triangular shape is just the simplest one available, but other
shapes may very well be used. It is therefore not surprising that some research has
been dedicated to optimise the shape of the mel-�lterbank.
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Phoneme Duration Group Duration

aa 127 ms k 52 ms

ae 138 ms m 63 ms

ah 63 ms n 53 ms

aw 175 ms ng 59 ms

axr 98 ms ow 129 ms

ay 153 ms oy 185 ms

b 17 ms p 44 ms

ch 88 ms pau 92 ms

d 25 ms r 58 ms

dh 37 ms s 114 ms

dx 28 ms sh 124 ms

eh 90 ms t 45 ms

el 67 ms th 78 ms

ey 135 ms uh 75 ms

f 105 ms uw 93 ms

g 29 ms v 60 ms

hh 67 ms w 61 ms

ih 59 ms y 59 ms

iy 87 ms z 85 ms

jh 64 ms

Table 1: Average phoneme durations (TIMIT database)
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The authors of [3] used a data-driven approach where shapes, bandwidths and
positions of the �lters in the bank can be tuned in order to minimize the classi�cation
error. This way, a recognizer (consisting of feature extractor and classi�er) can be
trained to minimize recognition error.

In [10], the authors proposed that the shape alone of each �lter in the bank can
be derived by applying principal component analysis (PCA) on the dataset. They
sought to maximize both the signal-to-noise variance ratio for the output of the �lter
and the variation of this output among the di�erent phoneme classes, but to keep
the variation among speakers low. The improvement of their method compared to
standard methods was found to be only minor when considering clean speech, but
more substantial in noisy speech.

Finally, in [5] the authors used Gaussian shaped �lters instead of triangular ones
because they provide smoother transitions from one subband to the other and be-
cause the overlap between the �lters can be easily controlled. Compared to the
standard triangular �lterbank approach, their method provided some improvement,
but it was not tremendous.

It is clearly beyond the range of this work to implement large and complicated
frameworks dedicated solely to the improvement of the �lter shapes. However,
looking at the e�orts made in [3], [10] and [5], it is still deemed worthwhile to
explore the e�ect of at least a few di�erent �lter shapes.

Fortunately, there is a matlab function mfcc(...) available which allows to
easily produce triangular, hamming- and hanning-shaped �lterbanks (please confer
to �gure 3 for example plots). Obviously, hamming- and hanning-shaped �lters are
also smoother than triangular �lters and presumably o�er advantages similar to the
Gaussian �lters described in [5]. So, if the �lter shape does indeed have an e�ect on
the phoneme discriminability, the investigation of these simple �lter shapes should
still reveal it.

To investigate how the use of Hamming or Hanning �lters instead of triangular
�lters can improve the discriminability of the phonemes, MFCC derived from �lter-
banks with the respective shapes are computed using the following basic settings

� segmentation of the signal into blocks of 25 ms

� spectrum is obtained from the DFT of the signal frame

� J = 24 �lters in the mel-�lterbank

� D = 13 cepstral coe�cients

MFCCs are extracted from the records of the TIMIT database (confer to section
4.4 for more information about TIMIT) and the global Fisher distance is computed
for each �lter shape. The results are shown in table 2.

The use of Hamming and Hanning �lters in the bank increases the global Fisher
distance a little bit, but the improvement is negligible. Hence, it must be con-
cluded either that the used �lter shapes do not have a signi�cant in�uence on the
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(c) Hanning mel-�lterbank

Figure 3: Choices of shapes for the mel-�lterbank investigated in this work

Filter Shape Fisher Distance

triangular 0.6759

hamming 0.6761

hanning 0.6765

Table 2: Global Fisher Distance for the di�erent �lterbank shapes
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discriminability or that the Fisher distance is not sensitive enough to capture the
in�uence. In any case, the results do not justify the use of a di�erent �lterbank, so
the traditional triangular �lterbank is taken for the MFCC computation.

Multitaping for Spectrum Computation Usually, the spectrum required for
the extraction of the MFCCs is obtained by computing the DFT of a windowed
excerpt of the speech signal. However, one is of course free to apply other spectrum
computation methods.

The windowed DFT has the disadvantage that its variance is relatively high (the
shape of the spectrum may change quite much when the window is shifted only a
little bit). To counteract this e�ect, the so called multitaper method (confer to [8]
and [1]) has been developed. Multitaping is basically an extension of the windowed
DFT which uses multiple windows (called tapers) of di�erent shapes instead of just
one. Each taper produces a subspectrum of the frame. In the end, the di�erent sub-
spectra are averaged in the frequency-domain to obtain the overall spectrum. This
frequency-domain averaging makes the multitaper spectrum robust against varia-
tions. The authors of [1] could show that the multitaper method performs well
compared to the windowed DFT, especially for clean speech.

When investigating the e�ect of the multitaper method, one could in principle
vary the shape of the tapers as well as the number of tapers. However, as a matlab
implementation of the so-called sine-weighted cepstrum estimator (SWCE) tapers
is available from [7], the investigation of this work is con�ned to these.

In order to determine the e�ect of multitaping on the phoneme discriminability,
spectra of frames (with 25 ms length) from the TIMIT database are computed by
applying the SWCE multitaper method with a varying number of tapers. From
these multitaper spectra, MFCCs are computed using the following settings

� J = 24 triangular �lters in the mel-�lterbank

� D = 13 cepstral coe�cients

To quantitatively evaluate the e�ect of multitaping, the global Fisher distance
is calculated for each multitaper setup. The results can be found in table 3.

By trend, the Fisher distance increases with the number of tapers. However, the
increase is not very large and even diminishes for large numbers of tapers. Note
that compared with the results from table 2 where �sher distance was around 0.676,
the values are mostly at 0.683 and above when using multitapers. Hence, at least a
slight improvement can be attributed to the multitaper method.

It remains to decide how many tapers shall be used. Going above 6-7 tapers does
not bring much more improvement. As the investigations in [8] showed that the use
of more than 8 tapers tends to reduce the spectral resolution (�smearing�), the use
of 6 tapers seems reasonable. This provides us at least with some improvement
compared to the windowed DFT and should not compromise the quality of the
obtained spectrum.
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Tapers Fisher Distance

3 0.6798

4 0.6814

5 0.6825

6 0.6835

7 0.6841

8 0.6844

9 0.6847

Table 3: Global Fisher distance for SWCE multitaping with di�erent numbers of
tapers

Decisions Let us brie�y summarize the decisions made regarding the computation
of the MFCCs before we move on

� segmentation of the speech signal into frames of 25 ms duration

� spectrum obtained from SWCE multitaping with 6 tapers

� bank with J = 24 mel-spaced triangular �lters

� computation of D = 13 cepstral coe�cients
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4.2 Con�guration of the Arti�cial Neural Networks

As described in section 3.2, the basic setup for learning a feature transformation
consists of a transformation block NNT and a distance computation block NND.
However, the details of the implementation still need to be discussed. In the follow-
ing, basic architectural considerations are explained and the detailed con�guration of
the ANNs used in this work is presented. The training modes and the corresponding
results can be found in section 4.3 and 4.4, respectively.

Complexity of the Transformation Stage The Transformation block NNT

which implements Ψ : x 7→ y = Ψ(x) is the core of this entire work. Obviously, the
performance and the �learning capability� of this ANN depend on how many layers
and neurons it is made of. Hence, it is worthwhile to take a closer look at this.

For NNT , it is mandatory to have at least an input layer and an output layer.
The input layer serves to distribute the input data among the subsequent layers of
neurons whereas the output layer performs the �nal part of the computation and
thereby creates the transformed data. In between the input and the output layer,
further layers of neurons may be inserted to provide the network with more �exibility
and learning capability.

In principle, increasing both the number of layers and the number of neurons
per layer gives the ANN more �exibility. However, one must not forget that this
also calls for more training data (more weights need to be trained) and may lead to
convergency problems. Hence, it does not make sense to unnecessarily �in�ate� the
network.

For the purpose of this work, 1-2 internal layers are deemed su�cient (confer
to [9], where some general rules for choosing the number of layers are given ). The
transformation network with 1 internal layer corresponds to a 2-layer perceptron and
is from now on referred to as simple con�guration. The transformation network with
2 internal layers corresponds to a 3-layer perceptron and is referred to as complex
con�guration (For more information about multilayer perceptrons in general, please
confer to [14],[9], [12] and [16]).

In this work, the number of neurons per layer was chosen to be 2-4 times the
number coordinates (D = 13). For the complex con�guration the two internal
layers contain 30 and 50 neurons, and for the simple approach the one internal layer
consists of 50 neurons (please also confer to �gures 4 and 5).

Input and Output Dimensionality of the Transformation Stage When
talking about the transformation Ψ : x 7→ y = Ψ(x), we have so far not mentioned
the dimensionality of x and y. To be more precise, the transformation should be
written as

Ψ : x ∈ Rm 7→ y = Ψ(x) ∈ Rn (9)

where m,n ∈ N are the dimensionality of the untransformed and the transformed
feature space.
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Since the untransformed feature vectors consist of D = 13 MFCCs, we have
m = 13. It remains to decide what number n should be. If only pure mathematics
are considered, the dimensionality of the transformed space is not important as one
can always de�ne a set of target clusters which are spaced far apart and have low
variance (The corresponding transformation function may look extremely nasty and
may be very hard to �nd, but it can still be assumed to exist).

However, the limitations in�icted by the actual implementation (arti�cial neu-
ral network) must of course also be taken into account. By de�nition, n is the
dimensionality of the transformed feature vectors and hence equal to the number of
neurons in the output layer of the transformation block. In contrast to the neurons of
the input layer which just distribute the data among the neurons of the subsequent
layers, the neurons in the output layer actually contribute to the �computational
power� of the network. Hence, it seems probable that setting n ≡ m, n < m or
n > m does have an in�uence on the networks performance.

One may argue that setting n ≡ m is reasonable because the ANN can focus
on reducing the undesired variance without having to worry about a dimensionality
change as well. However, it is also possible that the MFCCs are very redundant such
that feature vectors with less coordinates would still su�ce to have an adequate de-
scription of the phonemes. In this case, it would make sense to set n < m because
the overall complexity of the ANN can be reduced. Finally, it may be that the
MFCCs are not redundant, but the network could have insu�cient computational
power to learn the transformation. Hence, setting n > m should be chosen to give
the ANN more �exibility and possibly improve the learning performance.

In this work, all the e�ect of all three possible choices (n ≡ m, n < m and
n > m) is investigated. For the case n < m, it was chosen to have n = 6, whereas
for n > m, n = 20 was taken (please also confer to �gures 4 and 5). For ease of
reference, the following short labels are used for these con�gurations

� n > m: higher dimensionality con�guration (termed higherdim or higher)

� n ≡ m: same dimensionality con�guration (termed samedim or same)

� n < m: lower dimensionality con�guration (termed lowerdim or lower)

Implementation of the Distance Stage Finally, let us take a closer look at
the distance computation stage NND. This network computes a distance measure
between two transformed feature vectors. The computed distance should be large
if the feature vectors stem from di�erent phonemes and small if they stem from the
same phoneme.

There are two basic possibilities how NND can be implemented. The �rst pos-
sibility assumes that this network is also trained (to learn the optimal distance
measure) and can hence be de�ned as a �normal� neural network. This implementa-
tion o�ers more �exibility by making the entire ANN structure amenable to training,
but might also cause problems with convergency.
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The second possibility uses a prede�ned distance measure (i.e. the Euclidean
distance) and speci�cally tailors this stage of the system to compute this distance
measure. This way, the overall system becomes less �exible (it contains a static,
non-trainable part) and should cause less problems during learning.

In this work, both of the above options are explored. The �rst alternative which
includes NND in the training uses a simple structure with an input layer, an output
layer and an internal layer with 30 neurons (e�ectively a 2-layer perceptron). This
variant is referred to as the classi�er con�guration.

The second alternative which uses a prede�ned network implements the square
Euclidean distance (the squared value was used because the NICO toolkit does not
support the computation of

√
x). This implementation is termed euclidean distance

or euclid con�guration (please also confer to �gures 4 and 5).

Network Topology Diagrams All the previously discussed network architec-
ture variants are visualized in �gure 4 and 5, which show the classi�er and the
euclidean distance con�guration of the network in both the complex and the simple
version. The boxes with d = . . . written in them symbolize the delays, the boxes
with bare numbers in them indicate the number of neurons in the respective layer
(6 is lowerdim, 13 is samedim and 20 is higherdim).
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(b) Simple variant: transformation stage has totally two layers

Figure 4: ANN with transformation and classi�er stage
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ANN: “complex” with euclidean distance
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(b) Simple variant: transformation stage has totally two layers

Figure 5: ANN with transformation and euclidean distance computation stage
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4.3 Training with Arti�cial Data

Motivation Before training and evaluating the ANN con�gurations de�ned in
section 4.2 with real speech data (which are very complex), it makes sense to anal-
yse their behavior with some arti�cially created (and therefore simpler) data. The
complexity of the speech data is due to the fact that the undesired variance in the
features comes from the speaker characteristics on one side and from measurement
inaccuracy, noise and other distortions on the other side.

Let us now brie�y look at how reasonable arti�cial data can be produced. Intu-
itively, di�erent classes in a feature space can be modeled as distinct points in space
(each location stand for a certain class). Moreover, scattering (�measurement uncer-
tainty�) can be introduced by using clusters around these de�ned locations instead
of just one distinct point. Similarly, discrimination con�icts between the classes can
be introduced by increasing the variance of the clusters to make them overlap to a
certain degree.

To create these clusters, one can for instance use the multivariate Gaussian
distribution. In this case, the mean vector of each cluster represents the desired
information and the covariance matrix (which determines the shape and size of the
cluster) models the undesired variance. To de�ne the locations of the data clusters,
some random vectors can be created within a �nite volume. Assume the �nite volume
under consideration is V0 := [−L0,+L0]

k ⊂ Rk where L0 ∈ R is the maximum value
allowed for each coordinate and k ∈ N is the dimensionality of the feature space. If
NC mean vectors need to be chosen, the average volume available for each cluster is
approximately given by

VC ∝
(2 · L0)

k

NC

(10)

For simplicity, VC can be assumed to be of cubic shape (V0 is partitioned into k-
dimensional cubes). The average distance between two adjacent random vectors is
in the same order of magnitude as the equivalent side length of the cube VC

dc ∝
(
VC
NC

) 1
k

=
2 · L0

(NC)
1
k

(11)

The overlap between the clusters can then be controlled by choosing the diagonal
elements of each clusters covariance matrix Σ in the same order of magnitude as dc
(Note that the diagonal elements σii of Σ determine the spread of the distribution
along the coordinate axes; this is the easiest way to control the overlap). The σii
are chosen randomly in the range [α · 0.75 ·L0, α · 1.25 ·L0] to provide both random
variation and su�ciently large variance for all clusters. The parameter α tunes the
amount of overlap (the larger α, the more overlap).

For this work, the following values are used

� L0 = 5

� k = 13 (mimics the 13 MFCCs)
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� NC = 39 (mimics the 39 phonemes used)

� α ∈ {0.25, 0.5, 1.0, 2.0}

Four di�erent values are used for α to investigate cluster with di�erent amount of
scattering. For ease of reference, the di�erent variance modes are termed low vari-
ance (α = 0.25), moderate variance (α = 0.5), high variance (α = 1.0) and extreme
variance (α = 2.0).

Training and Results For each variance mode, independent training, validation
and test data are created to train all the di�erent ANN con�guration discussed in
section 4.2. The ANNs are de�ned and trained with the NICO toolkit (confer to
[18]). The training, validation and test set consist of 70, 20 and 10 data �les, each
of which contains a sequence of 1755 vectors. During training, the net iterates over
the sequences and learns to determine whether two subsequent vectors from the
sequences are taken from the same cluster or not. If the two vectors belong to the
same cluster, output 0 is expected; if they come from di�erent clusters, output 1
is expected (as explained in section 3.2). The training is stopped when the error
on the validation set has decreased to an optimal value. Then, the transformation
network is extracted from the overall neural network and used to analyse the data
given in the test set.

In a �rst step, the test sequences are fed into the overall network to obtain the
actual output of the distance computation stage. The actual output sequences are
compared to the expected output sequences (note that since the learning is never
perfect, a distance value below 0.5 is interpreted as 0 and a value above 0.5 is
interpreted as 1) and the overall discrimination error on the test set is calculated.
The corresponding results are shown in table 4.

Note that the discrimination error is not equivalent to the recognition error. The
discrimination error expresses how often the net has failed to determine whether two
feature vectors belong to the same class or not, whereas the recognition error tells
how often a speech recognizer fails to assign a single feature vector to the correct
phoneme.

In a second step, the test data are transformed using the trained net NNT and
the pairwise Fisher distances as well as the global Fisher distance are computed from
the transformed data. These results allow to determine whether and how much the
discriminability (in terms of the used measure) has improved. Table 5 shows the
global Fisher distances for all ANN con�gurations. The �gures 6, 7 and 8 show
colored maps of the pairwise Fisher distances computed from untransformed and
transformed data.

Note that the same color map is used for all three Fisher distance maps to better
visualize the changes (larger Fisher distance means brighter color). To do so, it
was necessary to crop the scale for coloration (any Fisher distance larger than the
de�ned maximum is simply painted in the brightest color).
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Classi�er Con�guration

Variance
complex simple

higher same lower higher same lower

Low 0.42 % 0.40 % 2.53 % 0.31 % 0.32 % 2.31 %

Moderate 1.58 % 1.64 % 4.25 % 1.93 % 2.10 % 5.13 %

High 4.62 % 5.01 % 9.31 % 4.80 % 6.07 % 10.27 %

Extreme 12.60 % 13.72 % 19.19 % 12.55 % 13.65 % 19.50 %

Euclidean Distance Con�guration

Variance
complex simple

higher same lower higher same lower

Low 0.54 % 1.29 % 6.66 % 0.33 % 1.36 % 6.51 %

Moderate 1.12 % 2.13 % 7.50 % 1.35 % 2.25 % 8.28 %

High 2.96 % 3.62 % 9.13 % 3.54 % 4.13 % 9.24 %

Extreme 11.12 % 10.63 % 14.87 % 11.09 % 10.85 % 14.25 %

Table 4: Discrimination error rate obtained from training with arti�cial data

Classi�er Con�guration

Variance
original
data

complex simple

higher same lower higher same lower

Low 12.76 13.34 13.00 6.78 16.18 17.08 7.44

Moderate 7.89 11.02 10.44 5.63 11.58 9.78 5.63

High 3.78 6.46 5.98 3.28 5.79 4.72 2.92

Extreme 1.51 2.58 2.34 1.46 2.44 2.12 1.41

Euclidean Distance Con�guration

Variance
original
data

complex simple

higher same lower higher same lower

Low 12.76 40.43 30.79 14.07 39.61 28.80 13.22

Moderate 7.89 24.21 19.55 10.01 21.25 18.07 9.86

High 3.78 9.34 9.10 5.52 9.02 8.59 5.61

Extreme 1.51 3.42 3.48 2.57 3.30 3.34 2.67

Table 5: Global Fisher distance (obtained from training with arti�cial data)
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Untransformed Data: Pairwise Fisher−Distances (Global Fisher Distance: 1.51)
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Figure 6: Pairwise Fisher distances obtained for untransformed arti�cial data with
extreme variance
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Transformed Data: Pairwise Fisher−Distances (Global Fisher Distance: 2.34)
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Figure 7: Pairwise Fisher distances obtained for transformed arti�cial data with
extreme variance using the ANN con�guration classi�er-complex-

samedim (NND is the classi�er block, NNT is the complex transformation
net which maps to the same dimensionality)
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Transformed Data: Pairwise Fisher−Distances (Global Fisher Distance: 3.48)
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Figure 8: Pairwise Fisher distances obtained for transformed arti�cial data with ex-

treme variance using the ANN con�guration euclid-complex-samedim

(NND is the euclidean distance block, NNT is the complex transformation
net which maps to the same dimensionality)
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Discussion and Interpretation First of all, let us take a closer look at the dis-
crimination error rates shown in table 4. As one would expect, the error is larger for
datasets with more substantial variance because the data clusters overlap more. The
error is on the same rather low level for transformation networks which map to the
same or a higher dimensionality, but signi�cantly larger when the transformation
maps to a lower dimensionality. The discrimination performance is about the same
for the complex and the simple con�guration of the transformation network (how-
ever, the simple con�guration seems to produce slightly less error in some cases).
When comparing the results of the classi�er and the euclidean distance stage, one
can see that the classi�er stage is superior for data of low and moderate variance
whereas it is inferior for data of high and extreme variance.

Now, we look at how the discriminability has changed in terms of the global
Fisher distance as shown in table 5. Obviously, the overall Fisher distance of the
transformed data decreases for data sets with higher variance as one would expect
(intuitively, data of larger variance cause more di�culties when learning the transfor-
mation and make it harder to reduce variance in general). As for the discrimination
error, the variants which map the data to a higher or the same dimensionality per-
form equally well regarding the obtained Fisher distance, whereas the mapping to
lower dimensionality performs worse. Furthermore, the complex and simple trans-
formation networks produce comparable results.

However, the ANN con�guration with a classi�er or a eudlidean distance block
behave quite di�erently. When comparing the Fisher distances of untransformed
and transformed data, one can see that the classi�er setup often only provides only
a slight improvement (higherdim, samedim) or even diminishes the Fisher distance
(lowerdim). The relative improvement is rather small for data with lower variance,
but more substantial for data with higher variance.

The euclidean distance setup, on the other hand, manages to improve the Fisher
distance for all data sets and all ANN con�gurations. Also, the improvements are
much larger than for the classi�er setup. Obviously, the use of a static distance
computation block results in a transformation network which is superior to the one
produced with a trainable distance computation block.

Lastly, let us investigate how the pairwise Fisher distances have changed. Specif-
ically, the ANN con�gurations classi�er-complex-samedim (confer to �gure 7) and
euclid-complex-samedim (confer to �gure 8) are used to make this comparison for
the case of data with extreme variance. The Fisher distances of the untransformed
data are shown in �gure 6.

It can be seen on the �rst sight that the color maps made for the transformed
data are much brighter than for the untransformed data. As the same scale is used
for coloration, this means that the discriminability has generally been improved.
However, the increase is larger for the euclidean distance setup (the colors are even
brighter than for the classi�er setup). Finally, note that there are also many cluster
pairs for which the painted �elds in the map stay dark because nothing changes.
This is probably due to larger overlap of the corresponding data clusters.
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On the whole, the following insights can be gained from analyzing the training
done with arti�cial data

� the proposed ANN training setup is capable of reducing variance in general
(at least for arti�cial data obtained from multivariate Gaussian distributions)

� the euclidean distance con�guration performs better than the classi�er con�g-
uration in all cases. Apparently, the training is more successful when the task
is restricted to discriminating between classes, but does not include �nding an
optimal distance measure at the same time.

� the euclidean distance con�guration improves the global Fisher distance by
a factor of 2-3 (the improvement diminishes with increasing variance of the
untransformed data)

� transformation blocks which map data to a lower dimensionality are clearly
inferior to those which map data to the same or a higher dimensionality

� complex and simple transformation networks produce comparable results
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4.4 Training with Speech Data

Working with the TIMIT Database After training the ANNs with simpli�ed
arti�cial data, we can now dedicate our attention to the more complex speech data.
The goal is to �nd out whether the ANN can also learn to reduce variance which is
caused by speaker characteristics in the phonemes.

The MFCC features are computed using speech records from the TIMIT database
(confer to section 3.1 and 4.1 for the detailed computation of the MFCC). The
TIMIT corpus consists of English sentences uttered by both male and female speak-
ers from 8 di�erent dialect regions. The particular subset used in this work (taken
from the folder timitcore) contains 16 male and 8 female speakers (please confer
to table 6 for a detailed listing of the speakers). Each dialect region is represented
with 2 male and 1 female speaker.

Phoneme segmentation information (boundaries and labels) is available for speech
data. TIMIT uses totally 61 symbols for labeling, but usually only a reduced set of
39 symbols is used (confer to table 7 for the simpli�ed phoneme dictionary and to
[2] for further information).

male female

1 bpm0 1 dhc0

2 cmj0 2 elc0

3 dab0 3 jlm0

4 grt0 4 mgd0

5 jdh0 5 mld0

6 jln0 6 lnp0

7 jmp0 7 pas0

8 klt0 8 pkt0

9 lll0

10 lnt0

11 njm0

12 pam0

13 tas1

14 tls0

15 wbt0

16 wew0

Table 6: Listing of the di�erent Speakers (TIMIT)
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Label Phoneme Group Label Phoneme Group

aa aa, ao k k

ae ae m m, em

ah ah, ax, ax-h n n, en, nx

aw aw ng ng, eng

axr axr, er ow ow

ay ay oy oy

b b p p

ch ch pau epi, q, bcl, dcl, gcl,

kcl, pcl, tcl, paud d

dh dh r r

dx dx s s

eh eh sh sh

el el, l t t

ey ey th th

f f uh uh

g g uw uw, ux

hh hh, hv v v

ih ih, ix w w

iy iy y y

jh jh z z, zh

Table 7: Simpli�ed phoneme dictionary (taken from [2])
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Set
Training Validation Test

male fem. male fem. male fem.

1
1, 2, 3, 5, 6,
7, 9, 13

1, 2, 3, 4,
7, 8

4, 8, 11 6 10, 12, 14 5

2
1, 2, 3, 5, 6,
7, 9, 13

1, 2, 3, 4,
7, 8

10, 12, 14 5 4, 8, 11 6

3
2, 4, 6, 9, 10,
11, 12, 13

1, 3, 5, 6 1, 3, 5, 8 4, 7 7, 14, 15, 16 2, 8

4
2, 4, 6, 9, 10,
11, 12, 13

1, 3, 5, 6 7, 14, 15, 16 2, 8 1, 3, 5, 8 4, 7

5
4, 5, 7, 8,
13, 15

3, 4, 6, 7 6, 11, 12, 14 1, 2 2, 3, 9, 10 5, 8

6
4, 5, 7, 8,
13, 15

3, 4, 6, 7 2, 3, 9, 10 5, 8 6, 11, 12, 14 1, 2

7
1, 4, 5, 6, 7,
13, 14, 16

1, 2, 3, 5,
6, 7

8, 9, 11, 12 4 2, 3, 10, 15 8

8
1, 4, 5, 6, 7,
13, 14, 16

1, 2, 3, 5,
6, 7

2, 3, 10, 15 8 8, 9, 11, 12 4

9
3, 6, 7, 8, 9,
11, 15, 16

1, 2, 3, 4,
5, 8

2, 4, 10 7 5, 12, 13 6

10
3, 6, 7, 8, 9,
11, 15, 16

1, 2, 3, 4,
5, 8

5, 12, 13 6 2, 4, 10 7

Table 8: Speaker set partitions used for training (please consult table 6 for a listing
of the speaker numbering scheme)
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Training and Results In order to train the network to abstract from unde-
sired speaker characteristics, the speech features need to be computed on phonemes
taken from disjoint sets of speakers for training, validation and test. To allow cross-
validation, 10 di�erent set partitions were manually de�ned (confer to table 8).
These partitions were arranged to contain instances of every phoneme from several
di�erent speakers. Note that the partitions of validation and test set are in fact
interchangeable, but the amount of data used di�ers. The training, validation and
test set consist of 70, 20 and 10 data �les each of which contains a sequence of 3000
MFCC vectors. The training is performed in the same way as described in section
4.3: the net (in all di�erent con�gurations) is trained to output 1 if two subse-
quent feature vectors stem from di�erent phonemes and 0 otherwise. The training
is stopped as soon as the error computed on the validation set is su�ciently low
and the trained transformation network NNT is extracted from the overall system
for further investigation.

First of all, the discrimination error is computed by comparing the actual output
sequences obtained for the test data to the expected output sequences. The results
for the di�erent speaker set partitions as well as the average value are presented in
table 9.

In addition, the transformation block is used to obtain the transformed speech
features. For all con�gurations, the global Fisher distance as well the average value
are computed on all speaker sets. These results can be found in table 10.

Furthermore, the pairwise Fisher distances are visualized for the untransformed
data and the transformed data obtained from two speci�c ANN con�gurations
(classi�er-complex-samedim and euclid-complex-samedim) in �gure 9, 10 and 11
using color maps with the same scale. These maps are obtained from averaging the
corresponding data over the di�erent test speaker sets de�ned in table 8.

Discussion and Interpretation To start with, let us brie�y investigate the re-
sults for the discrimination error shown in table 9. Seemingly, the achievable error
rate is approximately the same for all ANN con�gurations and speaker sets. Al-
though there is some variation among the di�erent speakers sets, the average values
are practically the same for all speaker sets. However, note that the error rates for
the euclid con�guration are slightly lower than for the classi�er con�guration.

Let us now move on to the global Fisher distance values listed in table 10.
Obviously, the global Fisher distances vary quite much among the di�erent speaker
set partitions for both the untransformed and the transformed data, but this is
probably due to the di�erent characteristics of these speci�c speaker combinations
(that is the reason why cross-validation is done after all). Furthermore, it seems
that the di�erent variants for dimensionality and complexity (within the classi�er
and euclidean distance setup) behave largely the same. It is more informative to
look at how the values have changed after the transformation and how the results
of the classi�er and euclidean distance behave.

Except for one case, the classi�er setup manages to improve the global Fisher
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Classi�er Con�guration

Set
complex simple

higher same lower higher same lower

1 25.4 % 24.6 % 24.8 % 24.9 % 24.6 % 25.0 %

2 23.5 % 23.7 % 23.5 % 23.8 % 23.5 % 24.4 %

3 24.7 % 25.7 % 25.3 % 24.4 % 24.7 % 25.7 %

4 22.3 % 21.4 % 21.8 % 21.3 % 22.4 % 22.1 %

5 23.1 % 22.8 % 23.7 % 22.9 % 23.4 % 23.8 %

6 24.2 % 24.1 % 25.1 % 23.4 % 24.0 % 24.3 %

7 24.5 % 25.7 % 24.7 % 24.8 % 22.5 % 24.6 %

8 23.2 % 21.7 % 23.7 % 22.4 % 22.4 % 23.4 %

9 22.7 % 22.5 % 25.1 % 21.1 % 21.1 % 21.8 %

10 24.7 % 25.5 % 24.7 % 25.0 % 24.3 % 25.2 %

Av. 23.8 % 23.4 % 23.8 % 23.5 % 24.3 % 24.0 %

Euclidean Distance Con�guration

Set
complex simple

higher same lower higher same lower

1 22.7 % 22.3 % 22.9 % 23.0 % 22.7 % 22.6 %

2 22.4 % 22.0 % 22.6 % 21.9 % 22.1 % 23.0 %

3 23.6 % 24.0 % 23.3 % 23.8 % 22.9 % 23.3 %

4 19.5 % 19.9 % 20.0 % 19.6 % 20.1 % 19.6 %

5 21.8 % 21.1 % 21.6 % 21.9 % 22.5 % 21.6 %

6 22.8 % 22.5 % 22.9 % 22.9 % 22.3 % 23.0 %

7 23.0 % 23.1 % 23.0 % 22.8 % 22.7 % 22.9 %

8 20.9 % 21.4 % 21.5 % 21.3 % 21.3 % 22.1 %

9 20.4 % 19.8 % 19.9 % 19.5 % 19.6 % 20.4 %

10 21.7 % 22.9 % 22.9 % 22.4 % 23.3 % 22.7 %

Av. 21.9 % 21.9 % 22.0 % 21.9 % 22.0 % 22.1 %

Table 9: Discrimination error rate obtained from training with speech data
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Classi�er Con�guration

Set
original
data

complex simple

higher same lower higher same lower

1 0.68 0.69 0.95 0.76 0.94 0.98 0.85

2 0.78 0.97 1.11 0.97 1.16 1.06 0.86

3 0.36 0.72 0.85 0.78 0.80 0.83 0.72

4 0.87 1.29 1.30 1.21 1.36 1.35 1.24

5 0.72 1.17 1.13 1.16 1.23 1.18 1.09

6 0.34 0.89 0.89 0.76 0.93 0.84 0.77

7 0.76 1.10 0.93 1.05 1.07 1.16 0.91

8 0.65 1.06 1.19 1.03 1.18 1.19 1.03

9 0.84 1.16 1.03 0.93 1.25 1.36 1.07

10 0.83 0.89 0.76 0.89 1.05 1.03 0.97

Av. 0.68 0.99 1.02 0.96 1.10 1.10 0.95

Euclidean Distance Con�guration

Set
original
data

complex simple

higher same lower higher same lower

1 0.68 0.99 1.10 0.97 1.13 1.09 1.02

2 0.78 1.18 1.19 1.17 1.30 1.21 1.22

3 0.36 0.92 0.95 0.92 0.76 0.74 0.85

4 0.87 1.64 1.66 1.64 1.60 1.65 1.65

5 0.72 1.34 1.40 1.41 1.41 1.37 1.42

6 0.34 1.04 1.02 1.06 1.03 0.91 1.02

7 0.76 1.25 1.26 1.24 1.23 1.25 1.25

8 0.65 1.38 1.33 1.28 1.36 1.29 1.30

9 0.84 1.45 1.44 1.39 1.54 1.45 1.50

10 0.83 1.39 1.26 1.27 1.18 1.26 1.21

Av. 0.68 1.26 1.26 1.24 1.26 1.22 1.25

Table 10: Global Fisher distance (obtained from training with speech data)
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Untransformed Data: Pairwise Fisher−Distances (Global Fisher Distance: 0.68)
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Figure 9: Pairwise Fisher distances obtained for untransformed speech data (aver-
aged over di�erent sets of test speakers)

38



 

 

Transformed Data: Pairwise Fisher−Distances (Global Fisher Distance: 1.02)
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Figure 10: Pairwise Fisher distances obtained for transformed speech data using the
ANN con�guration classi�er-complex-samedim (NND is the classi�er

block, NNT is the complex transformation net which maps to the same

dimensionality)
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Transformed Data: Pairwise Fisher−Distances (Global Fisher Distance: 1.26)
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Figure 11: Pairwise Fisher distances obtained for transformed speech data using the
ANN con�guration euclid-complex-samedim (NND is the euclidean

distance block, NNT is the complex transformation net which maps to
the same dimensionality)
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distance. On the average, the value of 0.68 of the untransformed data is raised to
approximately 1.0 to 1.05, which is an increase of 47-54%.

The euclidean distance setup manages to increase the global Fisher distance in
all cases and also provides a larger improvement. The value after the transformation
is in the range 1.24 to 1.26, which is an improvement of 82-85%.

Obviously both variants of the distance computation network can help to pro-
duce a transformation network which improves the discriminability of the speech
features. However, the blocks NNT obtained from training with a prede�ned NND

perform better.

Finally, we take a short glimpse at the maps of the pairwise Fisher distances
portrayed in �gure 9, 10 and 11 (note that these maps were obtained from averaging
over the di�erent speaker sets).

The illustration for the untransformed data shows that most of the phoneme
pairs are hard to be told apart (large dark areas). However, there are also quite
a few cases which do not seem to be problematic (bright spots and stripes). The
plots for the transformed data demonstrate what was already found in the above
investigation: the general discriminability is improved (the corresponding Fisher
distance maps are much brighter in color). However, there are also situations where
the values stay the same. Fortunately, the phoneme pairs which already had a high
pairwise Fisher distance remain on this good level. Unfortunately, there are also
many phoneme pairs (mainly vowels) which stay constant on a bad level for both
the networks obtained from the classi�er and the euclidean distance con�guration.
However, the training with the euclid block still results in more improvement for
many of these critical cases than the one with the classi�er (some of the correspond-
ing areas in the plot are brighter).

On the whole, we have learned the following from the analysis of the speech data

� the proposed ANN training setup obviously works for speech data

� both the training with classi�er and euclidean distance blocks NND produces
transformation networks NNT which manage to increase the Fisher distance

� the euclid setup with an average improvement of 82-85% performs better than
the classi�er setup with an average improvement of 47-54%. This is probably
due to the fact that the euclid setup restricts the learning task to discrimina-
tion whereas the classi�er setup additionally tries to �nd an optimal distance
measure. Apparently, the training is more successful for the simpler task.

� Both the dimensionality of the transformation (higherdim, samedim and low-
erdim con�guration) and the complexity of the transformation (complex and
simple con�guration) show no strong in�uence on the result of the training
with a euclidean distance block (the average of the global Fisher distance over
the speaker sets is practically the same for all variants).

� obviously, the achievable improvement is lower for speech data than for the
arti�cially created data because vocal and phoneme characteristics are more
complex than Gaussian distributions
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5 Conclusion and Future Work

It could be veri�ed that the proposed arti�cial neural network setup is indeed capa-
ble of learning a coordinate transformation which signi�cantly improves the Fisher
distance of the feature vectors.

For a proof of concept, data clusters were created using the multivariate Gaus-
sian distribution. By teaching the overall neural network to decide whether two
vectors belong to the same cluster, the transformation sub-block could learn the
coordinate transformation. A closer investigation of the transformed data showed
that the Fisher distance is improved by a factor of 2-3 for arti�cial data with a broad
range of variances when the distance computation sub-block of used during training
implements the (square) euclidean distance.

After verifying the functionality of training setup and the obtained transforma-
tion, the method was applied to MFCC features computed from the TIMIT database.
Training, validation and test data for the neural network structure were taken from
disjoint sets of speakers to optimally train the ANNs and investigate the e�ect of
the learned transformation. The analysis revealed that even for speech data, a sub-
stantial increase of 82-85% can be achieved for the Fisher distance using the same
euclidean distance block in the overall network. For the case of a trainable distance
computation block, a smaller improvement of 47-54% was found.

Although the conducted experiments indicate that the phoneme discriminability
is increased, there was unfortunately no time to integrate the obtained transfor-
mation network into a speech recognizer to determine the e�ect on the phoneme
recognition rate. This implementation still needs to be done.

Moreover, more e�ort could be dedicated to the optimisation of the MFCCs prior
to performing the transformation. The e�ects of �lterbanks with di�erent shapes
and multitaping could not be looked at in more detail because the limited time-
frame of a semester thesis did not allow to do so. It would certainly be interesting
to investigate more sophisticated mel-�lterbanks and other multitaper functions in
detail.

Finally, the training setup could be adapted to include more speakers and there-
fore more instances of the di�erent phonemes. It seems probable that given a larger
amount of training data, further improvements can be achieved.
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Optimale Sprachmerkmale zur Unterscheidung

von Lauten

Einleitung

Im Zusammenhang mit der Spracherkennung muss detektiert werden, welche Laute in
einem Sprachsignal nacheinander vorkommen. Im Sprachsignal gibt es jedoch nicht nur
Information über die Laute, sondern auch über die Stimme der Person, von welcher das
Sprachsignal stammt. Zudem wird das Sprachsignal durch Sprechweise, Dialekt, Emotio-
nen, ev. Gesundheit etc. geprägt (vergl. [1], Kap. 2.1). Alle diese zusätzlichen Informa-
tionen sind jedoch für die Spracherkennung nicht nützlich, im Gegenteil, sie stören und
erschweren die Spracherkennung.

Die wichtigste Voraussetzung für einen guten Spracherkenner ist deshalb, Merkmale aus
dem Sprachsignal zu ermitteln, die zwar von den Lauten abhängig sind, aber durch die
weiteren Informationen im Sprachsignal möglichst wenig beeinflusst werden. Anhand die-
ser Merkmale können dann die Laute statistisch beschrieben oder unterschieden werden
(v.a. mittels Hidden-Markov-Modellen und neuronalen Netzen).

Merkmale für die Spracherkennung

Für die Spracherkennung werden heute hauptsächlich sogenannte Mel Frequency Cepstral
Coefficients (MFCC) und davon abgeleitete Grössen eingesetzt (siehe [1], Kap. 10.7).



MFCC sind deshalb als Sprachmerkmale für die Spracherkennung geeignet, weil sie das
Spektrum des Sprachsignals in einer Art beschreiben, welche unabhängig von der Phase
und von der Lautstärke des Sprachsignals ist. Zudem weisen die MFCC eine geringe
Sensitivität auf gegenüber Veränderungen der Sprachgrundfrequenz, zumindest für tiefe
Stimmen. Für Frauen- und Kinderstimmen ist der Einfluss der Grundfrequenz auf die
MFCC grösser.

Was jedoch im Zusammenhang mit der Spracherkennung im Allgemeinen am meisten stört
ist der Einfluss der stimmlichen Eigenschaften, die für jede Person mehr oder weniger
stark verschieden sind. Diese stimmlichen Eigenschaften bewirken eine grosse Varianz der
Sprachmerkmale. Das bedeutet, dass die Merkmale eines Lautes, der von verschiedenen
Personen gesprochen worden ist, sich viel mehr unterscheiden, als wenn der gleiche Laut
von einer Person mehrmals gesprochen wird. In der Spracherkennung wirkt sich dies so aus,
dass ein Spracherkenner, der für eine bestimmte Person trainiert worden ist (sprecherab-
hängiges Training), für Sprache von dieser Person eine signifikant höhere Erkennungsrate
erreicht als von anderen Personen. Wird der Spracherkenner mit Sprachsignalen von vie-
len Personen trainiert (sprecherunabhängiges Training), dann ist die Erkennungsrate auch
für am Training nicht beteiligte Personen zufriedenstellend, aber doch deutlich tiefer als
dies bei sprecherabhängigem Training der Fall wäre.

Problemstellung

Da die stimmlichen Eigenschaften, die von Person zu Person verschieden sind, einen gros-
sen Einfluss auf die in der Spracherkennung gebräuchlichen Sprachmerkmale haben, also
die Varianz der Merkmale vergrössern, stellt sich die Frage, wie die Varianz verkleinert
werden könnte. Grundsätzlich gibt es zwei Wege: entweder man sucht geeignetere Merk-
male oder man transformiert die MFCC so, dass der Sprechereinfluss reduziert wird.

In dieser Semesterarbeit soll der zweite Weg eingeschlagen werden. Dabei wird von der
Hypothese ausgegangen, dass es für Merkmalsvektoren x eine Transformation Ψ gibt,
welche den Sprechereinfluss auf die Merkmalsvektoren reduziert. Transformierte Vektoren
y = Ψ{x} sollen also weniger stark durch die Sprecher geprägt sein. Gleichzeitig soll
jedoch die Abhängigkeit vom Laut erhalten bleiben, sonst wäre das Merkmal nicht mehr
für die Spracherkennung brauchbar.

Die Güte eines Merkmals zur Unterscheidung von Lauten kann wie folgt beurteilt werden:
Ein Merkmal ist umso besser, je weniger es für denselben Laut variiert und je mehr es
für verschiedene Laute variiert. Diese Güte lässt sich mit der Fisher-Distanz1 ausdrücken
(vergl. auch Übung 11 zur Vorlesung Sprachverarbeitung).

Es stellt sich nun die Frage, wie man die Transformation Ψ erhält. Die Idee ist, diese
Transformation zu schätzen, indem man ein neuronales Netz so trainiert, dass es eine
Näherung Ψ̃ dieser Transformation lernt. Ein neuronales Netz kann eine Transformation
lernen (oder wenigstens einen Näherung davon), wenn eine genügend repräsentative Menge
von Ein-/Ausgangspaaren dieser Transformation vorhanden sind (siehe [1], Anhang A.5).

1Die Fisher-Distanz ist ein Mass für die Verschiedenheit von zwei Wahrscheinlichkeitsverteilungen.
Sie ist definiert als df = (m0−m1)

2 / (σ2
0+σ2

1), wobei m0 und m1 die Mittelwerte und σ2
1 und σ2

0 die
Varianzen der beiden Verteilungen sind.
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Figur 1: System zum Trainieren des neuronalen Netzes für die Transformation Ψ

Dies ist hier jedoch nicht der Fall. Für das Training muss deshalb das neuronale Netz in
System von Netzen eingebaut werden, wie es in Figur 1 dargestellt ist.

In diesem System ist das zu trainierende neuronale Netz zweimal vorhanden, nämlich NN1

und NN2. Sie sind identisch. Zusätzlich ist NN3 vorhanden, das eine Distanz D zwischen
den transformierten Vektoren y1 und y2 ermittelt. Für zwei Eingangsvektoren x1 und x2

soll nun die Distanz zwischen den transformierten Vektoren y1 und y2 klein sei, nämlich
d0, und zwar dann, wenn die Vektoren x1 und x2 aus Sprachabschnitten mit demselben
Laut stammen. Andernfalls soll die Distanz gross, also d1 sein.

Das aus drei neuronalen Netzen bestehende System ist auch wieder ein neuronales Netz. Es
wird mit NNS bezeichnet. Für NNS können nun Ein-/Ausgangspaare wie folgt angegeben
werden: Aus Sprachsignalen von vielen Sprechern kann man Beispiele für die Vektoren x1

und x2 auswählen und angeben, ob der zugehörige Zielwert d0 oder d1 ist.

Grundsätzlich kann somit das Netz NNS trainiert werden.2 Wie die Teile NN1, NN2 und
NN3 zu konfigurieren sind (wieviele Schichten und Neuronen) und wie das Training durch-
zuführen ist (unter der Bedingung, dass NN1 und NN2 identisch sind), ist jedoch noch zu
untersuchen.

Interessant wird schliesslich sein, ob die mit NN1 transformierten Merkmalsvektoren wirk-
lich besser sind, also beispielsweise eine grössere Fisher-Distanz aufweisen als die untrans-
formierten. Am meisten interessiert selbstverständlich um wieviel die Spracherkennungs-
rate durch die Transformation verbessert werden kann.

Vorgehen

Für diese Semesterarbeit wird das folgende Vorgehen empfohlen:

1. Arbeiten Sie sich zuerst in die Thematik ein. Machen Sie sich mit der Merkmals-
extraktion (Ermitteln der MFCC aus dem Sprachsignal) und der Beurteilung von
Sprachmerkmalen anhand der Fisher-Distanz (siehe SPV-Übung 11) vertraut.

2. Stellen Sie analog zur SPV-Übung 11 ein System zusammen, mit dem Sie die Güte
von Sprachmerkmalen testen und mit den Standardmerkmalen vergleichen können.
Für dieses Testsystem sollen Sprachsignale aus der TIMIT-Datenbank (englische
Sprache; wird zur Verfügung gestellt) verwendet werden und es sind alle Laute

2Das Netz NNS hat grundsätzlich dieselbe Struktur wie die neuronalen Netze in [2]. NNS ist jedoch
nicht voll verbunden.
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einzubeziehen. Ergänzen Sie das System so, dass es aufgrund von Testdaten eine
Lautverwechslungsmatrix ermitteln und ausgeben kann.

3. Optimieren Sie die Parameter der Berechnung der MFCC so, dass Lautunterschei-
dung (ermittelt mit dem obigen Testsystem) optimal wird. Überlegen Sie zuerst,
welche Parameter zu variieren sind und besprechen Sie Ihre Überlegungen mit den
Betreuern. Führen Sie dann die Optimierung durch.

4. Arbeiten Sie sich in die neuronalen Netze und in das Trainings-Tool NICO (siehe [3])
ein. Legen Sie die Konfiguration der Netze NN1 , NN2 und NN3 fest und überlegen
Sie, wie das gesamte System NNs mit Nico trainiert werden kann.

5. Stellen Sie aus der TIMIT-Datenbank Trainings-, Validierungs und Testdaten zu-
sammen. Trainieren und testen Sie NNs. Testen Sie auch das erhaltene NN1 mit
erstellten Testsystem (siehe Punkt 2).

6. Fakultativ: Wenden Sie die verbesserten Merkmale (Punkt 3) und die Merkmals-
transformation in einem HMM-basierten Spracherkenner an und ermitteln Sie, ob
und um wieviel sich die Erkennungsrate erhöht hat.

Die ausgeführten Arbeiten und die erhaltenen Resultate sind in einem Bericht zu doku-
mentieren (siehe dazu [4]), der in elektronischer Form (als PDF-Datei) abzugeben ist.
Zusätzlich sind im Rahmen eines Kolloquiums zwei Präsentationen vorgesehen: etwa zwei
Wochen nach Beginn soll der Arbeitsplan und am Ende der Arbeit die Resultate vorge-
stellt werden. Die Termine werden später bekannt gegeben.
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