m Institut fur
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Semester Thesis
at the Department of Information Technology
and Electrical Engineering

Advanced Features for a Software
Development Environment for Many-Core
Systems

Spring 2012

Erwin Herrsche

Advisor: Lars Schor
Professor: Prof. Dr. Lothar Thiele

Zurich
27th July 2012

Abstract

Working with the Distributed Application Layer (DAL) has been improved
with the creation of the DAL Eclipse plug-in (DALipse). This thesis extends
the existing plug-in with required features to provide a complete cockpit for
DAL. In particular, the contributions of this thesis are an editor for DAL
architecture specifications and advanced features for the existing finite state
machine editor.

Acknowledgements

I would like to express my sincere gratitude to Prof. Dr. Lothar Thiele
for granting me the opportunity to write this semester thesis in his research
group.

1 would also like to thank my advisor Lars Schor for his support during the
whole process of this thesis.

— III —

Contents

Introduction

1.1 Motivation.
1.2 Distributed Application Layer
1.3 Contributions
1.4 Related Work
1.5 Outline

Background Technologies

2.1 Eclipse
2.2 Eclipse Modeling Framework Project
2.3 Graphical Editing Framework

2.3.1 Layout File Format

Overview DALipse

3.1 Editors.
3.2 Launcher
3.3 Project Wizard oo

3.3.1 Examples oo

Architecture Editor

41 Model
4.1.1 Model Constraints
4.1.2 Additions to the DAL Model

42 Editor
421 Editor Window

4.3 Exampleo

Finite State Machine Editor

5.1 Model
5.1.1 Additions to the DAL Model
5.2 Editor
5.2.1 Views
9.3 Example

~J ot ot gt O o W oW W N DN N = = =

© o ©

Conclusion and Outlook
6.1 Jonclusion L

6.2 Outlook
Presentation Slides

DALipse Source Code Overview

20
20
20

21

28

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
5.4
2.9
5.6
5.7
2.8

List of Figures

Launch Configuration Dialog 6
‘New Project’” Wizard 6
FExample Wizard 00000 7
Architecture Editoro oo 10
Architecture Editor Example 11
FSM Editor 15
FSM Transition View 16
FSM State View oL 16
FSM Application View 17
FSM Editor Example 18
FSM Application View Example 18
FSM State View Example 18
FSM Transition View Example 19

— VI —

Introduction

1.1 Motivation

Today’s multicore architectures are relatively simple. It is likely that the
complexity of hardware architectures will drastically increase in the next
few years. For example the Intel SCC prototype architecture [1] has already
48 cores. From a system level perspective, it consists of 145 different ele-
ments. Future architectures will consist of hundreds of cores. The creation
of such complex abstract models can easily lead to errors. A graphical editor
simplifies the modelling process and the amount errors can be reduced.

1.2 Distributed Application Layer

The Distributed Application Layer (DAL) [2| is developed as part of the
EURETILE project’. Tt is based on the DOL framework [3]. As in the DOL
framework, applications are specified as Kahn process networks [4]. In addi-
tion, execution scenarios are organized as a Moore finite state machine. In
each scenario, each application is either running, paused or inactive. Transi-
tions between scenarios are triggered by either events generated by running
applications or the run-time system. Hardware platforms are modelled in
three different hierarchical levels, namely processors, local buses (shareds)
and network-on-chips (NoCs).

"http://www.tik.ee.ethz.ch/ euretile/

http://www.tik.ee.ethz.ch/~euretile/

1.3. CONTRIBUTIONS

1.3 Contributions

e A graphical editor for DAL architectures is designed and implemented.

e The application and transition event management for DAL finite state
machines is improved.

1.4 Related Work

There are projects that do a similar job as the DALipse, e.g. HOPES? from
the Seoul National University, which is a standalone Java application and
the StreamIT development tool® from MIT, which is also an Eclipse plug-in.

1.5 Outline

Chapter 2 gives an overview of the used third party technologies. Chap-
ter 3 describes the structure of the plug-in. Chapter 4 and 5 explain the
implementation of the new plug-in features.

http://peace.snu.ac.kr /research /hopes/
3http://groups.csail.mit.edu/cag/streamit /shtml/eclipse-plugin.shtml

Background Technologies

In this chapter, the tools and frameworks used to develop the plug-in are
described.

2.1 Eclipse

As base of development the Eclipse SDK is used. Even though Eclipse is
primarily a Java IDE, its functionality is extendible via plug-ins, which can
be managed by the integrated software manager. The DALipse plug-in has
been developed with and for Eclipse 3.7 Indigo.

2.2 Eclipse Modeling Framework Project

The Eclipse Modeling Framework Project (EMF)! provides code generation
facilities for data models specified as XML files. It also provides import func-
tionalities for XSD files, which has been used in this thesis. The generated
code includes XML serialisation for the model data.

"http://www.eclipse.org/emf/

http://www.eclipse.org/emf/

2.3. GRAPHICAL EDITING FRAMEWORK

2.3 Graphical Editing Framework

The Graphical Editing Framework (GEF)? provides a programming frame-
work for graphical editors. Its internal structure is based on the model-
view-controller design pattern. In particular, an EMF model is used in this
thesis. The view is implemented with Draw2d, the drawing toolkit included
with GEF. From within the editor the underlying model is changed with
commands, which form the controller. Each executed command is put on a
command stack. This stack can be manipulated with the Eclipse undo and
redo Ul functions. It is also used to determine if a project needs to be saved.

2.3.1 Layout File Format

A custom layout file format is used to store the layout of any of the three
GEF editors. The file has to have the same base name as the corresponding
model XML file. If no layout file is found for a given model XML file, the
elements are placed randomly and the layout file is created the next time
the model is saved. The file format is very simple, each file consists of one
line per element following the form

element_name:x,_ y, width, height:

with x and y being the coordinates of the top left corner of the element. The
numbers have to be separated by a comma followed by a space. Examples
can be found in Sections 4.3 and 5.3.

"http://www.eclipse.org/gef/

http://www.eclipse.org/gef/

Overview DALipse

In this chapter, an overview of the plug-in is given. For a description of the
source code structure, see Appendix B.

3.1 Editors

The plug-in consists of three different editors, the process network editor,
the architecture editor and the finite state machine editor. The first editor
has been developed as part of a prior thesis [5], and the later two editors are
described in more detail in Chapters 4 and 5.

3.2 Launcher

The launcher serves as the main interaction with the DAL tool-chain. The
most prominent part of the launcher is the green run button in the Eclipse
tool bar. Fig. 3.1 shows the other part, the launch configuration dialog,
where the run behaviour can be configured.

3.3 Project Wizard

There are two wizards for the plug-in, the “New Project” wizard and the
example wizard. The “New Project” wizard (Fig. 3.2) consists of a name

3.3. PROJECT WIZARD

Create, manage, and run configurations

type Filter text a

[DAL

Eclipse Application

3] Java Applet

[Java Application
Ju JUnit Functional Simulator

J& JUnit Plug-in Test.
m2 Maven Build
Operational QUT Interprel

@
4 05Gi Framewark o
4 Tosk Context Test

Filter matched 11 of 11 items

Figure 8.1: Launch configuration dialog showing the “Generator” tab for
DAL launch configuration.

w DAL Projeck
DALipse

Creates a new DAL project.

Figure 3.2: ‘New project’ wizard for a new DAL project.

3.3. PROJECT WIZARD

. Mew Example 2 & &

Select a wizard

DAL Example 1

Wizards:

v (= DAL Examples
(o

6] DAL Example 2

6] DAL Example 3

@ DAL Example 4

6] DAL Example 5
¥ [= Eclipse Modeling Framewaork

3+ [EMF Model Query Plug-ins

* [EMF Model Transaction Plug-ins A

o) >

| Show Allwizards.

@j = Bac Mext = Finish Cancel

Figure 3.3: Eclipse example wizard showing the DAL examples.

field, an optional location field and an optional architecture field, which
can be used to select one of the template architectures. As of the time of
writing this thesis, there are two template architectures included in DALipse,
namely an architecture template for Intel’s SCC processor |1| and and Intel
i7 processor with four cores.

3.3.1 Examples

The plug-in comes with five examples, a brief description of each can be found
in the example wizard and the following list. All examples are delivered with
an architecture file for an Intel i7 processor with four cores.

3.3. PROJECT WIZARD

Example 1 Two producer-consumer applications are consecu-
tively executed.

Example 2 An FFT application and a Matrix Multiplication ap-
plication are consecutively executed.

Example 3 A MULTIFIR application and a FIR application are

running concurrently as soon as a producer-consumer
application has been completed.

Example 4 The producer-consumer application is executed. Af-
ter completing 20 iterations, each process sends a cor-
responding event.

Example 5 A video player that can concurrently plays two videos.
It consists of a user interface application (Ul) and two
MJPEG decoder applications.

Architecture Editor

In this chapter the first major contribution of this thesis, the architecture
editor, is described. The architecture editor can be used to visually specify
hardware platforms by connecting an number of different hardware elements.
In the remainder of this chapter, first the model used in the architecture
editor is explained. The second section is about the actual editor and its
implementation with the GEF framework. In the last section, a case study
is shown to illustrate the capabilities of the editor.

4.1 Model

The architecture model distinguishes three different levels of hierarchy. These
are namely processors, shareds (local buses) and networks-on-chips (NoCs).
All these elements have certain properties in common including the element
name and the substitute property. Substitute elements are spare elements,
i.e. no processes are mapped onto these processors or onto all processors
connected to a shared or NoC.

4.1.1 DModel Constraints

The model has some constraints, which do not directly follow from the XML
specification [6]. The following statements have to be fulfilled at any time:

e Processors may only be connected to at most one shared.

4.2. EDITOR

Figure 4.1: Architecture editor showing the Intel SCC processor [1].

e Shareds may only be connected to at most one NoC.

e Processors cannot be directly connected to NoCs.

All other connection possibilities are valid, in particular, a NoC may have
connections to an arbitrary number of other NoCs.

4.1.2 Additions to the DAL Model

The model specified by DAL [6] is extended with plug-in specific elements.
These additions have been kept minimal to be as close to the original model
as possible. These additions are elements to store the layout of the archi-
tecture within the editor, namely the coordinates of the top left corner and
the size of each hardware element. They are not saved in the XML file, but
they are saved in an extra .layout file. For the specification of these files see
Section 2.3.1.

4.2 FEditor

The editor (Fig. 4.1) consists of three parts, namely the property view (1), the
palette window (3) and the actual editor window (2). The property view can
be used to edit the values of the attributes of the currently selected element.
If no element is selected, it just shows the attributes of the whole architecture,
which is the name attribute of the platform. The palette window shows all
available tools. These are the select tool, to select and edit editor elements,
and the create tools for all architecture elements (NoCs, shareds, processors,

10 —

1
2

4.3. EXAMPLE

core_0 core_1 core_2 core_3

)

ocalho...

Figure 4.2: Architecture editor representation of the Intel i7 620 Mobile
platform.

and connections). The connection create tool implements the constraints
mentioned in Section 4.1.1.

4.2.1 Editor Window

The editor window is the part of the Ul where the architecture elements
are laid out and drawn, where new elements are added, and where existing
elements can be selected. NoCs and shareds are drawn as rectangles with
rounded corners. Processors are drawn with sharp corners. If the substi-
tute property of an element is set to 1, the outline of any element becomes
dashed. The label of a NoC, shared or processor shows its name property.
Connections do not have any label, their name is automatically generated
and only used internally.

4.3 Example

This section shows the Intel i7 620 Mobile platform within the DALipse plug-
in in Fig. 4.2. The corresponding XML file is included along with the layout
file.

Architecture XML File Example

<?xml version="1.0" encoding="UTF-8"7>

<architecture xmlns:xsi="http://www.w3.org/2001/XMLSchema—
instance" xmlns="http://www.tik .ee.ethz.ch/ euretile/
schema /ARCHITECTURE" xsi:schemaLocation="http://www. tik .
ee.ethz.ch/ euretile /schema/ARCHITECTURE_http://www. tik .
ee.ethz.ch/Teuretile /schema/architecture .xsd" name="
Intel _i7_620_Mobile_platform_(as_one_cluster)">

© o N Ot s W

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

4.3. EXAMPLE

<shared name="localhost">
<port name="portl" />
<port name="port2" />
<port name="port3"/>
<port name="port4" />

</shared>

<processor id="0" name="core 0" type="RISC">
<port name="portl" />

</processor>

<processor id="1" name="core 1" type="RISC">
<port name="portl"/>

</processor>

<processor id="2" name="core_ 2" type="RISC">
<port name="portl"/>

</processor>

<processor id="3" name="core 3" substitute="1" type="RISC"

>
<port name="portl" />
</processor>
<link name="link 1">
<end point 1 name="core 0">
<port name="portl"/>
</end point_ 1>
<end point 2 name="localhost">
<port name="portl" />
</end _point_ 2>
</link>
<link name="link 2">
<end point 1 name="core 1">
<port name="portl"/>
</end _point_ 1>
<end point 2 name="localhost">
<port name—"port2"/>
</end point 2>
</link>
<link name="link 3">
<end point 1 name="core 2">
<port name="portl"/>
</end point_ 1>
<end point 2 name="localhost">
<port name="port3"/>
</end _point_ 2>
</link>
<link name="link 4">
<end point 1 name="core 3">
<port name="portl"/>
</end _point_ 1>
<end point 2 name="localhost">
<port name="port4" />

ot W N

4.3.

EXAMPLE

</end point_ 2>
</link>
</architecture>

Architecture Layout File Example

localhost:120, 117, 50, 50:
core_0:12, 12, 50, 50:
core_1:83, 12, 50, 50:

core 2:143, 12, 50, 50:
core 3:214, 12, 50, 50:

13 —

Finite State Machine Editor

This chapter is about the changes made to the existing DAL Finite State
Machine (FSM) editor. The first section is about the model and the changes
made to the DAL specification [6], which made the changes to the editor nec-
essary, namely the type of machine used was changed from Mealy machines
to Moore machines (see Section 4.3 in |2|). The second section is about the
additional and changed elements within the editor itself. It starts with the
graphical part of the editor and then describes the newly added views. In
the last section, a case study is shown to illustrate the capabilities of the
editor.

5.1 Model

The model, described in [2] to specify an FSM is a Moore machine. This
is in contrast to the earlier version described in [6] which used a Mealy
machine. Each FSM consists of three different types of elements, namely
applications, scenarios and transitions. Applications have a unique name
and a reference to their source process network file. This file path is either
absolute or relative to the directory of the FSM file. There exists already
an editor|[5| to edit the process networks. The other two element types were
changed with the transition to Moore machines. Each state represents a
scenario and consists of a unique name and two lists of applications, one for
running and one for paused applications. Applications in neither of these
lists are inactive in that scenario. Transitions have a list of events which

5.2. EDITOR

eeeeee

Figure 5.1: FSM editor showing Example 2 from the DALipse example set.

activate that transition.

5.1.1 Additions to the DAL Model

Similar to the architecture model, the FSM model specified by DAL [6] is
extended with plug-in specific elements. These additions have been kept
minimal to be as close as possible to the original model. These additions
are, among others, elements to store the layout of the architecture within
the editor, namely the coordinates of the top left corner and the size of each
hardware element. They are not saved in the XML file, but they are saved
in an extra .Jayout file. For the specification of these files see Section 2.3.1.

Another addition is a reference to the parent FSM element which has been
added to states and transitions. States also include a list of their incoming
and outgoing transitions. These have been added to simplyfy the editor
implementation but they are not saved within the XML file or the .layout
file. They are added to the model when the model is loaded and changed on
request.

5.2 Editor

The editor (Fig. 5.1) consists of four parts, namely the property view (1),
the actual editor window (2), the palette window (3) and the view area
(4). The property view can be used to edit the values of the attributes
of the currently selected element. If no element is selected, it shows the

15 —

5.2. EDITOR

[FSM States and Transition §3 =8
Stake_FFT -> Stabe_Matrix

activake_matrix

Add| |Remove

Figure 5.2: The transition view of the FSM view.

[FSM States and Transition &2 =8

State_Matrix
Running applications: Add...| |Remove.., | Paused applications: Add...

Matrix Mo paused applications

v | |add| | cancel ~ | |add| | cancel

Figure 5.3: The state view of the FSM view.

attributes of the whole FSM, which is just the name attribute of the FSM.
The actual editor has already been implemented in a previous thesis [5], but
slight adjustments had to be made, due to the model changes. The palette
window shows all available tools. These are the select tool, to select and edit
editor elements and the create tools for states and transitions. The view area
holds the two newly added views, the FSM view and the application view.

5.2.1 Views

There were two views added to the FSM editor. The first one is a combined
view for state application lists, which show the running and paused appli-
cations in that state (Fig. 5.3), and the event lists for transitions (Fig. 5.2).
The second one is an application management view.

FSM View

Depending on the current selection in the editor window, the FSM view
shows either nothing, the state application lists or the transition event list.
If a state is selected, a list with all applications running in this state is
displayed on the left half of the view area. On the right half, a list with
all applications paused in this state is displayed. Each list has an add and
remove button. If an application is selected within one of these lists, clicking
on the remove button removes that application from that list. By clicking
on the add button, the add controls on the bottom of the view area are
displayed. These consist of an actual add button, a cancel button and a
drop down list with the all applications in the application database of the

16 —

5.3. EXAMPLE

[T%) Fsm Applications &3 =B

Name saurce filename Critical
FFT | Fft/pnaxml Remave Open
Matrix i matrixmult/pnxml Remove Open

[] >

Name: Filename: o | __ Critical | Create | Cancel

Figure 5.4: The FSM application view for the FSM in Example 2.

FSM which are not yet in one of the list of the selected state. If a transition
is selected, the event list for that transition is displayed. On the bottom
of the view area the add and remove controls are displayed. Each add and
remove action is added to the command stack of the editor window and can
be undone and redone as long as the command stack supports it.

Application View

The application view (Fig. 5.4) shows the application database for the current
FSM. The properties can be edited by clicking on the corresponding item in
the list. Each application has two buttons. One to remove it from the list and
another to open and edit the process network of the application. Note that
the remove button only removes the application from the list, but does not
delete the source files from the disk. On the top row, there are two buttons
to add an existing application or create a new application. Clicking on either
button opens the controls in the bottom part of the view area, but clicking
on the add button, opens a file dialog to choose an existing PN source file
first. The filename field is then filled with the chosen filename or, in case
of creating a new application, the default filename. If a new application is
created, first, a new directory within the directory of the FSM file is created
and named with the new name of the application. Within that directory, a
new file with the given filename and a minimal PN XML structure is created.
Each add, create and, remove action is added to the command stack of the
graph editor and can be undone and redone as long as the command stack
supports it. However, note that undoing the creation of an application has
no effect.

5.3 Example

This section shows Example 2 from the DALipse example set within the
DAlLipse plug-in in Fig. 5.5. The corresponding XML file is included along
with the layout file. The example consists of three states, namely two states
with active applications and the end state. In the first state an FFT appli-

17—

5.3. EXAMPLE

EMD_S...

Figure 5.5: FSM editor representation of the example FSM.

[E) FSM States and Transition | [FSM Applications 5%

Add an existing application| |Create s new application

Name Source Filename. Critical
FFT Ffe/pnaml Remove Open,
Matrix matrixmule/pnxml Remove Open

C >

Figure 5.6: Application view for the example showing the two applications.

cation is executed. Upon receiving the activate_matrix event the runtime
system switches to the second state in which a matrix multiplication appli-
cation is executed. The stop_£fsm event then switches to the end state.

FSM XML File Example

1 <?xml version="1.0" encoding="utf-8"7>

2 <fsm xmlns="http://www. tik .ee.ethz.ch/ euretile/schema/FSM"

3 xmlns:xsi="http://www.w3.org /2001 /XMLSchema—instance
n

[FsM States and Transition £¢ .7 FSM Applications

State_FFT
Running applications Add...| | Remove.. | Paused applications: Add...

FFT No paused applications

Figure 5.7: FSM view for the first state showing the running FFT applica-
tion.

10
11
12
13
14
15
16
17
18
19
20
21
22
23

5.3. EXAMPLE

[E) FsM states and Transition 53 . [& FsM Applications =g

te_Matrix

Add] |Remove

Figure 5.8: FSM view for the transition between the first and second state.

name="fsm example2"
xsi:schemaLocation="http://www. tik .ee.ethz.ch/~
euretile /schema/FSM_http://www. tik .ee.ethz.ch/~
euretile /schema/fsm.xsd">
<application name="FFT" src="{ft /pn.xml" critical="0"/>
<application name="Matrix" src="matrixmult/pn.xml"
critical="0" />
<transition name="trans 1" nextstate="State FFT" />
<state name="State FFT">
<transition name="trans 2" nextstate="State Matrix">
<event name="activate_matrix"/>
</transition>
<run application="FFT" />
</state>
<state name="State Matrix">
<transition name="trans 3" nextstate="END STATE">
<event name="stop_fsm" />
</transition>
<run application="Matrix" />
</state>
<state name="END_STATE" />
<endstate name="END_STATE"></endstate>
</fsm>

FSM Layout File Example

State FFT:80, 34, 76, 72:
State Matrix:260, 31, 82, 77:
END STATE:276, 199, 50, 50:

Conclusion and Outlook

6.1 Conclusion

In this thesis, the DAL Eclipse plug-in (DALipse) has been improved with a
graphical editor for DAL architecture specifications and editors for the appli-
cation and transition event management. The newly added features followed
the modular approach of the foundation, thus conserving the extensibility of
the plug-in.

6.2 Outlook

Some features of the DAL XML specification [6] are not yet supported by
the graphical editors, e.g. the iterator element. There are also no model
verifications beyond the XML specification, e.g. to search for non-reachable
states in a FSM. Finally, the interaction with the DAL tool-chain is still very
basic, e.g. there is no mapping viewer.

90 —

Presentation Slides

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Advanced Features for a Software
Development Environment
for Many-Core Systems

Semester thesis by Erwin Herrsche
Advisors: Lars Schor and Devendra Rai

|
ETH —

Instito i Technise
und Komy "
Eldgendssische Technische Hochschule Zirrich n
Swiss Federal Institute of Technology Zurich Compute '8 and Networks Laboratory

Motivation

—
|Memory Cmr.| |Memory Cnlr.|

= Intel SCC: 48 cores + 24 local buses + 1 NoC + 72 links
=145 elements to model

= Future: many more cores, hundreds of elements to
model

27 June 2012 D-ITET TEC 2

chnische Hochschule Zirich
itute of Technology Zurich

Background

27 June 2012 D-ITET TEC

22

ETH |
PRT— | |

Eldgent
Swiss Federal Insti

chnische Hochschule Zirich Compute
itute of Technalogy Zurich s

Networks Laboratory

Goals

= Extend the existing Eclipse plug-in (DALipse) with
a graphical editor to specify DAL architectures

a graphical editor to specify application interactions as a Moore
machine

a management system for applications and transition events

e |[Tile |[Tile |[Tile |[Tile

Memory Cantr [Memory Car

27 June 2012 D-ITET TEC 4

chnische Hochschule Zirich
itute of Technology Zurich

Eldgen
Swiss Fe

Related Work

= HOPES [1] o
Seoul National University Y\O?((' Y\o?(”
Standalone Java application

= StreamlT development tool [2]
MIT

Eclipse plug-in Str‘earﬁ”t

[1]http://peace.snu.ac.kr/research/hopes/
[2]http://groups.csail.mit.edu/cag/streamit/shtml/eclipse-plugin.shtml

27 June 2012 D-ITET TEC 5

ETH — | {
Eldgendssische Technische Hochschule Zirich e o Networks Laborator
Swiss Federal Institute of Technology Zurlch puter Engineering v

DALipse Overview

FSM Editor
new model format m Application View
letely added letely added
Architecture Editor compietely adde completey adde

completely added

27 June 2012 D-ITET TEC 6

ETH P —]

Eldgendssische Technische Hochschule Zirich und Kommunikationsnetze
sm'» Federal Institute of Technology Zurich Computer Engineering and Networks Laboratory

DALipse Architecture Editor - Model

I

|

1 (core 1) (core 2)(core 3
;LI—JLI—.)
| bus |>
I

|

! ! | cluster 3|
| core |
| (@D @ED @D
P! bus |
I I
[|
|

<

< Bus 1 hierarchical on-chip
many-core platform

i: Sketch of a
< D
|

T T, 4 b= ==
DAL representation of
the above platform M -
cluster2
NoC
27 June 2012 D-ITET TEC 7

24 —

PRT— | |

ETH

Eldgendssische Technische Hochschule Zirich k
Swiss Federal Institute of Technalogy Zurich Computer Engineering and Networks Laboratory

DALipse Architecture Editor - Programming Model

Command Stack

Processors Graphical
Shardes Editor
NoCs

Links

D-ITET TEC

27 June 2012

ETH [a— | |\
o

Eldgendssische Technische Hochschule Zirich oo et Networks aboratory

Swiss Federal Institute of Technology Zurich

DALipse Architecture Editor

DAL testz/src/archmi - Eclipse PlatForm
Fle Edt Nevigste Seach Project Bun Somple Window Help
[v 09v v Ov Qv | & | o v 5 [iond »
2 Project Explorer 33 = 8([0) ineel7 620 Mobile | [Inkel SCC-DALArch 53 (1) Fsm_exemple2 - DALF | o) Makrix-DALPN | o) Fsm_exempleS-DALF | s =0
B i Altpdesre b
e [y select
Onoc
Dshared
DlProcessor
— Connection
Properties 31 =8
o (&) %
Property Velue
Name |12 intet scc
C <>

D-ITET TEC

27 June 2012

ETH

Eldgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

PRT— | |
Pl

Computer Engineering and Networks Laboratory

DALipse FSM Editor - Model

R: running applications R: phone
H: paused applications R:MP3

R: MPEG-2, AAC

R: phone, MPEG-2
H: ARC

simplified cell phone operating system

= FSM captures the dynamic behaviour of the system

= States (or scenarios) represent a set of running and paused
applications

27 June 2012

D-ITET TEC 10
ETH T e— | |
Eldgendssische Technische Hochschule Ziirich und Kommunikationsnetze
Sw:s Federal Institute of Technology Zurich Computer Engineering and Networks Laboratory

DALipse FSM Editor
@ . DAL- Example2/src/fsm.xmi - Eclipse PlatForm VoW
File Edit Navigate Search Project Run Sample Window Help
| r9v mov [#svovavy|e s ov|iviy Gv v | s (oAl =
[(25 Project Explorer 52 = B [0) intetscc -DALArch | [o] Fsm_example2 - DALF 82 . [0) Matrix-DALPN | [o] Fsm_examples - DALF | =0
B % v ¢ Palette b
&S Examplez [setect
3 S Exemples Ostate
Btest — Transition
> Etestz
) FsM states and Transicion| I FsM Appications 23 =n
[Properti =
cemris 2 S Add en existing applcation | Create a new application
B = <
i Neme source filename Criical
Property value FFT | Fre/onaxmt |® Remove Open
Name 7% Fsm_e|| | Mateix | matrixmute/pn.xmt |® Remove Open
<(J <>
<C— A <>
27 June 2012

D-ITET TEC

ETH

Eldgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Demo

27 June 2012 D-ITET TEC 13

ETH

Eldgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Conclusion

* The plug-in reached beta status

= The DALipse has been improved:
An editor to specify DAL architectures has been created
The FSM editor works with the most recent version of the specification
Views to manage applications and transition events have been added

= Available online (Eclipse repository):

http://www.tik.ee.ethz.ch/~euretile/dalipse

27 June 2012 D-ITET TEC 14

27

DALipse Source Code Overview

In the following <prefix> means the overall package and project prefix
ch.ethz.tec.dal.

Eclispe Projects Overview

<prefix>.architecture.model = The model project for the architecture

model.

<prefix>.fsm.model The model project for the finite state
machine model.

<prefix>.pn.model The model project for the process net-
work model.

<prefix>.editor The main GUI plugin-in project.

98

Package overview for the main GUI plug-in project
(ch.ethz.tec.dal.editor)

ch.ethz.tec.dal This is the plug-in starting point pack-
age. It contains a single class which
serves as entry point for the plug-in
code.

<prefix>.editor This is the editor starting point pack-
age. It contains the base class for
the graphical editors and a class which
decides which editor to open. Some
things useful throughout the plug-in
are also stored in this package.

<prefix>.editor.tool Classes which are useful throughout
the plug-in are stored in this package.

<prefix>.editor.util Classes which are useful throughout
the plug-in are stored in this package.
<prefix>.editor.architecture These packages contain the base editor
<prefix>.editor.fsm class and the base palette class.
<prefix>.editor.pn
.command This package contains all command
classes for a specific editor.
factory This package contains the EMF ele-
ment factories.
figure This package contains all Draw2d fig-
ures. The drawing code for visible el-
ements is located in this package.

.part This package contains all GEF edit
parts as well as the edit part factory.

.policy This package contains all GEF policies
used in the GEF edit parts.

.tool This package contains classes useful
within a specific editor.

<prefix>.editor.fsm.view This is the main package for the FSM

views.

.adapter All view event adapters are located
here.

.command All view event commands called from
the event adapters are located here.

<prefix>.editor.wizard
.examples This package contains the example
wizard.
anewproject This package contains the new project
wizard.

99

1]

2]

3]

4]

[5]

[6]

Bibliography

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,

D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,

T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla,

M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel,
K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van

Der Wijngaart, and T. Mattson, “A 48-Core [1A-32 message-passing
processor with DVFS in 45nm CMOS,” in Porc. Int’l Solid-State
Clirctuits Conference, pp. 108-109, Feb 2010.

L. Schor, I. Bacivarov, D. Rai, H. Yang, S. haeng Kang, and L. Thiele,
“Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems,” in Proc. International Conference on
Compilers Architecture and Synthesis for Embedded Systems (CASES),
(Tampere, Finland), ACM, 2012.

L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping Applications
to Tiled Multiprocessor Embedded Systems,” in Proc. 7th Int’l
Conference on Application of Concurrency to System Design
(ACSD’07), (Bratislava, Slovak Republic), pp. 29-40, July 2007.

G. Kahn, “The Semantics of a Simple Language for Parallel
Programming,” in Proceedings of the IFIP Congress, pp. 471-475, 1974.

E. Geiser, “Software Development Environment for Many-Core
Systems,” semester thesis, ETH Zurich, Department of Information
Technology and Electrical Engineering, 2011.

I. Bacivarov, D. Rai, L. Schor, and H. Yang, “Semantics of the DAL
XML Schemata.”

http://www.tik.ee.ethz.ch/ euretile/docs/XMLSpecification.pdf, 2011.
Revision 597.

31 —

http://www.tik.ee.ethz.ch/~euretile/docs/XMLSpecification.pdf

	Introduction
	Motivation
	Distributed Application Layer
	Contributions
	Related Work
	Outline

	Background Technologies
	Eclipse
	Eclipse Modeling Framework Project
	Graphical Editing Framework
	Layout File Format

	Overview DALipse
	Editors
	Launcher
	Project Wizard
	Examples

	Architecture Editor
	Model
	Model Constraints
	Additions to the DAL Model

	Editor
	Editor Window

	Example

	Finite State Machine Editor
	Model
	Additions to the DAL Model

	Editor
	Views

	Example

	Conclusion and Outlook
	Conclusion
	Outlook

	Presentation Slides
	DALipse Source Code Overview

