
Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis

at the Department of Information Technology

and Electrical Engineering

Advanced Features for a Software

Development Environment for Many-Core

Systems

Spring 2012

Erwin Herrsche

Advisor: Lars Schor

Professor: Prof. Dr. Lothar Thiele

Zurich

27th July 2012

Abstract

Working with the Distributed Application Layer (DAL) has been improved
with the creation of the DAL Eclipse plug-in (DALipse). This thesis extends
the existing plug-in with required features to provide a complete cockpit for
DAL. In particular, the contributions of this thesis are an editor for DAL
architecture speci�cations and advanced features for the existing �nite state
machine editor.

� II �

Acknowledgements

I would like to express my sincere gratitude to Prof. Dr. Lothar Thiele
for granting me the opportunity to write this semester thesis in his research
group.

I would also like to thank my advisor Lars Schor for his support during the
whole process of this thesis.

� III �

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Distributed Application Layer 1

1.3 Contributions . 2

1.4 Related Work . 2

1.5 Outline . 2

2 Background Technologies 3

2.1 Eclipse . 3

2.2 Eclipse Modeling Framework Project 3

2.3 Graphical Editing Framework 4

2.3.1 Layout File Format . 4

3 Overview DALipse 5

3.1 Editors . 5

3.2 Launcher . 5

3.3 Project Wizard . 5

3.3.1 Examples . 7

4 Architecture Editor 9

4.1 Model . 9

4.1.1 Model Constraints . 9

4.1.2 Additions to the DAL Model 10

4.2 Editor . 10

4.2.1 Editor Window . 11

4.3 Example . 11

5 Finite State Machine Editor 14

5.1 Model . 14

5.1.1 Additions to the DAL Model 15

5.2 Editor . 15

5.2.1 Views . 16

5.3 Example . 17

� IV �

6 Conclusion and Outlook 20

6.1 Conclusion . 20

6.2 Outlook . 20

A Presentation Slides 21

B DALipse Source Code Overview 28

� V �

List of Figures

3.1 Launch Con�guration Dialog 6

3.2 `New Project' Wizard . 6

3.3 Example Wizard . 7

4.1 Architecture Editor . 10

4.2 Architecture Editor Example 11

5.1 FSM Editor . 15

5.2 FSM Transition View . 16

5.3 FSM State View . 16

5.4 FSM Application View . 17

5.5 FSM Editor Example . 18

5.6 FSM Application View Example 18

5.7 FSM State View Example . 18

5.8 FSM Transition View Example 19

� VI �

1
Introduction

1.1 Motivation

Today's multicore architectures are relatively simple. It is likely that the
complexity of hardware architectures will drastically increase in the next
few years. For example the Intel SCC prototype architecture [1] has already
48 cores. From a system level perspective, it consists of 145 di�erent ele-
ments. Future architectures will consist of hundreds of cores. The creation
of such complex abstract models can easily lead to errors. A graphical editor
simpli�es the modelling process and the amount errors can be reduced.

1.2 Distributed Application Layer

The Distributed Application Layer (DAL) [2] is developed as part of the
EURETILE project1. It is based on the DOL framework [3]. As in the DOL
framework, applications are speci�ed as Kahn process networks [4]. In addi-
tion, execution scenarios are organized as a Moore �nite state machine. In
each scenario, each application is either running, paused or inactive. Transi-
tions between scenarios are triggered by either events generated by running
applications or the run-time system. Hardware platforms are modelled in
three di�erent hierarchical levels, namely processors, local buses (shareds)
and network-on-chips (NoCs).

1http://www.tik.ee.ethz.ch/~euretile/

� 1 �

http://www.tik.ee.ethz.ch/~euretile/

1.3. CONTRIBUTIONS

1.3 Contributions

� A graphical editor for DAL architectures is designed and implemented.

� The application and transition event management for DAL �nite state
machines is improved.

1.4 Related Work

There are projects that do a similar job as the DALipse, e.g. HOPES2 from
the Seoul National University, which is a standalone Java application and
the StreamIT development tool3 from MIT, which is also an Eclipse plug-in.

1.5 Outline

Chapter 2 gives an overview of the used third party technologies. Chap-
ter 3 describes the structure of the plug-in. Chapter 4 and 5 explain the
implementation of the new plug-in features.

2http://peace.snu.ac.kr/research/hopes/
3http://groups.csail.mit.edu/cag/streamit/shtml/eclipse-plugin.shtml

� 2 �

2
Background Technologies

In this chapter, the tools and frameworks used to develop the plug-in are
described.

2.1 Eclipse

As base of development the Eclipse SDK is used. Even though Eclipse is
primarily a Java IDE, its functionality is extendible via plug-ins, which can
be managed by the integrated software manager. The DALipse plug-in has
been developed with and for Eclipse 3.7 Indigo.

2.2 Eclipse Modeling Framework Project

The Eclipse Modeling Framework Project (EMF)1 provides code generation
facilities for data models speci�ed as XML �les. It also provides import func-
tionalities for XSD �les, which has been used in this thesis. The generated
code includes XML serialisation for the model data.

1http://www.eclipse.org/emf/

� 3 �

http://www.eclipse.org/emf/

2.3. GRAPHICAL EDITING FRAMEWORK

2.3 Graphical Editing Framework

The Graphical Editing Framework (GEF)2 provides a programming frame-
work for graphical editors. Its internal structure is based on the model-
view-controller design pattern. In particular, an EMF model is used in this
thesis. The view is implemented with Draw2d, the drawing toolkit included
with GEF. From within the editor the underlying model is changed with
commands, which form the controller. Each executed command is put on a
command stack. This stack can be manipulated with the Eclipse undo and
redo UI functions. It is also used to determine if a project needs to be saved.

2.3.1 Layout File Format

A custom layout �le format is used to store the layout of any of the three
GEF editors. The �le has to have the same base name as the corresponding
model XML �le. If no layout �le is found for a given model XML �le, the
elements are placed randomly and the layout �le is created the next time
the model is saved. The �le format is very simple, each �le consists of one
line per element following the form

element_name:x, y, width, height:

with x and y being the coordinates of the top left corner of the element. The
numbers have to be separated by a comma followed by a space. Examples
can be found in Sections 4.3 and 5.3.

2http://www.eclipse.org/gef/

� 4 �

http://www.eclipse.org/gef/

3
Overview DALipse

In this chapter, an overview of the plug-in is given. For a description of the
source code structure, see Appendix B.

3.1 Editors

The plug-in consists of three di�erent editors, the process network editor,
the architecture editor and the �nite state machine editor. The �rst editor
has been developed as part of a prior thesis [5], and the later two editors are
described in more detail in Chapters 4 and 5.

3.2 Launcher

The launcher serves as the main interaction with the DAL tool-chain. The
most prominent part of the launcher is the green run button in the Eclipse
tool bar. Fig. 3.1 shows the other part, the launch con�guration dialog,
where the run behaviour can be con�gured.

3.3 Project Wizard

There are two wizards for the plug-in, the �New Project� wizard and the
example wizard. The �New Project� wizard (Fig. 3.2) consists of a name

� 5 �

3.3. PROJECT WIZARD

Figure 3.1: Launch con�guration dialog showing the �Generator� tab for
DAL launch con�guration.

Figure 3.2: `New project' wizard for a new DAL project.

� 6 �

3.3. PROJECT WIZARD

Figure 3.3: Eclipse example wizard showing the DAL examples.

�eld, an optional location �eld and an optional architecture �eld, which
can be used to select one of the template architectures. As of the time of
writing this thesis, there are two template architectures included in DALipse,
namely an architecture template for Intel's SCC processor [1] and and Intel
i7 processor with four cores.

3.3.1 Examples

The plug-in comes with �ve examples, a brief description of each can be found
in the example wizard and the following list. All examples are delivered with
an architecture �le for an Intel i7 processor with four cores.

� 7 �

3.3. PROJECT WIZARD

Example 1 Two producer-consumer applications are consecu-
tively executed.

Example 2 An FFT application and a Matrix Multiplication ap-
plication are consecutively executed.

Example 3 A MULTIFIR application and a FIR application are
running concurrently as soon as a producer-consumer
application has been completed.

Example 4 The producer-consumer application is executed. Af-
ter completing 20 iterations, each process sends a cor-
responding event.

Example 5 A video player that can concurrently plays two videos.
It consists of a user interface application (UI) and two
MJPEG decoder applications.

� 8 �

4
Architecture Editor

In this chapter the �rst major contribution of this thesis, the architecture
editor, is described. The architecture editor can be used to visually specify
hardware platforms by connecting an number of di�erent hardware elements.
In the remainder of this chapter, �rst the model used in the architecture
editor is explained. The second section is about the actual editor and its
implementation with the GEF framework. In the last section, a case study
is shown to illustrate the capabilities of the editor.

4.1 Model

The architecture model distinguishes three di�erent levels of hierarchy. These
are namely processors, shareds (local buses) and networks-on-chips (NoCs).
All these elements have certain properties in common including the element
name and the substitute property. Substitute elements are spare elements,
i.e. no processes are mapped onto these processors or onto all processors
connected to a shared or NoC.

4.1.1 Model Constraints

The model has some constraints, which do not directly follow from the XML
speci�cation [6]. The following statements have to be ful�lled at any time:

� Processors may only be connected to at most one shared.

� 9 �

4.2. EDITOR

Figure 4.1: Architecture editor showing the Intel SCC processor [1].

� Shareds may only be connected to at most one NoC.

� Processors cannot be directly connected to NoCs.

All other connection possibilities are valid, in particular, a NoC may have
connections to an arbitrary number of other NoCs.

4.1.2 Additions to the DAL Model

The model speci�ed by DAL [6] is extended with plug-in speci�c elements.
These additions have been kept minimal to be as close to the original model
as possible. These additions are elements to store the layout of the archi-
tecture within the editor, namely the coordinates of the top left corner and
the size of each hardware element. They are not saved in the XML �le, but
they are saved in an extra .layout �le. For the speci�cation of these �les see
Section 2.3.1.

4.2 Editor

The editor (Fig. 4.1) consists of three parts, namely the property view (1), the
palette window (3) and the actual editor window (2). The property view can
be used to edit the values of the attributes of the currently selected element.
If no element is selected, it just shows the attributes of the whole architecture,
which is the name attribute of the platform. The palette window shows all
available tools. These are the select tool, to select and edit editor elements,
and the create tools for all architecture elements (NoCs, shareds, processors,

� 10 �

4.3. EXAMPLE

Figure 4.2: Architecture editor representation of the Intel i7 620 Mobile
platform.

and connections). The connection create tool implements the constraints
mentioned in Section 4.1.1.

4.2.1 Editor Window

The editor window is the part of the UI where the architecture elements
are laid out and drawn, where new elements are added, and where existing
elements can be selected. NoCs and shareds are drawn as rectangles with
rounded corners. Processors are drawn with sharp corners. If the substi-
tute property of an element is set to 1, the outline of any element becomes
dashed. The label of a NoC, shared or processor shows its name property.
Connections do not have any label, their name is automatically generated
and only used internally.

4.3 Example

This section shows the Intel i7 620 Mobile platform within the DALipse plug-
in in Fig. 4.2. The corresponding XML �le is included along with the layout
�le.

Architecture XML File Example

1 <?xml version=" 1 .0 " encoding="UTF−8"?>
2 <ar ch i t e c t u r e xmlns :x s i=" ht tp : //www.w3 . org /2001/XMLSchema−

i n s t ance " xmlns=" ht tp : //www. t i k . ee . ethz . ch/~ e u r e t i l e /
schema/ARCHITECTURE" xs i : s chemaLocat ion=" ht tp : //www. t i k .
ee . ethz . ch/~ e u r e t i l e /schema/ARCHITECTURE ht tp : //www. t i k .
ee . ethz . ch/~ e u r e t i l e /schema/ a r c h i t e c t u r e . xsd" name="
I n t e l i 7 620 Mobile plat form (as one c l u s t e r) ">

� 11 �

4.3. EXAMPLE

3 <shared name=" l o c a l h o s t ">
4 <port name="port1 "/>
5 <port name="port2 "/>
6 <port name="port3 "/>
7 <port name="port4 "/>
8 </ shared>
9 <proce s s o r id="0" name="core_0" type="RISC">

10 <port name="port1 "/>
11 </ proc e s s o r>
12 <proce s s o r id="1" name="core_1" type="RISC">
13 <port name="port1 "/>
14 </ proc e s s o r>
15 <proce s s o r id="2" name="core_2" type="RISC">
16 <port name="port1 "/>
17 </ proc e s s o r>
18 <proce s s o r id="3" name="core_3" sub s t i t u t e="1" type="RISC"

>
19 <port name="port1 "/>
20 </ proc e s s o r>
21 <l i n k name=" link_1">
22 <end_point_1 name="core_0">
23 <port name="port1 "/>
24 </end_point_1>
25 <end_point_2 name=" l o c a l h o s t ">
26 <port name="port1 "/>
27 </end_point_2>
28 </ l i n k>
29 <l i n k name=" link_2">
30 <end_point_1 name="core_1">
31 <port name="port1 "/>
32 </end_point_1>
33 <end_point_2 name=" l o c a l h o s t ">
34 <port name="port2 "/>
35 </end_point_2>
36 </ l i n k>
37 <l i n k name=" link_3">
38 <end_point_1 name="core_2">
39 <port name="port1 "/>
40 </end_point_1>
41 <end_point_2 name=" l o c a l h o s t ">
42 <port name="port3 "/>
43 </end_point_2>
44 </ l i n k>
45 <l i n k name=" link_4">
46 <end_point_1 name="core_3">
47 <port name="port1 "/>
48 </end_point_1>
49 <end_point_2 name=" l o c a l h o s t ">
50 <port name="port4 "/>

� 12 �

4.3. EXAMPLE

51 </end_point_2>
52 </ l i n k>
53 </ a r ch i t e c t u r e>

Architecture Layout File Example

1 l o c a l h o s t : 120 , 117 , 50 , 50 :
2 core_0 : 12 , 12 , 50 , 50 :
3 core_1 : 83 , 12 , 50 , 50 :
4 core_2 :143 , 12 , 50 , 50 :
5 core_3 :214 , 12 , 50 , 50 :

� 13 �

5
Finite State Machine Editor

This chapter is about the changes made to the existing DAL Finite State
Machine (FSM) editor. The �rst section is about the model and the changes
made to the DAL speci�cation [6], which made the changes to the editor nec-
essary, namely the type of machine used was changed from Mealy machines
to Moore machines (see Section 4.3 in [2]). The second section is about the
additional and changed elements within the editor itself. It starts with the
graphical part of the editor and then describes the newly added views. In
the last section, a case study is shown to illustrate the capabilities of the
editor.

5.1 Model

The model, described in [2] to specify an FSM is a Moore machine. This
is in contrast to the earlier version described in [6] which used a Mealy
machine. Each FSM consists of three di�erent types of elements, namely
applications, scenarios and transitions. Applications have a unique name
and a reference to their source process network �le. This �le path is either
absolute or relative to the directory of the FSM �le. There exists already
an editor[5] to edit the process networks. The other two element types were
changed with the transition to Moore machines. Each state represents a
scenario and consists of a unique name and two lists of applications, one for
running and one for paused applications. Applications in neither of these
lists are inactive in that scenario. Transitions have a list of events which

� 14 �

5.2. EDITOR

Figure 5.1: FSM editor showing Example 2 from the DALipse example set.

activate that transition.

5.1.1 Additions to the DAL Model

Similar to the architecture model, the FSM model speci�ed by DAL [6] is
extended with plug-in speci�c elements. These additions have been kept
minimal to be as close as possible to the original model. These additions
are, among others, elements to store the layout of the architecture within
the editor, namely the coordinates of the top left corner and the size of each
hardware element. They are not saved in the XML �le, but they are saved
in an extra .layout �le. For the speci�cation of these �les see Section 2.3.1.

Another addition is a reference to the parent FSM element which has been
added to states and transitions. States also include a list of their incoming
and outgoing transitions. These have been added to simplyfy the editor
implementation but they are not saved within the XML �le or the .layout
�le. They are added to the model when the model is loaded and changed on
request.

5.2 Editor

The editor (Fig. 5.1) consists of four parts, namely the property view (1),
the actual editor window (2), the palette window (3) and the view area
(4). The property view can be used to edit the values of the attributes
of the currently selected element. If no element is selected, it shows the

� 15 �

5.2. EDITOR

Figure 5.2: The transition view of the FSM view.

Figure 5.3: The state view of the FSM view.

attributes of the whole FSM, which is just the name attribute of the FSM.
The actual editor has already been implemented in a previous thesis [5], but
slight adjustments had to be made, due to the model changes. The palette
window shows all available tools. These are the select tool, to select and edit
editor elements and the create tools for states and transitions. The view area
holds the two newly added views, the FSM view and the application view.

5.2.1 Views

There were two views added to the FSM editor. The �rst one is a combined
view for state application lists, which show the running and paused appli-
cations in that state (Fig. 5.3), and the event lists for transitions (Fig. 5.2).
The second one is an application management view.

FSM View

Depending on the current selection in the editor window, the FSM view
shows either nothing, the state application lists or the transition event list.
If a state is selected, a list with all applications running in this state is
displayed on the left half of the view area. On the right half, a list with
all applications paused in this state is displayed. Each list has an add and
remove button. If an application is selected within one of these lists, clicking
on the remove button removes that application from that list. By clicking
on the add button, the add controls on the bottom of the view area are
displayed. These consist of an actual add button, a cancel button and a
drop down list with the all applications in the application database of the

� 16 �

5.3. EXAMPLE

Figure 5.4: The FSM application view for the FSM in Example 2.

FSM which are not yet in one of the list of the selected state. If a transition
is selected, the event list for that transition is displayed. On the bottom
of the view area the add and remove controls are displayed. Each add and
remove action is added to the command stack of the editor window and can
be undone and redone as long as the command stack supports it.

Application View

The application view (Fig. 5.4) shows the application database for the current
FSM. The properties can be edited by clicking on the corresponding item in
the list. Each application has two buttons. One to remove it from the list and
another to open and edit the process network of the application. Note that
the remove button only removes the application from the list, but does not
delete the source �les from the disk. On the top row, there are two buttons
to add an existing application or create a new application. Clicking on either
button opens the controls in the bottom part of the view area, but clicking
on the add button, opens a �le dialog to choose an existing PN source �le
�rst. The �lename �eld is then �lled with the chosen �lename or, in case
of creating a new application, the default �lename. If a new application is
created, �rst, a new directory within the directory of the FSM �le is created
and named with the new name of the application. Within that directory, a
new �le with the given �lename and a minimal PN XML structure is created.
Each add, create and, remove action is added to the command stack of the
graph editor and can be undone and redone as long as the command stack
supports it. However, note that undoing the creation of an application has
no e�ect.

5.3 Example

This section shows Example 2 from the DALipse example set within the
DALipse plug-in in Fig. 5.5. The corresponding XML �le is included along
with the layout �le. The example consists of three states, namely two states
with active applications and the end state. In the �rst state an FFT appli-

� 17 �

5.3. EXAMPLE

Figure 5.5: FSM editor representation of the example FSM.

Figure 5.6: Application view for the example showing the two applications.

cation is executed. Upon receiving the activate_matrix event the runtime
system switches to the second state in which a matrix multiplication appli-
cation is executed. The stop_fsm event then switches to the end state.

FSM XML File Example

1 <?xml version=" 1 .0 " encoding="utf−8"?>
2 <fsm xmlns=" ht tp : //www. t i k . ee . ethz . ch/~ e u r e t i l e /schema/FSM"
3 xmlns :x s i=" ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance

"

Figure 5.7: FSM view for the �rst state showing the running FFT applica-
tion.

� 18 �

5.3. EXAMPLE

Figure 5.8: FSM view for the transition between the �rst and second state.

4 name="fsm_example2"
5 xs i : s chemaLocat ion=" ht tp : //www. t i k . ee . ethz . ch/~

e u r e t i l e /schema/FSM ht tp : //www. t i k . ee . ethz . ch/~
e u r e t i l e /schema/fsm . xsd">

6 <app l i c a t i o n name="FFT" s r c=" f f t /pn . xml" c r i t i c a l="0"/>
7 <app l i c a t i o n name="Matrix" s r c="matrixmult /pn . xml"

c r i t i c a l="0" />
8 <t r a n s i t i o n name="trans_1" nex t s t a t e="State_FFT" />
9 <s ta t e name="State_FFT">

10 <t r a n s i t i o n name="trans_2" nex t s t a t e="State_Matrix">
11 <event name=" act ivate_matr ix "/>
12 </ t r a n s i t i o n>
13 <run app l i c a t i o n="FFT" />
14 </ s t a t e>
15 <s ta t e name="State_Matrix">
16 <t r a n s i t i o n name="trans_3" nex t s t a t e="END_STATE">
17 <event name="stop_fsm"/>
18 </ t r a n s i t i o n>
19 <run app l i c a t i o n="Matrix" />
20 </ s t a t e>
21 <s ta t e name="END_STATE"/>
22 <endstate name="END_STATE"></ endstate>
23 </fsm>

FSM Layout File Example

1 State_FFT :80 , 34 , 76 , 72 :
2 State_Matrix : 260 , 31 , 82 , 77 :
3 END_STATE:276 , 199 , 50 , 50 :

� 19 �

6
Conclusion and Outlook

6.1 Conclusion

In this thesis, the DAL Eclipse plug-in (DALipse) has been improved with a
graphical editor for DAL architecture speci�cations and editors for the appli-
cation and transition event management. The newly added features followed
the modular approach of the foundation, thus conserving the extensibility of
the plug-in.

6.2 Outlook

Some features of the DAL XML speci�cation [6] are not yet supported by
the graphical editors, e.g. the iterator element. There are also no model
veri�cations beyond the XML speci�cation, e.g. to search for non-reachable
states in a FSM. Finally, the interaction with the DAL tool-chain is still very
basic, e.g. there is no mapping viewer.

� 20 �

A
Presentation Slides

Advanced Features for a Software
Development Environment
for Many-Core Systems
Semester thesis by Erwin Herrsche

Advisors: Lars Schor and Devendra Rai

� 21 �

2D-ITET TEC27 June 2012

Motivation

 Intel SCC: 48 cores + 24 local buses + 1 NoC + 72 links
 = 145 elements to model

 Future: many more cores, hundreds of elements to
 model

3D-ITET TEC27 June 2012

Background

DALipse - Eclipse Plug-in, DAL Cockpit

DAL System Specification

(PN, FSM, Architecture)

DAL Toolchain

System Code

Generation

Performance

Analysis

System

Optimization

� 22 �

4D-ITET TEC27 June 2012

Goals

 Extend the existing Eclipse plug-in (DALipse) with
 a graphical editor to specify DAL architectures
 a graphical editor to specify application interactions as a Moore

machine
 a management system for applications and transition events

5D-ITET TEC27 June 2012

Related Work

 HOPES [1]
 Seoul National University
 Standalone Java application

 StreamIT development tool [2]
 MIT
 Eclipse plug-in

[1]http://peace.snu.ac.kr/research/hopes/

[2]http://groups.csail.mit.edu/cag/streamit/shtml/eclipse-plugin.shtml

� 23 �

6D-ITET TEC27 June 2012

DALipse Overview

DALipse

Editors

PN Editor

FSM Editor

Architecture Editor

new model format

Launcher New Project Wizard

FSM View Application View

completely added completely added

completely added

7D-ITET TEC27 June 2012

DALipse Architecture Editor - Model

Sketch of a
hierarchical on-chip
many-core platform

DAL representation of
the above platform

� 24 �

8D-ITET TEC27 June 2012

DALipse Architecture Editor - Programming Model

Command Stack

EMF

Processors
Shardes
NoCs
Links

GEF

Graphical

Editor

9D-ITET TEC27 June 2012

DALipse Architecture Editor

� 25 �

10D-ITET TEC27 June 2012

DALipse FSM Editor - Model

simplified cell phone operating system

 FSM captures the dynamic behaviour of the system
 States (or scenarios) represent a set of running and paused

applications

12D-ITET TEC27 June 2012

DALipse FSM Editor

� 26 �

13D-ITET TEC27 June 2012

Demo

14D-ITET TEC27 June 2012

Conclusion

 The plug-in reached beta status
 The DALipse has been improved:

 An editor to specify DAL architectures has been created
 The FSM editor works with the most recent version of the specification
 Views to manage applications and transition events have been added

 Available online (Eclipse repository):

http://www.tik.ee.ethz.ch/~euretile/dalipse

� 27 �

B
DALipse Source Code Overview

In the following <prefix> means the overall package and project pre�x
ch.ethz.tec.dal.

Eclispe Projects Overview

<prefix>.architecture.model The model project for the architecture
model.

<prefix>.fsm.model The model project for the �nite state
machine model.

<prefix>.pn.model The model project for the process net-
work model.

<prefix>.editor The main GUI plugin-in project.

� 28 �

Package overview for the main GUI plug-in project
(ch.ethz.tec.dal.editor)

ch.ethz.tec.dal This is the plug-in starting point pack-
age. It contains a single class which
serves as entry point for the plug-in
code.

<prefix>.editor This is the editor starting point pack-
age. It contains the base class for
the graphical editors and a class which
decides which editor to open. Some
things useful throughout the plug-in
are also stored in this package.

<prefix>.editor.tool Classes which are useful throughout
the plug-in are stored in this package.

<prefix>.editor.util Classes which are useful throughout
the plug-in are stored in this package.

<prefix>.editor.architecture
<prefix>.editor.fsm
<prefix>.editor.pn

These packages contain the base editor
class and the base palette class.

.command This package contains all command
classes for a speci�c editor.

.factory This package contains the EMF ele-
ment factories.

.�gure This package contains all Draw2d �g-
ures. The drawing code for visible el-
ements is located in this package.

.part This package contains all GEF edit
parts as well as the edit part factory.

.policy This package contains all GEF policies
used in the GEF edit parts.

.tool This package contains classes useful
within a speci�c editor.

<prefix>.editor.fsm.view This is the main package for the FSM
views.

.adapter All view event adapters are located
here.

.command All view event commands called from
the event adapters are located here.

<prefix>.editor.wizard
.examples This package contains the example

wizard.
.newproject This package contains the new project

wizard.

� 29 �

� 30 �

Bibliography

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla,
M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel,
K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van
Der Wijngaart, and T. Mattson, �A 48-Core IA-32 message-passing
processor with DVFS in 45nm CMOS,� in Porc. Int'l Solid-State

Circtuits Conference, pp. 108�109, Feb 2010.

[2] L. Schor, I. Bacivarov, D. Rai, H. Yang, S. haeng Kang, and L. Thiele,
�Scenario-based design �ow for mapping streaming applications onto
on-chip many-core systems,� in Proc. International Conference on

Compilers Architecture and Synthesis for Embedded Systems (CASES),
(Tampere, Finland), ACM, 2012.

[3] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, �Mapping Applications
to Tiled Multiprocessor Embedded Systems,� in Proc. 7th Int'l

Conference on Application of Concurrency to System Design

(ACSD'07), (Bratislava, Slovak Republic), pp. 29�40, July 2007.

[4] G. Kahn, �The Semantics of a Simple Language for Parallel
Programming,� in Proceedings of the IFIP Congress, pp. 471�475, 1974.

[5] E. Geiser, �Software Development Environment for Many-Core
Systems,� semester thesis, ETH Zurich, Department of Information
Technology and Electrical Engineering, 2011.

[6] I. Bacivarov, D. Rai, L. Schor, and H. Yang, �Semantics of the DAL
XML Schemata.�
http://www.tik.ee.ethz.ch/ euretile/docs/XMLSpeci�cation.pdf, 2011.
Revision 597.

� 31 �

http://www.tik.ee.ethz.ch/~euretile/docs/XMLSpecification.pdf

	Introduction
	Motivation
	Distributed Application Layer
	Contributions
	Related Work
	Outline

	Background Technologies
	Eclipse
	Eclipse Modeling Framework Project
	Graphical Editing Framework
	Layout File Format

	Overview DALipse
	Editors
	Launcher
	Project Wizard
	Examples

	Architecture Editor
	Model
	Model Constraints
	Additions to the DAL Model

	Editor
	Editor Window

	Example

	Finite State Machine Editor
	Model
	Additions to the DAL Model

	Editor
	Views

	Example

	Conclusion and Outlook
	Conclusion
	Outlook

	Presentation Slides
	DALipse Source Code Overview

