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Abstract

In a mesh network consisting of multiple nodes, data may be sent either through a routing
mechanism or through some other way. One of the other methods of data transmission is data
dissemination, where each node is able to send data to every other node in the mesh network
and each node decides to forward the data using some algorithm. For this semester thesis a
lightweight data dissemination algorithm has been implemented and validated as part of the
SWARMIX project.
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Chapter 1

Introduction

1.1 Motivation

At places where rescue missions are needed, most often no comminucation infrastructure is
available, maybe due to their absence, due to destruction of equipment or due to unavailability
of elecricity. Rescue organisations need communication possibilities within their teams or with
teams of other organisations. The SWARMIX project can help here. Network nodes in form of
unmannned aerial vehicles may get sent out to build some kind of mesh network.

In such a mesh network, each node is able to communicate directly with it's neighbours but not
with the rest of the network. Nodes may act as a relay for other nodes. With the help of multiple
relays any node should be able to reach all the other nodes in the network.

Until now, SWARMIX nodes used a routing protocol over the mesh network to communicate
with each other. Such a routing protocol is good for one-to-one communication in the network.
However for sending data like GPS information from each node to all the other nodes in the
network such a routing protocol is not desirable. Hence, a new protocol is needed for this one-
to-many communication.

A simple solution would be to broadcast such data as packets to all neighbors and also broad-
cast each received network packet to all neighbors while keeping track of already sent packets
to avoid sending the same packet twice or more and thus creating a loop. This approach is
called simple flooding or blind flooding. However, most wireless network applications operate
on a shared medium where only one user can transmit data at the same time within a certain
area. With this simple flooding the use of the shared medium gets saturated quickly. In order to
optimize the network load a better aproach is needed. Each node should decide in a distributed
manner if it should re-broadcast a received packet.

1.2 The Task

The tasks of this thesis include the familiarization with the topic, the implemention of a data
dissemination algorithm and the testing of said algorithm in a real-life scenario. The three tasks
can be described as follows:

Familiarization: The student familiarizes himself with the topic by reading literature about data
dissemination, by evaluating libraries providing network functionality and by setting up
wireless network hardware.

Implementation: The student implements a data dissemination algorithm in the C++ program-
ming language, bearing in mind the algorithm should be both capable of running on low-
end embedded systems and being accessible in form of a library. Additionally documen-
tation is done using Doxygen.

Test: After validating that the implemented algorithm works in a simple simulator, real-life test-
ing is done using several nodes with wireless hardware. Multiple metrics are observed
under different configuration parameters of the algorithm and are compared to each other.
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1.3 Related Work

An important relevant work was [1], which heavily influenced the implemented algorithms and
defined the measurement metrics which have been used in this thesis to analyze and compare
the algorithms. Another important work was [3], which also influenced our one- and two-hop
algorithms. The work [5] introduces storage to the network, similar to our store and forward
extension. Another work we looked at was [4]. Their algorithm not suited to our needs, because
it relies on the knowledge of the position data.

We also looked at spray and wait [2], a delay-tolerant algorithm, which sends out a limited
amount of copies of a message. Messages then get distributed by the help of the node’s mobility.
We didn’t make use of this because we didn’t consider mobility.

1.4 Overview

After a short description of the goals and problems of this semester thesis in chapter 2, the
implemented algorithms as well as the software design get explained in chapter 3. Chapter 4
introduces the testing setup, the used simulator and the measurement metrics and presents the
results of the measurements. Chapter 5 presents ideas to build upon the work of this thesis.
And finally, chapter 6 concludes the thesis with a short summary.



Chapter 2

Goals and Problems

2.1 Algorithm

In a broadcast environment network congestion occurs when too many packets are being trans-
mitted at the same time, this will result in a low total data transfer rate. Simple flooding is rather
inefficient and better solutions exist, there exist multi-hop algorighms, location-based algorithms,
delay-tolerant algorithms and more.

2.2 Implementation

Prior to this thesis no data dissemination implementation exists for the Swarmix project. The
goal of this semester thesis is to implement an improved flooding algorithm that can be used in
real world environments. The resulting application is to be able to run on the Gumstix hardware
running the GNU/Linux operating system. Care has to be taken in the choosing of libraries and
it has to be kept in mind that the gumstix hardware is limited in respect to system resources.
Also the implemented algorithm should not be too complex.

2.3 Measurement

Furthermore the resulting application has to be tested and validated, and some measurements
have to be performed in a real world environment.
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Chapter 3

Software design

3.1 Algorithms

In this thesis, three different algorithms have been implemented and analyzed. The implemented
algorithms were inspired by algorithms described in [1]. All algorithms work by broadcasting
packets, so that every neighbor of the sending node will receive the packet with a high proba-
bility. Each packet contains the node id of the originating node and a sequential packet id. This
tuple is a unique identifier and will be used to detect already received packets (see also Table
3.2).

3.1.1 Simple flooding

In simple flooding, every node forwards every packet it receives unless it has already forwarded
that packet.

3.1.2 1-Hop algorithm

The implemented 1-hop algorithm works as follows. Every node sends out hello packets, which
only contain the senders node id. With the help of these hello packets each node maintains a list
of neighbors. The hello packets can be omitted if enough other packets are being transmitted.
Whenever a node transmits a data packet, be it an initial transmission or a forwarded packet, it
includes its list of neighbors in the packet header.

Whenever a node receives a data packet, it puts that packet into a queue and sets a timer to a
random timeout. While waiting for the timeout, the node may receive the same packet again from
another neighbor. Whenever that happens, the node combines the neighborlist included in the
queued packet with the neighborlist included in the newly received packet to form a list of nodes
which may already have received the packet. When the timer runs out, the node compares its
own neighborlist with the list of nodes generated while waiting for the timeout and only forwards
the packet, if the node has any neighbors which are not in the received list.

The random timeout is needed to generate this received list, it also helps to reduce collisions
because not all the neighbors will forward a packet at the exact same time.

As an extension to the 1-hop algorithm, a store and forward functionality was implemented.
Using this functionality, each node can keep a packet for some time and then send it to a node
newly joining the set.

3.1.3 2-Hop algorithm

The implemented 2-hop algorithm works as follows. Every node sends out hello packets, which
contain both its sender’s node id and a list of the sender’s neighbors. Using this list, each node
can then maintain a list of its two-hop neighbors, i.e. its neighbor’s neighbors. As above, the
hello packets can be omitted if enough other packets are being transmitted.

In this algorithm, the decision of whether to forward a packet is not made by each node by itself,
but by each forwarding or sending node. Every time a node transmits a packet it decides which

9
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] libnet \
E E ‘
easy to use

easy portable to DOS/windows
multiple backend drivers

no broadcast
no support for IPv6
quite old (last update from 2003)

] POSIX functions \
E E ‘
more flexible, no limitations from a library
easy to extend to ipv6

no dependencies on third party libraries

complex usage
greater amount of work to port to other systems

Table 3.1: comparison of the network libraries

of its neighbors should forward the packet. Whenever a packet is being sent, be it an initial
transmission or a forwarding, a node looks at the list of its neighbors and two-hop neighbors
and chooses the smallest set of neighbors with which all two-hop neighbors can be reached.
This list is then included in the packet header as the forwarders list. Each neighboring node will
only forward a packet if it is included in the forwarders list.

3.2 Implementation

According to the task description, the implementation should be written in the C and/or the C++
programming language. Because C++ allows an object oriented design, which can lead to a
cleaner implementation and because the student likes to improve his programming skills in this
language, C++ was chosen.

The C++ programming language is available for many platforms, with a variety of compilers. The
GNU Compiler Collection (GCC), as found on every GNU/Linux distributions, was used.

3.2.1 Evaluation of a network library

The program to implement for this thesis should run on the GNU/Linux operating system. On
GNU/Linux there are basically two ways you can implement network access in a program. Either
you can use pure POSIX functions for your program or you can use an existing network library,
which calls the POSIX functions for you and presents a simpler and more abstract interface. We
have compared libnet against native POSIX functions. The results of this evaluation are shown
in table 3.1.

The task does not require multiple network protocols, it does not require the software to run
on Windows nor is IPv6 networking a requirement. But the task requires to be able to send
broadcast packets in the network, which is not provided by libnet. We could extend the libnet
library to do so, but we would still not gain much against using POSIX functions directly.
Because of the above mentioned criterias about libnet versus using POSIX functions, we de-
cided to use the latter and encapsulate the POSIX network functions in a C++ object.

3.2.2 Implementation of the networking interface

The networking interface consists of three classes.

The network class provides the functionality for sending and receiving packets and efficiently
polling sockets and other file descriptors.



3.2 Implementation 11

The packet class represents a network packet with source and destination address and a data
buffer for the payload

The address class represents a network address

The collaboration graph of these three classes can be seen in figure 3.1.

Address

A

| dstAddr
IsrcAddr
I

Packet

X

| elements
I
|

std::queue< Packet * >

A

I sendingQueue
I
1

Network

Figure 3.1: Collaboration graph of the network classes

3.2.3 The network class

The Network class is the core class of the network functionality in the program written for
this thesis. It represents the UNIX network functions sendto and recvfrom for sending and
receiving UDP packets, as well as pol1 for efficiently handling non-blocking operations, in an
object oriented way.

It allows non-blocking sending and receiving of network packets. For non-blocking sending of a
packet when the operating system would block the operation, a sending queue is used.

A user of this networking interface should have a single instance of the Network object. The
important functions this network object provides are:

bindSocket binds the network socket to a given UDP port

receive receives a packet from the network and either creates a packet object or fills a provided
one

queuePacket adds a packet to the sending queue

pollQueue polls the network socket, sends out packets in the sending queue when the opera-
tion won’t block, returns either when there is a packet to receive or when a given timeout
is reached
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3.2.4 The monotonic time class

A MonotonicTime class instance represents a point in time. The value of a single object is
arbitrary and can only be used for comparing relative time differences to other objects of this
class. It is independent of the system time and thus is not affected by changes to the system
time. The static method MonotonicTime: : now returns a new object representing the point in
time the function was called. A multitude of arithmetic operations are implemented in the class.
For instance calculating time difference of two objects or adding a time difference to an object
and thus creating a new object. And of course comparison operators are iplemented as well.

3.2.5 The event dispatcher class

For handling various types of events, an event dispatcher must be used. This is done by inherit-
ing from the abstract class EventDispatcher and implementing the method dispatch. The
event dispatcher then can be registered for use at various places.

3.2.6 The dissemnination class

The dissemination class is the main class of this project. A user of this class should have a
single object as an instance of this class. For this object to work properly, at least one receiver
object has to be registered and some configuration has to be done.

Upon instantiation of the dissemination object, required configuration parameters have to be
given as arguments to the constructor. These include the string of the network interface to use,
the UDP port number to listen on, which should be the same on all nodes, and the node id of
this particular node, which should be unique across all nodes. Optional configuration may be
done by setting members of the dissemination object, otherwise default values will be usued.
A collaboration graph including almost all classes can be seen in Figure A.1 in the appendix.

A user of the dissemination class has to implement a packet receiver. This is done by inheriting
from the abstract class PacketReceivedEventDispatcher and implementing the method
dispatch, similar to the event dispatcher class. The packet receiver has then to be registered
by setting the member packetReceiver pointer to the packet receiver object. The object’'s
dispatch function is then called with a packet object and the sending node as arguments by the
dissemination object whenever a new packet was received.

Using the addTimerEvent method custom event dispatchers can be added and will get dis-
patched after a custom timeout. The timer events can be configured as single or repeated
events. They can be safely added when the dissemination object is already running.

After configuration and registering of the packet receiver the run method must be called, which
will never return.

3.2.7 Application specific packet types

Beside of the ArbitraryDataPacket class, custom data packet classes can be used. To
accomplish that, one has to make a class inheriting from the abstract DataPacket class and
implement the serialize function. The serialize function takes a pointer to a buffer as
an argument, it should write the object’s content to that buffer and it should return the buffer's
length. For deserialization the classes constructor may take a buffer pointer and a buffer length
as arguments and should fill the object’'s members with the data from that buffer.

Two classes for application specific data have been implemented so far,
PositionInformation and TopologyInformation. PositionInformation ob-
jects may be used to transmit GPS position data including latitude, longitude, altitude, direction,
velocity and a timestamp. TopologyInformation objects may be used to transmit neighbor-
hood information containing a list of 2-tuples describing neighbor relations. The latter one also
gets used by the optional store and forward mode of the implemented algorithms.

3.2.8 Packet format

All our packets get transmitted as UDP packets. Inside the UDP packet payload an own data
packet header gets included before the actual payload data. Table 3.2 shows the format of
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Bit offset | Field description
g forwarding node id
16 o .
originating node id
24 . - .
35 . identifies packet uniquely
70 packet id
48 payload type
56 neighbor list length
64 neighbor list
% forwarder list length
T +8 forwarder list
.p payload

Table 3.2: data packet format

such a UDP payload. For simplicity both algorithms use the same packet format and the 1-hop
algorithm always includes an empty forwarder list of length zero.

3.3 Simulator

For code testing and validation, a simple simulater has been implemented.

The simulator tests the same code as will be run on the target node. The simulator does not
simulate packet loss due to congestion and also does not simulate latency. The simulator allows
for fast development cycles because all the testing node programs can be run on the same host.
The simulator gets started on a host and then listens on a specified port. The node programs
using the dissemination algorithm must then be reconfigured to send all outgoing packets to the
simulator port instead of the broadcast address on the wireless interface. The node programs
must also be reconfigured to listen on different ports, so they can be run all on the same host.

port

node 1 |500; (
| node 2 ggBtZI
(zoce %&x

port
| node n-2 |5
port
node n-1 |\
[ rt
node n ©

p
N lo network interface

simulator

7
L

Figure 3.2: Overview of the simple simulator



14

CHAPTER 3. SOFTWARE DESIGN




Chapter 4

Results

4.1 Measurement metrics

In order to analyze the implemented algorithms, the metrics defined by Ni et al. in “The broad-
cast storm problem in a mobile ad hoc network”[1] have been used.

Reachability
#received
r=— 4.1
#nodes -1 ( )
Saved rebroadcast ratio
f _ #received - #forwarded (42)
#received
Average latency
1
a= latency (4.3)

#receivers X
recelivers

Reachability tells us the average ratio of nodes that receive a packet by any node. The saved
rebroadcast ratio describes how many forwardings have been saved compared to simple flood-
ing. And average latency tells us the latency of a packet disseminated in the network taking the
mean of all nodes.

4.2 Measurement setup

It was difficult to set up test nodes in a real environment such that some nodes connected to
each other and others are not. Therefore, it was decided to use a virtual topology instead. In that
virtual topology five laptops, each equipped with an 802.11n USB Wifi dongle in adhoc mode
in the 5 GHz band, were used as nodes. All laptops were put in the same room. To simulate
unconnected nodes iptables was used to setup a firewall that drops incoming packets from “not
connected” nodes on each laptop.

4.2.1 Virtual topologies
The implemented algorithms were tested in four different virtual topologies. The used topologies

can be seen in Figures 4.1, 4.2, 4.3 and 4.4. These different topologies have been chosen to
test the algorithms with different connectivity degrees between the nodes.

15



16

CHAPTER 4. RESULTS

i
g,»

Figure 4.1: The 'all connected’ topology
Figure 4.2: The 'some connected’ topology

Figure 4.3: The ’circle’ topology
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Figure 4.4: The ’line’ topology

4.3 Measurement results

For the reachability distribution graphs (Figures 4.5, 4.7, 4.9 and 4.11), darker colors mean
lower reachability. The darkest color corresponds to 0 and the brightest to 1; the colors between
correspond each to 0.25, 0.5 and 0.75. The saved rebroadcast ratio graphs (Figures 4.13, 4.14,
4.15 and 4.16) each show the mean with standard deviation. The average latencies are the only
measurements providing continuous values. Therefore, box plots have only been used for those
plots (Figures 4.17 to 4.28).
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4.3.1

Graphical results
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Figure 4.5: Reachability distribution for the ’all connected’ topology
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Reachability for 'some connected'
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Figure 4.7: Reachability distribution for the 'some connected’ topology
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Reachability for 'circle’
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Reachability for 'line'
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Saved rebroadcast ratio
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Figure 4.13: Saved rebroadcast ratio for the "all connected’ topology
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Saved rebroadcast ratio
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Figure 4.15: Saved rebroadcast ratio for the ’circle’ topology
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Average latency for 'all connected' with simple flooding
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Figure 4.17: Average latency for the ’all connected’ topology with the simple flooding algorithm
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Average latency for 'all connected' with 2-hop
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Figure 4.19: Average latency for the ’all connected’ topology with the 2-hop algorithm
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Average latency for 'some connected' with 1-hop
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Figure 4.21: Average latency for the 'some connected’ topology with the 1-hop algorithm

Average latency for 'some connected' with 2-hop
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Average latency for 'circle' with simple flooding
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Figure 4.23: Average latency for the ’circle’ topology with the simple flooding algorithm
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Figure 4.24: Average latency for the ’circle’ topology with the 1-hop algorithm
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Average latency for 'circle' with 2-hop
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Figure 4.26: Average latency for the ’line’ topology with the simple flooding algorithm
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4.3.2 Discussion
"all connected’ topology

Figure 4.5 and Figure 4.6 show the reachability distribution and the mean reachability, respec-
tively, of the measurements in the ’all connected’ topology for different data rates. It is clearly
visible, that in this topology the two algorithms 1-hop and 2-hop perform about equally well and
substantially better than just simple flooding. The reason for that huge performance difference
can also be seen by looking at Figure 4.13, depicting the saved rebroadcast ratios. Disregard-
ing the noise at higher data rates the two algorithms 1-hop and 2-hop rebroadcast nearly no
packets and simple flooding just rebroadcasts every packet it receives. The Figures 4.17, 4.18
and 4.19 depict average latencies at different data rates for each algorithm. Again, we can see,
that the two algorithms 1-hop and 2-hop perform better than simple flooding.

’some connected’ topology

Figure 4.7 and Figure 4.8 show the reachability distribution and the mean reachability, respec-
tively, of the measurements in the ‘'some connected’ topology for different data rates. The 2-hop
algorithm performs best and the 1-hop algorithm is between the 2-hop algorithm and simple
flooding. Also by looking at 4.14 one can see that, in this topology, the 2-hop algorithm can save
a significant amount of rebroadcasts in comparison to the 1-hop algorithm. In Figures 4.20, 4.21
and 4.22, one may see that the algorithms 1-hop and 2-hop both have lower average latencies
than simple flooding.

‘circle’ topology

Figure 4.15 shows, that in the special case of the ’circle topology’ none of the implemented
algorithms can save any rebroadcasts. The distance is too large for our algorithms to propagate
the needed information about neighborhoods. Figures 4.9, 4.10 and 4.23 to 4.25 confirm our
assumption, that all the algorithms perform equally well in this topology.

’line’ topology

Figure 4.11 and Figure 4.12 show the reachability distribution and the mean reachability, re-
spectively, of the measurements in the ’line’ topology. In this topology the two algorithms 1-hop
and 2-hop can save some rebroadcasts only at each the end of the line, they perform only
slightly better than simple flooding. The saved rebroadcasts can be seen in Figure 4.16. Apart
from some noise not much differences can be seen in the average latencies in the Figures 4.26
t0 4.28.

Summary

Both the 1-hop and the 2-hop algorithm perform better than simple flooding in most topologies,
as the average reachability is higher for all data rates. Depending on the topology the 2-hop
algorithm performs either about equally well or better than the 1-hop algorithm. Average latency
measurements contain much noise, especially at high data rates but a performance improve-
ment is still visible in some cases. One has to keep in mind that these measurements were all
done in virtual topologies and measurements in real topologies will most likely perform better
because the “hidden traffic” from invisible nodes won’t be present.
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Future Work

The application developed in this thesis, was written with extendability in mind. It should be
easy to add new algorithms to the implementation. Even the networking part can be extended.
For instance the Address class could be extended to support IPv6 networking. Thanks to the
doxygen documentation, it will be easy for a new developer to start a new project based on this
thesis.

The network and the timer classes have been kept strictly separated from the data dissemination
part of the code and can easily be used by other projects.

5.1 Sophisticated Simulator

The simple simulator that was implemented in this thesis has much room for improvement.
For now, it was only used to validate the code and measurements were performed in a real
environment. As described earlier, the simulator does not simulate packet loss due to congestion
and thus resulting collisions, it simply drops packets according to a node-to-node configurable
probability.

For the development of future data dissemination algorithms, it would be much easier if a sim-
ulator which could simulate packet collisions was available. Such a simulator was started, but
development was discontinued because finishing it would have consumed too much time. The
problems encountered during development were caused mostly by timing issues. That is, the
simulator was implemented as a simple networking application, which was listening on a UDP
port and the test nodes were sending their packets to that port. That made timing very inaccu-
rate. A lot of packets appear to be sent at the same time and thus the simulation would have
resulted in a lot of collisions. This may be due to buffering in the operating system.

It must be evaluated if this problem can be circumvented by using threads to receive these UDP
packets, wheter some configuration changes in the operating system can help or if a totally new
approach is needed.

5.2 Consider Mobility

In this thesis, mobility has not been taken into account. Future work could consider mobility of
the nodes. In combination with sharing GPS data better results may be achieved.
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Chapter 6

Summary

Two lightweight data dissemination algorithms have been implemented and got compared
against simple flooding. A simple simulator has been implemented for easier code testing and
debugging on a single computer. Measurements were performed in real environments. The
implemented algorithms could be validated using the simple simulator and the measurement
results.
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Appendix A

Code Documentation

A.1 Collaboration Graph of the classes

See Figure A.1.
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