
Distributed
 Computing

Smart Homes and Weather Events

Bachelor’s Thesis

Marc Dominique Hüppin

hueppinm@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Tobias Langner

Prof. Dr. Roger Wattenhofer

January 20, 2013

Acknowledgements

I would like to thank Tobias Langner for his supervision and support, Miguel
Rodriguez for taking his time every week to discuss my work with me, the whole
team of digitalSTROM for always being availabe for me if I ran into problems
or had questions.

i

Abstract

This thesis discusses the results and research related to the task of building an
application for the home automation system of digitalSTROM. The idea of the
application is to use weather forecast data by MeteoSuisse in a smart way.

The program maximizes the energy gained through solar radiation on the
windows and provides the user with information about the amount. To do that
a model was developed to calculate the amount of direct solar radiation through
the windows from the given meteorogical data of global radiation on a horizontal
plane.

The meteorogical data from MeteoSuisse is read into a MySQL database
on a server. On that server a Web service was implemented that handles JSON
requests and calculates the amount of direct solar radiation through the windows
using the aforementioned model. The response contains information for the
current day with an hourly resolution.

An app for digitalSTROM was also developed. It makes daily requests to this
Web service and reacts to the information by adjusting the blinds and presenting
the results to the user.

To get an idea for results of the calculations there was also a simulation over
two months, the results are also displayed and discussed in this thesis.

Keywords: Smart Homes, Weather, digitalSTROM, Solar Radiation

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Work 3

3 Calculations 4

3.1 Position of the Sun . 4

3.1.1 Example . 5

3.2 Diffuse and Global Radiation . 6

3.2.1 Different Models . 6

3.2.2 Reindl* . 7

3.2.3 A. Gassel . 7

3.2.4 Testing . 8

3.2.5 Example . 8

3.3 Solar Radiation on Vertical Surface 9

3.3.1 Example . 9

3.4 Solar Heat Gain Through the Windows 9

3.4.1 Example . 11

4 Web Service 12

4.1 The Meteorological Data from MeteoSuisse 12

4.1.1 MySQL Database . 12

4.2 The JSON Web Service . 13

4.2.1 Classes . 13

4.2.2 The Execution In Detail 14

iii

Contents iv

5 dSS App 16

5.1 digitalSTROM . 16

5.2 The digitalSTROM App . 18

5.2.1 Implementation . 19

5.2.2 The User Interface . 19

5.2.3 Events . 19

5.2.4 Scripts and Configuration 20

5.2.5 The Web App . 20

6 Example/Simulation 23

6.1 Results . 23

6.1.1 How to Interpret These Results 24

7 Future Work 26

Bibliography 27

Chapter 1

Introduction

Energy saving today is more and more important not just for the personal gain
of saving money but also on a more general level by saving fuel and helping
the planet. There are incredibly many ways to save energy. This thesis focuses
on saving energy with the use of meteorogical forecast data. Besides giving us
electric power by shining on solar panels, the sun also provides heating energy. A
lot of modern houses have large windowfronts often facing south, in winter when
the sun is always quite low and shines at a very direct angle onto this windows
this can result in heat gain.

My goal was to estimate the amount of this heat gain in advance by using
weather forecast data. This makes it possible to adjust the heating in advance
and results in saving energy as well as a more comfortable and stable temperature
inside a home. In addition to the meteorogical data there’s also a necessity
for information about the home we want to make this calculation for, namely
the geographical location and the sizes of the windows. Besides calculating the
results it is also necessary to make sure the blinds are adjusted accordingly, so
that the sun is not locked out. For the estimation a model was built to calculate
the solar heat gain.

The basic design decision was to create a Web service that will use our model
and weather forecast data provided by MeteoSuisse to calculate an accurate
estimation of the solar heat gain gained through the windows. Then an app for
the digitalSTROM system was implemented that uses the Web service, interprets
the results and makes the necessary adjustments to the blinds.

So far I just talked about the situation during the winter time, this is due to
the fact that this is much more interesting than the situation during summer. In
summer we are not interested in gaining heating energy through the sun but to
limit it as much as possible. The idea here is to keep the blinds shut whenever
there is sunshine.

In this thesis I will describe my product. Chapter 2 is about related work
and the differences to the product of this thesis. Chapter 3 discusses the calcu-
lations that were necessary to give a best possible estimate for the energy gain.

1

1. Introduction 2

Chapters 4 and 5 are about the implementation and functionality of the Web
service and the app for the digitalSTROM system as well as a brief introduction
to digitalSTROM. At the end I will evaluate my radiation model for a fictional
house over two months to estimate the possible energy savings in chapter 6 and
give a look into future work in chapter 7.

Chapter 2

Related Work

There are a lot of home automating systems and some of them also work with
weather data. Most of these systems choose to get the data from a locally
installed weather station. The advantage in that is of course that the data
is more accurate than the data obtained through a weather data provider like
MeteoSuisse. As an example there is the company Weather Hawk which develops
weather stations and suggests their use in home automating systems. They
briefly explain the possibilities for home automating systems they thought about
on their website1. One of their ideas is also to control blinds in response to
solar radiation. With a local weatherstation you get live data which again is
more accurate than predictions but has the main disadvantage of not being able
to react to future events. This makes it impossible to adjust the heating in
anticipation of the solar radiation of the day. This can lead to overheating your
house in the morning due to not foreseeing the impact of the sun. In general
most home automating systems like to react to current weather events, like taking
cautionary action when the windspeed is to high. As web research has shown
most systems limit themselves to just display weather forecast to the user and
let him interpret them.

In addition a solution with a weatherstation costs more, here is a list of
products from Weather Hawk2, the cheapest solutions still cost above $2000.

1http://www.weatherhawk.com/home-automation-more
2http://www.weatherhawk.com/weather-stations

3

Chapter 3

Calculations

To calculate the energy gained by solar radiation on windows we built a model.
This model can be split up into four sections. First we calculate the position of
the sun relatively to our location in section 3.1. Then we have to divide the global
radiation into diffuse and direct radiation. This is described in section 3.2. After
this we need to calculate the projection of the direct radiation on a horizontal to
a vertical plane in section 3.3 and finally we will compute the solar energy gained
through specific windows in section 3.4. To illustrate my model I will apply it
to a specific situation at the end of each section.

3.1 Position of the Sun

For this part I used a model found in [1]. First of all we want to determine the
exact suntime of our location. The term suntime describes the exact local time,
meaning at midday the sun is exactly in the south. It is only dependent on the
longitude of our place. The equation for the suntime is as follows:

suntime = standardtime+ 4(ϕlocal − ϕst) + E (3.1)

where both time parameters are in minutes and the standardtime is in our
case CET (Central European Time). The other parameters are explained here:

ϕlocal = the longitude of our place

ϕst = the longitude of the standard meridian for CET, so 15

4(ϕlocal − ϕst) = stands for the constant deviation which is 4 minutes

per degree

4

3. Calculations 5

E = time equation, this is necessary because the earth is not

moving in a perfect circle

E = 9.87 · sin(2 ·B) − 7.53 · cos(B) − 1.5 · sin(B)

B = (n− 81) · 360

364
n = day of the year

With the exact suntime we can now calculate the position of the sun relatively
to our location. We describe this position with two angles, β describing the
elevation of the sun and ψs representing the azimuth angle, −180◦ ≤ ψs ≤ 180◦

sinβ = cosφlocal · cos δ · cosω + sinφlocal · sin δ (3.2)

sinψs = cos δ · sinω

cosβ
(3.3)

The three values φlocal, δ and ω, which are needed to calculate these two
angles, are defined as:

φlocal = latitude of our place

δ = declination of the sun, at which latitude is the sun in the zenith

δ = 23.45◦ · sin[(284 + n) · 360

365
], − 23.45◦ ≤ δ ≤ 23.45◦

n = day of the year

ω = hourly angle depending on the suntime, which changes
0.25◦

min
ω = 0.25 · (suntime− 720)

3.1.1 Example

As an example I will apply these calculations for the hour between 14:00 and
15:00 on November the 19th for a house located in Wädenswil.

At first we calculate the suntime for the standard time of 14:30. To do that
we need the three inputs:

standardtime = 870

ϕlocal = 8.667◦

n = 324

Applying eq. (3.1), we get suntime = 854.5.

φlocal = 47.2206◦

δ = 23.45◦ · sin[(284 + n) · 360

365
] = −20.24◦

ω = 0.25 · (859.15 − 720) = 33.63◦

3. Calculations 6

Using these values as input for eqs. (3.2) and (3.3) we get the following results:

β = 16.06◦ and ψs = 32.73◦

Figure 3.1: The position of the sun relative to a location

3.2 Diffuse and Global Radiation

3.2.1 Different Models

As meteorogical data we get the global shortwave radiation, which is the total
amount of solar radiation on a horizontal plane in W/m2. The global shortwave
radiation can be split into two parts: the direct and the diffuse radiation. For
the amount of energy we gain, we are only interested in the direct radiation.
As mentioned before, we unfortunately only have measurements of the global
radiation so we need to extract the direct radiation from that. There are quite a
few models which address this issue. I tried to find one that is possible to use with
the data available. I found Fabienne Lanini’s masters thesis on the subject [2].
It describes several approaches to solve the mentioned problem. Most of these
approaches are two complex and often need more input than we can provide.
The Reindl* method, which is purely statistical can be used with the data we
have at hand. I continued my search and came across the dissertation of Andreas
Gassel [3]. He suggested another function to get the ratio of diffuse radiation to
global radiation. His model is also applicable to the data available to us.

3. Calculations 7

3.2.2 Reindl*

β = the solar elevation, like in the previous section (3.4)

I = the measured global radiation (3.5)

Id = the diffuse radiation on the horizontal surface (3.6)

Ib = the direct radiation on the horizontal surface (3.7)

I0 = extraterrestrial radiation, the solar energy in W/m2 on the atmosphere
(3.8)

I0 = 1356.5 + 48.5 · cos[0, 01721 ∗ (n− 15)] (3.9)

kt = the clearness factor 0 ≤ kt ≤ 1 (3.10)

kt =
I

I0 cosΘz
(3.11)

Θz = 90◦ − β it is the zenith angle, angle between the zenith and the sun
(3.12)

The clearness factor describes the clearness of the sky. An overcast sky
implies a low clearness factor and the clearer the sky the closer we get to one.
The Reindl* model is a piecewise regression depending on the clearness factor.
An additional condition for the model to show good results is that the elevation
of the sun can be no lower than 5◦ because of the cosine response in eq. (3.11).

Id/I = 1.020 − 0.248kt for kt ≤ 0.3 (3.13)

Id/I = 1.400 − 1.749kt + 0.177 sin(β) for 0.3 < kt < 0.78 (3.14)

Id/I = 0.147 for kt ≥ 0.78 (3.15)

The disadvantage is that the function is only continuous within the three
parts but not on their boundaries. The first part, eq. (3.13), is for a very low
clearness factor this hints to an overcast sky. The ratio here decreases linearly
with an increasing clearness factor, because less clouds lead to less diffuse light.
For the middle part, eq. (3.14), which represents partly cloudy skies we have
again a linear dependancy to kt but also we have a dependancy on the elevation
of the sun. Higher solar elevation contributes to a higher diffuse fraction of the
global radiation. For very clear situations with no clouds, eq. (3.15), we have a
constant value for the ratio which is 0.147.

3.2.3 A. Gassel

The second model I want to present is found in [3]. His model also is just an
optimal approximation of statistical values.

Id
I

= 0.53 − 0.34 · arctan(5.5 · I

Iex
− 3.16) (3.16)

3. Calculations 8

Here Iex can be calculated using the solar constant I0 and the adjusted height
βadj , which is regarding breaking of the sunlight in the atmosphere.

βadj = β +
1.4705

3.0427 + β
− 0.0158

Iex = I0 · sinβadj

I0 = 1356.5 + 48.5 · cos[0, 01721 ∗ (n− 15)]

This model is just depending on the solar constant and the suns elevation.

3.2.4 Testing

I got a small testset from MeteoSuisse for a weatherstation in Geneva where we
had measured values for both the global and the diffuse radiation. I inserted
both data into the models and compared the results with the measured values
for diffuse radiation. The Reindl* model showed an overall better performance.
The evaluation can be seen in fig. 3.2.

Figure 3.2: The evaluation of the Reindl* model for data from Geneva

3.2.5 Example

We shall apply this next step to our example. From the previous section we
have the values β = 16.06◦ and ψs = 32.73◦. To make the next step we need
the measured value for the global radiation: I = 167.6 W/m2. Then we also

3. Calculations 9

need the extraterrestrial solar radiation, using eq. (3.9) with input n = 324 we
get 1394.6 W/m2. Now we can use eq. (3.11) to calculate our clearness factor
resulting in 0.43. This means a partially overcast sky and we need eq. (3.14) to
calculate fracIId. We get the ratio 0.69 for diffuse radiation which means we
have direct radiation of Ib = 0.31 · I = 52.09 W/m2.

3.3 Solar Radiation on Vertical Surface

The next step in our model is to transform the direct radiation on a horizontal
plane to a vertical one. This is a purely geometrical transformation. The source
for these next computations is [4].

Ib,vert =
Ib

cosΘz
· cosΘi (3.17)

We use Ib for direct radiation on the horizontal plane and Ib,vert for the
direct radiation on our vertical plane. Θi is the solar zenith angle and Θi is the
incidence angle of the radiation on the vertical surface. It can be calculated with
the following equation.

cosΘi = − sin δ cosφlocal cosα+ cos δ sinφlocal cosα cosψs + cos δ sinα sinψs
(3.18)

Where δ is the inclination of the sun, φlocal the latitude of the location, α
the horizontal orientation of our vertical plane, where 0◦ is south, and ψs stands
for the horizontal angle of the sun.

3.3.1 Example

We shall now calculate the direct radiation on our windows facing directly south.
From the previous sections, we have Ib = 52.09 W/m2, β = 16.06◦ and ψs =
32.73◦.

To apply eq. (3.17) we need to first use eq. (3.18) to find cosΘi. The angles
here are δ = −20.24◦, φlocal = 47.2206, α = 0 and ψs as shown before. This
results in cosΘi = 0.81. Furthermore cosΘz = cos 90◦ − 16.06◦ = 0.27. Now we
can apply eq. (3.17) and get Ib,vert = 153.5 W/m2.

3.4 Solar Heat Gain Through the Windows

Now that we have the direct solar radiation on our windows, we have to calculate
the transmittance of this energy through them. This depends on the window
itself and also on the angle between the direct radiation and the window. For this

3. Calculations 10

Figure 3.3: The angles for the part of the model in section 3.3

calculation I looked at a model from [5]. They have a polynomial approach for
the g-value which represents the transmission rate of solar energy. But because
we would need additional parameters that we don’t have access to, I chose to go
with the simpler model from Montecchi and Polato that is also briefly explained
in [5].

g = g(0)(1 − tanx(Θi/2))

Here Θi is again the angle of incidence between the window and the direct
radiation. And x is a constant depending on the window type. In the paper
it is described that this value can assumed to be 4 for most types. g(0) is the
g-value (the solar transmittance) of the window if the incident angle is 0. With
the online information from1 I decided to go with the average value of 0.76. This
is the average g-value for double glazing windows which are the most common.
Therefore the adjusted version is:

g = 0.76(1 − tan4(Θi/2)) (3.19)

1http://www.energieberaterkurs.de/export/sites/default/de/Dateien_Kennwerte/

kennwerte_fenster.pdf

3. Calculations 11

So in the end if we have the following three parameters for windowsizes south,
east and west. We can calculate the energy passing through the south window
like this:

εsouth = south · 0.76 · (1 − tan4(Θi/2)) · Ib
cosΘz

· cosΘi (3.20)

We can do this equally for east and west resulting in εwest and εeast all three
impacts up results in the total amount of energy gained.

εtotal = εsouth + εwest + εeast (3.21)

3.4.1 Example

Now to complete the example we assume our windows facing south have a com-
bined size of 12 m2. We apply eq. (3.19) to find Θi we can apply the arccos
function to the value found in section 3.3.

This gives us a total solar heat gain through the south window of 1367.06
Wh or 1.37 kWh in the hour between 14:00 and 15:00 on November the 19th
2012.

Chapter 4

Web Service

4.1 The Meteorological Data from MeteoSuisse

MeteoSuisse provides forecast data in form of an XML file uploaded to an FTP
Server. The XML files contain information for several stations. During the
development of the project these were Wädenswil, Zurich Fluntern and Zurich
Affoltern. They contain the forecast for each station for the next 33 hours. A
small java programm is running on the server which checks for new data. If a new
file has arrived it is downloaded and the provided data written into a MySQL
database. Since the files are not updated regularly every three hours we just run
this program every hour. The scheduling is done by crontab.

4.1.1 MySQL Database

There are three simple tables in our database: stations, files and weatherdata.

Figure 4.1: Entity Relationship Model

The stations table is mainly needed to determine the closest station to the
place where the request is made from. The weatherdata contains information
about the weather the time is in UTC. Currently we store precipitation, average
temperature and the global radiation for every hour. Precipitation and average

12

4. Web Service 13

temperature are not needed at the moment but are stored for future applications
or Web services. The file table contains the name of all the files we have read so
far it is kept to check whether we’ll have to update the database or if information
from all XML files have already been read into the MySQL database. Like
previously mentioned we receive a new file about every three hours and each
file contains the forecast for the next 33 hours. This leads to multiple data for
every hour. Upon receiving new data for an hour we overwrite the previous
information. The reasoning behind that is, that the new data should be more
accurate.

4.2 The JSON Web Service

The purpose of our Web service is to provide the client with information about
the solar heat gain through windows on the current day. Upon receiving a request
with the necessary parameters it queries the database for the adequate data and
uses the model described in chapter 3 to calculate the solar heat gain. It then
returns the results to the client in form of a JSON object.

JSON

JSON (JavaScript Object Notation), is a lightweight data interchange format1.
A JSON object consists of an unordered set of name5/value pairs. Where the
name is a string describing the value. There are also JSON arrays which consist
of an ordered set of values. The value can in both cases be a string, a number, a
boolean, another JSON object or array or it can be null. An example of a JSON
object can be seen in listing 4.1.

4.2.1 Classes

The Web service is based on the Restlet Framework2 for Java and contains the
following four classes.

WeatherApplication

This is the main application, every call to our url first gets here. Inside of
the class the routes were defined. To each route belongs a string for example
”/weather” and a class that handles the requests for this route. This means,
that calls to our url with the substring ”/weather” get redirected to the defined
class, which in our case is WeatherResource.

1http://www.json.org
2http://www.restlet.org

4. Web Service 14

WeatherResource

This class contains the method which is started when the URL receives a call.
It stores the parameters and initalizes the calculations. After the computations
are finished it returns the resulting JSON object to the client.

Calculations

For every call a new instance of Calculations is constructed. Inside of the class
we apply the model described in chapter 3 to get the desired values. This class
also generates the JSON object that is later returned.

MySQLAccess

MySQLAccess handles the accesses to the database. It receives method calls
from the Calculations class, generates the desired query, parses the response and
returns the results.

4.2.2 The Execution In Detail

The Web service handles GET requests and returns a JSON object. The request
must contain the following parameters:

• longitude

• latitude

• angle

• south

• east

• west

longitude and latitude are the coordinates of the home for which the cal-
culations are desired. The other four parameters are all data from the house,
while south, east and west refer to the corresponsive windowsizes. The angle
describes the exact orientation of the house.

We extract the parameters from the query and create an instance of the class
Calculations. An instance of Calculations represents the data for a specific home
on a specific day. At construction we store the received parameters and then
compute values which are valid for the whole day. These are namely the day

4. Web Service 15

of the year (n), the declination of the sun (δ), the time equation (E) and the
adjusted extraterrestrial radiation (I0).

As a next step we have to apply hour model to hourly data. To do this we
make exactly two queries to the database. The first one returns the weather
station from our database that is closest to the location. With the result of the
first query we can now get the desired data from the closest station.

We then return an array containing the global radiation for every hour of
the day. We iterate over the array, if we meet an hour with a global radiation
value that is bigger than 5 we apply our model to calculate the solar heat gain
through the windows for the hour. This is done in three steps. We first calculate
the sun’s position in the middle of the hour, then find out the ratio of diffuse
radiation and finally compute the energy gained through the windows.

In addition to that we need to find out whether the sun is actually shining,
or not. Sunshine is defined as whenever the difference between global and diffuse
radiation is higher than 120 W/m2, this is defined by the WMO3. But as we only
get hourly averages we have to set this threshhold much lower. If we assume the
sun is shining for 5 minutes and for the other 55 minutes the ratio of global
to diffuse radiation is close to one. We get a value of 120 · 5/60 = 10 W/m2

direct radiation for the hour. For that reason we chose 10 as a threshhold so
the boolean sun is true whenever the direct radiation for the hour is bigger than
10 Wh/m2. Finally we return a JSON-Object containing the information to the
WeatherResource class which in turn returns it to the client.

1 {

2 hours : [

3 {

4 hour : 0,

5 energy : 0,

6 sun : false

7 },

8 ...

9 {

10 hour : 12,

11 energy : 4069,

12 sun : true

13 },

14 ...

15 {

16 hour : 23,

17 energy : 0,

18 sun : false

19 }

20]

21 }

Listing 4.1: Example of a returned JSON-Object

3World Meteorological Organization http://www.wmo.int

Chapter 5

dSS App

5.1 digitalSTROM

Figure 5.1: Graph of a digitalSTROM system

digitalSTROM is a home automating system developed by aizo. The system
connects all devices of a home. The communication between the devices is done
through the powerline.

To make it possible for the devices to communicate, you simply attach a
clamp to each device. These clamps are miniature computers able to control a
variety of devices. There are different clamps for different types of devices. For
instance yellow for lights and red for security. We will mostly be concerned with

16

5. dSS App 17

the gray clamps which represent the group for shade and control the blinds and
the shutters.

Additionally to the clamps a digitalSTROM system also comes with a dig-
italSTROM Meter or dSM and a digitalSTROM Server or dSS. The dSM is
responsible for the communication between the devices and monitors the con-
sumption. There exists one for every circuit. The dSS connects the dSMs and
can communicate by a special protocol. To communicate with other applications
it uses TCP/IP.

Figure 5.2: Screenshot of the dSS WebUI

The dSS gives the user a Web user interface (WebUI) to gain information
and change settings in the system. As you can see in fig. 5.2 the devices can be
grouped into different rooms. It is possible then to for instance switch off every
device in one of these rooms.

In the WebUI you can also define scenes. These scenes are basically presets,
a combination of settings for different devices. These scenes can then be called
for instance via the WebUI but also by other applications. You could define a
scene for when you are watching TV. For instance you want all the lights in your
living room to dim to about 10 percent and all blinds to be shut. After defining
the scene you can call it whenever you are watching TV. The lights will dim and

5. dSS App 18

the blinds will shut.

A way to make this even more comfortable can be achieved by using the so
called events. You could raise an event in the digitalSTROM system whenever
you turn on the TV and as a reaction to this event you can define the according
scene. I will explain this more thoroughly in section 5.2.3.

There is also the tab Apps in the WebUI. Here you can install applications
for your digitalSTROM system. For achieving the goal of this thesis, to control
the blinds in response of sunshine, such an application was developed.

Figure 5.3: Screenshot of the dSS WebUI

5.2 The digitalSTROM App

The dSS app provides two main functionalities. The first is presenting informa-
tion about the gained energy through solar radiation on the windows during the
day in the WebUI of the app and the second one is adjusting the blinds on an
hourly basis regarding whether the sun is shining or not. Which blinds are to be
shut and which not has to be defined by the user.

5. dSS App 19

5.2.1 Implementation

The app consists of three parts. There are the user interface, the scripts we need
to run and the configuration part located in the three folders ’ui’, ’scripts’ and
’config’. We shall now have a look at these parts in detail.

5.2.2 The User Interface

The user interface consists of an HTML page where the user has to enter the
sizes of windows, facing east, south and west, and an angle. The angle must be
given in degrees, it is the correction angle and describes the exact direction the
southern side is facing. If it is facing south exactly the angle is 0◦ (east would be
−90◦). On submitting the form, javascript functions are called. They store the
provided information in the property tree of the dSS which is done by JSON calls
with jQuery. Below the form on the HTML page is another section where the
results are displayed. In detail we display the expected amount of solar energy
gained throughout the day. Aside from the total amount, there is also an hourly
resolution present.

5.2.3 Events

In order to explain the two other parts of the application I will further introduce
the concepts of events. There are a few basic events in the system, like ’running’,
which is raised when the system is up or ’panic’ which is raised when the panic
button is pushed. Scripts inside the dSS can create and raise events as well.
Three types of events are available. There is the basic event on which occurs
instantaneously after being raised. With the TimedEvent you can give a time
parameter, that represents the delay in seconds, it occurs with the defined delay
after it is raised. Finally there is the TimedICalEvent which occurs at a defined
time and date just once or at a rate defined with a reccurence rule1.

In order to react to these events we need subscriptions.

Figure 5.4: A static subscription

In fig. 5.4 we see an example of a subscription that makes sure that when
the event with the name ’running’ is raised we run the weather.js script. In

1for a description of the iCalendar format visit http://tools.ietf.org/html/rfc2446

5. dSS App 20

addition to these static subscriptions we can also create dynamic subscriptions
from within a script.

5.2.4 Scripts and Configuration

In our scripts folder we have two javascript files. The first one has two main
functions, ’init’ and ’main’. The ’init’ function is called when the system is
started. It creates an Event that reoccurs daily at 05:00 in the morning. The
values for the home of the user are all initialized to zero if they have not been
set before. The ’main’ function is the one that is now called every day at five in
the morning. Here the JSON call to the Web service is made, we get the energy
data for every hour of the current day. Once we have the data, we create new
TimedICalEvents for the current day. All of them are raised at the full hour and
do either have the name ’sun’ or ’nosun’. In addition we store the solar heat
gain for the day and for every hour on the dSS.

For both of these events we have the same handler. The script checks whether
there will be sunshine or not and then calls the associated scene.

The configuration part is simply an XML file. It specifies which events the
two scripts have to handle.

5.2.5 The Web App

To make testing easier, and address people without digitalSTROM, I also decided
to create a small website that allows everybody to learn about the amount of
solar energy their home will receive during the day2. The design of the web
interface is very similiar to the one of the dSS app.

The user has to input information about his home just like in the dSS app.
After submitting the data we display the total amount of energy that is gained
and a list overviewing the hours between sunrise and sunset.

The big drawback here of course is that we currently only receive weather
forecasts for three different stations that are all located around Zurich. This
of course limits the usefulness of the website, since only people close to those
stations actually get accurate data. But even for others it should be able to give
a general idea of how much solar energy they can gain on a sunny day.

2http://weather.aizo.com/WeatherTesting

5. dSS App 21

Figure 5.5: The interface of the dssApp

5. dSS App 22

Figure 5.6: The interaction between the different parts of the system, the Web
service can be used by multiple dSS apps and the Web app

Chapter 6

Example/Simulation

To have a better idea of the benefits achievable with our program, a simulation
over the months of November and December 2012 was done. Our fictitious house
is located in Wädenswil. Like a lot of modern houses it has a big windowfront
facing south that is 2 meters high and about 6 meters wide. On the eastern and
western side there are two windows each with a size of 1 by 2 meters.

south = 12

east = 4

west = 4

longitude = 8.6777

latitude = 47.2206

We applied our model from chapter 3 for every hour of every day in that
timespan and stored the amount of energy.

6.1 Results

The results of the simulation can be seen in figs. 6.1 and 6.2

We gained a total of 502.5 kWh of solar heating energy during these two
months. The cost for producing the same amount of heating energy artificially
depends on your heating system and can change with fluctuating prices in the
commodity market. Because oil-fired heating is still widely used in Switzerland
we assume an oil-fired heating running on standard fuel. We calculate the equiv-
alent price for heating our house with 502.5 kWh. Standard fuel has a minimal
fuel value of 45.4 MJ/kg or 10.74 kWh/l which corresponds to a heating value
of 42.6 MJ/kg or 10.08 kWh/l1. So to gain 502,5 kWh we need about 20.9 l of

1numbers from http://www.iwo.de/fachwissen/brennstoff/

23

6. Example/Simulation 24

Figure 6.1: The values stand for the hour before the mentioned time, so 12:00
means the span of 11:01-12:00

fuel. Prices for fuel depend on the amount you buy, if we assume a purchase of
fuel between 3000 and 6000 l. In November of 2012 we would have paid 102.50
per 100 l. This means our expenses to heat our house with 502.5 kWh would be
at about 21.50 CHF2.

6.1.1 How to Interpret These Results

First of all by not using digitalSTROM and the Weather App you would still
gain a big part, or all of the energy, if shades were kept open most of the time
during the day. But it still maximizes the use of solar energy even when you’re
not at home. In addition to this you gain the information of an estimate of
solar energy you let in to your home in advance. So you can adjust your heating
manually in the morning and take it down a notch before leaving your home in
the morning if you’re looking at a sunny day. This results in a house at a more
comfortable temperature and lowers the fuel usage and therefore your expenses.

We will now have a more specific look at two days. The first day is the 1st
of November. It was a day with multiple hours of sunshine, where we gained a
maximum of about 20 kWh of solar energy. The second day we will look at is
the 12th of November. There was a lot of fog on that day and pretty much no
direct radiation reached the surface. Therefore we didn’t get any solar energy.

2numbers from http://www.bfs.admin.ch/

6. Example/Simulation 25

Figure 6.2: Total: 502.5 kWh

In Germany the average need of fuel is about 15.4 liters per m2 per year3. If we
assume our house is about 100 m2, which is about the size of an average four
room home, we need about 1540 liters per year. Because the big part of heating
fuel is used during the cold months we can assume, that we need about two thirds
of the heating energy from November to March. This would mean about 1000
liters over a span of 150 days. Which results in about 6.6 liters per day using the
numbers from before this leads to about 66.5 kWh of heating energy per day. So
on November the 1st we could have saved almost a third of the heating energy.

This is under the assumption that the useage of oil is equally distributed over
these five months, which is of course not true. Still it should give us an idea of
how we can use the sun to save energy.

3data from http://www.heizungstipp.de/oelheizung/verbrauch

Chapter 7

Future Work

The digitalSTROM project is still very much in development and during thw
work on my thesis I was rather limited in using my calculations as all I could
control were the shades. Most of the calculations are merely done to provide
information for the user.

The goal of digitalSTROM of course is to be able to control more and more
devices so at some point it will also be able to control the heating devices of
homes. I’ve tried to make my program adaptable for future projects and it is
my believe that you can easily use the Web service to do more than adjust the
blinds, once the necessary hardware is present. The data can then be used to
adjust the heating in anticipation of the solar heat gain during the day to save
energy and keep the home at the desired temperature.

As more systems will be added it will also be necessary to get forecast data
from more stations.

Finally more Web services can be implemented for other uses of the weather
forecast. An idea here would be to use the forecast for precipitation to control
the watering of the garden. But again the watering system is something that is
not yet controllable with digitalSTROM.

26

Bibliography

[1] Drueck, D.I.H.: Manuskript zur vorlesung, solarthermie i. In: Universitaet
Stuttgart Institut fuer Thermodynamik und Waermetechnik. (2012)

[2] Lanini, F.: Division of global radiation into direct radiation and diffuse
radiation. (2010)

[3] Gassel, A.: Beitraege zur berechnung solarthermischer und exergieeffizienter
energiesysteme. (1996)

[4] Coleinne Demain, M.J., Bertrand, C.: Evaluation of different models to
estimate the global solar radiation on inclined surfaces. In: Renewable Energy
50 (2013). (2012)

[5] Karlsson, J., Roos, A.: Modelling the angular behavious of the total solar
energy transmittance of windows. In: Solar Energy Vol. 69. (1999)

27

