
Distributed
 Computing

SnowDroid – Your Private
Snowboard Instructor

Bachelor’s Thesis

Patrick Misteli

mistelip@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zurich

Supervisors:

Tobias Langner

Prof. Dr. Roger Wattenhofer

July 14, 2013

Acknowledgements

A very special thanks to my supervisor Tobias Langner for the initial idea and for
supporting and guiding me through every step of this thesis from the beginning
to the end.
In addition I would like to express my gratitude to Prof Wattenhofer who allowed
me to investigate this interesting topic and complete my thesis on this subject.
Last but not least I would like to thank my parents and my friends Kevin Bock-
srocker, Daniel Ackermann and Myriam Wirz for literally and/or figuratively
supplying me with Ice Tea during the hard times.

i

Abstract

In this thesis the idea of detecting snowboard movements using standard phone
sensors is investigated. When having an android phone attached to a person,
the phone’s sensors can give data about the current movement and position of
the person. During this thesis an approach is stated that analyses these sensor
readings in a way that allows detection of certain snowboard related movements.
This can then be used to correct false snowboard riding techniques.
Using the methods and algorithms explained in this thesis it is possible to build
an android app that allows detecting these errors and notify a rider by a simple
press of a button. This can aid snowboard riders that have just recently started
taking on the slopes.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Goal of Thesis . 1

1.3 Outline . 1

2 Recording Training Data 3

2.1 Snowboard Layout . 3

2.2 Type of errors . 4

2.3 Recording Application . 4

2.3.1 Sensors . 5

2.3.2 Usability . 5

2.3.3 Memory Management . 6

2.4 Recording Day . 7

2.4.1 Location . 7

2.4.2 Time Period . 7

2.4.3 Skiing area & Slopes . 7

2.4.4 Recording Equipment . 7

2.4.5 Snowboarder Skill Level 8

2.4.6 Recording Day Layout . 9

2.4.7 Results . 9

2.5 Data Visualizer Program . 9

2.5.1 Video Player . 10

2.5.2 Graph . 10

iii

Contents iv

3 Interpretation of Data 11

3.1 Sensor Values and Coordinate Systems 11

3.1.1 Accelerometer . 11

3.1.2 Gyroscope . 12

3.1.3 Magnetic Field . 12

3.1.4 Justification for using both sensors 13

3.2 Orientation of Device . 13

3.3 Curve Segmentation . 14

3.3.1 Curve Detection Algorithm 16

3.3.2 Max/Min Detection . 17

3.3.3 Visual Representation of algorithm 18

4 Classifier 19

4.1 Labels . 19

4.2 SVM (Support Vector Machine) 19

4.3 Chosen scalars . 20

4.3.1 Data Sources and Modulations 21

4.3.2 NOCURVE Values . 22

4.3.3 CROT Values . 24

4.3.4 LFOR Values . 26

4.3.5 LTAIL Values . 27

5 Android Application 29

5.1 Usage . 30

6 Conclusion 32

Bibliography 33

Chapter 1

Introduction

1.1 Motivation

Living in a country mountains, snowboarding or skiing will most probably be
part of one’s winter activity. Most newcomers seek the help of a professional
instructor to get a thorough introduction about the riding technique. After
acquiring the basics the amateur rider usually takes off to ride on his or her
own. While doing so it is very common that the rider will start developing
incorrect movements due to natural instincts or by copying other riders on the
slope. If uncorrected, these flawed riding techniques will limit the rider to reach
an advanced level of skiing or snowboarding and furthermore endanger himself
and other people sharing the slope with the rider. Taking further lessons from
a professional is time and money consuming and most advanced amateurs will
not see the need to engage in further lectures as they manage to ride a slope
without falling over. Therefore a more practical solution is introduced in this
thesis which allows an advanced amateur to have his or her mistakes pointed out
by using their smart phones. The thesis is focused on snowboarding mistakes,
but its methods could be adapted to be used for skiing as well.

1.2 Goal of Thesis

The goal of this thesis is to record movements of a snowboard rider with the use of
an android cell phone and classify them as correct or incorrect riding techniques.
The classification should be done with a useable and satisfying accuracy. It
should allow an implementation of an android app that detects mistakes in real
time and notify the rider thereof.

1.3 Outline

The thesis is organized in the following way:

1

1. Introduction 2

Record Data
To be able to later write classifiers to separate the good from the bad, sensor
data is collected with corresponding Video footage. This data includes
correct and incorrect riding techniques.

Orientation of Phone
To make the sensor data independent of the phones orientation in the
pocket, all phone-relative sensor data must be transformed into world co-
ordinates.

Data Segmentation/CurveDetection
Once the sensor data is represented in world coordinates a single run is
segmented into singular curves.

SVM
Using Support Vector Machine approach a classifier is generated to identify
the property of a run. This classifier can then be used to tag new run
segments

Chapter 2

Recording Training Data

To have training data for the classifier, the data must first be collected. To ac-
complish this, a rider was given multiple phones that he would place in different
specified pockets. All phones would then start record their sensors simultane-
ously. Concurrently a second rider would record a corresponding video footage
that can later be used to relate the recorded sensor data to real life events. This
section is dedicated to how this was approached and executed.

2.1 Snowboard Layout

Figure 2.1: Snowboard Layout

Figure 2.1 shows the different part of a snowboard. The nose and the tail
(Marked with “T” and “N”) of a snowboard is dependent on the riding direction.
The toeside (red line) and the heelside (blue line) is dependent on the riders
stance.

3

2. Recording Training Data 4

2.2 Type of errors

The following is a list of common mistakes advanced amateur snowboarders
make. This list was generated by questioning various snowboarders deviating
from amateur snowboarder to professional snowboard instructors.

Counter Rotation
The most mentioned mistake by advanced level snowboarders. This mis-
take happens when the rider is trying to terminate the curve too early. He
does this by jerking around the snowboard in mid-curve. Not only does
this look less elegant it is also dangerous when doing this at higher speeds.
When the rider rotates the board with a lurch he has less control over it
during that time. At lower speeds this is usually not a problem, but it
prevents the rider from controlling his snowboard at higher speeds. Fur-
thermore it hinders the rider to smoothly perform curves consecutively at
higher speeds.

Leaning Backwards/Tailwards
Leaning backwards or tailwards is a mistake caused by an amateur’s body
instinct. Since the board is facing downhill the body is trying to keep away
from the danger and therefore leaning in the opposite direction. Leaning
tailside is dangerous due to various reasons. Since the nose of the snow-
board is only slightly touching the snow the snowboard cannot be fully
controlled and will not reliably respond to leaning to either side. With
this, the snowboard is difficult to control even at lower speeds. In extreme
cases the balancing point of the rider is shifted too much to the back of
the board. This will result in the snowboard rotating by 180 degrees as
the heaviest end of a snowboard will always point downhill.

Leaning Forward
Amateurs can tend to bend too much forward (leaning too much toeside).
This is safer than leaning backwards (mentioned in the next point) but
becomes inefficient. While being bent forward too much, a snowboarder is
restricted in rotating his upper body which is essential for making a curve.
Furthermore it is energy inefficient as leaning forward causes the knees to
be more bent which increases the strain the quadriceps.

2.3 Recording Application

For the sensor data recording the app DataRecorder was programmed on android
which is able to record all sensor activity and write its readings to a text file which
can then later be processed.

2. Recording Training Data 5

Figure 2.2: Communication Setup

2.3.1 Sensors

The priority of programming this app was to read as many raw sensor data
and store them unadjusted on the phone’s permanent storage. To ensure the
availability of all possible readings the app stores all available sensors data (Ac-
celerometer, Gyroscope, Magnetic Field and GPS Data). Additionally it stores
the virtual Sensors (Gravity, Linear Acceleration and Rotation Vector) which
are provided sensor fusion readings from the android operating system. Details
about the different sensors are provided in section 3.1.

2.3.2 Usability

Device communication

Practical usage of the app was important. Most smart phones today (particularly
those provided for the recording day) use a capacitive touch screen which is unre-
sponsive when being touched by snow gloves. Therefore, next to the phones that
are recording their sensor readings to their permanent storage (the recorders) an
additional phone (the remote) was introduced which connects to the recorders
via Bluetooth. The setup is shown in Figure 2.2 The remote is able to send
a command to all connected devices to have them start or stop recording or
simply return an “ACK” to confirm connectivity. Alongside the start-recording
command the remote additionally sends a time stamp and a user defined run
name. This information is used to tag the text file in which all recorders store
their sensor data. Every command from the remote is answered by the recorders
with an “ACK” to confirm the reception of the command. This way failure of
the Bluetooth protocol is immediately observed

2. Recording Training Data 6

In case of permanent Bluetooth failure of a device the fail-safe app DataRecorderMan
was programmed which is able to manually start the recording.

Bluetooth limits

The better hardware a device has the more Bluetooth connections can be main-
tained at once. Of the available devices the two flagships (HTC One X and
Google Nexus 4) were able to connect to 5 Bluetooth devices simultaneously
while lower end devices such as the Huawei Ascend D quad XL is only able
to have two Bluetooth connections running at once. The remote would there-
fore ideally be a flagship to have as many devices recording at the same time.
However, the flagship phones’ sensors have a higher output frequency (details in
Section 2.4.4) than the lower end phones. Additionally lower end phones have
sensors that are not as sensitive as the sensors in the flagship phones. Using a
flagship as a remote would inhibit the device from recording its own sensors data
which would be a loss of readings from higher end sensors. A compromise had
to be found between having one high end device connected to many lower end
devices or a lower end device connected to a few high end devices. The optimised
solution is elucidated below.

Services

The android operating system will terminate normal applications when being
inactive for too long. This caused a problem, as the application should be able
to be launched once and further on only be controlled by the remote. Standard
implementations would cause the operating system to terminate the application,
therefore android services had to be used. Android services are used for long-
running operations that do not require user input. Furthermore the android
operating system will not terminate a service even if the app that summoned it
has not received user input over a longer time period.

2.3.3 Memory Management

The simple solution in recording sensor readings and storing it on the permanent
storage of the device is to temporarily store the readings in the RAM and wait
for the recording episode to be finished. Afterwards write the readings from
the RAM onto the permanent storage. This works for shorter periods of time,
however the device has to be able to steadily record a run for over 30min which
would cause an “out of memory” error if this approach was used. This was solved
by having multiple threads and queuing the readings. One thread is receiving the
readings of the sensor and storing them in a public queue in the RAM. Another
thread will continuously write all items of the queue to the permanent storage.

2. Recording Training Data 7

Once the device is told to stop recording the second thread will finish emptying
the queue before terminating itself.

2.4 Recording Day

2.4.1 Location

As ski resorts were closing at the beginning of April due to ski season ending the
choices of different locations were limited. The slopes that were needed had to
be slightly and monotonously steep (difficulty blue). In addition the slopes had
to be as smooth and as regular as possible. Riding down smooth and regular
slopes allows focussing on executing the desired riding technique without having
to adjust riding velocity and curve sizes due to small hills or change in slope
steepness. This would ensure accurate data recording.

2.4.2 Time Period

All recordings were done on Monday 8th of April 2013 from 09:30-15:30.

2.4.3 Skiing area & Slopes

The Ski resort Laax was chosen as a recording location. It features many different
beginners slopes which are used by amateur snowboarders frequently. The slope
that was chosen to make the recordings was the “Alp Dado”. It is operated by a
chairlift. This allows not only recharging the recording equipment on the way up
but furthermore results in less time spent on the lift in comparison to a ski-lift
which would have a slower operating speed.

2.4.4 Recording Equipment

The following is a list of recording equipment that was used on the recording
day.

Camera

A Panasonic Lumix DMC-TS3 was used to capture the video footage. This
model is able to record FullHD videos and is furthermore water- and freeze proof
which allows outdoor video recording in snowy areas as required.

http://www.laax.com/en/skiing-area/

2. Recording Training Data 8

HTC One X

The HTC One X features a Panasonic Gyroscope sensor and a Panasonic ac-
celerometer. Details about sensor readings are provided in section 3.1. The
accelerometer sensors can deliver up to 61 readings a second. The gyroscope has
a frequency of up to 216 readings per second (*). Both frequencies are slightly
lower when the android application is registered to multiple sensors at once. Due
to the high frequency of the gyroscope this device was put in the riders chest
pocket during the ride. This would allow an optimized capture of the upper
body movement.
* Frequency of sensor readings were obtained by manually measuring them using
a custom app

Google Nexus 4

The Google Nexus 4 features a gyroscope and an accelerometer both manufac-
tured by InvenSense. Both sensors can deliver up to 200 readings per second.
To make use of the high frequency of the accelerometer this phone was put into
the front pocket of the rider (the pocket pointing to the nose of the snowboard).
This way movements and linear acceleration can be captured.

Huawei Ascend D quad XL

The gyroscope of the Huawei Ascend D quad XL can deliver up to 100 readings
per second. Its accelerometer has an output frequency of 50 readings per second.
This phone was used as an additional lower end data recorder for comparisons
to the flagships.

HTC Desire

This device was used as a remote to activate and deactivate the other three
devices. Its Bluetooth connection limit of three devices was therefore fully used.
Its sensor frequencies are not listed here as this device did not record its sensor
data.

2.4.5 Snowboarder Skill Level

A skilled snowboard instructor was recorded to ensure the error free curves are
as flawless as possible. Furthermore an amateur rider who recently took up the
sport was recorded to get realistic results on the errors. In addition the two
riders use a different snowboarding stance. While the instructor is riding goofy
(right foot forward) the amateur uses a regular stance (left foot forward). This

2. Recording Training Data 9

should ensure that the classification of the curves are independent of the rider’s
stance.

2.4.6 Recording Day Layout

The aim was to capture all snowboard errors mentioned in section 2.2 with
the sensors of the devices and record a corresponding video to the events. For
comparison error free runs were captured as well. All run types were recorded
for at least one entire slope run from the top to the bottom of the chairlift. The
following recordings (including timestamps) were made:

• Recorded Instructor

Error-Free run

Fast Run

Counter Rotation Run

Leaning Forward Run

Leaning Tailwards Run

• Recorded Amateur

Error-Free Run

Counter Rotation Run

Leaning Forward Run

Leaning Tailwards Run

2.4.7 Results

All types of runs were captured with the sensors and a corresponding video
footage was recorded. A total of 10.4 GB of video footage was recorded and 1.12
GB of sensor data was obtained.

2.5 Data Visualizer Program

To visualize and closer examine the recorded data a Java program was created
that would allow showing the selected data in a graph. Furthermore it should
allow viewing of the corresponding video and draw a marker on the graph of the
current position to allow synchronous viewing of the video footage and current
recording of the data.

2. Recording Training Data 10

Figure 2.3: Data Visualizer

2.5.1 Video Player

The library vlcj (version 2.2.0) was used to create a java program that would
play the video footage. The vlcj library allows embedding the VLC (VideoLan
Client) player in a java program. The library features a function “getPosition”
which returns the current position of the video. This information can be used
to update the marker on the graph, displayed below the video, to point at the
corresponding reading.

2.5.2 Graph

To display the graph the library jfreechart (version 1.0.14) was used. Jfreechart
allows displaying line charts in a program. In addition it allows drawing a vertical
marker on the graph. This was used to indicate the current position on the graph.

Chapter 3

Interpretation of Data

After having captured the different sensor data they need to be correctly inter-
preted and analysed. This section is dedicated to show how this was accom-
plished and how the raw data was used to detect a single curve.

3.1 Sensor Values and Coordinate Systems

3.1.1 Accelerometer

Figure 3.1: Accelerometer Coordinates adapted from[4]

The accelerometer of a device will always show its current acceleration. Hav-
ing the device at rest lying flat on a table will result in an accelerometer vector
reading of 0

0
9.81

 (3.1)

This is an accurate estimation of gravity in a global coordinate system.

11

3. Interpretation of Data 12

3.1.2 Gyroscope

Figure 3.2: Gyroscope Coordinates adapted from[4]

A device’s gyroscope will show its current angular velocity by returning a
vector. The term “rotation vector” is used as the vector which determines the
orientation of the rotation. To visualize this, one could imagine a stick pointing
in the direction of the rotation vector and piercing through the middle of a device.
If one were to rotate this stick with the device attached to it, the device would
rotate in the direction of the rotation vector.
The values are always relative to the phones current position and do not give any
information about the absolute global orientation of the phone. For e.g. when
the device is flat on a table and rotated around its Z-axis the readings of the
gyroscope will be the same as when the device is held flat against a wall and is
rotated around its Z-axis. We must also keep in mind that the gyroscope outputs
the rotational speed. This means that given an initial orientation of the phone
(for example lying flat on a table) the rotational speed around each axis can be
integrated over time. This results in three angles around the phones local axes
(X,Y and Z shown in Figure 3.2) which indicate how far the device has rotated
during this time period around each axis.

3.1.3 Magnetic Field

The magnetic field sensor returns the ambient geomagnetic field for all 3 physical
axes. This sensor was not used due to various reasons. It is highly sensitive to
electric noise, even to the device’s own electric field when receiving a phone call.
Furthermore the time needed to get an accurate new reading after a rotation is
too slow for our use.

3. Interpretation of Data 13

3.1.4 Justification for using both sensors

To clarify, the term “orientation” is used as the current rotational state of the
phone in the world coordinate system (shown in Figure 3.3 (a)). This is inde-
pendent of its current geographical position. For example putting the phone on
a table face up and then face down results in the same geographical position,
but the orientation of the phone in the world coordinate system differs
When the device is at rest determining the orientation is fairly simple, as we can
simply take the accelerometer readings which will be a vector pointing down-
wards with a length of 9.81. This corresponds to the force of gravity (9.81ms−2)
acting upon it in the world coordinate system. When the device is accelerating
in a direction this vector will bend into the direction of travel because in addition
to the gravitational acceleration a second acceleration is present in the direction
of travel. These vectors will sum up and the resulting vector will therefore not
be pointing towards the centre of the earth anymore.
When the device is travelling with a constant velocity the accelerometer will once
again point towards the earth. However, this scenario is also not applicable for
use during a snowboard ride. The ski slopes are usually not perfectly smooth
and a rider, especially an inexperienced one, is unable to absorb all bumps in the
slopes with his legs. This will cause the accelerometer readings to have sudden
jumps in its data making said readings on their own unusable for orientation
purposes.
The gyroscope sensor is unaffected by linear acceleration of the device in any di-
rection and will always output the rate of rotation around the phone’s local axes
shown in Figure 3.2. This reading is limited to its own local coordinate system
and does, on its own, not give any information about the current orientation of
the phone in the world coordinate system. Furthermore integrating the values
to get the corresponding angle will accumulate errors and the calculated angle
would therefore drift from the actual angle. Compared to the accelerometer the
gyroscope detects the new orientation faster after the device has been moved,
as the accelerometer first needs to settle its new values again. In short, the
accelerometer is able to show the new orientation of the device in world coordi-
nates, with a small delay, if it is travelling at a constant velocity. The gyroscope
is able to show the orientation in world coordinates faster, but needs to be given
an initial orientation and needs to have its drift corrected over time.

3.2 Orientation of Device

To correctly interpret the gyroscope data we need to know the current orien-
tation of the device relative to the earth’s surface. We fuse the data of the
accelerometer and the gyroscope in order to have an accurate estimate of the
device’s current orientation. Pascal Bissig created an app that is able to convert
a vector from world coordinate to sensor coordinates and vice versa (Shown in

3. Interpretation of Data 14

Figure 3.3: Coordinate systems

Figure 3.3) using sensor fusion between the gyroscope and the accelerometer. He
kindly granted permission to use his code in the experiments in this thesis.
Using this sensor fusion enables conversion of any sensor data to world coor-
dinates and therefore show not only the orientation of the device, but also the
angular velocity of the device in world coordinates. When the sensor values of
the gyroscope are transformed to world coordinates the third value (Z-value) will
be the angular velocity around the Z-axis of the world coordinates. To further
visualize this the following setup can be used.

As used as an example before, if the device is rotated flat on a table the gyro-
scope readings will show a rotation around the Z-axis. When converted to world
coordinates the values will remain unchanged as the world coordinate system and
the sensor coordinate system are currently aligned. Holding the phone against
a wall and rotating it around its local Z-axis will result the gyroscope reading
to once again show a rotation around its local Z-axis. However, if we rotate this
reading to world coordinates the rotation vector will now point somewhere on
the xy plane. The different coordinate systems are shown in Figure 3.3.

3.3 Curve Segmentation

After transforming the gyroscope readings to world coordinates an integration
of the Z-axis will show the current rotation relative to the slope. Since the
calculations should be independent of the geographic direction of the slope, no
initial magnetometer reading was taken and an initial rotation of 0◦ was assumed.
The next step is to separate the data into curve segments. A curve in rotation
terms vaguely happens between the two points in time where the rider changes
from transforming clockwise to counter clockwise and vice versa. This is shown

3. Interpretation of Data 15

Figure 3.4: Perfect Curves, Z-Axis of gyroscope in world coordinates integrated

in Figure 3.4. Each extreme point marks the end of a curve and the beginning
of the next one.

Figure 3.5: Counter rotation, Z-Axis of gyroscope in world coordinates integrated

However, this definition is too vague since the rider could have performed
a counter rotation error during a curve. During a counter rotation the rider
rotates his upper body in the opposite direction of the curve. The graph of the
rotation of this is shown in Figure 3.5. A curve like this would cause the previous
definition to falsely declare a curve as completed. A more robust curve detection
algorithm must therefore be crafted, which will be elucidated in the following
subsection.

3. Interpretation of Data 16

3.3.1 Curve Detection Algorithm

Smoothing

In order to slightly diminish the ditch in the incline that a counter rotation
error generates the data is smoothed by applying a weighted moving average
over the data. The window of the moving average is set to 20 values with an
exponential decay in weights. This means we take the newest calculated values
with exponentially decaying weights and average them to the newest data item.
The weight function is as follows:

fw(i) = 1 · (1 − 0.02)i (3.2)

Note that i is the number of the item in the current window starting from the
item closest to the newest item. If we were to obtain the value of data item
number 100 we take the reading from item 100 and set its weight to 1. We
then take item number 99 of the already calculated average and set its weight
to fw(1) = 0.98. We continue iterating backwards until we have reached a win-
dows size of 20. After multiplying each value with its corresponding weight
we divide the sum of all items by the sum of their weight to gain the newest
value. Furthermore this was extended to allow setting an custom weight(“initial
weight”) for the newest value. The function for each value is therefore as follows:

new(k) =

orig(k) · initW) +
20∑
i=1

(new(k − i) · fw(i))

initW +
20∑
i=1

fw(i)

(3.3)

for k = [21,NumberOfItems in orig]
where orig = serieswhichistobesmoothed
initW = initialweight
for k = [1, 20] : new(k) = orig(k)

Using moving average will smooth over small ditches. We can however not rely
on smoothing alone to smooth out all counter rotation ditches in the data. The
more smoothing we apply the more the ditches will disappear. Applying too
much smoothing will smooth out smaller curves and render them undetectable.
Therefore a combination of smoothing and increase/decrease detection was cho-
sen.

Increase/Decrease detection

Using the smoothed dataset we can more robustly detect the extreme points of
the data. Most jitter in the data will have been ironed out by the smoothing.
Simply looking for the next increase or decrease from point to point will however

3. Interpretation of Data 17

not work as small jitter in the data still exists. This jitter is due to the high
sensitivity of the sensors. To eliminate this jitter more smoothing would have
to be applied, which would lead to loss of small curve segments as mentioned
above. There exists a more robust maximum/minimum detection algorithm that
allows jitter in the data. A visual explanation is shown below. The algorithm
iterates through the list while remembering the maximum and the minimum
value. If the difference between the current data item (data point) and one of
the two is larger than a given threshold we mark the item as currently increasing
or currently decreasing at that location. The initial threshold used for this thesis
was 25 ·

(
π
180

)
≈ 0.436. This is justified by defining a curve to have at least a 25◦

rotation (after smoothing). Furthermore this threshold is adjusted after each
found curve segment. A rider’s consecutive curves usually have a similar size.
After finding a curve the threshold for detecting the new curve is set to 1

3 of the
previous curve. This means that a curve must be at least 1

3 of the previous curve
to be detected as such.
It must be taken into consideration that when a rider stops he/she may rotate
by 360◦ before continuing to ride. There could also be a larger curve in the slope
the rider is currently on. This would force the rider to do a curve that may be
above 180◦. This would set the threshold of a minimum curve to an unrealistic
height. Therefore a maximum threshold of 25 ·

(
π
180

)
≈ 0.436 is set.

Figure 3.6: Curve Detection

3.3.2 Max/Min Detection

Using the increase/decrease algorithm elucidated before we can now search for
maximum and minimum data points within the given increase/decrease seg-
ments. This will give a robust curve detection that allows counter rotations in
between to happen.

3. Interpretation of Data 18

3.3.3 Visual Representation of algorithm

Figure 3.6 demonstrates this algorithm in action. At marker 1 the distance
between the current item and the minimum is larger than the given threshold
(≈ 0.436). The algorithm therefore declares this data point as a new increase.
We reset the maximum value, which will not have any effect at this point. At
marker 2 a new decrease is registered the same way as the last increase was
detected, only with the distance between the current point and the maximum
this time. Since a previous increase was already detected we find the maximum
point between xincrease and xdecrease. We furthermore reset the minimum in
order to correctly detect the next increase again. This happens at marker 3.
After finding the new local minimum between marker 2 and marker 3 an entire
curve segment was detected. This now enables adjustment of the threshold. This
is done by looking at the y-range between the last two extreme points and setting
the threshold to 1

3 of this. We continue to iterate through the entire run.

The setup now allows separation of a single run into curves. Additionally the
information if it was a decrease or an increase in angle is stored in the curve.
This indicates the direction of the curve which enables better classification later.

Chapter 4

Classifier

4.1 Labels

Using the curve detection algorithm presented in Section 3.3, the data was sep-
arated into curve segments. With the aid of the corresponding video each curve
segment was manually labelled as one of the following:

NOCURVE (156 Samples)
Indicates an incorrectly segmented curve. It mostly occurs when the rider
is resting for a longer period of time and then turns his upper body to
continues to ride.

PER (227 Samples)
Indicates a (more or less) error free (perfect) curve

CROT(71 Samples)
Indicates that the rider has performed a counter rotation during this curve

LFOR (47 Samples)
Indicates that the rider was leaning too much forward during this curve

LTAIL (47 Samples)
Indicates that the rider was leaning too much tailwards during this curve

Total: 548 labeled runs

4.2 SVM (Support Vector Machine)

Support Vector Machine are learning models used for classification analysis. This
corresponds to our problem as we attempt to classify each run to have a certain
property (see Section 4.1 above). In the end a classifier takes a set of scalars
from the run data and predicts the classification of the given run. Scalars can

19

4. Classifier 20

be calculations or direct values taken from the data, for example the total time
span or the total angular span of the run after applying smoothing. To be able
to do this the classifier first needs to be trained with already classified runs. This
is done by feeding it with a set of scalars and the given class. Once the classifier
is trained it can be used to predict unclassified runs by feeding it with the same
set of scalars of the new run.

To accomplish this the WEKA [5] library was used. When using WEKA
the data is made up of instances. One instance corresponds to a run and has
different attributes. Attributes contain an attribute description and a scalar that
was mentioned above. Once all instances and their corresponding attributes have
been set WEKA can train a classifier.
Furthermore WEKA allows crossvalidation of data using a specified number of
folds. The method to separate the data into a train set and a test set was not
used due to the following reason. The train set may only be used to train the
classifier while the test set is used to verify its accuracy. This results in a loss of
training data which could have been used to further train the classifier. Using
training data as test data will not produce accurate results as a classifier can
simply match a test instance with an already trained instance. Crossvalidation
separates the data into n sets (number of folds). WEKA then uses n − 1 sets
as training data and the remaining set as a validation set. It does this n times
using a different set as test set every time. It then averages the performance of
all folds.

WEKA has an extensive collection of classifiers. After research a subset of
the classifiers were used and their results compared. For all properties the J48
classifier has shown to achieve the highest accuracy. J48 is an open source Java
implementation of the C4.5 algorithm [1] developed by Ross Quinlan. The C4.5
algorithm generates a decision tree from training data and can be used to classify
a range of labels (instead of a simple true/false classification which is performed
in this thesis).

4.3 Chosen scalars

This section is dedicated to show the set of attributes that were chosen to classify
each property of a run. An attribute name always consists out of the source data,
the modification of this data and the value that was inspected of this modulated
data. The attribute selection was done by running a forward and backward step-
wise regression algorithm on an initial of 43 attributes. In a backward stepwise
regression all 43 attributes are initially fed to the classifier while always remov-
ing one. This is done 43 times and the accuracy of the crossvalidation is stored.
Taking the highest accuracy, backward stepwise regression is applied to the re-
maining 42 and so forth until no attributes are left. Forward stepwise regression
is similar but the algorithm is starting with an empty attribute set and always

4. Classifier 21

adding the one attribute that increases the accuracy the most. The results of
both algorithms were then compared and the set of attributes that delivers the
highest accuracy was chosen. The reason why using all attributes does not re-
sult in the highest accuracy is as follows. Some attributes do not contribute to
a better accuracy, but rather throw off the classification. For example if most of
the correct curves happen to be 3 seconds long and the incorrect curves happen
to be 4 seconds long the classifier will deduce that a longer curve is an incorrect
curve. When testing this with all given runs the accuracy will be lower than if
this attribute was not taken into account at all.

4.3.1 Data Sources and Modulations

The following data modulations were made. Since some modulations are reused
by inspecting different scalars of it all modulations are stated here.

GyroX Rot, GyroY Rot and GyroZ Rot
The gyroscope vector was taken and then rotated to world coordinates.
This results in a vector showing the angular velocity around all three axes
(X,Y and Z) in the world coordinate system shown in Figure 3.3.

GyroZ RotIntApp
Starting with the rotated values (explained in the previous modulation)
the integral of the Z values are taken. This is done by computing the
area under the line from each point to its successor. Afterwards the sum
of each consecutive integral is stored which results in a new dataset. This
new dataset corresponds to a curve that shows the current rotation relative
to the initial rotation of the curve. It is also the same data that was used
in the curve detection algorithm.

GyroZ RotIntAppS1W5
Starting with the summed up integral (explained in the previous modula-
tion) a moving average algorithm is applied once. The smoothing is coded
as follows SαWβ. The α indicates the number of times the smoothing was
applied while β indicates the weight of the initial item. Note that the win-
dow of the moving average remains at 20 items and the items excluding the
initial always have an exponentially decaying weight with weight function
fw(i) = 1 · (1− 0.02)i. This is the same weight function as the one used for
the smoothing in the curve detection algorithm.

The following is a list of the run properties we are trying to detect and the values/
attributes selected to accomplish this. The attributes are sorted according to
their rating starting with the highest. An attribute with a higher rating has
more significance in defining the result than an attribute with a lower ranking.
The rankings were obtained from the WEKA library.

4. Classifier 22

4.3.2 NOCURVE Values

To further strengthen the curve detection algorithm the incorrectly detected
curves were labelled as NOCURVE and an additional classifier was used to pre-
dict whether a segment is a curve. This would improve overall performance since
segments that are not curves are not processed further to analyse their properties
about riding technique.

Figure 4.1: Gradients capture from a counter rotation curve segment

Total Time span
For disposal of falsely recognized curves the total time span was an im-
portant scalar. The total time span of a segment is the difference in time
between the first and the last data’s timestamp. The rider usually takes
longer breaks than his time taken to do an average curve. Therefore longer
time spans of a curve segment suggest that no curve was made in this
segment. Since the time span is independent of what data we look at,
this attribute name includes neither the source data nor the modulation
thereof.

GyroZ RotIntAppS1W5 PosGradCnt01
Taking the smoothed data a new array of data was created consisting of the
gradients. The gradients are calculated by defining a certain time span as
a window size. This window is then moved over the data while the gradient
between the first and the last data point is stored. This is demonstrated in
Figure 4.1 using a window of w = 0.25s. The window size for the current
attribute is 0.1 seconds. The value of this attribute is equal to the number
of positive gradients in this array. In Figure 4.1 a is a positive gradient
while b is negative and c is zero. This number on its own does not say much.
However, when the number of negative gradients is present in the classifier
a ratio between the two is taken into account. Having mainly positive or

4. Classifier 23

negative gradients indicates a curve with a positive or negative rotation.
Having equal amount of positive and negative gradients corresponds to the
rider having not rotated at all. Note that this attribute can correlate with
the PosNegGradSwitch attribute as well, which is elucidated later.

GyroZ RotIntAppS1W5 MaxMinGradDif01
As before, the array of gradients is inspected (window size 0.1 seconds).
The scalar of this attribute is equal to the difference between the largest
and the smallest (or most negative) gradient. A perfect curve will have a
steady increase or decrease of angular rotation and would therefore result
in a small number in this attribute. Having a higher number indicates
uneven rotation around the world Z-axis.

GyroZ RotIntAppS1W5 NegGradCnt03
This is similar to the PosGradCnt01 attribute elucidated above. Here with
a window of 0.3 seconds the number of negative gradients are obtained.

GyroZ RotIntApp TotalRadSpan
This attribute is equal to the total range of the GyroZ RotIntApp. This
is equal to the total angle change of the rider during the curve. A curve
starting from standing perfectly perpendicular to the slope looking downhill
and ending at standing perfectly perpendicular to the slope looking uphill
would result in a totalRadSpan of 180◦ ·

(
π
180

)
= π

GyroZ RotIntAppS1W5 PosNegGradSwitch03
Again the gradient array is calculated with a window of 0.3 seconds. The
value of this attribute is equal to the number of times the gradient switches
from positive to negative and vice versa. A perfect curve will only be rotat-
ing in one direction and therefore have only negative or positive gradients.
This results in PosNegGradSwitch to be equal to 0. The higher the number
the more the rider has changed the rotation direction. This attribute can
correlate with the number of either positive or negative gradients. In Fig-
ure 4.1 this attribute would have a value of 2 as it switches from positive
to negative once and back to positive again.

Accuracy

Using the above attributes with the classifier J48 an accuracy of 97.992% was
achieved. This is the percentage of correctly classified instances. From all runs
labelled as NOCURVE 94.87% were correctly classified as such. Out of all other
curves that were not labelled as NOCURVE 0.76% were incorrectly classified as
not a curve.

4. Classifier 24

Discussion

Using the total time span the classifier is able to take out most of the false
positives. The other attributes contribute to the accuracy. If the rider rotates
in many directions without having a dominant rotation it is a strong indication
that no curve was made during this period. The curve segmenter and the chosen
attributes therefore ensure a high accuracy in curve detection.

4.3.3 CROT Values

GyroZ RotIntAppS1W5 MaxMinGradDif01
Used in NOCURVE.

GyroZ RotS1W5 MaxContra
Since it is known whether a curve is an increase or a decrease of angular
rotation (clockwise or counter clockwise) it is possible to detect counter
movements that occur within the curve. If the curve starts at 0◦ and
ends at +180◦ the rider has ideally only applied rotations in the positive
direction. This is visible in the gyroscope Z data after rotating it to world
coordinates. If this scenario is the case this attribute stores the maximum
negative value which corresponds to the maximum angular rotation in the
opposite direction of the curve. Similarly this attribute stores the most
positive value if the curve starts at 0◦ and ends at −180◦. In Figure 4.1 a
curve with an increase of angles was performed. Therefore for this curve
segment the most negative angular velocity is stored in this attribute. Note
that always the absolute value is taken to ensure independence of the curve
direction.

GyroZ RotIntApp ContraCurveMovements01
Using the algorithm used to detect increase/decrease in the curve detection
algorithm, contra curve movements can be detected. The threshold in this
attribute is set to 0.01 (≈ 0.573◦). While iterating through all data points
the minimum is stored. If the difference between the current data point and
the minimum is above this threshold the “climb counter” is increased. The
“drop counter” is increased similarly if the difference between the current
item and the maximum is larger than the threshold. As with the previous
attribute, it is known whether a curve is increasing or decreasing its rota-
tion angle i.e. whether the curve was clockwise or counter clockwise. If the
angles are increasing (such as in Figure 4.1) the ContraCurveMovements
attribute stores the number of times the data decreased (“drop counter”)
during the curve. Analogically the “climb counter” is stored in this at-
tribute if the curve mainly consists of a decrease in angles.

GyroZ RotIntAppS1W5 PosNegGradSwitch03
Used in NOCURVE.

4. Classifier 25

GyroY Rot Max
After the gyroscope values are transformed to world coordinates this at-
tribute is equal to the maximum angular rotation around the Y-Axis.

GyroZ RotIntAppS1W5 NegGradCnt03
Used in NOCURVE.

GyroX Rot Min
After the gyroscope values are transformed to world coordinates this at-
tribute is equal to the smallest (or most negative) angular rotation around
the X-Axis.

Total Radspan
Used in NOCURVE.

GyroZ Rot Min
After the gyroscope values are transformed to world coordinates this at-
tribute is equal to the smallest (or most negative) angular rotation around
the Z-Axis.

Accuracy

Using the J48 classifier an accuracy of 93.96% was reached. This means that from
all runs 6.04% were incorrectly classified. Of all the counter rotations 84.51%
were correctly classified as such and from all the correct runs 3% were incorrectly
classified as a counter rotation

Discussion

The counter rotation can be detected rather well. This is due to the fact that
the rider moves his upper body in the opposite direction of the curve for a
short period of time. 100% accuracy is difficult to achieve since the counter
movement varies of magnitude between each rider. The riders that are aware
of this error and are trying to avoid it will usually have a smaller magnitude
of counter rotation. This was especially visible in the data when the amateur
rider was recording his curves with no errors where sometimes minimal counter
rotations would occur nevertheless. These curve segments were then therefore
not classified as PER. Riders that are unaware of the incorrect riding technique
will perform a counter rotation that is more obvious to the eye and to the sensor
since his upper body will perform a more obvious counter rotation.
Theoretically speaking the smallest rotation into the opposite direction of a curve
could be declared as a counter rotation. Due to the unevenness of the slope the
rider must absorb small hills with his body to ensure control of his snowboard.

4. Classifier 26

While doing so avoiding even the smallest rotation in the opposite direction is
nearly impossible. Therefore it was necessary to have a certain threshold of
counter rotation and further take other attributes into account when deciding
whether a counter rotation was performed.

4.3.4 LFOR Values

GyroY Rot Max
After the gyroscope values are transformed to world coordinates this at-
tribute is equal to the maximum angular rotation around the Y-Axis.
(Same as used for detecting CROT).

GyroY Rot Min
After the gyroscope values are transformed to world coordinates this at-
tribute is equal to the smallest (or most negative) angular rotation around
the Y-Axis.

GyroZ RotIntAppS1W5 LongestStreak1
Inspecting the summed up Z-integrals of the transformed gyroscope a ver-
tical window (range window) is set with a certain threshold (here 0.1 which
is ≈ 5.73◦). This attribute stores the longest time streak where the values
are all within this threshold.

GyroZ RotIntAppS1W5 ContraCurveMovements01
This is similar to theContraCurveMovements in the CROT detection with
the difference, that the data is smoothed with initial weight 5 before run-
ning the algorithm on it. Threshold is at 0.01 (≈ 0.573◦).

GyroZ RotIntAppS1W5 PosNegGradSwitch02
This is similar to the attribute used to detect NOCURVE with the thresh-
old set to 0.2 seconds.

GyroZ RotIntAppS1W5 PosNegGradSwitch03
Used in NOCURVE.

GyroZ RotIntAppS1W5 LongestStreak01
LongestStreak attribute (explained above) with threshold of 0.01 (≈ 0.573◦).

GyroZ RotIntAppS1W5 PosNegGradSwitch01
Similar to the previous PosNegGradSwitch attributes. In this occurrence
the threshold was set to 0.1 seconds.

GyroZ RotIntAppS1W5 MaxMinGradDif01
Used in NOCURVE.

4. Classifier 27

Accuracy

Using the J48 classifier an accuracy of 91.61% was reached. This means that
from all runs 8.39% were incorrectly classified. Of all the runs that were declared
as “leaning forward” 63.83% were correctly classified as such and from all the
correct runs 2.64% were incorrectly classified as leaning forward.

Discussion

Leaning forward detection has a significant lower accuracy than counter rotation
detection. This is due to the following fact. When a rider is executing a toeside
curve he automatically leans into the curve to stabilize his posture. The faster
his riding velocity and the smaller the curve the more the rider will lean into the
curve. In other words he will lean forward even when he is making a correct curve.
To the sensor in the chest pocket the two scenarios are difficult to distinguish as
both indicate an upper body that is almost parallel to the ground.
To improve detection of leaning forward one could further process GPS readings
to get the curve radius and the speed. Using this an optimal upper body lean
angle could be calculated. This angle could then be compared with the actual
leaning angle of the rider to detect whether he is leaning forward too much. It
should be stated here, that this error is the most uncommon one from the three
that were tested. It is furthermore the error that will limit and/or endanger the
rider the least from the three when performed.

4.3.5 LTAIL Values

GyroZ RotIntApp ContraCurveMovements01
Used in CROT.

GyroZ Rot Max
After the gyroscope values are transformed to world coordinates this at-
tribute is equal to the maximum angular rotation around the Z-Axis. (Sim-
ilar to GyroY Rot Max used for detecting CROT).

GyroZ RotIntAppS1W5 PosNegGradSwitch03
Used in NOCURVE

GyroZ RotIntAppS1W5 NegGradCnt03
Used in NOCURVE

Accuracy

Using the J48 classifier out of all the runs that were declared as “leaning tail-
wards” 10.64% were correctly classified as such and from all the correct runs 0%

4. Classifier 28

were incorrectly classified as leaning tailwards.

Discussion

This error is difficult to capture with a sensor. Nevertheless for the sake of
completion this error was attempted to be classified as well. The error occurs
when the rider is putting too much weight on the back foot. This does not
guarantee, that his body is tilted tailwards i.e. the rider is able to put his weight
on his back foot without changing his upper body pose. According to the sensors
the rider is still standing straight on his board. To detect this error efficiently a
weight pad could additionally be inserted onto the base plate with a Bluetooth
communication to the phone. The base plate is the bottom part of the binding
where a snowboarder stands on. These weight pads could register the weight
distribution of the rider so he could be notified if his weight is mainly on his
back foot.

Chapter 5

Android Application

Figure 5.1: Snowdroid [3]

To show an approach of how the data and algorithms in this thesis can be
applied to an android application a Snowdroid App was programmed. WEKA is
able to store a trained classifier and load this classifier again to predict further
segments. The original WEKA library does not run on android. Username
rjmarsan has made a working version available online called WEKAStripped [2]
that runs on android. Full functionality is however not guaranteed. The app
should primarily help the user detect his riding mistakes and explain to him how
to correct them. However, further additions can be made such as viewing one’s

29

5. Android Application 30

progress over an entire season or sharing one’s high score (best error-free to error
ratio on a specific slope) with friends via facebook or twitter.
The app is implemented in such a way that adding new classifiers and new
mistake descriptions is simple. Adding more error detectors is therefore another
extension point.

5.1 Usage

Figure 5.1 on the left hand side shows the initial screen when starting Snowdroid.
After pressing start Snowdroid will start receiving the sensor values. The values
are then segmented into single run segments using the method presented in sec-
tion 3.3. From the segment the attributes that were presented section 4.3 are
obtained and then sent to each classifier to predict its error property. When press-
ing stop the right screenshot in Figure 5.1 appears which displays the amount of
curves made and the amount of mistakes made during those curves.

Figure 5.2: Snowdroid

The user is able to browse through all different mistake descriptions and look
at further details about each of them. This is shown in Figure 5.2 on the left
hand side. In addition it is possible to view a video of the mistake to further

5. Android Application 31

visualize the incorrect riding technique. On the right hand side of Figure 5.2 the
help screen is displayed. It shows how to use the app and displays the layout of
the snowboard for better understanding of the error descriptions.

Chapter 6

Conclusion

After experimenting with sensor data and classifiers it can be stated that it is
possible to detect snowboard post-amateur errors to a satisfying degree. Counter
rotations can be identified with a satisfying accuracy. Since this is one of the most
common errors beginner snowboarders perform the readings and classifier can
be used to detect and notify the rider of this. Furthermore the curve detection
algorithm can be used to not only count the number of curves the rider took,
but also the consistency of curve size and curve time during an entire slope run.
In our scenario multiple phones were used. Most people do not own more than
one smart phone. Therefore the initial focus was to use only one device (in
the chest pocket of the rider). Since this was accomplished with a satisfying
accuracy the algorithms and technologies presented in this thesis can be used
by a broader group of snowboarders. It should be mentioned that the detection
of the mentioned mistakes does not replace the educated eye of a professional.
A professional is able to point out mistakes sensors may be unable to capture.
This also includes non-riding mistakes such as correctly tying the snowboard
shoes and correctly mounting the snowboard which a phone is unable to detect.

32

Bibliography

[1] C4.5 Algorithm. http://www.rulequest.com/Personal/.

[2] WekaStripped by rjmarsan. https://github.com/rjmarsan/

Weka-for-Android/.

[3] Background Image by Spreadshirt.net. http://www.spreadshirt.net/

ruby-red-snowboarder-silhouette-women-s-t-shirts-C4408A14082628/.

[4] Android Developer. http://developer.android.com/reference/

android/hardware/SensorEvent.html.

[5] Weka Library. http://www.cs.waikato.ac.nz/ml/weka/.

33

http://www.rulequest.com/Personal/
https://github.com/rjmarsan/Weka-for-Android/
https://github.com/rjmarsan/Weka-for-Android/
http://www.spreadshirt.net/ruby-red-snowboarder-silhouette-women-s-t-shirts-C4408A14082628/
http://www.spreadshirt.net/ruby-red-snowboarder-silhouette-women-s-t-shirts-C4408A14082628/
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://www.cs.waikato.ac.nz/ml/weka/

	BA-2012-15.pdf
	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goal of Thesis
	1.3 Outline

	2 Recording Training Data
	2.1 Snowboard Layout
	2.2 Type of errors
	2.3 Recording Application
	2.3.1 Sensors
	2.3.2 Usability
	2.3.3 Memory Management

	2.4 Recording Day
	2.4.1 Location
	2.4.2 Time Period
	2.4.3 Skiing area & Slopes
	2.4.4 Recording Equipment
	2.4.5 Snowboarder Skill Level
	2.4.6 Recording Day Layout
	2.4.7 Results

	2.5 Data Visualizer Program
	2.5.1 Video Player
	2.5.2 Graph

	3 Interpretation of Data
	3.1 Sensor Values and Coordinate Systems
	3.1.1 Accelerometer
	3.1.2 Gyroscope
	3.1.3 Magnetic Field
	3.1.4 Justification for using both sensors

	3.2 Orientation of Device
	3.3 Curve Segmentation
	3.3.1 Curve Detection Algorithm
	3.3.2 Max/Min Detection
	3.3.3 Visual Representation of algorithm

	4 Classifier
	4.1 Labels
	4.2 SVM (Support Vector Machine)
	4.3 Chosen scalars
	4.3.1 Data Sources and Modulations
	4.3.2 NOCURVE Values
	4.3.3 CROT Values
	4.3.4 LFOR Values
	4.3.5 LTAIL Values

	5 Android Application
	5.1 Usage

	6 Conclusion
	Bibliography

	Declaration_BA-2012-15_Misteli

