ETH Institut fiir

' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Master Thesis
at the Department of Information Technology
and Electrical Engineering

Executing Process Networks on
Heterogeneous Platforms using OpenCL

AS 2012

Tobias Scherer

Advisors: Lars Schor
Andreas Tretter
Professor: Prof. Dr. Lothar Thiele

Zurich
31st May 2013

Abstract

Upcoming heterogeneous systems ask for new programming paradigms. Ab-
stracting the underlying hardware architecture is desirable in order to support
productive software development.

This thesis proposes a design flow and runtime-system for executing process
networks on heterogeneous systems using OpenCL. Process networks are a
popular model of computation for deterministic parallel programming and
OpenCL is a royalty-free standardised programming interface with a broad
support in industry. The proposed design flow consists of a program code
synthesis framework for building applications from a generic high-level pro-
cess network specification. The synthesised application is targeted to a cer-
tain OpenCL architecture that was predefined by a high-level specification.
The target code is built for this architecture specification integrating reusable
building block primitives into it. Those primitives are location-based FIFO
channels minimising the number of memory copy operations, a process wrap-
per that is interconnectable to channels and mirrors the process network func-
tionality, and an extensible task activation framework responsible for inter-
process synchronisation. Heterogeneous systems, being inherently parallel
computer architectures, demand scalable and parallel applications. To sim-
plify this, a notion of shadow copies was introduced to transparently abstract
data-parallelism.

Extensive evaluations on two heterogeneous systems have shown that the
proposed design flow and runtime-system support a wide range of hetero-
geneous platforms and parallel applications. Furthermore, the evaluations
have proved that the proposed framework is suitable for efficient and pro-
ductive software development for heterogeneous systems and that it provides
enough flexibility so that the programmer can efficiently exploit the parallel-
ism offered by multicore CPUs and GPUs.

— I —

Acknowledgements

First of all I would like to express my sincere gratitude to Prof. Dr. Lothar
Thiele for giving me the opportunity to write this master thesis in his research
group.

I wish to express my warm and sincere thanks to my advisors Andreas Tretter
and Lars Schor for their many enriching discussions and their extensive sup-
port during the thesis. The many hours of discussing results and proceedings
were really helpful and motivating. I also appreciated that your door was al-
ways open for me to discuss ideas and problems. It was a pleasure to work
with you and also to contribute to your future research.

Furthermore I would like to thank my family, my friends and also my girl-
friend Tanja for their constructive motivation and patience during this thesis.

— III —

1.

Contents

Introduction

1.1. Motivation
1.2. Contributionso
1.3. Outline e

Related Work

Programming Model and Problem Statement

3.1. High-Level Parallel Programming
3.1.1. Classification of Parallelism
3.1.2. ProcessNetworks.

3.2. Heterogeneous Platforms
3.21. GPGPU-Programming

3.3. Computational Model OpenCL
33.1. Terminology
3.3.2. Hierarchiesof Memory

3.4. Problem Statement

Runtime Environment Combining OpenCL and SDF
4.1. Differences of OpenCLandSDF.
4.2. Overview of the Proposed Solutions
4.3. Communication ChannelsinOpenCL
43.1. Ring Buffer in Host Memory
43.2. TripleBuffering,
4.3.3. Channel Implementation Directly on Device Memory . .
43.4. Combined Channel Implementation
4.4. Task ActivationPolicy
4.5. Fine-Grained and Coarse-Grained Data-Parallelism
46. Summary

. High-Level Design-Flow for OpenCL-Accelerated Applications

5.1. Distributed Application Layer

52. Overview e
53. Specification L Lo

5.4. Software Synthesis

55. DesignGoals. o 0.
56. Summary

. Evaluation

6.1. EvaluationSetup,
6.2. Intra- and Inter-Device Communication
6.3. Comparison of Task Activation Frameworks
6.4. Overhead of OpenCL versus POSIX Threads

6.5. Exploiting Task- and Data Parallelism

6.6. Summary

. Conclusion and Outlook

7.1. Conclusion
72. Outlook

. Presentation Slides

. Reading List for OpenCL

51
52
52
53
57
58
60

61
61
62
65
66
67
72

73
73
74

75

86

3.1.
3.2
3.3.
3.4.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.
4.8.
4.10.
4.11.
4.12.
4.13.
4.14.

5.1.
5.2.
5.3.
54.

6.1.
6.2.

6.3.
6.4.
6.5.
6.6.

List of Figures

Types of parallelism. 10
Process network as directed graph. 11
OpenCL system, taken from [1] 16
OpenCL memory model, taken from [1] 18
SDF process as OpenCL kernel. 24
Data-parallelism using splitters and mergers. 25
SDF process with shadow copies. 26
SDF process with inner parallelism. 26
Buffer location. L o o 28
Interface dependencies between processes and channels. 29
Channel as a ring buffer in host memory. 31
Channel with triple buffering. 33
Channel with single buffering. 38
Channel location. 40
Channel with host-unified memory. 41
Task activation policy dependency. 42
Realistic task activation policy dependency. 43
Designflow of DAL. 53
DAL process network specification. 55
DAL architecture specification. 56
DAL mapping specification. 57
Synthetic benchmark application. 64
Data transfer rate for different process mappings and channel

implementations. o L oo L 64
Synthetic benchmark application. 65
Task activation framework evaluationresult. 66
Synthetic benchmark application. 67
OpenCLoverhead. 67

6.7. Realistic benchmark application MJPEG.
6.8. MJPEG evaluation resultonsetup1.
6.9. MJPEG evaluationresultonsetup2.

— VII —

71
71

Introduction

1.1. Motivation

Today, we are in the middle of a fundamental transition concerning computer
architectures. It is driven by an ever-increasing demand for computing power
in all fields, be it High Performance Computing, personal computers, or even
embedded systems. All of them asks for power-efficient, but still powerful
computer architectures. Heterogeneous system are one way to address both
objectives, namely being power-efficient and offering an increased perform-
ance at the same time. The clue of a heterogeneous system is that it combines
different types of computing units to a complete system. Computing units
can, for example, be special purpose hardware suitable only for one particu-
lar class of problems. Specialisation allows computing units to be optimised
in terms of power-efficiency or performance. Typically, these different types
of computing units have to be programmed separately, which makes writ-
ing software for such a system tedious and complex. Applications have to be
manually adjusted and optimised for a particular system and cannot be easily
ported to another one.

1.1. MOTIVATION

Traditional programming models are not convenient to program these new
heterogeneous systems because they lack in flexibility and lead to laborious,
time-consuming, and error-prone software development. OpenCL — a stand-
ardised interface for cross-platform, parallel programming with a broad sup-
port in industry — is one step towards portability. With OpenCL, a piece of
code can be ported to a broad range of different computer architectures. This
simplifies software development and makes the code reusable for different
platforms, which is a persuasive argument for using OpenCL. Unfortunately,
OpenCL is a complex framework by itself, and needs a lot of knowledge and
understanding of low-level details of the underlying hardware. There are
various difficulties that are unsolved in OpenCL. For example, communica-
tion is a tedious task, especially when devices of different vendors are com-
bined to a heterogeneous system. Also synchronisation is left to the user, even
though it leads to indeterministic software if it is done improperly.

The problems arising with OpenCL are not new and have already been solved
for traditional programming models with the model of process networks. Pro-
cess networks offer a data-driven notion to write inherently parallel software.
Synchronisation is achieved implicitly and the behaviour of an application
will be correct for any deadlock-free schedule. For process networks it is pos-
sible to calculate correctness tests offline. It can be guaranteed that an ap-
plication will never block and therefore behaves correctly. Furthermore, an
implementation of process networks always consists of the same elementary
parts, which can therefore be reused for multiple applications. The program-
mer can solely focus on the functionality of the application and need not care
about low-level details, such as communication and synchronisation.

This master thesis proposes a design flow and a runtime-system that imple-
ments process networks by means of OpenCL. In this framework, applica-
tions are specified in a high-level language following the ease of the process
network syntax, whereas the underlying architecture is specified separately
and independently from the one of the application. This is the baseline for
a program synthesis framework that creates architecture-dependent code ac-
cording to the specification and builds the final executable by merging the
created code with the the application-specific code. This approach offers a
flexible and productive way of portable software development. The program
synthesis framework combines reusable building blocks that were implemen-
ted and tested carefully to be flexible and adaptive for different process to
processor mappings. An extensive evaluation has been carried out, compar-
ing different OpenCL devices for their parallel processing performance on a
realistic video-processing application.

1.2. CONTRIBUTIONS

1.2. Contributions

The contributions of this master thesis are as follows:

* An application programming interface (API) for specifying an applica-
tion based on the notion of a process network and a separate high-level
specification for heterogeneous architectures.

¢ A notion of parallelism that distinguishes between coarse-grained and
fine-grained data-parallelism. The former is denoted as shadow copy,
whereas the latter is denoted as intra-process parallelism.

* A runtime-system implementing the proposed API for executing pro-
cess networks on top of OpenCL. This includes location-based FIFO
channels that minimise the number of copy operations considering the
underlying memory architecture and an extensible task activation frame-
work that predictably controls the process invocations and synchronisa-
tion among the processes.

¢ A program code synthesis framework, which can create executable bin-
aries from a high-level application and architecture specification. The
proposed framework can build the same application for all the specified
architectures by merging the architecture specific code with the applica-
tion specific code.

¢ An extensive evaluation of the framework benchmarking the channel
throughput, process overhead, performance of the task activation frame-
work, and real-world performance of various devices for different levels
of parallelism.

1.3. Outline

This thesis is organised as follows. After investigating related work in Chapter 2,
an overview of existing parallel programming models is given in Chapter 3
and a problem statement is formulated. The proposed runtime environment is
detailed in Chapter 4, followed by the design flow specification in Chapter 5.
Chapter 6 presents the results of the evaluation of the proposed framework.
The thesis finally concludes in Chapter 7 presenting an outlook.

Related Work

The recent arise of high-performance graphic processing units (GPUs) motiv-
ated many research projects to exploit heterogeneous computer systems con-
sisting of central processing units (CPUs) and GPUs. To support this evol-
ution, programming languages have been developed that natively support
GPUs. Examples of such programming languages include Cg [2], Brook [3],
and Accelerator [4]. Today, Nvidia’s CUDA [5] and OpenCL [6] are mainly
dominating general-purpose GPU programming. While CUDA is a propriet-
ary framework targeting the GPUs Nvidia produces, OpenCL is maintained
by a non-profit technology consortium and adapted by many software and
hardware vendors. Besides GPUs, programs written in OpenCL can be ex-
ecuted on CPUs, various accelerators, or DSPs. Even more, OpenCL can be
used to program the STHorm platform [7], a cluster-based on-chip many-core
system.

Even though OpenCL provides a standard interface to program heterogen-
ous systems, the programmer must manage many low-level details includ-
ing mapping of tasks onto devices, data transfer between host and device,
and synchronisation between the different devices. Thus, many projects re-
cently developed abstraction layers for OpenCL. Maestro [8] is an extension
of OpenCL providing automatic data transfers between host and device as
well as task decomposition across multiple devices. While tremendously sim-

plifying the task of the programmer, Maestro introduces new restrictions as,
for instance, that the individual tasks have to be independent of each other.
The task-level scheduling framework detailed in [9] extends OpenCL by a
task queue enabling a task to be executed on any device in the system. Fur-
thermore, dependencies between tasks are resolved by manually specifying
a list of tasks that have to be completed before a new task is executed. Non-
etheless, the burden task of data exchange is still left to the programmer and
no automatic design-flow is provided to efficiently design applications in a
high-level programming language.

dOpenCL (Distributed OpenCL) [10] is an extension of OpenCL to program
distributed heterogenous systems. Even though the approach abstracts the
different nodes of a distributed system into a single node, the programmer is
still responsible for managing many low-level details of OpenCL.

A widely used approach for multi-core programming at the process-level are
process networks. In particular, GPUs have recently been considered as an
option to improve the execution of process networks on ordinary comput-
ing systems [11, 12, 13]. For instance, the multi-threaded framework pro-
posed in [11] integrates both POSIX threads and CUDA into a single applic-
ation. KPN2GPU, a tool to produce fine-grain data parallel CUDA kernels
from a process network specification, is described in [12]. An automatic code
synthesis framework taking process networks as input and generating multi-
threaded CUDA code is described in [13]. Sponge [14] is a compiler to gen-
erate CUDA code from the StreamlIt [15] programming model. All of them
have in common that they map streaming applications specified as process
networks onto heterogenous systems. In contrast, the approach in this thesis
generates OpenCL code enabling the same framework to be used for a wider
range of heterogeneous platforms.

The high-level compiler described in [16] generates OpenCL code for applic-
ations specified in Lime [17], a high-level Java compatible language to de-
scribe streaming applications. The Lime task programming model is sim-
ilar to SDF graphs, but provides support for non-determinism by introdu-
cing special operators. The work in [16] mainly focuses on optimizing the
individual OpenCL code. In contrast, this thesis follows the Y-chart design
approach [18] enabling a platform-independent specification of the applica-
tion and an automatic high-level optimization of the process-to-device map-
ping to efficiently utilize the system. Furthermore, by extending the DAL pro-
gramming model [19], the programmer is able to specify dynamic interactions
between multiple streaming applications.

Programming Model and Problem
Statement

This chapter presents parallel programming concepts. To start with, the diffi-
culties of writing parallel software are highlighted in the introductory section.
Afterwards, the high-level parallel programming model of process networks
is introduced in Section 3.1.2. Process networks have some nice characteristics
that simplify writing parallel applications. Then, motivated by upcoming het-
erogenous systems, existing programming frameworks for general purpose
GPU-computing (GPGPU) are summarised in Section 3.2. The focus is after-
wards set to OpenCL, a framework that allows to program various types of
computing units in a portable way. Finally, a problem statement is formulated
in Section 3.4 to build the baseline of this thesis.

3.1. High-Level Parallel Programming

Parallel computing is a fundamental concept of programming that stands in
contrast to sequential programming. It describes a concept where multiple
calculations are executed simultaneously. The roots of parallel programming
are found in High Performance Computing, but it has recently experienced a
new wave of interest in computer engineering research. The reason for this

3.1. HIGH-LEVEL PARALLEL PROGRAMMING

is on one the hand the physical limit for frequency scaling in digital circuits,
which led to multicore CPUs in personal computers. On the other hand is an
increasing demand for efficient low-power devices with a huge computation
performance in the fields of embedded systems. Thus, embedded systems are
also evolving towards highly parallel computer architectures with heterogen-
eous components.

This evolution concerning parallel computer architectures asks for new appro-
priate parallel programming models, and is a major change in software devel-
opment. As the evolution of such mainstream parallel systems is still young,
experts consider the currently existing high-level programming models as still
not mature. For example Dr. Clay Breshears — Technical Advisor to the Intel
Software Network Parallel Programming Community, and author of the Book
The Art of Concurrency [20] — compares the evolution of programming models
with the for loop that took decades to be developed in its modern syntax. He
also states:

I believe that we’re still in the infancy of multicore processors and
widespread parallel programming models. [...] If we consider MPI and
threads as the assembly languages of parallelism, then Open MP and TPL
are the first passes of implementing parallelism in a much easier, higher-
level way. Having parallelism as an integral part of the definition of a
programming language is the next step in the evolution that will make

things easier. [21] , ,

There are quite a few difficulties with parallel programming that make writ-
ing software all but straight-forward. Deterministic behaviour is not easily
reached as there are race conditions between concurrent processes that share
the same data. Synchronisation of critical sections is therefore indispensable.
However, if synchronisation is done improperly, it will unnecessarily serial-
ise the application, or even worse, it will lead to dead-locks. Synchronisation
errors can usually not be detected by compilers, and remain undetected until
the application behaves incorrectly. Debugging is a prominent way to track
errors, but a debugger usually also influences the timing behaviour, and it
might happen that the same program runs glitch-free while debugging. But
even without such special problems, it is a challenging task to debug multi-
threaded programs, because it is not exactly easy to understand the behaviour
of simultaneously running threads.

Another important question is how to exploit the full performance of an un-
derlying hardware architecture. It is dependent on the correct schedule of the

3.1. HIGH-LEVEL PARALLEL PROGRAMMING

concurrent processes, whereas the schedule itself is dependent on the process-
to-processor mapping. Usually, processes are not completely autonomous,
because they communicate with each other. In a real system, communication
cost cannot be neglected, as the resources are sparse (e.g., limited bandwidth
on a bus), and also because communication introduces latencies. In practice,
communication costs do not scale proportionally with the amount of data that
has to be transferred (it is often cheaper to transfer a bigger amount of data
once in comparison to transferring the same amount of data in small pieces).
For all these reasons, finding an optimal schedule and an optimal mapping
for such a system is non-trivial.

3.1.1. Classification of Parallelism

The parallelism of an application can be classified into three major groups,
namely task-level, data-level, and pipeline-level parallelism. They are de-
picted in Figure 3.1. Task-level parallelism is shown in Figure 3.1-(a) by a
dependency graph of four tasks. Tasks T; and T, are independent of each oth-
ers outputs, and can therefore be executed simultaneously. In contrast, there
is data-level parallelism depicted in Figure 3.1-(b). The topology of the de-
pendency graph is equal to the one of task-parallelism, but the difference is
that both tasks T; and Tj consist of the same instructions, but are applied to
different data. The third class is pipeline-parallelism shown in Figure 3.1-(c)
where T; is directly dependent on T;. In this case, the tasks can be seen as
an assembly-line, where each stage produces data to be forwarded to the next
stage. Optimally, these processes can run concurrently.

Another classification is the parallelism granularity of an application. It de-
scribes the ratio of computation to communication according to the definition
in [1, p. 10]. An application that is split into many small processes with a
lot of communication is called fine-grained, whereas the same application is
called coarse-grained, if it is split into fewer long-running processes with less
communication overhead.

This section provided an overview of parallel programming. The next section
will detail a formalised distributed parallel programming model called process
network.

3.1. HIGH-LEVEL PARALLEL PROGRAMMING

(a) task-level (b) data-level

O—@—6G—0

(c) pipeline-level

Figure 3.1.: The three different classifications of parallelism depicted as dependency graphs
between tasks.

3.1.2. Process Networks

Process networks are a well-known theoretical concept for describing dataflow
applications. In principle, an application is split into several autonomous pro-
cesses. Each process solves exactly one specific subtask and runs concurrently
with all other processes. The only relation between them is the data they ex-
change using point-to-point first-in first-out (FIFO) channels; this is also the
only way to communicate between processes. A process network can be de-
noted as a directed graph (Fig. 3.2), where the nodes represent processes and
the arcs represent channels. Channels are theoretically unlimited in size, and
a process can read from its input channels or write to its output channels. The
read operation will block the process in case that the channel is empty. The
execution time of a process can be arbitrarily long, but eventually when it fin-
ishes, it will be automatically invoked again. A process might be stateful, i.e.,
it can store data between to invocations.

An application specified as a process network shows the amount of concur-
rency between its processes. Especially task-level and pipeline-level paral-
lelism are naturally represented by the process network itself. A very neat
feature of process networks is that, no matter what scheduling is applied to
them, the functionality will be equivalent. This is usually not the case when
writing parallel software without proper synchronisation. Process networks
however have a really simple notion of synchronisation that will always guar-
antee correct behaviour.

3.1. HIGH-LEVEL PARALLEL PROGRAMMING

Figure 3.2.: A process network consisting of four processes denoted as a directed graph. The
nodes represent the processes, and the arcs the interconnecting channels.

The next section introduces a particular notion of process networks, namely
synchronous data flow.

Synchronous Data Flow

The notion of Synchronous Data Flow (SDF) was introduced in 1987 in [22] by
Lee et. al. and specifies a subclass of process networks. Their work was largely
influenced by the inherent data-centric view of signal processing applications.
Signal processing applications are defined as independent processes intercon-
nected through channels, where each process is solving a subtask of the com-
plete application. This way, the application can also be depicted as a data flow
graph (Fig. 3.2), where the processes are represented by nodes, whereas the
channels correspond to the interconnecting arcs. The processes are invoked
continuously and infinitely often in a self-loop.

In contrast to general process networks, a process in SDF is stateless. This
means, that the behaviour of a process only depends on the input tokens and
not on the past invocations. A state can however be emulated for SDF by
using a self-channel which transfers the state into an input token. Another
difference is that every process writes a constant amount of data to all its out-
put channels in each invocation and reads a constant amount of data from
its input channels. The amount of data can be accessed in terms of tokens,
describing a logically indivisible amount of data. The size of such a token is
fixed per channel. So, the rate of tokens for every channel is constant for all
invocations of a process and specified before execution. However, the input
token rate and the output token rate of a channel can be different on every
channel.

3.1. HIGH-LEVEL PARALLEL PROGRAMMING

In the original paper, each channel could be assigned a delay, which is equi-
valently treated as a certain number of initial tokens lying on the delayed
channels.

Properties of SDF graphs

One of the main reasons for introducing the SDF model of computation was
exposing task-level and pipeline parallelism in an application. This is non-
trivial in imperative coding, and is therefore usually not exhibited. SDF graphs,
on the other hand, do naturally represent an application such that task-level
and pipeline-level parallelism can easily be achieved. Moreover, since the
token rates are constant for the whole runtime, it is possible to calculate a
schedule offline, which is not possible for general-purpose process networks.
Another property is that SDF applications can be analysed for correctness, i.e.
it is possible to calculate the needed buffer sizes for a given schedule such
that the application will never dead-lock. Yet another neat property is that
the behaviour of an application is always correct for any schedule that is not
dead-lock free. SDF graphs do therefore not suffer from race-conditions and
dead-locks, which are serious problems of other common parallel program-
ming models. Furthermore, synchronisation is an inherent property of SDE,
and is not left to the programmer. Synchronisation and indeterminism are
what makes parallel programming error-prone and time-consuming. Both are
eliminated for process networks, which is a big advantage.

On the other hand, the SDF model of computation does also have some disad-
vantages. First, the static token rate restricts the space of applications, because
all processes have to process the same amount of tokens in each invocation.
This is not the case for more general process networks. Second, there is a
tradeoff to chose between fine-grained and coarse-grained parallelism of an
application. Fine-grained parallelism will introduce a considerable commu-
nication overhead and finally limit the application speedup. More coarse-
grained processes however, will unnecessarily serialise the application and
will therefore decrease the flexibility of mapping processes to other comput-
ing elements. Third, the mapping and the schedule are tied to one specific
platform and cannot be simply ported to another one.

SDF is a theoretical formalism, which defines rules how an application should
behave. It describes what an application should do with a completely data-
driven model. Therefore SDF can be classified as declarative coding, because
SDF does only define the behaviour of an application and not how this be-

3.2. HETEROGENEOUS PLATFORMS

haviour can be achieved. A concrete implementation of the SDF model of
computation is proposed in Chapter 5.

The next section provides a bottom-up view on parallel programming by in-
troducing heterogeneous platforms and their programming models.

3.2. Heterogeneous Platforms

Real-world applications usually consist of both, a parallel part, and a sequen-
tial part that cannot be further divided. Future hardware systems should
reflect that structure to support a broad range of applications to run quick
and power-efficient. Systems integrating different types of computing units
are called heterogeneous. Their components, so-called computing units, have
different capabilities that can be used to accelerate some special tasks. Since
heterogeneous platforms are offering multiple computing units that can work
concurrently and programmed independently, they are classified as a subset
of parallel systems.

Recently, the chip vendors were investing a lot of their research resources in
developing new heterogeneous architectures. For example, Intel — special-
ised in selling general-purpose CPUs — released its new massively paral-
lel accelerator processor Xeon Phi! targeting the market of High-Performance
Computing. It is a coprocessor that can accelerate special tasks and therefore
relieve the CPU. Such a system consisting of one or more CPUs and a Xeon
Phi is heterogeneous, as both computing units can be programmed independ-
ently and operate simultaneously. Another example of a heterogenous sys-
tem is NVIDIA's Tegra® processor, an ARM system-on-chip which integrates
a multicore CPU, mobile GPU, and video accelerators on the same chip. Its
ultra-low-power design is designed to be used in mobile phones and tablet
computers, while still offering a good performance. AMD is focusing on in-
tegrating GPUs and CPUs to a compound chip called Accelerated Processing
Unit (APU) mainly targeting the market for power-efficient devices, such as
Laptops, Netbooks, but also budget PCs. All of these examples show that
the classical fields of CPU and GPU circuitry are gradually merging. Today,
shared-memory multi-core processors have been established very well, but
the number of cores cannot be scaled endlessly. The new era of heterogeneous
computer architectures has yet just begun.

lyww.intel.com/xeonphi
2yww.nvidia.com/object/tegra.html

www.intel.com/xeonphi
www.nvidia.com/object/tegra.html

3.2. HETEROGENEOUS PLATFORMS

The concept of a heterogeneous computer architecture is not completely new.
The best example of such an existing architecture is the PC. It contains a bunch
of CPU cores, and usually also one or more separate graphics cards. The GPU
is a device that is designed for solving massively data-parallel fine-grained
problems, basically graphics calculations. Originally, the GPU was designed
as a fixed-function special purpose processor that was only capable of ren-
dering computer graphics. However, the fixed-functionality turned out to be
so much limiting that it did not even allow to change the lighting or shad-
ing model. This implicated that it was impossible to render more complex
sceneries or to apply some special effects. As a consequence, the GPU archi-
tecture advanced from this fixed-function processor towards a powerful pro-
grammable processor. This evolution was the basis for GPGPU computing.
GPGPU stands for general purpose graphics processing unit. It describes a whole
class of programming models that allow the GPU to be used as a compute unit
to calculate common algorithms that are heavily parallelisable.

A very good overview of his evolution can be found in [23] and is summar-
ised in the following paragraph. One of the first considerable approaches of
running normal code on GPUs was the high-level interface called Cg that was
presented by NVIDIA [2]. But as a mismatch, the computations still had to
be defined as a graphical problem which does not exactly help to write un-
derstandable code for general programs. There was no real abstraction of
the hardware architecture of graphics cards. Another approach was taken
by researchers at Stanford when they proposed Brook [3], a high-level lan-
guage for defining streaming applications that can be executed on the GPU.
One of the main problems in these days was the lack of the scatter operation
for GPUs. Usually GPUs output the calculated images to the screen and it
was not foreseen to store the data, i.e. scatter, as it is needed for general pro-
grams. Therefore the inventors of Brook had to find a way to copy data back
to the main memory which was a really important contribution. The first com-
mercial approaches were RapidMind, PeakStream, and Microsoft Accelerator.
They offered just-in-time compilation for the functions running on the GPU,
which was an essential step towards portability.

Today, there are mainly three big frameworks for GPGPU-computing, namely
OpenCL, CUDA, and DirectCompute. All three of them build an abstraction
layer on top of the hardware. However, in order to have a flexible and per-
formant framework, the user must understand many low-level details of the
hardware such as memory access patterns and register usage. These GPGPU
frameworks shall be introduced in the following section.

3.3. COMPUTATIONAL MODEL OPENCL

3.2.1. Comparison of Existing Languages for GPGPU-Programming

OpenCL is a standardised programming interface that is managed by the
Khronos Group [6]. It is a cross-platform framework for parallel program-
ming of modern computer architectures. The interface is implemented by the
hardware vendors and the resulting implementations are afterwards certified
by Khronos, a non-profit technology consortium.

CUDA is a proprietary framework by NVIDIA. It can be used to program
NVIDIA-branded graphics cards. It is well-accepted in industries, mainly be-
cause it also supplies optimised libraries for common algorithms such as FFT,
linear algebra, or random number generators, among others?>.

Microsoft DirectCompute is an application programming interface that is in-
tegrated into DirectX 11 and can be used to program compatible graphics
cards. However, it can only be used with Microsoft Windows.

In this work, OpenCL is used as a parallel programming framework. Its cross-
platform portability allows to program a broad range of different devices,
which is not the case for CUDA and DirectCompute. OpenCL, being a royalty-
free standard, will hopefully become a widely accepted parallel programming
framework in the future. But even today, all big vendors already provide
OpenCL support for their chips. The next section will provide an overview of
OpenCL and introduce the incorporated terminologies.

3.3. Computational Model OpenCL

As mentioned before, OpenCL is a standardised cross-platform programming
interface for parallel programming. The reason for introducing OpenCL was
mainly the usage of graphics cards (GPU) as general purpose processors. A
GPU, being a device that has a tremendous amount of parallel processing ele-
ments, is perfectly suitable for data-parallel algorithms. However, OpenCL
offers portability, allowing the support of other devices, such as CPUs and
special purpose accelerators.

3CUDA toolkit: https://developer.nvidia.com/cuda-toolkit

— 14 —

https://developer.nvidia.com/cuda-toolkit

3.3. COMPUTATIONAL MODEL OPENCL

Device

Host <‘ Co

o, Con pevice

Compute unit |

Compute unit

Compute unit

Figure 3.3.: OpenCL system, taken from [1].

|

3.3.1. Terminology

OpenCL introduces a number of terms that are needed to fully understand
the concepts presented in this thesis. These terms shall be introduced in this
section.

To begin with, an OpenCL application consists of two parts. The first one is
the so-called host that is responsible to distribute work for the second part,
the device. This relation is depicted in Figure 3.3. For every OpenCL system,
there is exactly one host that controls all devices. The host code can be written
in various different languages and describes the behaviour of the application®.
The device code is written in a special C99-like language named OpenCL C and
is called kernel. A device can be any kind of processor, be it a GPU, a CPU,
or some other kind of accelerator. The kernel is portable, which means that
it can run on any OpenCL compliant device. This is achieved by compiling
the kernel source file at runtime. Kernels have a well-defined interface and
implement a special function in a data-parallel fashion. A kernel is executed
on a device and is a bounded function that will finish within a conceivable
amount of time.

A platform is an implementation of the OpenCL interface by a vendor. OpenCL
has an extensible interface to integrate multiple platforms on the same oper-
ating system. The different implementations are loaded as shared libraries
and are compatible to implementations of other vendors. A platform can con-
tain support for multiple devices of the same vendor. It is possible to cre-
ate a context from any subset of devices of such a platform. A context is

4The original syntax of the OpenCL interface is in C, but there are bindings for many modern
programming languages

3.3. COMPUTATIONAL MODEL OPENCL

an abstract model that transparently combines the different memory spaces
of its devices to a single memory space. Data management is, in this case,
handled by the OpenCL platform driver. However, it is also possible to cre-
ate a single context per device and then manually handle data movements.
The interactions between the host and a context are coordinated by command
queues. Through command queues the user can indirectly launch kernels on
devices, or can initiate memory transfers. Command queues allow to extract
timestamps for all the commands that are processed by that queue, this allows
to get the information when and how long the process has been queued and
also how long the execution of a kernel took. This information can be used for
profiling or load balancing of the application.

Devices are further divided into compute units, whereas those can again con-
sist of one or multiple processing elements. The processing elements are the
actors that calculate the operations. All processing elements can simultan-
eously operate on different pieces of data. In order to understand the reason
for introducing such a hierarchy, the execution model has to be explained at
this point. A kernel describes a function that is executed with an enormous
amount of threads that are executed simultaneously in a data-parallel manner;
they are called workitems. They are combined to workgroups of a distinct
size. All workgroups together are denoted as work. When a kernel is sent to
a device, it is specified how to split the work into workgroups and how many
workitems are sent to the device. A workgroup is assigned to exactly one
compute unit, i.e., it cannot be split to be processed by two compute units. A
workgroup is executed according to the single instruction multiple data (SIMD)
principle, i.e., the same instruction is simultaneously applied to every piece
of data. In order to utilise all compute units, the work must have at least one
workgroup per compute unit. An important point is that a workgroup must
have the correct size that is usually dependent on the device itself. To find
the optimal workgroup size is one of the trickiest things and requires a lot of
understanding of the underlying hardware. All vendors have their own best
practice guides [24, 25, 26], but even there, they cannot propose a recipe or a
formula to calculate the optimal size of a workgroup or workitem. The user
will normally end up doing extensive heuristic tests.

3.3.2. Hierarchies of Memory

The memory model of OpenCL is another abstraction of the hardware depic-
ted in Figure 3.4. It is however strongly influenced by the GPU architecture.

3.3. COMPUTATIONAL MODEL OPENCL

Kernel L — Kernel-wide
scope
Constant memory
i' _____________________ |
__L Workgroup ____________ | ! | Workgroup
J'_ Workgroup [scope
ST T TS T T T T T T T T T T Il
: Workgroup I | :
! P
| ol
| ol
| Lol
| ol
i Work- i Work- Work- | | | ! Work-item
i item ¢ item tem 11! scope
I
Il
: Private Private Private 7 :
: AT
| [
| I
| I
Lo et

Figure 3.4.: OpenCL Memory Model, taken from [1].

OpenCL distinguishes between four types of memory. Those are global, con-
stant, local, and private memory.

Global and constant memory can directly be accessed by the host. This is
the only way to communicate between host and device. Both memory types
are shared between all compute units of a device. Simultaneous access might
create a high latency due to the bottleneck that is caused by the shared bus,
even though the memory is usually n-way interleaved for GPUs. In contrast
to global memory that can be read or written by the processing elements, con-
stant memory is read-only for the processing elements.

Local memory is assigned to a compute unit and can therefore share data
among a workgroup. Consistency is only guaranteed at synchronisation points
in the code. There is no possibility to communicate with other workgroups
from that memory. Local memory can be used as a programmable cache
between global memory and registers, as local memory is usually much faster

3.4. PROBLEM STATEMENT

than global memory. OpenCL offers ways to asynchronously copy data from
global to local memory within a kernel.

Private memory is only available to each processing element itself. It cannot
be used for workitems to communicate within their workgroup and is basic-
ally used to store intermediate results.

3.4. Problem Statement

This chapter has presented an overview of existing and upcoming heterogen-
eous platforms. Yet, there is no simple and easily understandable program-
ming model available to program such systems. OpenCL allows to program
CPUs, GPUs, and other accelerators. However, it is not suitable to program
complete applications with it, but is rather designed to accelerate computa-
tionally intensive parts of an application. OpenCL offers a notion of program-
ming parallel code in a SIMD fashion, which can be seen as an extension to
imperative coding. Moreover, OpenCL also offers portability, because kernels
can be executed on any OpenCL-enabled device, independent of its type. The
price for these extensions is the additional complexity that is introduced by the
OpenCL environment. The user must know a lot of low-level details just to
setup an application. Furthermore, even though OpenCL provides an abstrac-
tion of memory and implicitly manages memory transfers, the user will not be
relieved of initiating memory transfers between the host and the OpenCL con-
text. It must also be mentioned, that this memory abstraction is only available
within a platform, i.e., for devices of the same vendor. For different vendors,
the user has to cope with data management on his own. However, since the
main use-case of OpenCL is to accelerate parts of an application, there is often
no need for inter-platform communication. Applications are still programmed
using common models, and only the computationally intensive functions are
outsourced as OpenCL kernels. For this reason, it can be said, that OpenCL
does not simplify programming, but rather offers an extension to program
additional devices. Portability of kernel code is the main strength of OpenCL,
but still, finding the optimal workgroup size and the respective partition of
work needs extensive heuristic tests, which hinders portability a lot. Para-
meters that are optimal for one setup might not be the right ones for another
setup.

This chapter also introduced the high-level programming model SDEF. It was
shown, that the user is relieved of dealing with the usual problems of par-

3.4. PROBLEM STATEMENT

allel programming, such as synchronisation, indeterminism caused by race-
conditions, communication, and dead-locks. The user can focus on writing
sequential code for all the processes, and separately specify the needed topo-
logy. Moreover, SDF offers ways to perform correctness tests for the topology.
Furthermore, a schedule might be calculated offline. However, as it was men-
tioned, process networks have also disadvantages. One of them is the com-
munication overhead introduced for fine-grained data-parallelism. SDF does
basically not provide a notion of a lightweight data-parallelism as it is suppor-
ted by OpenCL with SIMD. Another disadvantage is that SDF is generally not
portable. For different computing units, processes have to be implemented
exclusively using the languages and programming models of the respective
device. When porting the code to another platform, it has to be adjusted and
rewritten manually, which leads to unproductive software development.

Clearly, the advantages of SDF and OpenCL complement each other. SDF is a
concept that simplifies parallel programming by hiding complexity. OpenCL,
being a framework to program various accelerator devices, offers a way to
write performant and portable parallel software. Is it possible to combine
these models to get rid of their disadvantages and to combine their strengths?
The next chapter analyses the difficulties that arise and elaborates the details
of how this they can be combined.

Runtime Environment Combining
OpenCL and SDF

SDF and OpenCL being based on two different paradigms, the one cannot
naturally be expressed as the other. This was one of the major problems to be
solved during this thesis. In the beginning it was unclear whether the two con-
cepts were compatible or not, and if a process network could be expressed in
OpenCL without heavy limitations. Essentially, the main objective was a com-
bination of SDF and OpenCL to result in a much simpler programming model.
It is however often a trade-off to decide between simplicity and bleeding-edge
performance. The focus in this thesis was clearly the former.

The particular problems are explained in detail in the following section. Af-
terwards it is explained how OpenCL and SDF can be combined to a flexible
runtime environment.

4.1. Differences of OpenCL and SDF

The two central parts of the SDF model of computation are the processes
and their interconnection channels. Implementing processes and channels by
means of OpenCL is needed in order to combine the two concepts. This sec-

— 20 —

4.1. DIFFERENCES OF OPENCL AND SDF

tion highlights the conceptual issues that arise when combining those models.
First an SDF process is compared to an OpenCL kernel. Afterwards the com-
munication principles of both models are opposed to each other.

The SDF process describes a simple well-defined function that processes a cer-
tain amount of tokens in each invocation. Similar to that is the concept of an
OpenCL kernel that describes a limited function, which can only access a spe-
cified amount of data in each invocation. While there is an obvious match
between these two, they already differ in how data is passed. In OpenCL, the
notion of a token does not exist. A token is a logically indivisible amount of
data that can be either produced or consumed by a process. An OpenCL ker-
nel has access to certain regions in memory that it can read from and write
to. In contrast to a kernel, an SDF process is limited to process every token
exactly once, whereas there is no such limitation in OpenCL. Another differ-
ence is that an SDF process will automatically invoke itself again after it has
finished, whereas an OpenCL kernel must explicitly be put on a command
queue from the host application in order to be executed once. Every single
invocation must be triggered externally, which is a major difference to SDF.
SDF processes will block when no input tokens are available. For an OpenCL
kernel it is not allowed to be blocked for an undefined amount of time to wait
for input data. Rather, an OpenCL kernel must finish promptly, as it does not
offer possibilities for context switching or multi-tasking. Furthermore, an SDF
process has ports that specify the interfaces to channels. A kernel in OpenCL
has arguments that are passed to it when it is invoked. The arguments are
defined as pointers to memory locations which are preallocated by the host
application. Additionally, the kernel arguments need to be set manually for
every single invocation, which is not the case for SDF. All these differences
are one reason why it is not straight-forward to reflect an SDF process by an
OpenCL kernel.

Another major difference between OpenCL and SDF is the kind of parallel-
ism they offer. SDF naturally represents task-level and pipeline-level paral-
lelism. Of course, also data-parallelism can be achieved, but especially for
fine-grained data-parallelism it will lead to a serious amount of communica-
tion overhead. On the other hand, it is the strength of OpenCL to handle such
fine-grained data-parallelism in an efficient way. It does so by supporting
single instruction multiple data (SIMD) processing units. Hence, the OpenCL
and SDF programming models complement each other in this. An OpenCL
kernel specifies its function such that it can be split to run in parallel on thou-
sands of processing elements simultaneously. An SDF process, on the other
hand, is defined as a simple sequential operation, that is only executed on one

4.1. DIFFERENCES OF OPENCL AND SDF

processing element. The parallelism exists only on a higher layer defined by
the process network. It would be desirable to have a combination of those
computation models which includes support for SIMD while still maintain-
ing the ease of the SDF programming model. However, it was unclear if this
could be done without a conflict clash of their paradigms.

The second integral part of SDEF, the concept of a FIFO channel, does not exist
in OpenCL and must therefore be emulated. This, as well, poses several prob-
lems that are again caused by the fundamentally different underlying mind-
sets. First of all, each OpenCL device has its own memory banks and cannot
access any of the other devices” memories. As a consequence, data transfers
between devices have to be performed manually by the host application using
special functions. They arrange the necessary steps, such as the setup of the
direct memory access (DMA) controller. The transfer times cannot be neglected
and are usually a limiting factor for the application speedup. SDF, being a the-
oretical concept, abstracts how a channel must behave. One process can write
to it and another can read from it. In OpenCL this is clearly not the case, as a
kernel on one device cannot access data that was written by another process
on another device. Another difficulty is that all the input data must have been
copied to the respective device before a kernel can be started. After a kernel
has successfully finished, data has to be transferred back again. The order of
the data copy actions and kernel invocations must explicitly be programmed
by using one of the various synchronisation primitives offered by the OpenCL
interface. A kernel will only produce deterministic results if data management
and synchronisation is handled properly. Moreover, the goal of implementing
a performant FIFO channel can only be reached if the buffer location is chosen
carefully and the memory transfers between those are handled transparently.
As a channel interconnects two processes, the choice of the buffer location is
dependent on the decision where the processes are mapped to for execution.
Clearly, not all combinations are feasible or reasonable. All these issues need
to be solved in order to implement a FIFO channel that is compliant to the SDF
specification and at the same time is performant enough so that the execution
of OpenCL kernels is not unnecessarily slowed down.

As it has been clearly shown, there is no one-to-one mapping from SDF to
OpenCL. In fact, the issues listed above need a couple of sophisticated solu-
tions which are detailed next.

4.2. OVERVIEW OF THE PROPOSED SOLUTIONS

typedef __global int token_t;

__kernel void add(token_t *IN1,
1 token_t *IN2,
1 token_t *0UT)

*0UT = *IN1 + =*IN2;

Figure 4.1.: Representation of the SDF process (+) on the left hand side as a functionally
equivalent OpenCL kernel.

4.2. Overview of the Proposed Solutions

An overview of the basic concepts adopted in this work is given in this section.
First, it is discussed how processes can be implemented. Afterwards, the very
basic concepts of implementing a FIFO channel are explained. And finally, an
important principle of a task activation framework is introduced. The details
to all these concepts are presented later in the following sections.

A very basic SDF graph is depicted in Figure 4.1. The process in the middle
adds two numbers from its input channels, and puts the result to the output
channel. This example is mainly used to illustrate the basic concepts and is
of course not realistic (a simple addition is not worth the parallelisation over-
head, hence a process usually describes a much larger function with many in-
structions). The representing kernel for this example is depicted on the right
hand side in Figure 4.1. The ports that are needed as interfaces to the chan-
nels are defined as kernel arguments IN1, IN2, and OUT. They are pointers to
integers in the global memory of the respective device. Global memory is the
only way to communicate with the host or with another kernel. Before the
kernel can be started, the host must allocate the memory for this data, transfer
the input data in that memory, and finally pass the references to this region
to the kernel. In the body of the kernel function the two numbers are added
and then stored in the memory location representing the output channel. For
a general process with a number of input and output ports, the corresponding
kernel will be given exactly one argument per port.

Although the example above is functionally correct, it does not exploit the
possibilities offered by OpenCL. The kernel in Figure 4.1 is just a simple se-
quential code, that does not benefit from any granularity of data parallelism.
Of course, the SDF can be extended in a way that the a process is duplicated
many times, in order to achieve fine-grain parallelism. This procedure is de-

4.2. OVERVIEW OF THE PROPOSED SOLUTIONS

Figure 4.2.: Approach of achieving data-parallelism in an SDF by using splitters (S1 and Sp)
and a merger (M).

picted in Figure 4.2. The process network still calculates the same operation.
The difference is that four adders can work in parallel on different pieces of
input data now. The input channels of the input token producers P; and P,
must be connected to all four adders. To achieve this, two data splitters S;
and S5, have to be inserted between the producers and the adders. They will
simply take a token from the input channel and puts it to one of their output
channels in a round-robin fashion. As the output token order must be main-
tained, a merger M needs to be placed between the adders and the consumer
process C. It does the inverse of a splitter, i.e., it takes a token from one of its
input channels and puts it to the output channel. The order must be strictly
the same for the splitters and the merger. This procedure is documented in
the original work on SDF in [22]. The disadvantage of this approach is that it
becomes quite complex when adding even more parallel processes, and soon,
the mergers and splitters will become the bottleneck of the application. It also
requires more resources as it needs many more data channels, which all need
some kind of memory to store the tokens.

This raises the question whether there is a more efficient way to enhance an
SDF to use data-parallelism without the additional complexity of splitters and
mergers. This thesis proposes to use a notion called shadow copy, which is de-
picted in Figure 4.3. A shadow copy is — as the name suggests — a copy of
a process that performs the same operation as its original one, but on another
piece of data. Instead of having an own channel for every shadow copy, the
original channel is reused and the token rate is adjusted. In the simple ad-
der example there are still two input and one output channel, as originally
in Figure 4.1, but the token rate is adjusted to process four input tokens at
the same time and put four tokens to the output channel. The correspond-
ing OpenCL kernel that implements this functionality is shown in Figure 4.3

4.2. OVERVIEW OF THE PROPOSED SOLUTIONS

typedef __global int token_t;

__kernel void add(token_t *IN1,
token_t *IN2,
token_t *0UT)

uint g_id = get_global_id(0);
OUT[g_id] = IN1[g_id] + IN2[g_idl;

Figure 4.3.: Approach of achieving data-parallelism in an SDF by using four shadow copies.
The right hand side depicts the corresponding OpenCL kernel for the (+) process.
The token rate of the channels is adjusted accordingly.

Figure 4.4.: Approach of achieving data-parallelism in an SDF by using inherently parallel
operations within a process (in this case a vector addition).

on the right hand side. The arguments are now pointers to integer arrays.
When the host application inserts a kernel to the command queue, it is spe-
cified how many workitems of this kernel will be launched. Every workitem
has a distinct identifier which can be obtained by the OpenCL builtin function
get_global_id(0) from within a kernel. This identifier is used as an array
index for the kernel arguments. Each workitem will therefore only add two
integers, but as there are multiple workitems executing concurrently, data-
parallelism is achieved efficiently. In Section 4.5 the discussion is resumed
and the notion of a shadow copy will be assigned to a complete workgroup
instead of a single workitem. How the order of the tokens is guaranteed will
be explained later, when the FIFO channel concepts are outlined.

There is yet another way to parallelise a process. Especially when processes
get bigger, they might be inherently parallel in their function. The simple
example can be refined to fulfil this property when the tokens on the channel
are seen as vectors of multiple numbers as it is depicted in Figure 4.4. The
adder performs a vector addition, which is something that can be parallelised
to use as many workers as the vector has dimensions. In the figure the token
rate on the channel is equal to the one in the original sequential example, but
in contrast to that, the operation is performed concurrently by nine adders

4.2. OVERVIEW OF THE PROPOSED SOLUTIONS

at the same time, which is hidden in the process itself. This is exactly the
concept of a SIMD operation, which is mainly offered by GPUs and can be
used with OpenCL. This kind of parallelism can be used for fine-grained data-
parallelism, whereas the shadow copies will offer rather coarse-grained data-
parallelism on the layer of processes. More on this topic — especially how the
two approaches can be combined and how to achieve a good performance —
is detailed in Section 4.4.

Following the description of the elementary concepts of processes in OpenCL,
the next paragraph introduces the basic ideas of the FIFO channel emulation.
Channels are used to connect two processes and, as already mentioned, do not
exist in that form in OpenCL. Concerning the implementation of the channel
emulation, a couple of decisions were taken: Firstly, the channel is imple-
mented as a ring buffer in linear memory. Secondly, each buffer has a fixed
capacity. As it is possible to calculate the needed buffer size for both channels
of a valid SDF network, this decision does not affect the functionality of the
application.

The third decision was about the interface to a channel. Tokens can be read
from a channel or written to it, these operations are called pop and push for
a FIFO channel. As already mentioned, a kernel can only communicate with
the host by its kernel arguments being provided by the host application. This
means that global memory has to be allocated beforehand and is managed ex-
ternally. That fact is nicely represented by the following interface. A channel
can be asked to reserve a certain part of the memory to be exclusively available
to one process, this is called acquire. Eventually when the process has finished,
the same part of memory must be returned, which is named release. The in-
terface is symmetric, which means it is used for both the push and the pop
operation. Push describes the action of inserting data into the FIFO, whereas
pop describes the action of reading and removing data from the buffer. Thus,
there are four public interfaces for a channel: acquire push, release push, acquire
pop, and release pop. This gives the flexibility that is needed to implement a
channel in a few fundamentally different ways that will be described in Sec-
tion 4.3. The interface is similar to the concept of a windowed FIFO (WFIFO)
as it was described in [27]. For reasons of compatibility, the terms acquire and
release were borrowed from there.

The difficulty with those channels is that an OpenCL setup might have many
devices, as illustrated in Figure 4.5. Each device has its own memory that can-
not be accessed by any other device. Processes can be mapped to any of those,
and the data has to be transferred between them. The vital question is where

4.2. OVERVIEW OF THE PROPOSED SOLUTIONS

Figure 4.5.: Buffer location.

this buffer needs to be placed. In the example in Figure 4.5, one process P;
and the adder are connected through a channel. Both are mapped onto device
2. In this case, it makes sense to place the buffer directly in the memory of
device 2, as both processes are able to access the same memory location. How
such a ring buffer can be implemented in a device memory is detailed in Sec-
tion 4.3.3. It becomes much more complicated when two connected processes
are placed on different devices. Where should the buffer be placed to get the
best performance? Process P, is placed on device 1 whereas its successor, the
adder, is placed on device 2. The data transfer is controlled by the host, so the
memories of all three are somehow involved in the transaction. It is clear that
a simple ring buffer will not suffice in this case. There are multiple different
solutions, some of which perform better than others. Section 4.3.2 lists the
possibilities and compares them.

A related topic to the buffer placement is the timing of the respective data
transfer actions. OpenCL cannot generally transfer data automatically!. A
schedule is needed to transparently initiate memory transfers and guarantee
that the data is available at the respective device when it is needed by a kernel.
Figure 4.6 depicts a directed graph that illustrates the dependency of the chan-
nel interface and the invocation of the two connected processes, which is also

10penCL can only manage data transfer within the same context. Moving memory from one
device to another only works if both devices are in the same context. This is usually not the
case, especially not when the devices belong to a different platform.

4.2. OVERVIEW OF THE PROPOSED SOLUTIONS

acquire

push

release
push

Figure 4.6.: Dependencies between process invocation and channel interfaces. The nodes rep-
resent functions calls. For this simple network with two processes and one chan-
nel with capacity of one token, the call order has to be a counterclockwise circle,
as illustrated.

known as fire. For this simple example consisting of two processes connected
through a channel with capacity one, the function call order will be strictly in
a counterclockwise circe. In a more general case it has to adhere to the follow-
ing guideline: Before a kernel can be started, it must be guaranteed that the
data is resident in the memory of the device where the kernel is mapped onto.
Thus, the host application must acquire the corresponding memory from all in-
put and output channels of the process. For pop, the channel has to make sure
that the data is transferred to the device, whereas push will make sure that the
location can be exclusively used by this process. When the acquire operations
have successfully completed, the process can be fired. Eventually, when it has
tinished, the host must guarantee that all channels are released. For pop, it will
allow another process to overwrite the memory location, and for push, it must
fetch and store the results.

However, as the channel size is fixed, a channel can become full at some point
in time. It is certainly not valid to push data in a full channel. On the other
hand, it is also invalid to pop data from an empty channel. This leads to the
next important aspect: All kernel invocations and buffer copy actions need
to be coordinated. This is done by the host application. The example in Fig-
ure 4.6 is really simple, but adding a few more processes and channels will
introduce many more dependencies and also offer multiple valid solutions.
Therefore a generic concept is needed to deal with the additional complexity
introduced by growing SDFs. In Section 4.4, two different approaches of a
task activation policy are introduced and discussed. The basic concept for both

4.3. COMMUNICATION CHANNELS IN OPENCL

of them is that a kernel can only be executed when its input channels con-
tain enough data and all output channels have enough free space. The host
application maintains a list of all processes and channels. All channels are
monitored, and depending on the state of those, the host decides to initiate
memory transfers and kernel invocations. However, the details of how this is
achieved, differ according to the implementation.

4.3. Communication Channels in OpenCL

The different possibilities of implementing SDF channels by the means of
OpenCL are elaborated in this section. First, a simple approach with a ring
buffer in the host memory is explained. Then, an improved version with fewer
memory copy actions is introduced. Afterwards, it is explained how a channel
can be implemented with device memory only. And finally the concepts are
merged to a general channel that combines the advantages of all the previous
concepts.

4.3.1. Ring Buffer in Host Memory

This section describes a simple approach of implementing a channel between
two OpenCL devices. As the host coordinates all memory transfers between
those, it stands to reason to just place the buffer in the host memory. This
means that a ring buffer is placed in the host memory and it can be pro-
grammed with any common programming model, such as an STL container
for C++ (i.e. the circular buffer implementation of the boost library). A chan-
nel, in this case, will only implement the interfaces between the host and the
devices. Figure 4.7 depicts this concept with an example SDF consisting of
two processes. Process P produces three tokens per invocation and process C
consumes the tokens one by one. The ring buffer of the channel is completely
stored in the host memory. The kernel arguments (of type c1_mem) point to the
locations storing the tokens for one invocation of the process. In order to be
accessible from the host, a c1_mem buffer object has two representations: one in
the device memory and one in host unified memory, which is in practice equal to
host memory?. Both memories need to be synchronised which is only guaran-
teed at certain synchronisation points. One way to request the device memory

%It might be a special region in memory known as pinned memory which is not pageable [25,
Section 3.1.1]. Another restriction is that it usually has to be aligned to a certain boundary[6,
Sections 5.2.1, and C.3].

4.3. COMMUNICATION CHANNELS IN OPENCL

Figure 4.7.: Approach of implementing a channel based on a ring buffer in host memory. The
process P on device 1 sends data to C on device 2 through this channel. The tokens
of one invocation are stored in each of the devices’ memories, whereas the complete
buffer is only stored in the host memory. The push action will first transfer the
data from the device to the host (1), and from there copy it to the correct location
in the FIFO (2). The pop operation will afterwards copy the data within the host
(3) and finally transfer it to the device (4).

to be copied to its counterpart on the host is when c1EnqueueReadBuffer () is
called by the host application. As depicted in Figure 4.7, the OpenCL driver
will then typically in step one initiate a DMA transfer from the device memory
to the host memory. Eventually when it has finished, the driver might copy
the data to the region that it was asked to put the data in step two®. A sim-
ilar procedure happens when clEnqueueWriteBuffer () is called in steps three
and four, where the memory transfer is again divided in two copy operations.

Another property that needs to be guaranteed is that the tokens for a shadow
copy are ordered correctly. As it was mentioned in Section 4.2, the concept
of shadow copies adjusts the token rate on one side of a channel. The order
of the tokens has to be maintained, which must be guaranteed implicitly by
the channel. A ring buffer preserves the order of the inserted data and will
afterwards use the same order for the pop operation. The tokens are accessed

3This behaviour could be observed by all drivers (Intel, AMD, and NVIDIA) in their current
version.

4.3. COMMUNICATION CHANNELS IN OPENCL

in the same order for the input and the output by the kernel. This property
guarantees that the order of tokens is always correct for shadow copies and
that it is therefore possible to get rid of the splitters and mergers denoted in
Figure 4.2. The advantage of the shadow copy approach is that data will be
copied in larger blocks, which is usually faster than copying data in smaller
pieces.

The basic requirements for implementing a channel are therefore fulfilled by
the proposed concept. However, this approach has the disadvantage that a
process is actually blocked during the memory copy operations. Even if there
is still space in the FIFO, the producer process cannot continue with its next
invocation. The same is valid for the consumer process. Even if there is still
data available, it has to wait for its only buffer to be refilled again. To cir-
cumvent this, one could use multiple c1_mem buffers in the device memory
and use them interchangeably. A reasonable number of alternating buffer sets
might be three, one for reading input data, one for execution, and one for
writing output data back. Before this problem is addressed, there is however
yet another disadvantage that is more severe, which is the lack of efficiency of
this implementation. The goal of having as few memory copy operations as
needed is clearly not fulfilled as there are two such copy actions per push and
pop operation.

4.3.2. Triple Buffering

The best implementation of a channel would have zero copy actions. How-
ever, as different devices often have different physical memories, only a DMA
controller can transfer data between them. Therefore it is not possible to have
zero copies in a general OpenCL setup. Each token has to be copied at least
twice when devices do not have host unified memory. The token is produced
at the first device, then transferred into host memory, and finally copied to the
second device. Two implementations that fulfil this property are detailed in
this section.

Both approaches can be illustrated with Figure 4.8. They have in common that
the buffer is completely available in all three memories, but they differ in how
the buffers are kept synchronous.

4.3. COMMUNICATION CHANNELS IN OPENCL

@ Subbuffer:

Figure 4.8.: Approach of implementing a channel with triple buffering. Process P on device
1 sends data to process C on device 2 using this channel. Tokens are denoted as
subbuffers which is a specified region of a buffer of variable size. The complete
buffer exists in the memories of both devices and in the host memory. Data trans-
fers (1 and 2) and data invalidation actions (3 and 4) are coordinated by the host
memory and are executed on the level of subbuffers.

4.3. COMMUNICATION CHANNELS IN OPENCL

Overlapping Buffers in Host Memory

Both approaches use two buffers of type cl_mem for the whole channel —
one that is bound to the context of the first device and one to the context of
the second device — instead of having a buffer for only one token as in Sec-
tion 4.3.1. The size of the buffer is therefore equal to the capacity of the chan-
nel. Since a buffer usually consists of multiple tokens, it has to be divided.
For the token emulation on the channel, subbuffers are used that can be created
by the clCreateSubBuffer () function. In every instant of time a buffer can
only be valid at one location. Luckily it is possible to coordinate the buffer
transfers on the level of subbuffers. The synchronisation of the subbuffers must
be handled manually from the host application which is described later.

So far, this concept has only introduced more complexity and does not solve
the problem of too many memory copy operations. To understand the prob-
lem better, some details must be mentioned here. Calling c1EnqueueReadBuffer
needs a pointer to host memory to be passed as an argument. It was observed
that this operation took notifiably shorter in some rare cases. The problem
was analysed and it turned out that the pointer was aligned in this case (a
certain number of zeros for the least significant bytes of the address). OpenCL
does not explicitly mention that a c1EnqueueReadBuffer must be aligned. But
in the case when it is not aligned, the driver implementation will typically
copy the data twice: first to a temporary host memory region that is aligned
using a DMA transfer, and second, to the region that was provided by the
user. This behaviour is not optimal, but is a simplification for the user. For
the channel implementation that is proposed in this section, there is a nice
workaround of the described problem. Instead of using a generic FIFO im-
plementation, it is proposed to allocate the FIFO buffer that points to aligned
memory?. This speeds up data transfers and limits the number of data copy
operations. However, the alignment condition must also be fulfilled for every
token in the buffer (because this is the smallest unit of data that is transferred).
This limits the token size to a multiple of the alignment condition®, which is
typically in the range of 128...256 bytes. For the alignment condition apgy
and apgyvy, that correspond to the to devices that are involved with a channel,
the token size restriction st can be specified as:

SstT=n- max(aDEVl , LlDlgvz) Vn € IN. (4.1)

*Aligned memory can be allocated with the function posix_memalign() for POSIX-
compatible systems.
5The alignment condition is device specific and must be queried using c1GetDeviceInfo.

4.3. COMMUNICATION CHANNELS IN OPENCL

Figure 4.9.: Channel access order for the situation with two initial tokens (dark orange). Push
operation 2 will write data over the boundary; this has to be managed by the
implementation, which copies the data from this region to the beginning of the
buffer after completion.

Another restriction concerns the buffer capacity for this implementation where
the tokens are mirrored as subbuffers. A token must be a piece of data in lin-
ear memory. As the subbuffer does not copy any data, it must be guaranteed
that the buffer is evenly dividable by the token size. The buffer capacity cp
can be expressed in terms of the token size st and the token rates at the input
of the channel r7; and the one at the output of the channel r7, as:

cg =n-lem(rr;-st, r1o-ST) Vn € N. (4.2)

This restriction is valid for channels without initial tokens. The more com-
plicated case of having initial tokens is illustrated in Figure 4.9 for a simple
SDF with two initial tokens placed on the channel. The buffer size is chosen
according to the restriction above. However, the second time when process
P writes to the channel fails, because it writes data over the boundary of the
channel. In order to deal with this situation, the buffer has to be enlarged
by the amount of initial tokens. After the data has been pushed there, the
release push function must copy the data from this region to the beginning of
the buffer. This only needs to be done once for the whole runtime and will
therefore not decrease the general performance of the implementation. For i
initial tokens, the buffer has to be allocated according to:

cg=n-lem(rr; s, rro-S7) +i-sr vn € N. (4.3)

The additional space will only be written once and never used by the pop
interfaces.

In this approach, it is not possible to use common libraries for the ring buffer
implementation. It is clearly not a simple ring buffer anymore, and the host

4.3. COMMUNICATION CHANNELS IN OPENCL

application has to keep track of which regions contain unread data and which
data are available to be overwritten. The functionality can be hidden behind
the acquire/release interface that was introduced in Section 4.2.

So far, it has been described what the two approaches have in common. Next,
it is explained where they are different.

Synchronisation Method Using clEnqueueReadBuffer and
clEnqueueWriteBuffer

In this approach, the channel consists of a buffer with three representations,
as it was described in Section 4.3.2. Each part of the buffer is only valid at
one location per instant of time. This method uses clEnqueueWriteBuffer
and clEnqueueReadBuffer as synchronisation primitives. The basic approach
is illustrated in Figure 4.8 for a token rate of three and one. For the example
in the figure, the approach can be described as follows: First, a subbuffer with
size three is created by the host in the context of device 1. Then, the kernel
of process P is invoked with the subbuffer as kernel argument. Eventually,
when the kernel execution has finished, the host will initiate a data transfer
from the device to the host memory using clEnqueueReadBuffer. Meanwhile
the process can already work on the next subbuffer. After the data has been
successfully transferred to the host memory, the data can be transferred to
device 2. For this, a subbuffer with size one is created. Finally, this subbuffer is
copied to the memory of device 2 using clEnqueueWriteBuffer. The created
subbuffer is then used as a kernel argument for process C.

Of course, the information when a part of the buffer can be reused must also
be traversed backwards. In this case this is rather simple, as the buffer re-
gion only has to be marked as invalid by the host application. So the host is
simply waiting for process C to be finished and will then mark the region in
the original buffer as free space.

In a more general case with many more processes and channels, it is not as
simple as that example anymore. The basic principles are however exactly the
same. How the schedule is done will be explained in Section 4.4.

Synchronisation Method Using clEnqueueMapBuffer

There is another method of synchronisation offered by OpenCL which al-
lows to build the same functionality as above. The second approach uses

4.3. COMMUNICATION CHANNELS IN OPENCL

the clEnqueueMapBuffer and clEnqueueUnmapMemObject as synchronisation
primitive. Mapping is the operation of explicitly synchronising the device
memory to the host memory. As it can also be applied to subbuffers, it is pos-
sible to build a channel similar to the one in the first method. Again, the buffer
is therefore only valid in one memory at the same time.

For the example in Figure 4.8, process P will write data into its assigned sub-
buffer. After finishing, the host will initiate the subbuffer to be mapped into
its own memory (step 1). The important thing here is that the same region of
the second buffer is also already mapped to the host memory. In step 2, the
second buffer can be unmapped for this region, which will initiate the data
transfer to the second device. So far the approach was quite similar to the first
synchronisation method. The difference is how the data is invalidated. The
initial state of the buffers has to be restored, i.e., the buffer of device 2 has to
be mapped to the host memory, and the buffer of device 1 has to be unmapped
in order to be valid in the device memory. So in step 3, the subbuffer will be
mapped back to host memory after the data has been processed. In this case
it is reasonable to set CL_MAP_WRITE_INVALIDATE_REGION as option, because it
will tell the OpenCL driver that the data is only needed for writing data to it,
and therefore that it does not have to transfer any data back. Finally, in step 4,
the same region from the first buffer is unmapped back to the device memory.

The map and unmap operations are reported to sometimes produce a higher
throughput for memory transfers®. Especially when the buffer is not changed,
this operations will not initiate any DMA transfers. In the case of an SDF chan-
nel, the buffer is always completely overwritten (a new token is written to the
buffer). For this reason, a performance increase could not be observed. Even
worse, the invalidation did not turn out to be free of cost. Since this approach
also adds more complexity, it was discarded. The synchronisation method
with clEnqueueReadBuffer and clEnqueueWriteBuffer is simpler and, from
a performance perspective, not worse than the approach described here. Sec-
tion 4.3.4 introduces a hybrid channel which can work on pointers for every
case where this is possible. The next section will explain how a zero-copy
channel can be achieved.

®The Intel OpenCL best practice guide suggests to use this [26, p. 17]. They argument that
map/unmap is lightweight and comparable to passing pointers.

4.3. COMMUNICATION CHANNELS IN OPENCL

‘1’ " Subbuffer :

Figure 4.10.: Approach of implementing a channel with single buffering. The process P sends
data to C using this channel. Both processes are mapped onto the same device.
Tokens are denoted as subbuffers which is a specified region of a buffer of a vari-
able size.

4.3.3. Channel Implementation Directly on Device Memory

The implementations that were discussed so far were all targeting channels
between two devices or contexts, respectively. All of them can of course also
be used for channels between processes that are mapped onto the same device.
However, this is inefficient, because it does not make sense to transfer the data
to the host memory and back in every invocation. For this case, it is possible
to build a buffer that needs zero copies. This section explains how a zero-
copy channel can be implemented by means of OpenCL. Figure 4.10 depicts
the same SDF with producer P and consumer C as in the previous examples.
But in contrast, this time, both processes are mapped to device 1.

The approach is quite similar to the one described in Section 4.3.2. There is
also one big buffer of type c1_mem and tokens are emulated as subbuffers. The
difference is how the bulffer is allocated, as it only needs one buffer instead of
two. And instead of allocating the buffer first in the main memory, OpenCL
can simply create its own buffer. When the option CL_MEM_HOST_NO_ACCESS
is set as a parameter to c1CreateBuffer, the OpenCL driver is informed that

4.3. COMMUNICATION CHANNELS IN OPENCL

no copy of the buffer has to be allocated in the host memory. As the buffer is
only used from the device memory, it need not be synchronised with the host
memory and all memory transfer operations can be omitted.

For the simple example shown in Figure 4.10, the cycle of operations could be
the following:

1. Create a subbuffer of size three for the output data of process P and set it
as kernel argument,

2. invoke process P to write data into the subbuffer, and
3. release the subbuffer object after the process has finished.

4. Create a subbuffer for the input data of process C and set it as kernel
argument,

5. invoke kernel C to process the token,
6. finally release the subbuffer object.

For simplicity, the subbuffers were always created and released again in the
example above. From an implementation perspective, this is not efficient, and
the subbuffers should be stored and reused instead of always creating and re-
leasing them”.

4.3.4. Combined Channel Implementation

The channels in Sections 4.3.2 and 4.3.3 were built to be equal in as many
details as possible. This allows to combine the approaches to a general chan-
nel implementation. The differences can be hidden behind their common ac-
quire/release interface. The implementation of a channel depends on the map-
ping of both processes that are interconnected through it. This mapping is
assumed to be known at runtime (Later in Chapter 5 it is explained how the
mapping problem could be solved a priori). In Figure 4.11, the processes of
the adder example are mapped as illustrated. Channels ¢; and c3 connect
the processes that are mapped onto the same device. In this case, there is no
need for the indirection over the host memory. Therefore, the implementation
can directly access the same buffer without memory copy operations. A zero-

It has been observed that for the drivers of AMD and Intel, releasing the buffer did not
have any effect. However, the NVIDIA driver always transfers the complete buffer into
host memory when releasing a subbuffer and reallocates and fills the memory again when it
clCreateSubbuffer is called. This is really inefficient and it is therefore advisable to only
create the subbuffers once.

— 38 —

4.3. COMMUNICATION CHANNELS IN OPENCL

Gy “ 3

Figure 4.11.: Selection of the correct channel implementation based on the mapping of the
processes that are interconnected through it.

copy channel can be used for both channels c; and c3. For this, the allocation
of the buffer can be done by the OpenCL driver using c1CreateBuffer with
CL_MEM_HOST_NO_ACCESS as parameter. For channel c; it is clearly needed to
use the host memory as indirection. So, in this case, the channel has to be
implemented as it was described in Section 4.3.2. Summarised, two buffers
are created that point to the same region in the host memory, one of them for
device 1 and the other for device 2. The channel implementation takes care of
transmitting the data from one device to the other.

An additional special case of a channel implementation is depicted in Fig-
ure 4.12. Device 1 has host unified memory, which means that it is possible to
directly pass a reference of a buffer to the kernel without copying the data
tirst. This corresponds to the implementation of directly accessing the buffer
as if it was on the same device. For the other side however it is still needed
to copy the data from the host memory to the other device that does not have
host unified memory. Therefore this special case can be seen as a hybrid im-
plementation of the two approaches. This led to the decision to implement
a channel with interchangeable ports for both sides, namely an input and an
output port. The input port implements the interfaces acquire push and release
push, whereas the output port implements the interfaces acquire pop and re-
lease pop. The channel will allocate the memory depending on the mapping
of the processes and the properties of the devices that are involved. This flex-
ible approach allows to communicate to processes executed as native POSIX
threads by providing a simple additional variant of a port, which is needed
in Chapter 5 when the approaches of this thesis are integrated into a larger
programming framework called distributed application layer.

4.4. TASK ACTIVATION POLICY

Gy G 5

Figure 4.12.: Device 1 has host unified memory. The channel implementation can use this
information to select a more performant variant of its channel implementations.

With these hybrid channels, it is possible to emulate the behaviour of pointer
passing that was suggested by Intel with their map and unmap implement-
ation [26, p. 17]. The proposed implementation does therefore successfully
emulate an SDF channel in OpenCL in a performant and flexible way. The next
section will elaborate another important topic — the task activation frame-
work.

4.4. Task Activation Policy

The building blocks of an SDF were described in the sections before. The
processes are described as kernels, the channels can be emulated, and finally
those two components can be connected. However, there is still one important
thing missing. All the concepts so far did not include the coordination among
the different interfaces. This section shall introduce how this can be done.

As it was explained already, a kernel is not allowed to be blocked to wait for
data. Therefore, in OpenCL, all input data, and also all output spaces must
be available at kernel invocation. The dependencies between the interfaces of
two processes and one channel were depicted in Figure 4.6 as a motivational
example. The schedule for the actors was trivial in that case, as there was
only one valid possibility. A marked graph representation for a real channel
is depicted in Figure 4.13. Essentially, a marked graph is an SDF with all the
input and output token rates equal to one. Clearly, in this example there are
multiple valid ways to schedule the actions, e.g., it is valid to invoke all func-
tions counterclockwise starting at acquire pop, and it is also valid to first invoke

4.4. TASK ACTIVATION POLICY

Figure 4.13.: A simple producer-consumer SDF can be modelled as a marked graph that de-
scribes the interface dependencies between two interconnected processes through
its channels. The orange marks correspond to the free places in the channel,
whereas the blue token corresponds to a mark currently lying on the channel.

the acquire push function six times and then to continue with fire P and so on.
The first schedule allows both, P and C, to be executed simultaneously on
different devices, whereas the second schedule will serialise the invocations.
Figure 4.14 depicts the adder example of Figure 4.1 modelled as a marked
graph. Even though there are only four processes and three channels, the
marked graph is already rather large and there are various valid possibilities
to schedule the actions. Clearly, the complexity will be even higher for a more
general SDF. For larger complex process networks it becomes incomprehens-
ible to find a good schedule. For this reason there must be a task activation
framework to automatically achieve coordination among the channel inter-
faces and the process invocations. In this work, two different possibilities of
implementing such a framework have been looked at. They are discussed in
the following.

Direct Approach

In OpenCL, for almost every synchronous function, there is also an asyn-
chronous version of it. For those functions, a callback function can be re-
gistered that is guaranteed to be executed somewhen after the function has
completed®. The first approach to build a task activation framework was
based on these callback functions. The approach is mainly following the model
of the marked graph (e.g., Figure 4.13 on the bottom). It started from a simple
SDF implementation in OpenCL and served as a proof of concept. The simple

80penCL uses the concept of callback functions that can be registered to an event object. The
documentation thereof can be found in [6, Sec. 5.9, p. 185].

4.4. TASK ACTIVATION POLICY

release
pop Cl
acquire
pop C].
acquire
pop 62
release
pop CQ

Figure 4.14.: The SDF from the initial example in Figure 4.1 can be modelled as a marked
graph. The orange tokens stand for the number of free places in the FIFO. Tokens
currently lying on the channel are coloured in blue.

release release

pop 03

release release acquire

push 03 pop 63

4.4. TASK ACTIVATION POLICY

application was then step by step extended to a more general framework. The
original example is the producer-consumer example in Figure 4.13. The imple-
mentation is based on the simple marked graph representation in the bottom
of the figure. This means that for every node all output arcs are implemented
as callback functions. For example, in release push, a callback function is set
to acquire pop of the successive process. The fire node is invoking the kernel
and when the kernel has finished, the respective release function is called. The
process was afterwards extended to work for more general SDF topologies.
The extended version is therefore able to cope with multiple input and output
channels per process.

However, this implementation has some limitations. The framework can-
not exactly control when a function should be called. This implies that it
is unable to properly schedule processes, because it cannot enforce the or-
der in which they are invoked. Moreover, for a setup with multiple OpenCL
drivers, each driver will decide when a callback function must be invoked
(the specification is rather vague on that point, every implementation fulfils
the specification if it will invoke all callback functions somewhen in the fu-
ture after the event has been reached). Another issue might be that the stack
could grow infinitely when the recursion level is not watched by the OpenCL
driver (c1SetEventCallback within a callback function’). However, in reality
this behaviour could not be observed. The main reason for reimplementing
the framework was a serious problem that could not be solved with this ap-
proach. During the application runtime it happened that all devices had been
idle for some milliseconds even though there were processes that could be
executed during that time. This effect could be observed mostly for bigger
SDFs and processes with a short runtime. The reason for this behaviour is
yet unclear. At this point it was hard to debug this phenomenon, because the
OpenCL drivers are closed source.

Another restriction was, that the implementation could not make use of larger
buffers, as the design did not offer an easy way to integrate this feature.

°In OpenCL it is possible to register a callback function within a callback function. It has
been observed that some implementations will directly invoke those, if the event is already
CL_COMPLETE. If the recursion level is not watched properly, this might lead to a stack over-
flow. For this reason one should check carefully whether the implementation is correct on
that point.

4.4. TASK ACTIVATION POLICY

Queue-Based Approach

At this point the decision was taken to refactor the implementation. The new
implementation should be process-centric instead of channel-centric. This
means that the processes should request the channels to acquire or release a
token, instead of the channel requesting the process to fire. The control should
completely be given to the task activation framework, i.e., it should coordin-
ate all function calls and decide about their order. Moreover, the OpenCL
command queues should be kept busy and only be flushed in batches of mul-
tiple commands. Additionally, the framework should support for concurrent
DMA communication and kernel execution. Finally, callback functions should
be used only where needed, and should be executed as quickly as possible.

The main part of this implementation is a task queue. In this queue, a task
describes some function that must be executed, e.g., a process invocation. The
single-threaded task queue handler decides when to execute a task and therefore
establishes the order of task discharging. An important property of a task is
that it must be defined to be non-blocking, otherwise it might cause deadlocks,
because the task queue is single-threaded.

In order to better manage the graph structure of process networks, the pro-
cesses and channels are mirrored by asynchronous representation objects viz.
process launchers and channel statuses. The process launcher communicates
with the OpenCL runtime environment. When the fire method is called, it
will acquire data from all of its input channels and acquire space from all its
output channels. Afterwards, the process launcher enqueues its kernel invoc-
ation. All the respective OpenCL operations are inserted to the same ordered
command queue. Finally, the release interfaces are called and the necessary
OpenCL operations are put to the command queue. Only after this has fin-
ished, the queue is flushed, which means that the batch of commands is trans-
ferred to the device and eventually, the operations will be executed. As the
command queue is ordered, it is guaranteed that when the last inserted oper-
ation finishes, all previous operations have already finished before. In order
to guarantee a non-blocking task queue, all OpenCL function calls have to be
asynchronous and also the other necessary functions may never block.

Furthermore, the release function has to be split into two parts. The first part
inserts the data transfer actions to the command queue, the second part ad-
justs the state of the FIFO in a callback function. The callback function will
only do some pointer arithmetic and is therefore lightweight as it is suggested
above.

— 44 —

4.4. TASK ACTIVATION POLICY

Another point that must be guaranteed is that the tasks will never be blocked
while accessing an empty or full channel. Thus, a task will only be inserted
to the task queue when it is able to execute. The important question is when a
task can be inserted into the task queue. For this, the host application might
provide a monitor to observe all channel statuses. When the state of the FIFO
has changed due to a finished push or pop operation, the monitor can decide
whether another process can be put to the task queue. This can be implemen-
ted to be fully event-based and all changes are broadcast using signals.

This approach therefore fulfils the following properties: Firstly, commands
are processed in batches instead of transferring every command alone. As it
was described, a process launcher will enqueue all data transfers and its ker-
nel invocation before the command queue is flushed. This amortises the setup
overhead and will therefore be more performant [24, Sec. 4.5.6, p.4-21]. The
command queues will also contain as many actions as possible. Secondly, all
OpenCL function calls are executed from within the same POSIX thread se-
quentially, i.e. the task queue selects and discharges tasks one by one. This
approach is less error-prone, reduces the synchronisation costs, and also the
task switching overhead. Thirdly, the callback functions are only used when
needed and are implemented such that they will finish promptly. As it was
mentioned, they are only needed to adjust the FIFO state. It is important that
those functions are lightweight, because they will usually take resources of
the OpenCL driver. It has been observed that those callback functions were
all executed from the same threads that also handle all other OpenCL related
actions (e.g., kernel invocations, and data transfer initialisation). Therefore it
makes sense not to overload callback functions with too much work. Fourthly,
the task queue has full control to decide which process it will invoke next. In
this work, a first-come first-serve (FCFS) scheduler was implemented. It is how-
ever implemented such that it can be modified to use any dynamic scheduler
(for example priority-based scheduling, or deadline-based scheduling). The
strategy when a task should be launched can also be based on the underly-
ing process network. It might happen that some long running processes are
waiting for the result of a previous task. In this case such a process should
be prioritised instead of handling other less important tasks first. However,
for many applications the FCFS scheduler might be a reasonable choice as it
treats all tasks equally.

One property that is not fulfilled by this approach is the possibility of parallel
communication and process execution. It can theoretically be achieved by us-
ing multiple command queues in a round robin fashion. In practice this has
however caused more problems than it actually solved. One of them is that

4.5. FINE-GRAINED AND COARSE-GRAINED DATA-PARALLELISM

multiple command queues will share their work and therefore, each queue
might be shorter than if only one queue is used. In OpenCL however it is
recommendable to have larger queues in order to maximise the throughput.
The queue selection strategy is implemented by the OpenCL driver. So, mul-
tiple command queues will give away some of the control that was earned
with this approach. Furthermore the queues must be synchronised to guar-
antee the order of how the tokens are pushed to the FIFOs. This might be
achieved by using events, which might cause additional overhead and com-
plexity. Moreover it might happen that a push operation with a high priority
(e.g., all other processes are waiting for that piece of data) is unnecessarily
deferred and a less important action is executed first (e.g., a pop operation).
It has also turned out that not every device supports concurrent read, write,
and execution. For all these reasons, the single-queue solution was finally
retained.

In summary, one can say that the task queue based approach using a single
queue represents the best compromise of simplicity, efficiency, and perform-
ance. Chapter 5 discusses how a runtime environment can be built based on
that task queue model.

4.5. Fine-Grained and Coarse-Grained Data-Parallelism

The concept of shadow copies was introduced in Section 4.2. It describes how a
sequential process of an SDF graph can be transferred to many simultaneously
executed processes with the same functionality in a data-parallel manner. The
concept is a compromise concerning process granularity. It was mentioned
that a process should describe a larger function consisting of multiple instruc-
tions, as the overhead introduced by implementing a process as an OpenCL
kernel is much bigger than just a C-function call. The OpenCL device has to
do some preparation tasks before launching a kernel. Afterwards, the kernel
has to be transferred to the device that it is mapped to. This introduces an
overhead which can be compensated with longer running kernels.

A more computationally intensive function requires most probably also more
input data and is producing output data tokens of a larger size. Shadow cop-
ies can only provide data-parallelism on the level of granularity that is given
by the process. The input channel must contain enough tokens, before a pro-
cess with shadow copies can be launched. The more shadow copies the pro-
cess uses, the bigger the latency that is introduced for the whole application.

— 46 —

4.5. FINE-GRAINED AND COARSE-GRAINED DATA-PARALLELISM

Furthermore, the buffer capacities have to scale with the number of shadow
copies, and at some point, the available memory will be the limiting factor.
Depending on the application it might make sense to have 10...100 shadow
copies.

This number is mainly suitable for OpenCL devices of type CPU and accel-
erator. In order to efficiently utilise a GPU, thousands of workitems have to
run simultaneously on the GPU. So, if a shadow copy was implemented as a
workitem, the previous processes would have to produce thousands of tokens
before the shadow copy process can be invoked. This might introduce a lar-
ger latency and might require huge FIFO capacities. At some point, the device
memory of the GPU will be the limiting factor for the number of shadow cop-
ies. This leads to the conclusion, that the shadow copy approach does not
suffice, and that it is not possible to fully exploit the potential of a GPU with
this approach.

The shadow copy approach can be extended in two ways: Firstly, one could
split the GPU into smaller subdevices that can be addressed separately by
launching different kernels on them. This is however not yet possible for cur-
rent GPUs with OpenCL. A milestone in this direction has been set by NVIDIA
when releasing their Kepler GPUs supporting exactly that feature with CUDA
5.0, It is merely a matter of time until the OpenCL driver from NVIDIA
might support this feature, and as well until other vendors might follow this
direction.

Secondly, the shadow copies can be extended with the approach of having
inherently parallel processes as it was depicted in Figure 4.4. Instead of de-
fining a shadow copy as a workitem, it is defined as a complete workgroup.
A workgroup consists of a selectable number of workitems and is executed
on exactly one compute unit. This extension allows a kernel to use the con-
cepts of writing parallel code in OpenCL. One of the advantages gained by
this, is that a process can use local memory and barriers for synchronisation
of the workitems. The local memory allows efficient communication between
the workitems within a workgroup. Shadow copies cannot make use of this,
as intercommunication between them is strictly forbidden by definition. In
this extension, shadow copies are used to provide enough workgroups to the
compute units. When a workgroup is stalled in a global memory access, the
next workgroup will be executed in the meantime.

10CUDA concurrent kernels: http://docs.nvidia.com/cuda/kepler-tuning-guide/index.
html#managing-coarse-grained-parallelism

— 47 —

http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html#managing-coarse-grained-parallelism
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html#managing-coarse-grained-parallelism

4.6. SUMMARY

For example AMD defines the minimum number of workgroups per compute
unit to be four [24, p. 5-22]. For a device with eight compute units, a kernel
should therefore be launched with at least 32 workgroups. This is in the range
of shadow copies as it was proposed above. The number of workitems per
workgroup should be a multiple of 64 for AMD GPUs and a multiple of 32 for
NVIDIA devices. The maximum number of workitems in a workgroup can
vary from device to device and has to be queried before it is set.

4.6. Summary

In this chapter, the main concepts of combining the paradigms of OpenCL
and SDF were described. SDF processes have been mapped onto OpenCL
kernels using a well-defined interface. It was discussed how data-parallelism
can be achieved in a way that is suitable for all device types that OpenCL
supports. To emulate FIFO channels in OpenCL, a channel implementation
was proposed that selects the best data access strategy based on the process
to device mapping. The interaction between the processes and the channels is
controlled by a task activation framework that is based on a global task queue.
The next chapter will discuss how the proposed approaches can be integrated
into a high-level design flow targeting any platform supporting OpenCL.

High-Level Design-Flow for
OpenCL-Accelerated Applications

This chapter presents a design flow and an automatic code generation frame-
work for applications specified by the SDF model of computation. It allows to
map SDF applications onto different architectures. The principles of Chapter 4
have been integrated into the distributed application layer (DAL) as an exten-
sion. The design goals of simplicity, portability, extensibility, and efficiency
were followed during the implementation. Simplicity: the application de-
veloper should have a toolchain that simplifies software development. Portab-
ility: applications should be reusable for different architectures. Extensibility:
the framework must be flexible in order to be extended in the future. Efficiency:
The proposed framework should be lightweight and transparent.

The remainder of this chapter is organised as follows: First, an introduction
to DAL is presented. Then, a short overview of the approach is given. After
that, the specification of applications and architectures is detailed and the soft-
ware synthesis framework is explained. Finally, the chapter concludes with an
evaluation of the design goals.

— 49 —

5.1. DISTRIBUTED APPLICATION LAYER

5.1. Distributed Application Layer

The distributed application layer (DAL) was presented in [19, 28]. It describes
a high-level design flow for mapping applications specified as process net-
works onto heterogeneous many-core systems. It is capable of handling mul-
tiple applications and start and stop applications at runtime as specified by
a finite state machine. DAL is targeting upcoming heterogenous many-core
systems, which are very likely OpenCL-enabled devices. However, so far,
DAL does not support OpenCL. The extension of integrating the task queue
OpenCL runtime environment into DAL is therefore reasonable.

The DAL runtime environment is a distributed application that is spread over
the system. The workers of DAL are nodes that describe a shared memory sys-
tem running one specific operating system. All nodes are connected through
a network. The behaviour of an application is controlled by a master. A slave
is running on each node to take commands from the master. The master con-
troller knows the complete process network topology and can start and stop
an application by sending the respective commands to its slaves.

5.2. Overview

The high-level design flow of DAL as considered in this thesis, is depicted
in Figure 5.1. The application is specified as a process network in the format
of an XML-file. It defines all processes, channels, and contains the topology
information of the complete process network. On the other hand side there
is a specification of the architecture. This is also defined in a separate XML-
file. The architecture defines all nodes that are available, and for each node
it is specified how many processors belong to it. The mapping XML file spe-
cifies the location where each process has to be executed, i.e., the process to
processor assignment. For this work, it is assumed that the mapping is static
and known a priori. For instance, mapping optimisation is tackled in [28].
These three XML files are the input to the next stage, the software synthesis,
which produces a binary executable file that is targeted to the architecture
from the specification. The functionality of the application is the same as it
was specified in the process network specification. Further details are given
in Section 5.4.

5.3. SPECIFICATION

Process
Network

Architecture

Specification Specification

Mapping
Specification

Yy

Software
Synthesis

A

Executable
Binary

Figure 5.1.: Design flow of DAL.

5.3. Specification

This section describes how an application can be specified for DAL. The ba-
sic components are the process network, the architecture, and the mapping
specification.

An application defined as a process network consists of two parts: The net-
work topology and the functionality of all processes. The topology is specified
in an XML-file such as the example that is depicted in Figure 5.2. It defines all
the processes, channels, and the how they are connected.

Channels are defined with a tag called sw_channel. The channel capacity is
fixed and must therefore be specified for all channels. For a given SDF it is
possible to calculate the needed channel capacities in advance. A parameter
tokensize is needed per channel in order to convert the notion of a token into
the unit of bytes. Moreover, there are also additional optional arguments to
set the token rate of both ends of the channel (otherwise they are assumed to
be one).

Processes are specified with the process tag. The functionality of a process
is defined by a source file that has to be provided by the developer. It can be
specified in different languages, for example as a C-function or as an OpenCL
kernel. A process can have multiple sources, in this case, the mapping will de-
cide which one to use. For the special case of an OpenCL kernel, the inherent
parallelism can be set as an optional argument dataparallelism. The coarse-
grained parallelism can be set with an argument shadowcopies. This will then
be used to automatically parallelise the processes as it was described.

5.3. SPECIFICATION

Ports are assigned to channels and processes in order to interconnect them
using a connection. A channel has exactly one input port and one output
port, each of them can only be linked once. Processes can have as many input
and output ports as needed.

In the simple example in Figure 5.2, two processes are interconnected through
a channel with an initial token placed on it. Process B is defined to either be
an OpenCL kernel with 64 shadow copies, or a C-function. Process A writes
tokens with the token rate two, whereas process B only reads them with a
token rate one. The channel is given a capacity of 128 tokens; this allows to
simultaneously execute process A and B.

The second specification is the one of the architecture. This, as well, is defined
in an XML-file as in the example in Figure 5.3. It defines all the available pro-
cessors of the heterogeneous platform. A processor has a certain type. For
a heterogeneous platform there are multiple types of processors. In the ex-
ample, there are two processors of type RISC and one processor of type GPU.
The example architecture describes a PC setup with a CPU and a GPU, where
two CPU cores are available to DAL. Each processor might have different cap-
abilities. A capability describes a programming model that is implemented by
DAL. In the example there are two capabilities: Executing POSIX threads, and
executing OpenCL kernels. The CPU supports both of them, whereas the GPU
is only able to handle OpenCL kernels. An identifier is used to distinguish
one processor from other processors. For POSIX, this simply corresponds to
the CPU affinity. For OpenCL the identifier is defined to be a unique string
containing the vendor, the device name, the device type, and a counter (if
multiple devices are equal).

The mapping is defined in a third specification depicted in Figure 5.4 and
defines the location where the processes have to be executed. In the mapping
XML-file, this is achieved with the binding tag. In the example, process A
is mapped to core_2 and process B to gpu_0. The binding also specifies which
source file has to be executed with the sourceid argument. A mapping is only
valid, if the processor is capable to execute the corresponding source type.

The three presented specification files are used as an input in the code syn-
thesis stage, which is presented in the following section.

— 5 —

5.3. SPECIFICATION

1~64

B

<?xml version="1.0" encoding="UTF-8"7>
<processnetwork name="APP">
<process name="A" type="local">
<port type="output" name="outl"/>
<source id="0" type="c"
</process>
<process name="B" type="local"
<port type="input" name="inl"/>
<source id="0" type="openclc"
dataparallelism="256"/>
<source id="1" type="c"
</process>

<sw_channel type="fifo" tokenratein="2"
size="128" tokensize="4"<7Bytes?7>
<port type="input" name="in"/>
<port type="output" name="out"/>
</sw_channel>

<connection name="A_cO">
<origin name="A">
<port name="outl"/>
</origin>
<target name="cO">
<port name="in"/>
</target>
</connection>

<connection name="cO_B">
<origin name="cO">
<port name="out"/>
</origin>
<target name="B">
<port name="inl"/>
</target>
</connection>
</processnetwork>

64

location="process_A.c"/>
shadowcopies="64">
location="process_B.cl"

location="process_B.c"/>

initialtokens="1"
name="c0">

Figure 5.2.: A simple producer-consumer process network as XML.

— 53 —

5.3. SPECIFICATION

<?7xml version="1.0" encoding="UTF-8"7>
<architecture name="ARCH">
<shared name="localhost">

<port name="porti" />

<port name="port2" />

<port name="port3" />

</shared>

<processor name="core_0" type="RISC" id="1">
<port name="portl" />
<capability name="POSIX" identifier="1" />

<capability name="O0PENCL" identifier="CPU_32902_Intel(R)Core(TM)i7

-2600KCPU@3 .40GHz_DEV1_SUB1" />
</processor>
<processor name="core_1" type="RISC" id="2">
<port name="porti" />
<capability name="POSIX" identifier="2" />

<capability name="0PENCL" identifier="CPU_32902_Intel (R)Core(TM)i7

-2600KCPU@3 .40GHz_DEV1_SUB2" />
</processor>
<processor name="gpu_0" type="GPU" id="3">
<port name="porti" />

<capability name="0OPENCL" identifier="GPU_4098_Capeverde_DEV1i" />

</processor>

<link name="link_1">

<end_point_1 name="core_0"><port name="portl" /></end_point_1>
<end_point_2 name="localhost"><port name="portl" /></end_point_2>

</link>
<link name="1link_2">

<end_point_1 name="core_1"><port name="portl" /></end_point_1>
<end_point_2 name="localhost"><port name="port2" /></end_point_2>

</link>
<link name="1link_3">

<end_point_1 name="gpu_0"><port name="portl" /></end_point_1>
<end_point_2 name="localhost"><port name="port3" /></end_point_2>

</link>
</architecture>

Figure 5.3.: Architecture as XML, describing a PC setup with a CPU and a GPU.

— 54 —

5.4. SOFTWARE SYNTHESIS

<?7xml version="1.0" encoding="UTF-8"7>
<mapping name="mapping" processnetwork="APP">

<binding name="producer">
<process name="A" sourceid="0" />
<processor name="core_2" />

</binding>

<binding name="
<process name="B" sourceid="1" />
<processor name="gpu_0" />

</binding>

</mapping>

consumer ">

Figure 5.4.: Mapping as XML, corresponding to a PC setup with a CPU and a GPU.

5.4. Software Synthesis

In the software synthesis stage, the application-specific code is merged with
the platform-specific code based on the selected mapping. With this, it is pos-
sible to write applications independently from the architecture specific code.
The architecture code can therefore be reused for various applications. In this
section it is explained how this synthesis is done for the class of OpenCL-
enabled architectures.

First of all, the controller threads for DAL have to be generated. This function-
ality is already provided by the original DAL framework. For a single node,
this will generate the code to launch two threads, one for the master and one
for the slave. For the OpenCL runtime environment, an additional thread is
needed for the task queue that was introduced in Section 4.4. The code for all
three of them is therefore generated. In case of an OpenCL enabled architec-
ture, a unique context is generated per device for every unique identifier of
the architecture XML file.

The steps so far were independent of the process network. Thus, the second
step is to generate the code to setup the process network and to start it af-
terwards. In DAL, all the administrative operations are coordinated by the
master controller. The master knows the topology of the process network and
the corresponding mapping. It sends commands to its slaves commanding
them to install processes and channels, and to start and stop the processes.
In order to integrate the OpenCL runtime environment to DAL, the interface
to install a process had to be extended to contain information about the type
of the process and which source file belongs to it. This means, a process can
be of type POSIX thread, or it can be an OpenCL kernel. Moreover, the inter-

— 55 —

5.5. DESIGN GOALS

face specifies to which location the process is mapped onto. For an OpenCL
process this location denotes an OpenCL context. Furthermore, information
about the number of shadow copies and the parallelism of the OpenCL kernel
had to be inserted to that interface. When the slave receives a command to
install an OpenCL process at runtime, it will load the source file of the process
and compile the corresponding kernel for the corresponding device. When
the slave receives the command to install a channel, it will create a primitive
channel structure.

Finally, when all processes and channels are installed, the master will send
the commands to link them. When a channel is linked to the second process,
it allocates the memory dynamically in the suitable device memory as it was
described in Section 4.3.4. There is yet another variant of a channel port which
was not discussed in detail: A channel port connecting POSIX threads to the
same channels as the OpenCL kernels which allows to create applications that
integrate multiple types of processes. This opens the world to a much bigger
class of applications. For example OpenCL kernels cannot read from or write
to file streams, which is something that can easily be done within a POSIX
thread.

The last step is to start the process network. After the slave has received the
command to do so, it will insert the task to start a process into the task queue
after checking if the process can be executed. Otherwise, the process will be
directly triggered by the network at the point when it can be executed (but
again through the task queue).

Somewhen, the application has to be stopped. Every POSIX process holds an
event channel to the master and can ask the master to stop the application at
some point in time. The master will then initiate the shutdown procedure.
This comprises of stopping the processes and finally destroying the channels.
The implementation of stopping is straight-forward, and thus omitted.

5.5. Design Goals

This section lists the design goals that were followed while integrating the
OpenCL runtime environment into DAL. These are namely simplicity, port-
ability, extensibility, and efficiency.

5.5. DESIGN GOALS

Simplicity

The application programmer should focus on the application and not spend
its resources to tedious things as communication and synchronisation of the
application. Simplicity is achieved by specifying the application in a simple
model called SDF. The extension to DAL allows to specify an application in
an XML file. The functionality of the processes has to be programmed as
simple sequential processes. Each process can only read from and write to
its channels which makes programming easy, as the programmer does not
need to take care about how the data is transferred and is also relieved of the
usual parallel programming difficulties, such as synchronisation, indetermin-
ism, and dead-locks.

Portability

Applications can be created for various different architectures and setups. The
code for the process network only has to be written once and can then be por-
ted to all architectures supporting OpenCL. Following the Y-chart approach, a
new architecture can be created independently of the application, and only a
simple XML file has to be provided. The framework can then synthesise that
new architecture and merge it with the code of the process network.

Extensibility

The proposed solution is extensible in multiple dimensions. First of all, it
is possible to integrate additional capabilities for processors (e.g., CUDA for
NVIDIA GPUs). A process can already contain multiple sources and a pro-
cessor can have multiple capabilities. So the baseline is set to extend this even
more. Second, the proposed hybrid channel implementation can also be used
to implement other channel port types. Third, the task queue is really flex-
ible. It can, on one the hand, be modified to any dynamic scheduler, and on
the other hand, it is possible to implement other tasks that can be handled.
It is also possible to use multiple task queues. All those properties make the
proposed framework an extensible one.

— 57 —

5.6. SUMMARY

Efficiency

A channel will only allocate its memory at runtime and decide where to store
the FIFO. The design goal of efficiency led to zero-copy FIFOs wherever this is
possible. In the other cases, the number of copies is minimised. Furthermore,
the implementation will carefully reuse OpenCL buffer objects and kernels.
The objective os to have a runtime-system that is transparent and only creates
minimal overhead.

5.6. Summary

This chapter has presented a design flow to efficiently write parallel software.
This software synthesis framework is afterwards used to evaluate the runtime
environment in different dimension by creating various applications suitable
to benchmark one aspect of the framework. The evaluation is described in the
following chapter.

Evaluation

A number of concepts have been proposed in Chapters 4 and 5. This chapter
evaluates the performance metrics that can be reached with them. First, the
proposed channel implementations are compared by measuring the maximum
data transfer rate. After that, in Section 6.3, the two different task activation
frameworks are compared. Then, the overhead introduced by OpenCL is ana-
lysed in Section 6.4. Finally, a realistic application is used to compare different
devices for their parallel computation performance. The following section
lists the evaluation setups that are used for the benchmarks.

6.1. Evaluation Setup

The benchmarks have been conducted on two different heterogeneous sys-
tems. Setup 1 is a desktop PC with two graphics cards (Table 6.1), whereas
setup 2 is a Laptop with a mobile CPU and graphics card (Table 6.2).

6.2. INTRA- AND INTER-DEVICE COMMUNICATION

Setup 1
CPU Intel Core i7-2600K @ 3.40 GHz, 8MiB Cache
Driver: Intel OpenCL RTE 2013 XE V.3.0.67279_x64
GPU1 AMD Radeon HD 7750
Driver: catalyst-opencl 13.1-1
GPU2 NVIDIA Geforce GTX 670
Driver: nvidia-opencl 313.18-3
Operating System | Arch Linux 3.7.6-1-ARCH x86_64

Table 6.1.: Evaluation setup 1.

Setup 2

CPU Intel Core i7-2720QM @ 2.20GHz, 6MiB Cache
Driver: Intel OpenCL RTE 2013 XE V.3.0.67279_x64

GPU NVIDIA Corporation GF106 [Quadro 2000M] (rev al)
nvidia-opencl 319.17

Operating System | Ubuntu 12.04.2 LTS 3.5.0-28-generic x86_64

Table 6.2.: Evaluation setup 2.

6.2. Intra- and Inter-Device Communication

The different channel implementations are evaluated with a synthetic bench-
mark. The process network in Figure 6.1 consists of two processes and a chan-
nel. Process A produces one token of ¢ bytes in each invocation. This token is
then transferred to process B using a channel with capacity c. Process B will
eventually receive the token and access all bytes once to store it in a tempor-
ary variable. This guarantees that the data has to be transferred into a data
register of the corresponding device, and reflects the behaviour of a realistic
application. As there there are only minimal calculations performed on the
data (a simple addition of a constant), this test will give an upper bound on
the available data transfer rate. For the evaluation, the following parameter
space is explored:

¢ The token size t is varied in the range of 512 bytes and 4 MB.

* The number of shadow copies (S) is set to the number of compute units
of the corresponding device.

¢ Different values for intra-process parallelism (I) are compared.

6.2. INTRA- AND INTER-DEVICE COMMUNICATION

¢ The channel capacity c is fixed to 32 MB.
® Process A and B are mapped to either the same or to different devices.

¢ Different channels have been used to interconnect processes A and B.

In a first setup, the data transfer rate between two processes mapped onto the
same device is measured for two different FIFO implementations. The results
for setup 1 are shown in Figures 6.2a and 6.2b for the NVIDIA and the AMD
GPU, respectively. First, the optimised FIFO implementation is used, which
keeps the data in the global memory of the device (“global buf.”). Second,
a naive FIFO implementation is used, which transfers the data through host
memory (“HAM buf.”). Having more workitems might lead to higher data
transfer rates as more processing elements can concurrently read and write.
The observed peak data rate is 20.30 GBytes /s when both processes are mapped
onto the NVIDIA GPU and 7.96 GBytes/s when both processes are mapped
onto the AMD GPU. As expected, the data transfer rate is considerably lower
if the memory buffer is allocated in the host memory. In this case, the ob-
served peak data rate is 1.09 GBytes/s when both processes are mapped onto
the NVIDIA GPU and 1.67 GBytes/s when both processes are mapped onto
the AMD GPU.

The data transfer rate for the case that one process is mapped onto the CPU
and the other process is mapped onto the AMD GPU is illustrated in Fig-
ure 6.2c. “GPU to CPU” means that the producer process is mapped onto
the GPU and the consumer process to the CPU. For “CPU to GPU”, it is vice
versa. The observed peak data rate is 1.91 GBytes/s when the producer pro-
cess is mapped onto the GPU and 2.14 GBytes/s when the producer process
is mapped onto the CPU.

Finally, Figure 6.2d shows a summary of the data transfer rates for setup 2.
The observed peak data rate is 3.82 GBytes/s and measured when both pro-
cesses are mapped onto the GPU.

6.2. INTRA- AND INTER-DEVICE COMMUNICATION

&/

Figure 6.1.: A producer-consumer model for measuring the reachable throughput with para-
meterised shadow copies s, token size t, and channel capacity c.

25 e : [pana ——— P
—— device buf., S=7, I=128 —— dev!ce buf., S=8, =64 y
—+— device buf., S=7, I=1024 T —+— device buf., S=8, =256 e
- -8, I= 7
20 —O— HAM buf., $=7, =128 A —O— HAM buf., S=8,1=64 , o
—%— HAM buf., S=7, I=1024 s __ 6| —>— HAM buf., S=8, I=256 ¥ - =
= i < / //
2 / _ 2 S
o I5f 7T <) ;7
g % g4 S f
5 / £ y
R ///) /s
3 4 3 L
A 2t Z
3 7 4 _o-——90— ¢
¥ ¥ ~¢
- < —%
_ —¥ £
o o8 000004 NS e s ‘ ‘
1K 8K 64K 512K 4M 1K 8K 64K 512K 4M
transferred bytes per FIFO access transferred bytes per FIFO access
(a) Platform A, NVIDIA GPU. (b) Platform A, AMD GPU.
2.5 : : : 4 T : ‘]
—— GPU to CPU, S=8, 1=64 —+— GPU (device buf.), S=8, I=128 P
—+— GPU to CPU, $=8, 1=256 % —+— GPU (HAM buf.), S=8, I=128 e
21 —O— CPU to GPU, S=8, =64 - —O— CPU to GPU, S=8, =128 /
—%— CPU to GPU, 5=8. 1=256 LA — 3| =% GPU 0 CPU, 5=8,I=128 7 1
— - - AN g // 2;«//6\\
A 255 A p 5 N
G 1t A) i
2 P4 o 2t 7 T
3 I -
s | ///0/ ot / %// A
E % = /R
k=] Vi o / _
05F &7 s
= =¥ g2 A
= =
=¥ ‘ ‘ e p=e=F ‘ ‘
1K 8K 64K 512K 4M 1K 8K 64K 512K 4M

transferred bytes per FIFO access

(c) Platform A, AMD GPU to CPU.

transferred bytes per FIFO access

(d) Platform B.

Figure 6.2.: Data transfer rate for different process mappings and channel implementations.

6.3. COMPARISON OF TASK ACTIVATION FRAMEWORKS

6.3. Comparison of Task Activation Frameworks

Two different implementations of a task activation framework were intro-
duced in Section 4.4. Both of them, the direct approach and the task queue, are
evaluated in the following. The example application in Figure 6.3 is used to
benchmark their performance. Process A produces a token that is afterwards
consumed by process B. Figure 6.4 shows the resulting speed-up when us-
ing the task queue mechanism relative to the execution time when using the
direct callback mechanism. Both processes are mapped onto the CPU and the
number of calculations in process A is varied. The x-axis represents the in-
vocation frequency when using the direct callback mechanism. As expected,
no speedup is achieved for low invocation frequencies. For higher invoca-
tion frequencies, the task queue mechanism is slower than the direct callback
mechanism if the FIFO channel has a capacity of one token. In this case, both
mechanisms can enqueue a new iteration only if the previous iteration is com-
pleted. However, the feedback loop is larger for the task queue mechanism as
it has the additional component of the runtime-manager. If the FIFO channel
has a capacity of more than one token, the task queue mechanism can en-
queue a new iteration in parallel to the execution of the old one so that the
task queue mechanism is faster than the direct callback mechanism. Finally,
for very large invocation frequencies, the iteration completes earlier than the
task queue mechanism can enqueue a new iteration so that the speedup de-

clines again.
I
C

Figure 6.3.: Application for evaluating the performance of the proposed task activation frame-
work.

6.4. OVERHEAD OF OPENCL VERSUS POSIX THREADS

1.4+ — — - 1 token / channel & — — - 1 token / channel D
—+— - 2 tokens / channel " 't\ 1.4+ —+ -2 tokens / channel H
= 12l —&-— - 4 tokens / channel v ja —&— - 4 tokens / channel p 3
o . o ‘
T v ! 7
3 — I 3 :
o N 5]
& 08 N &
N\
0.67 h
10 100 1000 10000 10 100 1000 10000
"callback" invocation frequency [1/s] "callback" invocation frequency [1/s]
(a) Setup 1. (b) Setup 2.

Figure 6.4.: Speed-up of the application in Fig. 6.3 when using the task queue mechanism
relative to the execution time when using the direct callback mechanism. The x-
axis denotes the invocation frequency when using the direct callback mechanism.

6.4. Overhead of OpenCL versus POSIX Threads

The next benchmark evaluates the overhead that is introduced by OpenCL.
Figure 6.5 depicts the application that was used. Again, a simple producer-
consumer application is used consisting of two processes A and B connec-
ted through a channel. Process A produces a token in each iteration, that is
afterwards consumed by process B. The channel capacity was fixed to con-
tain space for two tokens. This allows to execute neighbour processes simul-
taneously. The application was synthesised twice, the first resulting applica-
tion is executing processes as POSIX threads, whereas the second is executing
processes as OpenCL kernels. When synthesising the application for POSIX,
either no optimisation, optimisation level O2, or optimisation level O3 with
setting march=native is used. When march=native is set, G++ automatically
optimises the code for the local architecture. When synthesising the applic-
ation for OpenCL, the number of shadow copies is set to one so that each
process is executed on exactly one core.

Figure 6.6 shows the speedup of the OpenCL and the optimised POSIX im-
plementations versus the execution time of the unoptimised POSIX imple-
mentation, with the number of calculations in process A being varied. The
x-axis represents the iteration period of the unoptimised POSIX implementa-
tion. As the kernel invocation overhead in OpenCL is virtually independent
of the kernel’s amount of work, the POSIX implementation performs better
for small iteration periods. On the other hand, the overhead is less crucial for
longer iteration periods and OpenCL implementations achieve even higher

6.5. EXPLOITING TASK- AND DATA PARALLELISM

speedups than the optimised POSIX implementations. This may be due to
OpenCL’s ability to utilise the CPU’s vector extension so that four workitems
are executed in SIMD fashion. That assumption is supported by the fact that
the CPU of both setups is only able to execute four workitems in parallel and
distributing the work on five workitems is counterproductive. Note that G++
also makes use of the AVX commands! when the corresponding option is en-
abled, which is why the O3 speedup is always higher than with OpenCL and

I=1.
° [T} e
Cc

Figure 6.5.: Benchmark application that was synthesised as a POSIX implementation and as
an OpenCL implementation.

: , 14 .
—— POSIX, 02 / —— POSIX with 02 ,
12} —+ OpenCL, I=1 /4 12| — POSIX with 03 / march=native P
—O— OpenCL, I=4 —O— OpenCL, I=1 /
1oL = OpenCL, 1=5 if | Lo} % OpenCL, 1=4 ba
= —O- OpenCL, I=7 / = —0— OpenCL, I=5 //
=8 4 = 8 Koo
7 /S X 7 /e
@ 6 / / A § 64:————+—7——+777+7«+7++/7/ AP,
& ®; o pay:
Ab e B/t A S A AN——
/’//,’ %//cé;/, P ,eﬂ— @//4
2 AP 2f X Tk]
_gZ T+ _x==—2 0
0 =H=== === B —— 9] ‘
0.001 0.01 0.1 1 10 100 0.1 1 10 100
unoptimized POSIX iteration period [ms] unoptimized POSIX iteration period [ms]
(a) Setup 1. (b) Setup 2.

Figure 6.6.: Speedup of the OpenCL and the optimised POSIX implementations versus the
unoptimised POSIX implementation. I denotes the level of intra-process paral-
lelism.

6.5. Exploiting Task- and Data Parallelism

Different classifications of parallelism have been introduced during this thesis.
This section evaluates how task-, pipeline-, and data parallelism can be used
for accelerating an application. A special focus is set on the introduced notions
of shadow copies and intra-process parallelism. The test consists of a realistic
application, which describes a motion-JPEG decoder with a filter cascade that

Ihttp://software.intel.com/avx

http://software.intel.com/avx

6.5. EXPLOITING TASK- AND DATA PARALLELISM

is applied to the raw image after decoding. The application is depicted in Fig-
ure 6.7. The Split process reads a video file stream from the main memory and
splits the work to be forwarded to three decoders Dec. Those are decoding
the JPEG frames to a raw image. The merger process Merge reassembles the
raw images and forwards them to the next stages. Afterwards, a filter cas-
cade of a 15x15 Gauss, and two 3x3 Sobel filters are applied to the image. The
former blurs the image to get rid of noise, the latter highlights the edges that
are found in the image by calculating the gradient magnitude of the image in
x and y direction. Then, the Sobel-process forwards the same resulting image
twice to the next stage. Opticalflow calculates the motion in both image direc-
tions and creates an output image that shows the magnitude of movement for
every region in the original image. Finally, the Screen process will output the
original and the processed image to the screen. For reasons of comparability,
the Screen process was only consuming its input tokens without displaying it
during the benchmarks. The Dec, Split, Merge, and Screen processes are written
as C-functions and run as POSIX threads with a static mapping for all bench-
marks. The Gauss, Sobel, and Opticalflow processes are provided as OpenCL
kernels. Between the benchmarks, their mapping was changed in order to
compare the performance of different devices. However, for all benchmarks,
the three processes were always mapped to the same device. This allows to
have zero-copy buffers between them, which turned out to be the fastest chan-
nel. This evaluation will therefore focus on varying numbers of shadow copies
(S) and also on different numbers for intra-process parallelism (I). As a met-
ric, it is measured how many frames per second (FPS) can be achieved in the
Screen process. Every benchmark was executed for 5000 frames.

Figure 6.8 shows the frame rates achieved with different configurations on
setup 1. Multiple configurations are shown on the x-axis. The baseline is
given by configuration on the left, where only one CPU core is used for the
whole application. In this configuration, there is essentially no possibility for
exploiting any of the parallelism types. In this case 42 FPS are the maximum
that can be achieved. Setting the intra-parallelism to a multiple of four will
increase the frame rate to 62 FPS by benefitting of the SIMD vector processing
units of the CPU. In the second configuration, the processes are distributed to
all cores of the CPU and a frame rate of 156 FPS can be achieved. For this, the
number of shadow copies (S) was set to three, as it has been observed, that the
intel driver uses three operating system threads to emulate the compute units
(using four shadow copies turned out to be slower as well). Compared to the
single core configuration, this corresponds to a speedup of 2.5x. It must be
said, that the load balancing of the cores was not perfect, because the OpenCL

6.5. EXPLOITING TASK- AND DATA PARALLELISM

worker threads were only utilising three of the cores, and unfortunately it was
not possible to control their affinity during runtime. Given that only three
cores were fully used (296% CPU usage measured with the time command),
the speedup of 2.5x can be considered as a good result.

For the other configurations, the computationally most intensive processes are
executed on one GPU, namely, Gauss, Sobel, and Opticalflow. With this config-
uration, it is possible to reach 2347 FPS, which is again limited by the CPU (in
this case the decoder is the limiting factor). For this application, it is therefore
possible to reach a speedup of 55x by fully leveraging the hardware. There
is still room to achieve even better results, for example by using both GPUs.
For the configuration using the AMD graphics card, increasing both, the num-
ber of shadow copies, and the intra-parallelism, is beneficial and results in a
higher frame rate. In contrast, the NVIDIA GPU does mostly benefit from in-
creasing the number of shadow copies, whereas increasing the intra-process
parallelism is even counterproductive in certain cases.

Figure 6.9 shows the frame rates for different configurations on target plat-
form B. The peak performance (931 FPS) is achieved when all cores of the CPU
and the GPU device are available. It constitutes a speed-up of 25x compared
to the case where all processes are mapped onto one CPU core (without using
the SIMD units of the CPU). The plot also shows that the number of work-
groups should be aligned with the available hardware. It has been observed
that the Intel OpenCL SDK version that was used is distributing the OpenCL
kernels to only three cores, which is why a higher frame rate is obtained when
executing three shadow copies instead of four.

Overall, the results demonstrate that the proposed framework provides de-
velopers with the opportunity to exploit the parallelism provided by state-of-
the-art GPU and CPU systems. In particular, speedups of up to 55x could be
measured when outsourcing computation intensive code to the GPU.

6.5. EXPLOITING TASK- AND DATA PARALLELISM

Optical
O Flow

Figure 6.7.: Realistic benchmark application describing an MJPEG decoder and a filter cascade
that is applied to raw images.

6.5. EXPLOITING TASK- AND DATA PARALLELISM

[%) D D mﬂ
CPU (one core) + NVIDIA

N
o
il
N
il

962=| ‘p9=9]
821=I ‘¥9=9|
$9=1 ‘$9=9|
962=1 ‘91=9]
91=| ‘6=5[_|
¥=1‘6=8[_|
=1 '6=s]
9i=| ‘e=s[]
=1 ‘=
i=| ‘e=
91=| ‘}=g]
y=1"}=g]
1=| ‘1=
91=1 ‘6=9]
=1 6=9]
1=l ‘6=9
91=1 ‘e=g]
=1 ‘e=g]
1=l ‘e=g|
91=| ‘}=|
=1 ‘1=9]
b=l =g
S 8 S 8 S
& & k4] S e

[

sdj] oyex owrely

CPU + NVIDIA

CPU CPU (one core) + AMD CPU + AMD

CPU (one core)

shadow copies (S) and intra—process parallelism (I) configuration

Figure 6.8.: MJPEG evaluation result on setup 1.

¥201=1 ‘91=5|

952=1 ‘'9}=9

eeosl]

+201=| ‘8=S

952=I ‘8=S

2e=1 ‘8=§

¥201=1"9}=S|

952=1'9}=9

o

ee='e=s |
v20i=1'v=g
9ge=| ‘p=

¥201=1 ‘g=§|
9Ge=1 ‘¢=

CPU CPU (one core) + GPU CPU + GPU

shadow copies (S) and intra—process parallelism (I) configuration

CPU (one core)

ok=1'g=g[|
v=1's=q |
b='g=g__|
ot=l ‘v=g__|
v=1v=s__|
ERac
9i=] ‘g=
=1 ‘e=g]
1= ‘e=g]
CISNES
p=l 1=
b=l L=
94=1‘8=g[_|
v=1'8=g]_|
1=t ‘g=g] |
ot=1'v=9[_|
=1 ‘v=g_|
1= =g
91=1 ‘g=5|
=1 ‘g=
1=l ‘g=
91=1‘1=g}
=1 ‘1=g
b=l)=
g & & § §& °

[sdj] oyex owrery

Figure 6.9.: MJPEG evaluation result on setup 2.

6.6. SUMMARY

6.6. Summary

In this chapter, the core components of the proposed runtime-system were
evaluated. First, the communication channels were benchmarked to give an
upper bound on the achievable data transfer rates. The results have proved
that the buffer placement strategy is remarkably better than the naive imple-
mentation of using the host memory for every transaction. It has also shown,
that it makes sense to use shadow copies and then to transfer data in bigger
blocks leading to a higher data transfer rate.

Second, the task activation frameworks have been compared, and, as expec-
ted, the direct callback approach is working better when the buffer capacity is
limited to the size of one token. For a larger buffer, the task queue approach
is faster, because it can keep the OpenCL command queue busy.

Third, the overhead introduced by the whole runtime-system has been com-
pared to a native POSIX implementation. The results have shown that the
OpenCL implementation can be faster than the POSIX implementation. For
short-running processes the overhead introduced by OpenCL results in a much
slower result, as expected.

Fourth, a realistic video processing application has been used to benchmark
the overall performance gain. In comparison to only using one CPU core, a
speedup factor of 55x was achieved by utilising all CPU cores and one GPU
device. This proves, that the framework offers a lot of parallelisation oppor-
tunities to the programmer, which allows to efficiently use the underlying
hardware. The complete video processing application was only written once,
and was then synthesised for the different configurations by changing the
mapping. This confirms that software development is simple and product-
ive with the proposed framework.

Conclusion and Outlook

7.1. Conclusion

Motivated by upcoming heterogeneous systems, this master thesis proposed
a design flow and runtime-system for executing process networks on on top
of an OpenCL environment. It was elaborated how the notion of synchronous
data flow graphs can be mirrored by means of OpenCL. A flexible runtime-
system implementing the building blocks of a process network has been pro-
posed. For that, an OpenCL kernel was abstracted to mimic the behaviour
of a synchronous data flow process. Furthermore, location-based FIFO chan-
nels minimising the number of copy operations have been developed. Mul-
tiple channel implementations have been evaluated and finally been com-
posed into a hybrid implementation combining all advantages. Those hybrid
channels enable inter-communication between OpenCL kernels. Addition-
ally, they can also be used to communicate with processes that are executed
natively on the CPU within a POSIX thread. Moreover, an extensible task
activation framework was introduced by the notion of a task queue. It can
predictably manage process invocations and therefore be used as a scheduler.

Supporting productive software development for heterogeneous systems, a
design flow consisting of two separate specifications has been proposed. The
application is specified in a high-level language consisting of the process net-

7.2. OUTLOOK

work topology and the implementation of the processes. The second specific-
ation defines the hardware architecture in a high-level language and is inde-
pendent of the application. A program synthesis framework builds specific
code targeted for one of the defined architectures by combining the building
blocks of the runtime system with program-specific code. This approach of-
fers portability to develop applications once and deploy it on a wide range of
OpenCL architectures.

Extensive evaluations have proved that software development is largely sim-
plified with the proposed framework. Development of the benchmark applic-
ations has turned out to be an efficient task and that it was indeed effortless
to program them. The evaluation has also compared the performance of a
realistic video processing application. The achieved frame rates have been
compared for different process to device mappings. In comparison to only
using one CPU core, a speedup factor of 55x was achieved by distributing the
application over all available CPU cores plus one GPU device.

Concluding, it can be said that the design goals of simplicity, portability, ex-
tensibility, and efficiency were truly met by the proposed framework support-
ing productive software development for heterogeneous systems.

7.2. Outlook

The proposed framework being extensible, there are multiple ways to modify
it and therefore expand it. To continue with, the task queue can be extended to
any dynamic scheduler to integrate load-balancing or to optimise the response
time of applications. So far, the task queue does not use all of its power and
does merely set on fairness to treat all processes equally.

Moreover, the runtime-system and the architecture specification could be mod-
ified to support a distributed OpenCL environment. The baseline for this ex-
tension is already set by the distributed application layer and should therefore
be straight-forward.

As this thesis was motivated by upcoming heterogeneous systemes, it is reas-
onable to port and evaluate the framework on such multi-processor system-
on-chips (although being a homogenous example, a reasonable candidate might
be the STHORM platform [7] which natively supports OpenCL).

Presentation Slides

— 73 —

I
psn e
T S~

Executing Process Networks on 4-Core ARM Cortex-A9

: Low-power 8-Core GPU
Heterogeneous Platforms using OpenCL Native Video de/encoding

ore CP Portability offered by OpenCL

OpenCL
AMD1 ARM
& (ned .- Kys
RNVIBIA. ==T augmented

\ \
T . T 5

OpenCL is a Complex Toolbox for Experts Outline

» Introduction

Related Work

I
IO

S » Simplification of OpenCL
&
: /‘ Oak Ridge National Laboratory - Project Maestro

OpenCL AMD and Northeastern University, Boston
» Process Networks on GPUs:
S nviDiA Seoul National University
(__CUDA)

University of Leiden

» High-level Languages:
IBM Research - Project Liquid Metal
with Lime Programming Language

Tobias Scherer

Problem Description

Simplicity offered by SDF graphs

Portability

SV

o ;

6‘6'@ + |&a
@ OpenCL

Design Goal = Efficiency

Tobias Scherer

Institut fir
Tochnische nfo
Kommunikations

\
1y

H

atik una

|

Outline

» Approach
Overview and Contributions
OpenCL Terminology
Runtime-System

Overview and Contributions

» Application Programming Interface

Process Network
Specification

Software Synthesis Tool

y

Executable
Binary

Architecture
Specification

» Runtime-System Mapping

Specification

» Software Synthesis Tool

*a

OpenCL

Instiut ir
Tochnische informatik una
Kommuniationsnotzs

I

» Approach

OpenCL Terminology

Tobias Scherer

Institut tir
Technische Informatik una
Kommunikationsnetze

 Technology Zurich

OpenCL Terminology - Platform Model

OpenCL - Heterogenous System

Tobias Scherer

Instiut i
Tochnische informatik una
Kommunikationsnatzs

Zarich
logy Zurich

OpenCL Terminology - Platform Model

OpenCL - Heterogenous System

Tobias Scherer

Insttut 1o
Tochnische Informatik una
Kommunikationsnetze

OpenCL Terminology - Platform Model

OpenCL - Heterogenous System

OOy

Tobias Scherer

nstitut fir
Tochnische Informatik una
Kommuniationsnetze

OpenCL Terminology - Platform Model

OpenCL - Heterogenous System

EZZZZZ#:> [

—

OpenCL Terminology - Execution Model

Application OpenCL - Heterogenous System

EZZZZZ#:> oL

—

Instiut ir
Tochnische informatik una
Kommuniationsnotzs

OpenCL Terminology - Execution Model

Application OpenCL - Heterogenous System

s [:::::#:> e
|
;JJ&

Tobias Scherer

Institut tir
Technische Informatik una
Kommunikationsnetze

 Technology Zurich

OpenCL Terminology - Execution Model

Application OpenCL - Heterogenous System
L . A A R
‘ J | >
ol £
e

5‘3‘3‘3‘]/

Tobias Scherer

Instiut i
Tochnische informatik una
Kommunikationsnatzs

OpenCL Terminology - Execution Model

Application OpenCL - Heterogenous System
== 33:{> —
‘ g
e F
/"“}J RN
- \ 5‘33‘_1/

Wednesday, June 12, 2013 Tobias Scherer

Runtime-System

Application OpenCL - Heterogenous System

Wednesday, June 12, 2013 Tobias Scherer

Insttut 1o
Tochnische Informatik una
Kommunikationsnetze

nstitut fir
Tochnische Informatik una
Kommuniationsnetze

Runtime-System - Overview

Tobias Scherer

Runtime-System - Overview

» SDF Process Emulation

Institut fir
Tochnische Informatik und
Kommunikationsnetze

Tobias Scherer

Instiut ir
Tochnische informatik una
Kommuniationsnotzs

Runtime-System - Overview

» SDF Process Emulation

» Communication Channels —m:l—»

Runtime-System - Overview

» SDF Process Emulation

» Communication Channels —m»

» Parallelism

Wednesday, June 12, 2013 Tobias Scherer

Wednesday, June 12, 2013

Tobias Scherer

Institut tir
Technische Informatik una
Kommunikationsnetze

r" e
e a——
i e

Runtime-System - SDF Process Emulation

Application Heterogenous System

__kernel process_P1()
{
re_P1l();

Wednesday, June 12, 2013 Tobias Scherer

Insttut 1o
Tochnische Informatik una
Kommunikationsnetze

Runtime-System - Process Execution

Application Heterogenous System

o mm:b
NS
,/O:

N
A

N

S

Wednesday, June 12, 2013 Tobias Scherer

E"’ Institut fir

Tochnische Informatik una
Eidgen chnische Hochsehule Zirich Kommunikationsnetze
Swiss F itute of Technology Zurich

Runtime-System - Overview

%rocess Emulation G

P,

-

8 Comrrgnication Channels —m»
(//:;

» Parallésm
://’,/:

\.

Wednesday, June 12, 2013 Tobias Scherer

Institutfir

Tochnische Informatik und
ische Hochschule Zirich Kommnikationsnetze
Swiss Federal Institute of Technology Zurich

Runtime-System - Channels

Application Heterogenous System

Wednesday, June 12, 2013 Tobias Scherer

Instiut ir
Tochnische informatik una
Kommuniationsnotzs

arich
of Technology Zurich.

Runtime-System - Channels

Application Heterogenous System

Tobias Scherer

Institut tir
Technische Informatik una
Kommunikationsnetze

Runtime-System - Channels

Application Heterogenous System

— Triple Buffering

Tobias Scherer

Runtime-System - Channels

Application Heterogenous System
Host Device 1
mem
Device 2
A mem

Wednesday, June 12, 2013 Tobias Scherer

Instiut ar
Tochnische informatik una
Kommunikationsnatzs

I
ETH TIC 5
Eidger !

chule Zirich
logy 2urich

Runtime-System - Channels

Application Heterogenous System

Host Device 1

n s

Tobias Scherer

chnische Hochsehule Zirich
itute of Technology Zurich

Runtime-System - Channels

Application Heterogenous System

Host Device 1

>
De

©g:26)

Zdi
vice 2

Tobias Scherer

r ' nstitut fir
Tochnische Informatik una
Kommuniationsnetze

ETH it

Ap—
dgendsische TechnischeHochchueZirkh el et
S Pttt of Tcheloy T

Runtime-System - Channels

Application Heterogenous System

Host Device 1
il >

n s

—> Zero-Copy-Buffer

Tobias Scherer

Runtime-System - Overview

JSDF Process Emulation @

%ommunication Channels —>[T[T[T}>

» Parallelism

Tobias Scherer

Institut i
Tochnische informatik una
Kommuniationsnotzs

Institut tir
Technische Informatik una
Kommunikationsnetze

Data-Parallelism offered by OpenCL

Host Device 1

Device 2

2048 Processing Elements <\
?1

Tobias Scherer

of Technology Zurich.

Data-Parallelism - Convolution Filter

Instiut ar
[Ectmische nformatik una
ische Hochschule Zirich (ommunationsnoizo

Insttut 1o
Jechnische nformati una
tochschule Zarich mmunikationsnotzo

chnology Zurich

Data-Parallelism - Convolution Filter

ETH ittt
[—
gentssiche Technische Hochschue Zikh e et

rechni
Swiss Federal Institute of Technology Zurich

Data-Parallelism - Splitter / Merger

Institut fir

Tochnische Informatik und
Eldgensssische Technische Hochschule Zirich Kommnikationsnetze
Swis " logy Zurich

wiss Federal Institute of Technology 2

Data-Parallelism - Splitter / Merger

- Problems:
» Network Topology must be adapted: Complexity
» Needs more Resources (Splitter, Merger, Channels)

Tobias Scherer

- Problems:
» Network Topology must be adapted: Complexity
» Needs more Resources (Splitter, Merger, Channels)

Institut i
[Ectmische nformatik unc
ische Hochschule Zirich ‘ommunlkationsnetze

of Technology Zurich

Data-Parallelism - Splitter / Merger

Institut tir
Techmische nformatik una
tochschule Zarich mmunikationsnoizo

chnology Zurich

Data-Parallelism - Splitter / Merger

Tobias Scherer

.1 4-w-h. weh 1.

—> Shadow Copies

Problems:
» Latency
» Buffersize

Tobias Scherer

1 w-hw-h 1

I I
Tl s
L am—
it et

Insttut 1o
Tochnische Informatik una
Kommunikationsnetze

Output
!l—ryf(lg.ls Tokens

—

Technische Hochschule Zorich
institute of Technology Zurich

Data-Parallelism - Intra-Process Parallelism

Output
-Ir';’f(léas Tokens

_—

ETH o~
[a——
dgendsische TechnischeHochchueZirkh el et

Swiss Federal Institute of Technology Zurich

Data-Parallelism - Intra-Process Parallelism

Output
Tokens Tokens

—_—

Institut i
Tochnische informatik una
Kommunikationsnetzs

Output
%—I;Fl’(légs Tokens

—_——

Institut tir
Technische Informatik una
Kommunikationsnetze

Runtime-System - Overview

%ommunication Channels —[T[T[T}>

%’aralleﬁsm

%rocess Emulation

Instiut i Insttut 1o
Tochnische informatik una Tochnische Informatik una
Kommunikationsnatzs Kommunikationsnetze

tochschule Zirich
of Technology Zurich

Outline Evaluation - Setup

>

NVIDIA.

» Evaluation

Wednesday, June 12, 2013 Tobias Scherer 7 Wednesday, June 12, 2013 Tobias Scherer

nstitut fir Institut fir
Tochnische Informatik una Tochnische Informatik und
Kommuniationsnetze Kommunikationsnetze

QD\ Evaluation Results

0

1500
| z -
£
=
«©
P 1000 ©
0 8 1]
111010010100100101 5 4
)10100100101110100 £ o <
000 olo0i000i000) £ © Jlells <
5000 e ol | Y | | —
o ol | 1 Iy (o
=~ o)| | o = I
noono — || ™ — IR
[N TN il ISR
L sem o) @lln [l D] | D

CPU (one core) CPU+ AMD CPU + NVIDIA
shadow copies (S) and intra—parallelism (I) configuration

Wednesday, June 12, 2013 Tobias Scherer 2 Wednes Tobias Scherer

Institut tir
Techmische nformatik una
chnische Hochschule Zirich mmunikationsnetze

h
itute of Technology Zurich

Instiut ir
Tchmische nformatk una
chnische H le Zrich (ommuniationsnoizo
of

‘ochschule Zirig
stitute of Technology Zurich

Evaluation - POSIX Thread vs. OpenCL Kernel Evaluation - POSIX Thread vs. OpenCL Kernel

14 o ‘
—— POSIX with 02
—+— POSIX with O3 / march=native /
e I e e I e 12 —9— OpenCL, I=1 /
_’ %= OpenCL, I=4 1
® 10r [

N -
ool o 7
BN S ¥ I ,
“X
. Yoy 8 6f o e e e e o o o o b
\ g o
; = af B ——t]

-

P e = o e

0.001 0.01 0.1 1
unoptimized POSIX iteration period [ms]

Tobias Scherer Wednesday, June 12, 2013 Tobias Scherer

Instiut i
Tochnische informatik una
Kommunikationsnatzs

Insttut 1o
Tochnische Informatik una
Kommunikationsnetze

Conclusion Conclusion

» Runtime-System

» Runtime-System
» Application » Application
| Programming Interface J Programming Interface
! X | L !)

Software Synthesis Tool Software Synthesis Tool

» Software Synthesis Tool P » Software Synthesis Tool e
£ e £ e

OpencL OpencL

Wednesday, June 12, 2013 Tobias Scherer 3 Wednesday, June 12, 2013 Tobias Scherer

- o~
ETH [t — ETH it —
Eidgent chnische Hochschule Zirich Kommunikationsnetze N b Kommunikationsnetze

ische Hochschule Zirich msne
Swiss F stitute of Technology Zurich

itute of Technology Zurich Swiss Fede

Conclusion

» Runtime-System ﬂ“mm]])
4 Appllcatlon Architecture Process Network Mapping
| Programming Interface

! l L
2 . 7

Software Synthesis Tool

_."g/“ Executable

Binary

» Software Synthesis Tool

OpencL

Wednesday, June 12, 2013 Tobias Scherer 3 Wednesday, June 12, 2013 Tobias Scherer

Reading List for OpenCL

Besides the official OpenCL specification in [6], there are other recommend-
able sources that can be consulted for a deeper understanding of OpenCL.
They are listed in the following.

* Book: OpenCL Programming Guide [29] — Describes the OpenCL inter-
faces, and is more detailed than the specification itself. There are also
introductory examples.

* Book: Heterogeneous Computing with OpenCL: Revised OpenCL 1.2 Edi-
tion [1] — A textbook for students highlighting all the aspects of parallel
programming for heterogenous systems.

¢ BestPractice: Writing Optimal OpenCL Code with Intel OpenCL SDK [26],
together with the informative online forum at http://software. intel.
com/de-de/forums/intel-opencl-sdk, and the online optimisation guide
athttp://software.intel.com/sites/landingpage/opencl/optimization-guide/
index.htm give very detailed information on how to tune OpenCL ap-
plications for Intel CPUs.

* BestPractice: AMD Accelerated Parallel Programming OpenCL [24] is very
detailed and informative. It explains how OpenCL applications can be
tuned for AMD graphics cards and also CPUs. Furthermore, the ap-
pendix lists a lot of useful information according to their products.

http://software.intel.com/de-de/forums/intel-opencl-sdk
http://software.intel.com/de-de/forums/intel-opencl-sdk
http://software.intel.com/sites/landingpage/opencl/optimization-guide/index.htm
http://software.intel.com/sites/landingpage/opencl/optimization-guide/index.htm

BestPractice: NVIDIA OpenCL Best Practice Guide v1.0 [25] — Rather old
(OpenCL 1.0), not very detailed.

Paper: GPU Programming [23, 30] — A very good summary of the GPU
programming history.

Paper: OpenCL - A Parallel Standard for Heterogenous Computing Systems
Paper: Performance optimisations for OpenCL applications [31, 32, 33]

Bibliography

[1] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heterogeneous
Computing with OpenCL: Revised OpenCL 1.2. Morgan Kaufmann, 2012.

[2] W.R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: A System
for Programming Graphics Hardware in a C-like Language,” in Proc.
SIGGRAPH, 2003, pp. 896-907.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for GPUs: Stream Computing on Graphics
Hardware,” in Proc. SIGGRAPH, 2004, pp. 777-786.

[4] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using Data Parallelism
to Program GPUs for General-purpose Uses,” in Proc. Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2006, pp. 325-335.

[5] “CUDA Programming Guide,” Nvidia, 2008.

[6] “The OpenCL Specification, Version 1.2, 2012,” Khronos OpenCL
Working Group, 2012.

[7] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building an
Ecosystem for a Scalable, Modular and High-Efficiency Embedded

Computing Accelerator,” in Proc. Design, Automation Test in Europe Conf.
(DATE), 2012, pp. 983-987.

[8] K. Spafford,]. Meredith, and J. Vetter, “Maestro: Data Orchestration and
Tuning for OpenCL Devices,” in Euro-Par 2010 - Parallel Processing, ser.
LNCS, P. Dbra, M. Guarracino, and D. Talia, Eds. Springer, 2010, vol.
6272, pp. 275-286.

[9] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. Kaeli, “Enabling Task-level
Scheduling on Heterogeneous Platforms,” in Proc. Workshop on General
Purpose Processing with Graphics Processing Units (GPGPU), 2012, pp.
84-93.

Bibliography

[10] P. Kegel, M. Steuwer, and S. Gorlatch, “dOpenCL: Towards a Uniform
Programming Approach for Distributed Heterogeneous
Multi-/Many-Core Systems,” in Proc. Int’l Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2012, pp. 174-186.

[11] A. Balevic and B. Kienhuis, “An Efficient Stream Buffer Mechanism for
Dataflow Execution on Heterogeneous Platforms with GPUs,” in Proc.
Workshop on Data-Flow Execution Models for Extreme Scale Computing
(DFM), 2011, pp. 53-57.

[12] ——, “KPN2GPU: An Approach for Discovery and Exploitation of
Fine-grain Data Parallelism in Process Networks,” SIGARCH Comput.
Archit. News, vol. 39, no. 4, pp. 66-71, 2011.

[13] H.Jung, Y.Yi, and S. Ha, “Automatic CUDA Code Synthesis
Framework for Multicore CPU and GPU Architectures,” in Parallel
Processing and Applied Mathematics, ser. LNCS, R. Wyrzykowski,

J. Dongarra, K. Karczewski, and J. Wasniewski, Eds. Springer, 2012,
vol. 7203, pp. 579-588.

[14] A.H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke, “Sponge:
Portable Stream Programming on Graphics Engines,” in Proc. Int’l Conf.

on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2011, pp. 381-392.

[15] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamlIt: A Language
for Streaming Applications,” in Compiler Construction, ser. LNCS,
R. Horspool, Ed. Springer, 2002, vol. 2304, pp. 179-196.

[16] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink, “Compiling
a High-Level Language for GPUs: (via Language Support for
Architectures and Compilers),” in Proc. Conf. on Programming Language
Design and Implementation (PLDI), 2012, pp. 1-12.

[17] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: A
Java-compatible and Synthesizable Language for Heterogeneous
Architectures,” in Proc. Int’l Conf. on Object Oriented Programming
Systems Languages and Applications (OOPSLA), 2010, pp. 89-108.

[18] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf, “An
Approach for Quantitative Analysis of Application-Specific Dataflow
Architectures,” in Proc. Int’l Conf. on Application-Specific Systems,
Architectures and Processors (ASAP), 1997, pp. 338-349.

Bibliography

[19] L. Schor et al., “Scenario-Based Design Flow for Mapping Streaming
Applications onto On-Chip Many-Core Systems,” in Proc. CASES, 2012,
pp- 71-80.

[20] C. Breshears, The Art of Concurrency: A Thread Monkey’s Guide to Writing
Parallel Applications. O’Reilly Media, 2009.

[21] ——. (2012, Jul.) Is the Future Fine-Grained Or Coarse-Grained
Parallelism? [Online]. Available: http://www.drdobbs.com/parallel/
is-the-future-fine-grained-or-coarse-gra /240004067

[22] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.

[23] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879-899, 2008.

[24] AMD. (2012) Accelerated Parallel Processing: OpenCL Programming
Guide. [Online]. Available:
http:/ /developer.amd.com/download /AMD_Accelerated_Parallel
Processing_ OpenCL_Programming_Guide.pdf

[25] NVIDIA. (2009) NVIDIA OpenCL Best Practices Guide. [Online].
Available:

http:/ /www.nvidia.com/content/cudazone/CUDABrowser/
downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf

[26] Intel. (2011) Writing Optimal OpenCLTM Code with Intel OpenCL SDK
Performance Guide. [Online]. Available:
http:/ /software.intel.com/file/37171

[27] K. Huang, D. Grunert, and L. Thiele, “Windowed FIFOs for
FPGA-based Multiprocessor Systems,” in Application-specific Systems,
Architectures and Processors, Proc. Int’l Conf. on, 2007, pp. 36—41.

[28] S.-H. Kang, H. Yang, L. Schor, I. Bacivarov, S. Ha, and L. Thiele,
“Multi-objective mapping optimization via problem decomposition for
many-core systems,” in Proc. IEEE Symposium on Embedded Systems for
Real-Time Multimedia (ESTIMedia). Tampere, Finland: IEEE, 2012.

[29] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL
Programming Guide. Addison-Wesley Professional, 2011.

[30] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,]. Kriiger, A. E.
Lefohn, and T. J. Purcell, “A Survey of General-Purpose Computation

http://www.drdobbs.com/parallel/is-the-future-fine-grained-or-coarse-gra/240004067
http://www.drdobbs.com/parallel/is-the-future-fine-grained-or-coarse-gra/240004067
http://developer.amd.com/download/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/download/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://software.intel.com/file/37171

Bibliography

[31]

[32]

[33]

on Graphics Hardware,” in Computer Graphics Forum, vol. 26, no. 1.
Wiley Online Library, 2007, pp. 80-113.

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-m. W. Hwu, “Optimization Principles and Application Performance
Evaluation of a Multithreaded GPU using CUDA,” in Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming. ACM, 2008, pp. 73-82.

K. Karimi, N. G. Dickson, and F. Hamze, “A Performance Comparison
of CUDA and OpenCL,” arXiv preprint arXiv:1005.2581, 2010.

T. Gunarathne, B. Salpitikorala, A. Chauhan, and G. Fox, “Optimizing
OpenCL Kernels for Iterative Statistical Applications on GPUs,” in Proc.
Int’l Workshop on GPUs and Scientific Applications (GPUScA), 2011, pp.
33-44.

	Introduction
	Motivation
	Contributions
	Outline

	Related Work
	Programming Model and Problem Statement
	High-Level Parallel Programming
	Classification of Parallelism
	Process Networks

	Heterogeneous Platforms
	GPGPU-Programming

	Computational Model OpenCL
	Terminology
	Hierarchies of Memory

	Problem Statement

	Runtime Environment Combining OpenCL and SDF
	Differences of OpenCL and SDF
	Overview of the Proposed Solutions
	Communication Channels in OpenCL
	Ring Buffer in Host Memory
	Triple Buffering
	Channel Implementation Directly on Device Memory
	Combined Channel Implementation

	Task Activation Policy
	Fine-Grained and Coarse-Grained Data-Parallelism
	Summary

	High-Level Design-Flow for OpenCL-Accelerated Applications
	Distributed Application Layer
	Overview
	Specification
	Software Synthesis
	Design Goals
	Summary

	Evaluation
	Evaluation Setup
	Intra- and Inter-Device Communication
	Comparison of Task Activation Frameworks
	Overhead of OpenCL versus POSIX Threads
	Exploiting Task- and Data Parallelism
	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Presentation Slides
	Reading List for OpenCL

